1
|
McBenedict B, Hauwanga WN, Ienaco G, Petrus D, Kazmi SS, Machado Lima J, Onabanjo BB, Felix A, Awadelseed S, Selvamani S, Cher PW, Lima Pessôa B. Parkinson's Disease Treatment: A Bibliometric Analysis. Cureus 2024; 16:e69613. [PMID: 39421091 PMCID: PMC11486509 DOI: 10.7759/cureus.69613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by motor symptoms like bradykinesia, tremor, rigidity, and postural instability. Patients also experience non-motor symptoms that greatly affect their quality of life. The global prevalence of PD is increasing, especially among the elderly, necessitating effective treatment strategies. This review provides an overview of the current treatment modalities for PD, including pharmacological and surgical interventions, and employs a bibliometric analysis to evaluate the trends and impact of scientific research in this field. A comprehensive search of the Web of Science Core Collection (WoSCC) database was conducted on July 12, 2024, yielding 3,724 publications related to PD treatment. Bibliometric analysis was performed using Biblioshiny and VOSviewer to assess publication trends, impact, and collaborative networks. Metrics such as the number of publications, citations, h-index, and country/institutional contributions were analyzed to identify key areas of focus and influential research in PD treatment. The analysis revealed a significant increase in PD research output from 2000 onwards, peaking between 2011 and 2016. The United States led in research production, followed by China, Canada, and the United Kingdom. Key researchers included Lang AE, Okun MS, and Lozano AM, with the University of Toronto, University of California System, and Harvard University being the top contributing institutions. The study identified major trends in pharmacological treatments, such as dopamine replacement therapy and deep brain stimulation (DBS) as the most common surgical intervention. Bibliometric analysis highlighted significant international collaborations and identified influential studies shaping the current understanding and treatment of PD. This bibliometric analysis elucidated the trends and impacts of scientific contributions, emphasizing the prolific output from leading countries and institutions in relation to the treatment of Parkinson's disease. Take-home messages for the conclusion of our study are as follows: (1) this study found a substantial increase in Parkinson's disease (PD) research output from 2000 onwards, peaking around 2017-2018, (2) noted a decline in publication output post-2020, (3) the United States had the highest research output, followed by significant contributions from countries like China, Canada, and the United Kingdom, (4) international collaborations played a vital role in advancing PD research, (5) key researchers in the field were Lang AE, Okun MS, and Lozano AM, (6) and established institutions like the University of Toronto, Johns Hopkins University and Harvard University made substantial contributions to the field, emphasizing the role of leading academic centers in driving PD research.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | - Dulci Petrus
- Family Health, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | | | | | | | - Asaju Felix
- General Practice, Dorset County Hospital, Dorchester, GBR
| | | | | | - Phoh Wen Cher
- Family Medicine, International Medical University, Kuala Lumpur, MYS
| | | |
Collapse
|
2
|
Tuominen RK, Renko JM. Biomarkers of Parkinson's disease in perspective of early diagnosis and translation of neurotrophic therapies. Basic Clin Pharmacol Toxicol 2024; 135:271-284. [PMID: 38973499 DOI: 10.1111/bcpt.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopamine neurons and aberrant deposits of alpha-synuclein (α-syn) in the brain. The symptomatic treatment is started after the onset of motor manifestations in a late stage of the disease. Preclinical studies with neurotrophic factors (NTFs) show promising results of disease-modifying neuroprotective or even neurorestorative effects. Four NTFs have entered phase I-II clinical trials with inconclusive outcomes. This is not surprising because the preclinical evidence is from acute early-stage disease models, but the clinical trials included advanced PD patients. To conclude the value of NTF therapies, clinical studies should be performed in early-stage patients with prodromal symptoms, that is, before motor manifestations. In this review, we summarize currently available diagnostic and prognostic biomarkers that could help identify at-risk patients benefiting from NTF therapies. Focus is on biochemical and imaging biomarkers, but also other modalities are discussed. Neuroimaging is the most important diagnostic tool today, but α-syn imaging is not yet viable. Modern techniques allow measuring various forms of α-syn in cerebrospinal fluid, blood, saliva, and skin. Digital biomarkers and artificial intelligence offer new means for early diagnosis and longitudinal follow-up of degenerative brain diseases.
Collapse
Affiliation(s)
- Raimo K Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Juho-Matti Renko
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Marcigaglia S, De Plus R, Vandendriessche C, Schiltz E, Cuypers ML, Cools J, Hoffman LD, Vandenbroucke RE, Dewilde M, Haesler S. Microfluidic Interfaces for Chronic Bidirectional Access to the Brain. Adv Healthc Mater 2024; 13:e2400438. [PMID: 38885495 DOI: 10.1002/adhm.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases.
Collapse
Affiliation(s)
- Simone Marcigaglia
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Robin De Plus
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Eleonore Schiltz
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Marie-Lynn Cuypers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Jordi Cools
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Current affiliation, Thermofisher Scientific (AIG/MSD), Dilbeek, 1702, Belgium
| | - Luis D Hoffman
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Current affiliation, SWave Photonics, Leuven, 3001, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven, Leuven, 3000, Belgium
| | - Sebastian Haesler
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
4
|
Di Francesco V, Chua AJ, Davoudi E, Kim J, Bleier BS, Amiji MM. Minimally invasive nasal infusion (MINI) approach for CNS delivery of protein therapeutics: A case study with ovalbumin. J Control Release 2024; 372:674-681. [PMID: 38909700 DOI: 10.1016/j.jconrel.2024.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
One of the primary obstacles in treating central nervous system (CNS) disorders lies in the limited ability of disease-modifying drugs to cross the blood-brain barrier (BBB). Our previously described Minimally Invasive Nasal Depot (MIND) technique has proven successful in delivering various drugs to the brain in rat models via a trans-olfactory mucosal approach. In this study, we introduce a novel Minimally Invasive Nasal Infusion (MINI) delivery approach for administering ovalbumin, a model protein, utilizing a programmable infusion pump (iPRECIO SMP-310R) in a mouse model. This research highlights the significant role of olfactory mucosa in nose-to-brain delivery, with an efficacy of nearly 45% compared to intracerebroventricular (ICV) administration. This demonstrates its potential as an alternative procedure for treating CNS diseases, offering a greater safety profile relative to the highly invasive clinical routes traditionally adopted for CNS drug delivery.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115., USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114., USA
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115., USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114., USA; Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, 110, Sengkang, E Way, Singapore 544886
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114., USA.
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115., USA; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115., USA.
| |
Collapse
|
5
|
Li L, Chu Z, Li S, Zheng T, Wei S, Zhao Y, Liu P, Lu Q. BDNF-loaded chitosan-based mimetic mussel polymer conduits for repair of peripheral nerve injury. Front Cell Dev Biol 2024; 12:1431558. [PMID: 39011392 PMCID: PMC11246889 DOI: 10.3389/fcell.2024.1431558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.
Collapse
Affiliation(s)
- Lei Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ziyue Chu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shihao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shusheng Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Zhao P, Wu T, Tian Y, You J, Cui X. Recent advances of focused ultrasound induced blood-brain barrier opening for clinical applications of neurodegenerative diseases. Adv Drug Deliv Rev 2024; 209:115323. [PMID: 38653402 DOI: 10.1016/j.addr.2024.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Tiantian Wu
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yu Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 200000, China
| | - Jia You
- School of Pharmacy, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 PMCID: PMC11467944 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
8
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ge G, Sivasubramanian BP, Geng BD, Zhao S, Zhou Q, Huang G, O'Connor JC, Clark RA, Li S. Long-term benefits of hematopoietic stem cell-based macrophage/microglia delivery of GDNF to the CNS in a mouse model of Parkinson's disease. Gene Ther 2024; 31:324-334. [PMID: 38627469 PMCID: PMC11245959 DOI: 10.1038/s41434-024-00451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.
Collapse
Affiliation(s)
- Guo Ge
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guian New Area, Guizhou, 550025, China
| | | | - Bill D Geng
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Shujie Zhao
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Qing Zhou
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jason C O'Connor
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert A Clark
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Senlin Li
- Audie L. Murphy VA Medical Center, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Hakami A, Narasimhan K, Comini G, Thiele J, Werner C, Dowd E, Newland B. Cryogel microcarriers for sustained local delivery of growth factors to the brain. J Control Release 2024; 369:404-419. [PMID: 38508528 DOI: 10.1016/j.jconrel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Neurotrophic growth factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been considered as potential therapeutic candidates for neurodegenerative disorders due to their important role in modulating the growth and survival of neurons. However, clinical translation remains elusive, as their large size hinders translocation across the blood-brain barrier (BBB), and their short half-life in vivo necessitates repeated administrations. Local delivery to the brain offers a potential route to the target site but requires a suitable drug-delivery system capable of releasing these proteins in a controlled and sustained manner. Herein, we develop a cryogel microcarrier delivery system which takes advantage of the heparin-binding properties of GDNF and BDNF, to reversibly bind/release these growth factors via electrostatic interactions. Droplet microfluidics and subzero temperature polymerization was used to create monodisperse cryogels with varying degrees of negative charge and an average diameter of 20 μm. By tailoring the inclusion of 3-sulfopropyl acrylate (SPA) as a negatively charged moiety, the release duration of these two growth factors could be adjusted to range from weeks to half a year. 80% SPA cryogels and 20% SPA cryogels were selected to load GDNF and BDNF respectively, for the subsequent biological studies. Cell culture studies demonstrated that these cryogel microcarriers were cytocompatible with neuronal and microglial cell lines, as well as primary neural cultures. Furthermore, in vivo studies confirmed their biocompatibility after administration into the brain, as well as their ability to deliver, retain and release GDNF and BDNF in the striatum. Overall, this study highlights the potential of using cryogel microcarriers for long-term delivery of neurotrophic growth factors to the brain for neurodegenerative disorder therapeutics.
Collapse
Affiliation(s)
- Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany; Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland.
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
11
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
12
|
Airavaara M, Saarma M. Viral and nonviral approaches. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:83-97. [PMID: 39341664 DOI: 10.1016/b978-0-323-90120-8.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neurodegenerative diseases pose a substantial unmet medical need, and no disease-modifying treatments exist. Neurotrophic factors have been studied for decades as a therapy to slow down or stop the progression of these diseases. In this chapter, we focus on Parkinson disease, the second most common neurodegenerative disorder, and on studies carried out with neurotrophic factors. We explore the routes of administration, how the invasive intracranial administration is the challenge, and different ways to deliver the therapeutic proteins, for example, gene therapy and protein therapy. This therapy concept has been developed to mostly work on the restoration of the lost nigrostriatal dopaminergic neuronal connectivity in the brain. However, in recent years, the center of attention of neurotrophic factors has been on maintaining proteostasis and dissolving and preventing protein inclusions called Lewy bodies. We describe the most studied neurotrophic factor families and compare different preclinical experiments that have been carried out. We also analyze several clinical trials and describe their challenges and breakthroughs and discuss the prospects and challenges of neurotrophic support as a therapy for neurodegenerative diseases. In this chapter, we discuss why they still do and why it is essential to continue to work with this area of neurorestorative research around neurotrophic factors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Garcia R, Zarate S, Srinivasan R. The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:319-343. [PMID: 39190081 DOI: 10.1007/978-3-031-64839-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.
Collapse
Affiliation(s)
- Roger Garcia
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sara Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Azevedo MD, Prince N, Humbert-Claude M, Mesa-Infante V, Jeanneret C, Golzne V, De Matos K, Jamot BB, Magara F, Gonzalez-Hernandez T, Tenenbaum L. Oxidative stress induced by sustained supraphysiological intrastriatal GDNF delivery is prevented by dose regulation. Mol Ther Methods Clin Dev 2023; 31:101106. [PMID: 37766790 PMCID: PMC10520444 DOI: 10.1016/j.omtm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Naika Prince
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Valentine Golzne
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Kevin De Matos
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Benjamin Boury Jamot
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Fulvio Magara
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Statz M, Schleuter F, Weber H, Kober M, Plocksties F, Timmermann D, Storch A, Fauser M. Subthalamic nucleus deep brain stimulation does not alter growth factor expression in a rat model of stable dopaminergic deficiency. Neurosci Lett 2023; 814:137459. [PMID: 37625613 DOI: 10.1016/j.neulet.2023.137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been a highly effective treatment option for mid-to-late-stage Parkinson's disease (PD) for decades. Besides direct effects on brain networks, neuroprotective effects of STN-DBS - potentially via alterations of growth factor expression levels - have been proposed as additional mechanisms of action. OBJECTIVE In the context of clarifying DBS mechanisms, we analyzed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels in the basal ganglia, motor and parietal cortices, and dentate gyrus in an animal model of stable, severe dopaminergic deficiency. METHODS We applied one week of continuous unilateral STN-DBS in a group of stable 6-hydroxydopamine (6-OHDA) hemiparkinsonian rats (6-OHDASTIM) in comparison to a 6-OHDA control group (6-OHDASHAM) as well as healthy controls (CTRLSTIM and CTRLSHAM). BDNF and GDNF levels were determined via ELISAs. RESULTS The 6-OHDA lesion did not result in a persistent alteration in either BDNF or GDNF levels in a model of severe dopaminergic deficiency after completion of the dopaminergic degeneration. STN-DBS modestly increased BDNF levels in the entopeduncular nucleus, but even impaired BDNF and GDNF expression in cortical areas. CONCLUSIONS STN-DBS does not increase growth factor expression when applied to a model of completed, severe dopaminergic deficiency in contrast to other studies in models of modest and ongoing dopaminergic degeneration. In healthy controls, STN-DBS does not influence BDNF or GDNF expression. We consider these findings relevant for clinical purposes since DBS in PD is usually applied late in the course of the disease.
Collapse
Affiliation(s)
- Meike Statz
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Frederike Schleuter
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Hanna Weber
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert-Einstein-Str. 26, 18119 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Albert-Einstein-Str. 26, 18119 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| |
Collapse
|
17
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
18
|
Chen B, Hasan MM, Zhang H, Zhai Q, Waliullah ASM, Ping Y, Zhang C, Oyama S, Mimi MA, Tomochika Y, Nagashima Y, Nakamura T, Kahyo T, Ogawa K, Kaneda D, Yoshida M, Setou M. UBL3 Interacts with Alpha-Synuclein in Cells and the Interaction Is Downregulated by the EGFR Pathway Inhibitor Osimertinib. Biomedicines 2023; 11:1685. [PMID: 37371780 DOI: 10.3390/biomedicines11061685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Ubiquitin-like 3 (UBL3) acts as a post-translational modification (PTM) factor and regulates protein sorting into small extracellular vesicles (sEVs). sEVs have been reported as vectors for the pathology propagation of neurodegenerative diseases, such as α-synucleinopathies. Alpha-synuclein (α-syn) has been widely studied for its involvement in α-synucleinopathies. However, it is still unknown whether UBL3 interacts with α-syn, and is influenced by drugs or compounds. In this study, we investigated the interaction between UBL3 and α-syn, and any ensuing possible functional and pathological implications. We found that UBL3 can interact with α-syn by the Gaussia princeps based split luciferase complementation assay in cells and immunoprecipitation, while cysteine residues at its C-terminal, which are considered important as PTM factors for UBL3, were not essential for the interaction. The interaction was upregulated by 1-methyl-4-phenylpyridinium exposure. In drug screen results, the interaction was significantly downregulated by the treatment of osimertinib. These results suggest that UBL3 interacts with α-syn in cells and is significantly downregulated by epidermal growth factor receptor (EGFR) pathway inhibitor osimertinib. Therefore, the UBL3 pathway may be a new therapeutic target for α-synucleinopathies in the future.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Qing Zhai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Mst Afsana Mimi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yuna Tomochika
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yu Nagashima
- Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomohiko Nakamura
- Department of Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Kenji Ogawa
- Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa 252-0880, Kanagawa, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Yamanaka-19-14 Noyoricho, Toyohashi 441-8124, Aichi, Japan
| | - Minoru Yoshida
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
- RIKEN Center for Sustainable Resource Science, Wako 351-0198, Saitama, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
19
|
Aly AEE, Sun T, Zhang Y, Li Z, Kyada M, Ma Q, Padegimas L, Sesenoglu-Laird O, Cooper MJ, McDannold NJ, Waszczak BL. Focused ultrasound enhances transgene expression of intranasal hGDNF DNA nanoparticles in the sonicated brain regions. J Control Release 2023; 358:498-509. [PMID: 37127076 DOI: 10.1016/j.jconrel.2023.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The therapeutic potential of many gene therapies is limited by their inability to cross the blood brain barrier (BBB). While intranasal administration of plasmid DNA nanoparticles (NPs) offers a non-invasive approach to bypass the BBB, it is not targeted to disease-relevant brain regions. Here, our goal was to determine whether focused ultrasound (FUS) can enrich intranasal delivery of our plasmid DNA NPs to target deeper brain regions, in this case the regions most affected in Parkinson's disease. Combining FUS with intranasal administration resulted in enhanced delivery of DNA NPs to the rodent brain, by recruitment and transfection of microglia. FUS increased transgene expression by over 3-fold after intranasal administration compared to intravenous administration. Additionally, FUS with intranasal delivery increased transgene expression in the sonicated hemisphere by over 80%, altered cellular transfection patterns at the sonication sites, and improved penetration of plasmid NPs into the brain parenchyma (with a 1-fold and 3-fold increase in proximity of transgene expression to neurons in the forebrain and midbrain respectively, and a 40% increase in proximity of transgene expression to dopaminergic neurons in the substantia nigra). These results provide evidence in support of using FUS to improve transgene expression after intranasal delivery of non-viral gene therapies.
Collapse
Affiliation(s)
- Amirah E-E Aly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Tao Sun
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongzhi Zhang
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zejun Li
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Margee Kyada
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Qingxi Ma
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | | | | | - Nathan J McDannold
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara L Waszczak
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
20
|
Stahn L, Rasińska J, Dehne T, Schreyer S, Hakus A, Gossen M, Steiner B, Hemmati-Sadeghi S. Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson's disease. Drug Deliv Transl Res 2023; 13:1745-1765. [PMID: 36853436 PMCID: PMC10125957 DOI: 10.1007/s13346-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1β levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.
Collapse
Affiliation(s)
- Laura Stahn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Tilo Dehne
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Schreyer
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Aileen Hakus
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 21502 Teltow, Germany
| | - Barbara Steiner
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
21
|
Fan CH, Tsai HC, Tsai YS, Wang HC, Lin YC, Chiang PH, Wu N, Chou MH, Ho YJ, Lin ZH, Yeh CK. Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound. ACS NANO 2023; 17:9140-9154. [PMID: 37163347 DOI: 10.1021/acsnano.2c12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An accurate method for neural stimulation within the brain could be very useful for treating brain circuit dysfunctions and neurological disorders. With the aim of developing such a method, this study investigated the use of piezoelectric molybdenum disulfide nanosheets (MoS2 NS) to remotely convert ultrasound energy into localized electrical stimulation in vitro and in vivo. The application of ultrasound to cells surrounding MoS2 NS required only a single pulse of 2 MHz ultrasound (400 kPa, 1,000,000 cycles, and 500 ms pulse duration) to elicit significant responses in 37.9 ± 7.4% of cells in terms of fluxes of calcium ions without detectable cellular damage. The proportion of responsive cells was mainly influenced by the acoustic pressure, number of ultrasound cycles, and concentration of MoS2 NS. Tests using appropriate blockers revealed that voltage-gated membrane channels were activated. In vivo data suggested that, with ultrasound stimulation, neurons closest to the MoS2 NS were 3-fold more likely to present c-Fos expression than cells far from the NS. The successful activation of neurons surrounding MoS2 NS suggests that this represents a method with high spatial precision for selectively modulating one or several targeted brain circuits.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701401, Taiwan
| | - Hong-Chieh Tsai
- Division of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Sheng Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsien-Chu Wang
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Min-Hwa Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| |
Collapse
|
22
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
23
|
Kasanga EA, Han Y, Navarrete W, McManus R, Shifflet MK, Parry C, Barahona A, Manfredsson FP, Nejtek VA, Richardson JR, Salvatore MF. Differential expression of RET and GDNF family receptor, GFR-α1, between striatum and substantia nigra following nigrostriatal lesion: a case for diminished GDNF-signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530671. [PMID: 36909534 PMCID: PMC10002742 DOI: 10.1101/2023.03.01.530671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment across all studies began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), and is later than the timing of GDNF treatment in preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemi-parkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) lesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred that returned to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. Significance Statement Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, clinical data supporting its efficacy to alleviate motor impairment in Parkinson's disease patients remains uncertain. Using the established 6-OHDA hemi-parkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery. Highlights GDNF expression was minimally affected by nigrostriatal lesionGDNF family receptor, GFR-α1, progressively decreased in striatum and in TH neurons in SN.GFR-α1 expression decreased along with TH neurons as lesion progressedGFR-α1 increased bilaterally in GFAP+ cells suggesting an inherent response to offset TH neuron lossRET expression was severely reduced in striatum, whereas it increased in SN early after lesion induction.
Collapse
|
24
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
25
|
Barker RA, Björklund A. Restorative cell and gene therapies for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:211-226. [PMID: 36803812 DOI: 10.1016/b978-0-323-85555-6.00012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
One of the core pathological features of Parkinson's disease (PD) is the loss of the dopaminergic nigrostriatal pathway which lies at the heart of many of the motor features of this condition as well as some of the cognitive problems. The importance of this pathological event is evident through the clinical benefits that are seen when patients with PD are treated with dopaminergic agents, at least in early-stage disease. However, these agents create problems of their own through stimulation of more intact dopaminergic networks within the central nervous system causing major neuropsychiatric problems including dopamine dysregulation. In addition, over time the nonphysiological stimulation of striatal dopamine receptors by l-dopa containing drugs leads to the genesis of l-dopa-induced dyskinesias that can become very disabling in many cases. As such, there has been much interest in trying to better reconstitute the dopaminergic nigrostriatal pathway using either factors to regrow it, cells to replace it, or gene therapies to restore dopamine transmission in the striatum. In this chapter, we lay out the rationale, history and current status of these different therapies as well as highlighting where the field is heading and what new interventions might come to clinic in the coming years.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience, Cambridge Centre for Brain Repair, Cambridge, United Kingdom.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int J Mol Sci 2023; 24:ijms24043866. [PMID: 36835277 PMCID: PMC9968045 DOI: 10.3390/ijms24043866] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), spinal cord injury (SCI), and amyotrophic lateral sclerosis (ALS), are characterized by acute or chronic progressive loss of one or several neuronal subtypes. However, despite their increasing prevalence, little progress has been made in successfully treating these diseases. Research has recently focused on neurotrophic factors (NTFs) as potential regenerative therapy for neurodegenerative diseases. Here, we discuss the current state of knowledge, challenges, and future perspectives of NTFs with a direct regenerative effect in chronic inflammatory and degenerative disorders. Various systems for delivery of NTFs, such as stem and immune cells, viral vectors, and biomaterials, have been applied to deliver exogenous NTFs to the central nervous system, with promising results. The challenges that currently need to be overcome include the amount of NTFs delivered, the invasiveness of the delivery route, the blood-brain barrier permeability, and the occurrence of side effects. Nevertheless, it is important to continue research and develop standards for clinical applications. In addition to the use of single NTFs, the complexity of chronic inflammatory and degenerative diseases may require combination therapies targeting multiple pathways or other possibilities using smaller molecules, such as NTF mimetics, for effective treatment.
Collapse
|
27
|
Li H, Wang J, Fang Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. MICROSYSTEMS & NANOENGINEERING 2023; 9:4. [PMID: 36620392 PMCID: PMC9810608 DOI: 10.1038/s41378-022-00444-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Neural probes are among the most widely applied tools for studying neural circuit functions and treating neurological disorders. Given the complexity of the nervous system, it is highly desirable to monitor and modulate neural activities simultaneously at the cellular scale. In this review, we provide an overview of recent developments in multifunctional neural probes that allow simultaneous neural activity recording and modulation through different modalities, including chemical, electrical, and optical stimulation. We will focus on the material and structural design of multifunctional neural probes and their interfaces with neural tissues. Finally, future challenges and prospects of multifunctional neural probes will be discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
28
|
Lloyd K, Lawton M, Whone A. Practically Defined Off-State Dyskinesia Following Repeated Intraputamenal Glial Cell Line-Derived Neurotrophic Factor Administration. Mov Disord 2023; 38:104-112. [PMID: 36444971 DOI: 10.1002/mds.29262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We recently showed that by employing an enhanced drug-delivery approach, repeated administration of glial cell line-derived neurotrophic factor (GDNF) can produce a spatially distributed increased 18 F-DOPA positron emission tomography (PET) uptake, suggesting sprouting of dopaminergic terminals throughout the putamen structure. Despite this, we failed to prove a significant measurable clinical response. Since, however, we have identified a subject demonstrating a temporal relationship between repeated GDNF infusions and dyskinesia arising in the practically defined off (pracoff) state. OBJECTIVES To describe the development of pracoff dyskinesia across our study population and consider its utility as an indicator that trophic factor-induced terminal sprouting can affect enhanced endogenous dopamine levels. METHODS This was a blinded retrospective analysis of videotaped motor assessments at eight weekly study visits. Dyskinesia in the pracoff and supramaximal on state were rated using the Clinical Dyskinesia Rating Scale. Logistic regression was employed to explore the predictors of pracoff dyskinesia. Generalized estimated equations were used to estimate the cumulative effect of repeated GDNF infusions. RESULTS Mild-moderate choreiform dyskinesia in the pracoff state were seen in 47 assessments in 17 (n = 41) subjects. During the 18-month timeframe, each subsequent 8-week period of receiving GDNF increased the risk of demonstrating pracoff state dyskinesia by 34% (odds ratio [OR], 1.34 (95% confidence interval [CI], 1.20, 1.50); P < 0.001). An increasing supramaximal on dyskinesia score (OR, 1.17 [95% CI, 1.07, 1.30]; P = 0.001) also increased the likelihood of pracoff dyskinesia at that visit. CONCLUSIONS We report the first description of increasingly prevalent pracoff-state dyskinesia developing during the course of a trophic factor study. This may provide a surrogate marker that GDNF can enable recovery of endogenous dopamine release even in advanced Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katherine Lloyd
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Department of Neurology, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alan Whone
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Department of Neurology, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
29
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
30
|
Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, Gao DS, Ren C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson's disease. Front Neurosci 2023; 17:1136499. [PMID: 36908789 PMCID: PMC9995904 DOI: 10.3389/fnins.2023.1136499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD). Methods This study recruited 45 healthy volunteers (health control, HC) and 105 PD patients, including 44 with mild cognitive impairment (PD-MCI), 20 with dementia (PD-D), and 20 with normal cognitive function (PD-N). Neuropsychological tests were performed to evaluate EF (working memory, inhibitory control, and cognitive flexibility), attention, language, memory, and visuospatial function. All subjects were tested for serum GDNF and homovanillic acid (HVA) levels by ELISA and LC-ESI-MS/MS, respectively. Results PD-MCI patients showed impairments in the trail making test (TMT) A (TMT-A), TMT-B, clock drawing test (CDT) and semantic fluency test (SFT), whereas PD-D patients performed worse in most EF tests. With the deterioration of cognitive function, the concentration of serum GDNF and HVA in PD patients decreased. In the PD group, the serum GDNF and HVA levels were negatively correlated with TMT-A (r GDNF = -0.304, P < 0.01; r HVA = -0.334, P < 0.01) and TMT-B (r GDNF = -0.329, P < 0.01; r HVA = -0.323, P < 0.01) scores. Serum GDNF levels were positively correlated with auditory verbal learning test (AVLT-H) (r = 0.252, P < 0.05) and SFT (r = 0.275, P < 0.05) scores. Serum HVA levels showed a positively correlation with digit span test (DST) (r = 0.277, P < 0.01) scores. Stepwise linear regression analysis suggested that serum GDNF and HVA concentrations and UPDRS-III were the influence factors of TMT-A and TMT-B performances in PD patients. Conclusion The decrease of serum GDNF concentration in PD patients was associated with impaired inhibitory control, cognitive flexibility, and attention performances. The changes of GDNF and HVA might synergistically participate in the occurrence and development of executive dysfunction in PD patients.
Collapse
Affiliation(s)
- Shu-Yan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qian Li
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.,Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
31
|
Abulikemu N, Gao X, Wang W, He Q, Wang G, Jiang T, Wang X, Cheng Y, Chen M, Li Y, Liu L, Zhao J, Li J, Jiang C, Wang Y, Han H, Wang J. Mechanism of extracellular space changes in cryptococcal brain granuloma revealed by MRI tracer. Front Neurosci 2022; 16:1034091. [PMID: 36605557 PMCID: PMC9808069 DOI: 10.3389/fnins.2022.1034091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the changes in extracellular space (ECS) in cryptococcal brain granuloma and its pathological mechanism. Materials and methods The animal model of cryptococcal brain granuloma was established by injecting 1 × 106 CFU/ml of Cryptococcus neoformans type A suspension into the caudate nucleus of Sprague-Dawley rats with stereotactic technology. The infection in the brain was observed by conventional MRI scanning on days 14, 21, and 28 of modeling. The tracer-based MRI with a gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a magnetic tracer was performed on the rats with cryptococcal granuloma and the rats in the control group. The parameters of ECS in each area of cryptococcal brain granuloma were measured. The parameters of ECS in the two groups were compared by independent sample t-test, and the changes in ECS and its mechanism were analyzed. Results Up to 28 days of modeling, the success rate of establishing the brain cryptococcal granuloma model with 1 × 106 CFU/ml Cryptococcus neoformans suspension was 60%. In the internal area of cryptococcal granuloma, the effective diffusion coefficient D* was significantly higher than that of the control group (t = 2.76, P < 0.05), and the same trend showed in the volume ratio α (t = 3.71, P < 0.05), the clearance rate constant k (t = 3.137, P < 0.05), and the tracer half-life T1/2 (t = 3.837, P < 0.05). The tortuosity λ decreased compared with the control group (t = -2.70, P < 0.05). At the edge of the cryptococcal granuloma, the D* and α decreased, while the λ increased compared with the control group (D*:t = -6.05, P < 0.05; α: t = -4.988, P < 0.05; λ: t = 6.222, P < 0.05). Conclusion The internal area of the lesion demonstrated a quicker, broader, and more extended distribution of the tracer, while the edge of the lesion exhibited a slower and narrower distribution. MRI tracer method can monitor morphological and functional changes of ECS in pathological conditions and provide a theoretical basis for the treatment via ECS.
Collapse
Affiliation(s)
- Nuerbiyemu Abulikemu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qingyuan He
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Gang Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Imaging Center, Xi’an Gem Flower Changqing Hospital, Xi’an, China
| | - Tao Jiang
- The Animal Experimental Center, Xinjiang Medical University, Ürümqi, China
| | - Xiaodong Wang
- Department of Dermatology, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yumeng Cheng
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yanran Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Lulu Liu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jingjing Zhao
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jin Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Chunhui Jiang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yunling Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Hongbin Han
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China,Institute of Medical Technology, Peking University Health Science Center, Beijing, China,Department of Radiology, Peking University Third Hospital, Beijing, China,Hongbin Han,
| | - Jian Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai, China,*Correspondence: Jian Wang,
| |
Collapse
|
32
|
Zhou M, Wei T, Gu L, Yang H, Li M, Zhou Y. Focal opening of the neuronal plasma membrane by shock-induced bubble collapse for drug delivery: a coarse-grained molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:29862-29869. [PMID: 36468436 DOI: 10.1039/d2cp03442e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell permeabilization using shock-induced bubble collapse provides an attractive choice for drug delivery systems. In this work, based on a realistically human brain plasma membrane (PM) model, we investigated the focal opening of this complex model by the jet from cavitation, focusing on the effect of characteristic membrane components, particle velocity (up) and bubble diameters (D). Both high levels of cholesterol and specific cerebrosides in the PM model limit the pore opening of cavitation jets. Sphingomyelin is the opposite, but has little effect due to its low content. Two adjustable parameters of up and D can be coupled to control the opening size. The relationship between them and the maximum pore area was provided for the first time. The maximum pore area increases with the up (or the impulse that is positively related to up) in the low-speed range, which agrees with the experimentally observed impulse determinism. However, the maximum area drops in the high-speed range. Combined with D, we proposed that the jet size determines the pore size, not the impulse. Larger bubbles that can create a larger pore in the membrane have a larger jet size, but their impulse is relatively small. Finally, the recovery simulation shows that the membrane with a small pore can be quickly recovered within 300 ps, while that with a larger pore did not recover until 2 μs. These rules from this work may be helpful to optimize the choice of shock waves for the delivery of different drugs across membranes.
Collapse
Affiliation(s)
- Mi Zhou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Tong Wei
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Lingzhi Gu
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| |
Collapse
|
33
|
Spinazzi EF, Argenziano MG, Upadhyayula PS, Banu MA, Neira JA, Higgins DMO, Wu PB, Pereira B, Mahajan A, Humala N, Al-Dalahmah O, Zhao W, Save AV, Gill BJA, Boyett DM, Marie T, Furnari JL, Sudhakar TD, Stopka SA, Regan MS, Catania V, Good L, Zacharoulis S, Behl M, Petridis P, Jambawalikar S, Mintz A, Lignelli A, Agar NYR, Sims PA, Welch MR, Lassman AB, Iwamoto FM, D'Amico RS, Grinband J, Canoll P, Bruce JN. Chronic convection-enhanced delivery of topotecan for patients with recurrent glioblastoma: a first-in-patient, single-centre, single-arm, phase 1b trial. Lancet Oncol 2022; 23:1409-1418. [PMID: 36243020 PMCID: PMC9641975 DOI: 10.1016/s1470-2045(22)00599-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma. METHODS We did a single-centre, open-label, single-arm, phase 1b clinical trial at Columbia University Irving Medical Center (New York, NY, USA). Eligible patients were at least 18 years of age with solitary, histologically confirmed recurrent glioblastoma showing radiographic progression after surgery, radiotherapy, and chemotherapy, and a Karnofsky Performance Status of at least 70. Five patients had catheters stereotactically implanted into the glioma-infiltrated peritumoural brain and connected to subcutaneously implanted pumps that infused 146 μM topotecan 200 μL/h for 48 h, followed by a 5-7-day washout period before the next infusion, with four total infusions. After the fourth infusion, the pump was removed and the tumour was resected. The primary endpoint of the study was safety of the treatment regimen as defined by presence of serious adverse events. Analyses were done in all treated patients. The trial is closed, and is registered with ClinicalTrials.gov, NCT03154996. FINDINGS Between Jan 22, 2018, and July 8, 2019, chronic CED of topotecan was successfully completed safely in all five patients, and was well tolerated without substantial complications. The only grade 3 adverse event related to treatment was intraoperative supplemental motor area syndrome (one [20%] of five patients in the treatment group), and there were no grade 4 adverse events. Other serious adverse events were related to surgical resection and not the study treatment. Median follow-up was 12 months (IQR 10-17) from pump explant. Post-treatment tissue analysis showed that topotecan significantly reduced proliferating tumour cells in all five patients. INTERPRETATION In this small patient cohort, we showed that chronic CED of topotecan is a potentially safe and active therapy for recurrent glioblastoma. Our analysis provided a unique tissue-based assessment of treatment response without the need for large patient numbers. This novel delivery of topotecan overcomes limitations in delivery and treatment response assessment for patients with glioblastoma and could be applicable for other anti-glioma drugs or other CNS diseases. Further studies are warranted to determine the effect of this drug delivery approach on clinical outcomes. FUNDING US National Institutes of Health, The William Rhodes and Louise Tilzer Rhodes Center for Glioblastoma, the Michael Weiner Glioblastoma Research Into Treatment Fund, the Gary and Yael Fegel Foundation, and The Khatib Foundation.
Collapse
Affiliation(s)
- Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Justin A Neira
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique M O Higgins
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay V Save
- Department of Neurological Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Deborah M Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Tamara Marie
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Tejaswi D Sudhakar
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sylwia A Stopka
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vanessa Catania
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Good
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Stergios Zacharoulis
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meenu Behl
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Lignelli
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute Boston, MA, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary R Welch
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Fabio M Iwamoto
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, New York, NY, USA
| | - Jack Grinband
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
34
|
Noor SM, Wong CED, Wong PF, Norazit A. Generation of glial cell-derived neurotrophic factor (gdnf) morphants in zebrafish larvae by cerebroventricular microinjection of vivo morpholino. Methods Cell Biol 2022; 181:17-32. [PMID: 38302238 DOI: 10.1016/bs.mcb.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.
Collapse
Affiliation(s)
- Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Ern David Wong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
36
|
Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med 2022; 28:1813-1822. [PMID: 36064599 PMCID: PMC9499868 DOI: 10.1038/s41591-022-01956-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves progressive motor neuron loss, leading to paralysis and death typically within 3–5 years of diagnosis. Dysfunctional astrocytes may contribute to disease and glial cell line-derived neurotrophic factor (GDNF) can be protective. Here we show that human neural progenitor cells transduced with GDNF (CNS10-NPC-GDNF) differentiated to astrocytes protected spinal motor neurons and were safe in animal models. CNS10-NPC-GDNF were transplanted unilaterally into the lumbar spinal cord of 18 ALS participants in a phase 1/2a study (NCT02943850). The primary endpoint of safety at 1 year was met, with no negative effect of the transplant on motor function in the treated leg compared with the untreated leg. Tissue analysis of 13 participants who died of disease progression showed graft survival and GDNF production. Benign neuromas near delivery sites were common incidental findings at post-mortem. This study shows that one administration of engineered neural progenitors can provide new support cells and GDNF delivery to the ALS patient spinal cord for up to 42 months post-transplantation. A phase 1/2a study shows that human neural progenitor cells modified to release the growth factor GDNF are safely transplanted into the spinal cord of patients with ALS, with cell survival and GDNF production for over 3 years.
Collapse
|
37
|
Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H, Borlongan CV. Sequestration of Inflammation in Parkinson's Disease via Stem Cell Therapy. Int J Mol Sci 2022; 23:ijms231710138. [PMID: 36077534 PMCID: PMC9456021 DOI: 10.3390/ijms231710138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Adam Alayli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hassan Choudhary
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
38
|
Quintero JE, Slevin JT, Gurwell JA, McLouth CJ, El Khouli R, Chau MJ, Guduru Z, Gerhardt GA, van Horne CG. Direct delivery of an investigational cell therapy in patients with Parkinson's disease: an interim analysis of feasibility and safety of an open-label study using DBS-Plus clinical trial design. BMJ Neurol Open 2022; 4:e000301. [PMID: 35949912 PMCID: PMC9295654 DOI: 10.1136/bmjno-2022-000301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Objective To evaluate the interim feasibility, safety and clinical measures data of direct delivery of regenerating peripheral nerve tissue (PNT) to the substantia nigra (SN) in participants with Parkinson’s disease (PD). Methods Eighteen (13 men/5 women) participants were unilaterally implanted with PNT to the SN, contralateral to the most affected side during the same surgery they were receiving deep brain stimulation (DBS) surgery. Autologous PNT was collected from the sural nerve. Participants were followed for safety and clinical outcomes for 2 years (including off-state Unified Parkinson’s Disease Rating Scale (UPDRS) Part III assessments) with study visits every 6 months. Results All 18 participants scheduled to receive PNT implantation received targeted delivery to the SN in addition to their DBS. All subjects were discharged the following day except for two: post-op day 2; post-op day 3. The most common study-related adverse events were hypoaesthesia and hyperaesthesias to the lateral aspect of the foot and ankle of the biopsied nerve (6 of 18 participants experienced). Clinical measures did not identify any hastening of PD measures providing evidence of safety and tolerability. Off-state UPDRS Part III mean difference scores were reduced at 12 months compared with baseline (difference=−8.1, 95% CI −2.4 to −13.9 points, p=0.005). No complications involving dyskinesias were observed. Conclusions Targeting the SN for direct delivery of PNT was feasible with no serious adverse events related to the study intervention. Interim clinical outcomes show promising results meriting continued examination of this investigational approach. Trial registration number NCT02369003.
Collapse
Affiliation(s)
- Jorge E Quintero
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - John T Slevin
- Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neurology, VA Medical Center, Lexington, Kentucky, USA
| | - Julie A Gurwell
- Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | - Riham El Khouli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Monica J Chau
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Zain Guduru
- Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Greg A Gerhardt
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neurology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Craig G van Horne
- Neurosurgery, University of Kentucky Medical Center, Lexington, Kentucky, USA.,Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky, USA
| |
Collapse
|
39
|
Kang SS, Wu Z, Liu X, Edgington-Mitchell L, Ye K. Treating Parkinson's Disease via Activation of BDNF/TrkB Signaling Pathways and Inhibition of Delta-Secretase. Neurotherapeutics 2022; 19:1283-1297. [PMID: 35595958 PMCID: PMC9587159 DOI: 10.1007/s13311-022-01248-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with motor disorders as the key clinical features. BDNF/TrkB neurotrophic signalings are progressively reduced, whereas δ-secretase, a protease that cleaves α-synuclein (α-Syn) at N103 and promotes its aggregation and neurotoxicity, is gradually escalated in PD patient brains, associated with dopaminergic neuronal loss in the Substantia Nigra. Here, we show that stimulation of deficient BDNF/TrkB signalings with its small molecular agonist CF3CN displays the promising therapeutic effect, and blockade of δ-secretase with an optimal specific inhibitor #11A exhibits marked therapeutic effect, and combination of both demonstrates additive restorative efficacy in MPTP-induced human SNCA transgenic PD mice. Upon oral administration, CF3CN robustly activates TrkB-mediated neurotrophic pathway in the brains of SNCA mice and decreases α-Syn N103 cleavage by δ-secretase, and #11A strongly blocks δ-secretase and reduces α-Syn N103 fragmentation, increasing TH-positive dopaminergic neurons. The mixture of CF3CN and #11A shows the maximal TH and dopamine levels with demonstrable BDNF as compared to negligible BDNF in vehicle-treated MPTP/SNCA mice, leading to the climaxed motor functions. Notably, both compounds possess the appropriate in vivo PK profiles. Hence, our findings support that CF3CN and #11A are promising therapeutic pharmaceutical agents for treating PD.
Collapse
Affiliation(s)
- Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhourui Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, 200072, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Laura Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
40
|
Wu Y, Lin X, Hong H, Fung YL, Cao X, Tse JKY, Li TH, Chan TF, Tian XY. Endothelium-targeted delivery of PPARδ by adeno-associated virus serotype 1 ameliorates vascular injury induced by hindlimb ischemia in obese mice. Biomed Pharmacother 2022; 151:113172. [PMID: 35644115 DOI: 10.1016/j.biopha.2022.113172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic vasculopathy is a major health problem worldwide. Peripheral arterial disease (PAD), and in its severe form, critical limb ischemia is a major form of diabetic vasculopathy with limited treatment options. Existing literature suggested an important role of PPARδ in vascular homeostasis. It remains elusive for using PPARδ as a potential therapeutic target due to mostly the side effects of PPARδ agonists. To explore the roles of PPARδ in endothelial homeostasis, endothelial cell (EC) selective Ppard knockout and controlled mice were subjected to hindlimb ischemia (HLI) injury. The muscle ECs were sorted for single-cell RNA sequencing (scRNA-seq) analysis. HLI was also performed in high fat diet (HFD)-induced obese mice to examine the function of PPARδ in obese mice with delayed vascular repair. Adeno-associated virus type 1 (AAV1) carrying ICAM2 promoter to target endothelium for overexpressing PPARδ was injected into the injured muscles of normal chow- and HFD-fed obese mice before HLI surgery was performed. scRNA-seq analysis of ECs in ischemic muscles revealed a pivotal role of PPARδ in endothelial homeostasis. PPARδ expression was diminished both after HLI injury, and also in obese mice, which showed further delayed vascular repair. Endothelium-targeted delivery of PPARδ by AAV1 improved perfusion recovery, increased capillary density, restored endothelial integrity, suppressed vascular inflammation, and promoted muscle regeneration in ischemic hindlimbs of both lean and obese mice. Our study indicated the effectiveness of endothelium-targeted PPARδ overexpression for restoring functional vasculature after ischemic injury, which might be a promising option of gene therapy to treat PAD and CLI.
Collapse
Affiliation(s)
- Yalan Wu
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Lin
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huiling Hong
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yee Lok Fung
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyun Cao
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Joyce Ka Yu Tse
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Ho Li
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China; School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
41
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
42
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
43
|
Pandian SRK, Vijayakumar KK, Murugesan S, Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases. Heliyon 2022; 8:e09575. [PMID: 35706935 PMCID: PMC9189891 DOI: 10.1016/j.heliyon.2022.e09575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The function of the brain can be affected by various factors that include infection, tumor, and stroke. The major disorders reported with altered brain function are Alzheimer's disease (AD), Parkinson's disease (PD), dementia, brain cancer, seizures, mental disorders, and other movement disorders. The major barrier in treating CNS disease is the blood-brain barrier (BBB), which protects the brain from toxic molecules, and the cerebrospinal fluid (CSF) barrier, which separates blood from CSF. Brain endothelial cells and perivascular elements provide an integrated cellular barrier, the BBB, which hamper the invasion of molecules from the blood to the brain. Even though many drugs are available to treat neurological disorders, it fails to reach the desired site with the required concentration. In this purview, liposomes can carry required concentrations of molecules intracellular by diverse routes such as carrier-mediated transport and receptor-mediated transcytosis. Surface modification of liposomes enables them to deliver drugs to various brain cells, including neurons, astrocytes, oligodendrocytes, and microglia. The research studies supported the role of liposomes in delivering drugs across BBB and in reducing the pathogenesis of AD and PD. The liposomes were surface-functionalized with various molecules to reach the cells intricated with the AD or PD pathogenesis. The targeted and sustained delivery of drugs by liposomes is disturbed due to the antibody formation, renal clearance, accelerated blood clearance, and complement activation-related pseudoallergy (CARPA). Hence, this review will focus on the characteristics, surface functionalization, drug loading, and biodistribution of liposomes respective to AD and PD. In addition, the alternative strategies to overcome immunogenicity are discussed briefly.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| | - Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| |
Collapse
|
44
|
Wianny F, Dzahini K, Fifel K, Wilson CRE, Bernat A, Dolmazon V, Misery P, Lamy C, Giroud P, Cooper HM, Knoblauch K, Procyk E, Kennedy H, Savatier P, Dehay C, Vezoli J. Induced Cognitive Impairments Reversed by Grafts of Neural Precursors: A Longitudinal Study in a Macaque Model of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103827. [PMID: 35137562 PMCID: PMC8981458 DOI: 10.1002/advs.202103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/14/2022] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) evolves over an extended and variable period in humans; years prior to the onset of classical motor symptoms, sleep and biological rhythm disorders develop, significantly impacting the quality-of-life of patients. Circadian-rhythm disorders are accompanied by mild cognitive deficits that progressively worsen with disease progression and can constitute a severe burden for patients at later stages. The gold-standard 6-methyl-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) macaque model of PD recapitulates the progression of motor and nonmotor symptoms over contracted periods of time. Here, this multidisciplinary/multiparametric study follows, in five animals, the steady progression of motor and nonmotor symptoms and describes their reversal following grafts of neural precursors in diverse functional domains of the basal ganglia. Results show unprecedented recovery from cognitive symptoms in addition to a strong clinical motor recuperation. Both motor and cognitive recovery and partial circadian rhythm recovery correlate with the degree of graft integration, and in a subset of animals, with in vivo levels of striatal dopaminergic innervation and function. The present study provides empirical evidence that integration of neural precursors following transplantation efficiently restores function at multiple levels in parkinsonian nonhuman primates and, given interindividuality of disease progression and recovery, underlines the importance of longitudinal multidisciplinary assessments in view of clinical translation.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- PrimastemBron69500France
| | - Kwamivi Dzahini
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- PrimastemBron69500France
| | - Karim Fifel
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- Present address: International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8575Japan
| | - Charles Robert Eden Wilson
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Agnieszka Bernat
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- Present address: Laboratory of Molecular DiagnosticsDepartment of BiotechnologyInter‐collegiate Faculty of BiotechnologyUniversity of Gdańsk and Medical University of GdańskGdańsk80‐307Poland
- Present address: Laboratory of Experimental EmbryologyInstitute of Genetics and Animal BiotechnologyPolish Academy of SciencesWarsaw05‐552Poland
| | - Virginie Dolmazon
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Pierre Misery
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Camille Lamy
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Pascale Giroud
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Howard Michael Cooper
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- National Centre for OpticsVision and Eye CareFaculty of Health and Social SciencesUniversity College of Southeast NorwayKongsbergN‐3603Norway
| | - Emmanuel Procyk
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- Institute of NeuroscienceState Key Laboratory of NeuroscienceChinese Academy of Sciences (CAS) Key Laboratory of Primate NeurobiologyShanghai200031China
| | - Pierre Savatier
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- PrimastemBron69500France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- PrimastemBron69500France
| | - Julien Vezoli
- Univ Lyon, Université Claude Bernard Lyon 1Inserm U1208Stem Cell and Brain Research InstituteBron69500France
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurt60528Germany
| |
Collapse
|
45
|
Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front Neurosci 2022; 16:846681. [PMID: 35401084 PMCID: PMC8990810 DOI: 10.3389/fnins.2022.846681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Magnetic Resonance–guided Focused Ultrasound (MRgFUS) represents an effective micro-lesioning approach to target pharmaco-resistant tremor, mostly in patients afflicted by essential tremor (ET) and/or Parkinson’s disease (PD). So far, experimental protocols are verifying the clinical extension to other facets of the movement disorder galaxy (i.e., internal pallidus for disabling dyskinesias). Aside from those neurosurgical options, one of the most intriguing opportunities of this technique relies on its capability to remedy the impermeability of blood–brain barrier (BBB). Temporary BBB opening through low-intensity focused ultrasound turned out to be safe and feasible in patients with PD, Alzheimer’s disease, and amyotrophic lateral sclerosis. As a mere consequence of the procedures, some groups described even reversible but significant mild cognitive amelioration, up to hippocampal neurogenesis partially associated to the increased of endogenous brain-derived neurotrophic factor (BDNF). A further development elevates MRgFUS to the status of therapeutic tool for drug delivery of putative neurorestorative therapies. Since 2012, FUS-assisted intravenous administration of BDNF or neurturin allowed hippocampal or striatal delivery. Experimental studies emphasized synergistic modalities. In a rodent model for Huntington’s disease, engineered liposomes can carry glial cell line–derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex through pulsed FUS exposures with microbubbles; in a subacute MPTP-PD model, the combination of intravenous administration of neurotrophic factors (either through protein or gene delivery) plus FUS did curb nigrostriatal degeneration. Here, we explore these arguments, focusing on the current, translational application of neurotrophins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
- *Correspondence: Alessandro Stefani,
| | | | - Silvia Cardarelli
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Lucrezia Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Carmine Marini
- UOC Neurology and Stroke Unit, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
46
|
A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 2022; 29:434-448.e5. [PMID: 35180398 DOI: 10.1016/j.stem.2022.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.
Collapse
|
47
|
Lin MS, Chen SM, Hua KF, Chen WJ, Hsieh CC, Lin CC. Freshwater Clam Extract Mitigates Neuroinflammation and Amplifies Neurotrophic Activity of Glia: Insights from In Vitro Model of Neurodegenerative Pathomechanism. J Clin Med 2022; 11:jcm11030553. [PMID: 35160004 PMCID: PMC8836940 DOI: 10.3390/jcm11030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background. An extensive body of research suggests that brain inflammation and oxidative stress are the underlying causes of Parkinson’s disease (PD), for which no potent therapeutic approach exists to mitigate the degradation of dopamine neurons. Freshwater clams, an ancient health food of Chinese origin, have been documented to exhibit anti-inflammatory and antioxidant effects. We previously reported that freshwater clam extract (FCE) can attenuate astrocytic activation and subsequent proinflammatory cytokine production from substantia nigra in an MPTP-induced PD mouse model. This article provides insight into the potential mechanisms through which FCE regulates neuroinflammation in a glia model of injury. Materials and methods. In total, 1 μg/mL lipopolysaccharide (LPS) and 200 μM rotenone were conducted in primary glial cell cultures to mimic the respective neuroinflammation and oxidative stress during injury-induced glial cell reactivation, which is relevant to the pathological process of PD. Results. FCE markedly reduced LPS-induced neuroinflammation by suppressing NO and TNF-α production and the expression of pro-inflammatory cytokines. In addition, FCE was effective at reducing rotenone-induced toxicity by diminishing ROS production, promoting antioxidant enzymes (SOD, catalase, and GPx) and minimizing the decline in glial-cell-secreted neurotrophic factors (GDNF, BDNF). These impacts ultimately led to a decrease in glial apoptosis. Conclusions. Evidence reveals that FCE is capable of stabilizing reactive glia, as demonstrated by reduced neuroinflammation, oxidative stress, the increased release of neurotrophic factors and the inhibition of apoptosis, which provides therapeutic insight into neurodegenerative diseases, including PD.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan;
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (K.-F.H.); (W.-J.C.); (C.-C.H.)
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| | - Shu-Mei Chen
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (K.-F.H.); (W.-J.C.); (C.-C.H.)
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (K.-F.H.); (W.-J.C.); (C.-C.H.)
| | - Cho-Chen Hsieh
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (K.-F.H.); (W.-J.C.); (C.-C.H.)
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan; (K.-F.H.); (W.-J.C.); (C.-C.H.)
- Correspondence: ; Tel.: +886-3-9310592; Fax: +886-3-9280609
| |
Collapse
|
48
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
49
|
Chau MJ, Quintero JE, Monje PV, Voss SR, Welleford AS, Gerhardt GA, van Horne CG. Using a Transection Paradigm to Enhance the Repair Mechanisms of an Investigational Human Cell Therapy. Cell Transplant 2022; 31:9636897221123515. [PMID: 36169034 PMCID: PMC9523845 DOI: 10.1177/09636897221123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
One promising strategy in cell therapies for Parkinson's disease (PD) is to harness a patient's own cells to provide neuroprotection in areas of the brain affected by neurodegeneration. No treatment exists to replace cells in the brain. Thus, our goal has been to support sick neurons and slow neurodegeneration by transplanting living repair tissue from the peripheral nervous system into the substantia nigra of those with PD. Our group has pioneered the transplantation of transection-activated sural nerve fascicles into the brain of human subjects with PD. Our experience in sural nerve transplantation has supported the safety and feasibility of this approach. As part of a paradigm to assess the reparative properties of human sural nerve following a transection injury, we collected nerve tissue approximately 2 weeks after sural nerve transection for immunoassays from 15 participants, and collected samples from two additional participants for single nuclei RNA sequencing. We quantified the expression of key neuroprotective and select anti-apoptotic genes along with their corresponding protein levels using immunoassays. The single nuclei data clustered into 10 distinctive groups defined on the basis of previously published cell type-specific genes. Transection-induced reparative peripheral nerve tissue showed RNA expression of neuroprotective factors and anti-apoptotic factors across multiple cell types after nerve injury induction. Key proteins of interest (BDNF, GDNF, beta-NGF, PDGFB, and VEGF) were upregulated in reparative tissue. These results provide insight on this repair tissue's utility as a neuroprotective cell therapy.
Collapse
Affiliation(s)
- Monica J. Chau
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jorge E. Quintero
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Paula V. Monje
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen Randal Voss
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrew S. Welleford
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Greg A. Gerhardt
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Craig G. van Horne
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
50
|
Saito Y, Miyajima M, Yamamoto S, Miura N, Sato T, Kita A, Ijima S, Fujimiya M, Chikenji TS. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:644-658. [PMID: 35466994 PMCID: PMC9216504 DOI: 10.1093/stcltm/szac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/06/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Corresponding author: Takako S. Chikenji, PhD. , North 12 West 5, Kitaku, Sapporo 060-0812, Japan. Tel: +011 706 3382; Fax: +011 706 3382;
| |
Collapse
|