1
|
Izadifar Z, Charrez B, Almeida M, Robben S, Pilobello K, van der Graaf-Mas J, Marquez SL, Ferrante TC, Shcherbina K, Gould R, LoGrande NT, Sesay AM, Ingber DE. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens Bioelectron 2024; 265:116683. [PMID: 39213819 PMCID: PMC11391946 DOI: 10.1016/j.bios.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Micaela Almeida
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Stijn Robben
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Department of Microelectronics, Technical University Delft, Delft, 2628 CD, Netherlands
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janet van der Graaf-Mas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Susan L Marquez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Russell Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2024. [PMID: 39437423 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical University of Vienna, Vienna 1090, Austria
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, United States
- Institute for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Matsunaga Y, Qadota H, Ghazal N, Lesanpezeshki L, Dorendorf T, Moody JC, Ahier A, Matheny CJ, Vanapalli SA, Zuryn S, Mayans O, Kwong JQ, Benian GM. Protein kinase 2 of the giant sarcomeric protein UNC-89 regulates mitochondrial morphology and function. Commun Biol 2024; 7:1342. [PMID: 39420071 PMCID: PMC11487192 DOI: 10.1038/s42003-024-07042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
UNC-89 is a giant sarcomeric M-line protein required for sarcomere organization and optimal muscle function. UNC-89 contains two protein kinase domains, PK1 and PK2, separated by an elastic region. Here we show that PK2 is a canonical kinase expected to be catalytically active. C. elegans expressing UNC-89 with a lysine to alanine (KtoA) mutation to inactivate PK2 have normally organized sarcomeres and SR, and normal muscle function. PK2 KtoA mutants have fragmented mitochondria, correlated with more mitochondrially-associated DRP-1. PK2 KtoA mutants have increased ATP levels, increased glycolysis and altered levels of electron transport chain complexes. Muscle mitochondria show increased complex I and decreased complex II basal respiration, each of which cannot be uncoupled. This suggests that mutant mitochondria are already uncoupled, possibly resulting from an increased level of the uncoupling protein, UCP-4. Our results suggest signaling from sarcomeres to mitochondria, to help match energy requirements with energy production.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Nasab Ghazal
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | | | - Till Dorendorf
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Li R, Li Y, Jiang K, Zhang L, Li T, Zhao A, Zhang Z, Xia Y, Ge K, Chen Y, Wang C, Tang W, Liu S, Lin X, Song Y, Mei J, Xiao C, Wang A, Zou Y, Li X, Chen X, Ju Z, Jia W, Loscalzo J, Sun Y, Fang W, Yang Y, Zhao Y. Lighting up arginine metabolism reveals its functional diversity in physiology and pathology. Cell Metab 2024:S1550-4131(24)00375-9. [PMID: 39413790 DOI: 10.1016/j.cmet.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics in situ remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Rui Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yale Xia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxi Lin
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuqin Song
- Suzhou Ruijin Vitiligo Medical Research Institute, Suzhou 215100, China
| | - Jie Mei
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Xiao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
5
|
Sperry MM, Charrez B, Fotowat H, Gardner E, Pilobello K, Izadifar Z, Lin T, Kuelker A, Kaki S, Lewandowski M, Lightbown S, Martinez R, Marquez S, Moore J, Plaza-Oliver M, Sesay AM, Shcherbina K, Sheehan K, Takeda T, Del Campo D, Andrijauskaite K, Cisneros E, Lopez R, Cano I, Maxwell Z, Jessop I, Veraza R, Bunegin L, Percival TJ, Yracheta J, Pena JJ, Wood DM, Homas ZT, Hinshaw CJ, Cox-Hinshaw J, Parry OG, Sleeter JJ, Weitzel EK, Levin M, Super M, Novak R, Ingber DE. Identification of pharmacological inducers of a reversible hypometabolic state for whole organ preservation. eLife 2024; 13:RP93796. [PMID: 39316042 PMCID: PMC11421850 DOI: 10.7554/elife.93796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Drugs that induce reversible slowing of metabolic and physiological processes would have great value for organ preservation, especially for organs with high susceptibility to hypoxia-reperfusion injury, such as the heart. Using whole-organism screening of metabolism, mobility, and development in Xenopus, we identified an existing drug, SNC80, that rapidly and reversibly slows biochemical and metabolic activities while preserving cell and tissue viability. Although SNC80 was developed as a delta opioid receptor activator, we discovered that its ability to slow metabolism is independent of its opioid modulating activity as a novel SNC80 analog (WB3) with almost 1000 times less delta opioid receptor binding activity is equally active. Metabolic suppression was also achieved using SNC80 in microfluidic human organs-on-chips, as well as in explanted whole porcine hearts and limbs, demonstrating the cross-species relevance of this approach and potential clinical relevance for surgical transplantation. Pharmacological induction of physiological slowing in combination with organ perfusion transport systems may offer a new therapeutic approach for tissue and organ preservation for transplantation, trauma management, and enhancing patient survival in remote and low-resource locations.
Collapse
Affiliation(s)
- Megan M Sperry
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
- Department of Biology, Tufts UniversityMedfordUnited States
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Erica Gardner
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Tiffany Lin
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Abigail Kuelker
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Sahith Kaki
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Michael Lewandowski
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Shanda Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Ramses Martinez
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Susan Marquez
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Joel Moore
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Maria Plaza-Oliver
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
- DEVANA group, Faculty of Pharmacy, University of Castilla-La ManchaCiudad RealSpain
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Katherine Sheehan
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Takako Takeda
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Daniela Del Campo
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | | | - Exal Cisneros
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Riley Lopez
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Isabella Cano
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | | | - Israel Jessop
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Rafa Veraza
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Leon Bunegin
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Thomas J Percival
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Jaclyn Yracheta
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Jorge J Pena
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Diandra M Wood
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Zachary T Homas
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Cody J Hinshaw
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | | | - Olivia G Parry
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Justin J Sleeter
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Erik K Weitzel
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Michael Levin
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
- Department of Biology, Tufts UniversityMedfordUnited States
- Allen Center, Tufts UniversityMedfordUnited States
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Donald E Ingber
- Vascular Biology Program & Department of Surgery, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Harvard John A. Paulson School of Engineering and Applied SciencesBostonUnited States
| |
Collapse
|
6
|
Marvin JS, Kokotos AC, Kumar M, Pulido C, Tkachuk AN, Yao JS, Brown TA, Ryan TA. iATPSnFR2: A high-dynamic-range fluorescent sensor for monitoring intracellular ATP. Proc Natl Acad Sci U S A 2024; 121:e2314604121. [PMID: 38748581 PMCID: PMC11126915 DOI: 10.1073/pnas.2314604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/10/2024] [Indexed: 05/27/2024] Open
Abstract
We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.
Collapse
Affiliation(s)
| | - Alexandros C. Kokotos
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Mukesh Kumar
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - Camila Pulido
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | | | | | | | - Timothy A. Ryan
- HHMI, Ashburn, VA20147
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
7
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Wang A, Zou Y, Liu S, Zhang X, Li T, Zhang L, Wang R, Xia Y, Li X, Zhang Z, Liu T, Ju Z, Wang R, Loscalzo J, Yang Y, Zhao Y. Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nat Protoc 2024; 19:1311-1347. [PMID: 38307980 DOI: 10.1038/s41596-023-00948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 02/04/2024]
Abstract
As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.
Collapse
Affiliation(s)
- Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuze Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yale Xia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Tabata Fukushima C, Dancil IS, Clary H, Shah N, Nadtochiy SM, Brookes PS. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions. Redox Biol 2024; 70:103047. [PMID: 38295577 PMCID: PMC10844975 DOI: 10.1016/j.redox.2024.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Ischemic tissues accumulate succinate, which is rapidly oxidized upon reperfusion, driving a burst of mitochondrial reactive oxygen species (ROS) generation that triggers cell death. In isolated mitochondria with succinate as the sole metabolic substrate under non-phosphorylating conditions, 90 % of ROS generation is from reverse electron transfer (RET) at the Q site of respiratory complex I (Cx-I). Together, these observations suggest Cx-I RET is the source of pathologic ROS in reperfusion injury. However, numerous factors present in early reperfusion may impact Cx-I RET, including: (i) High [NADH]; (ii) High [lactate]; (iii) Mildly acidic pH; (iv) Defined ATP/ADP ratios; (v) Presence of the nucleosides adenosine and inosine; and (vi) Defined free [Ca2+]. Herein, experiments with mouse cardiac mitochondria revealed that under simulated early reperfusion conditions including these factors, total mitochondrial ROS generation was only 56 ± 17 % of that seen with succinate alone (mean ± 95 % confidence intervals). Of this ROS, only 52 ± 20 % was assignable to Cx-I RET. A further 14 ± 7 % could be assigned to complex III, with the remainder (34 ± 11 %) likely originating from other ROS sources upstream of the Cx-I Q site. Together, these data suggest the relative contribution of Cx-I RET ROS to reperfusion injury may be overestimated, and other ROS sources may contribute a significant fraction of ROS in early reperfusion.
Collapse
Affiliation(s)
- Caio Tabata Fukushima
- Departments of Anesthesiology, University of Rochester Medical Center, USA; Departments of Biochemistry, University of Rochester Medical Center, USA; Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Ian-Shika Dancil
- Departments of Anesthesiology, University of Rochester Medical Center, USA
| | - Hannah Clary
- Departments of Biochemistry, University of Rochester Medical Center, USA
| | - Nidhi Shah
- Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Sergiy M Nadtochiy
- Departments of Anesthesiology, University of Rochester Medical Center, USA
| | - Paul S Brookes
- Departments of Anesthesiology, University of Rochester Medical Center, USA; Pharmacology and Physiology, University of Rochester Medical Center, USA.
| |
Collapse
|
10
|
Galichon P, Lannoy M, Li L, Serre J, Vandermeersch S, Legouis D, Valerius MT, Hadchouel J, Bonventre JV. Energy depletion by cell proliferation sensitizes the kidney epithelial cells to injury. Am J Physiol Renal Physiol 2024; 326:F326-F337. [PMID: 38205542 PMCID: PMC11207531 DOI: 10.1152/ajprenal.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024] Open
Abstract
Acute kidney injury activates both proliferative and antiproliferative pathways, the consequences of which are not fully elucidated. If an initial proliferation of the renal epithelium is necessary for the successful repair, the persistence of proliferation markers is associated with the occurrence of chronic kidney disease. We hypothesized that proliferation in stress conditions impacts cell viability and renal outcomes. We found that proliferation is associated with cell death after various stresses in kidney cells. In vitro, the ATP/ADP ratio oscillates reproducibly throughout the cell cycle, and cell proliferation is associated with a decreased intracellular ATP/ADP ratio. In vivo, transcriptomic data from transplanted kidneys revealed that proliferation was strongly associated with a decrease in the expression of the mitochondria-encoded genes of the oxidative phosphorylation pathway, but not of the nucleus-encoded ones. These observations suggest that mitochondrial function is a limiting factor for energy production in proliferative kidney cells after injury. The association of increased proliferation and decreased mitochondrial function was indeed associated with poor renal outcomes. In summary, proliferation is an energy-demanding process impairing the cellular ability to cope with an injury, highlighting proliferative repair and metabolic recovery as indispensable and interdependent features for successful kidney repair.NEW & NOTEWORTHY ATP depletion is a hallmark of acute kidney injury. Proliferation is instrumental to kidney repair. We show that ATP levels vary during the cell cycle and that proliferation sensitizes renal epithelial cells to superimposed injuries in vitro. More proliferation and less energy production by the mitochondria are associated with adverse outcomes in injured kidney allografts. This suggests that controlling the timing of kidney repair might be beneficial to mitigate the extent of acute kidney injury.
Collapse
Affiliation(s)
- Pierre Galichon
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
- Medical School, Sorbonne Université, Paris, France
| | - Morgane Lannoy
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Li Li
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Justine Serre
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Sophie Vandermeersch
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - David Legouis
- Laboratory of Nephrology, Division of Intensive Care, Department of Medicine and Cell Physiology, University Hospital of Geneva, Geneva, Switzerland
| | - M Todd Valerius
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Institut National de la Santé et de la Recherche Médicale (UMR_S1155), "Common and Rare and Kidney Diseases: From Molecular Events to Precision Medicine," Paris, France
| |
Collapse
|
11
|
Turbitt J, Moffett RC, Brennan L, Johnson PRV, Flatt PR, McClenaghan NH, Tarasov AI. Molecular determinants and intracellular targets of taurine signalling in pancreatic islet β-cells. Acta Physiol (Oxf) 2024; 240:e14101. [PMID: 38243723 DOI: 10.1111/apha.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
AIM Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet β-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into β-cells and its acute and chronic intracellular interactions. METHODS The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 β-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS Taurine transporter TauT was expressed in the islet β-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and β-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic β-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized β-cells to the acute taurine stimulus. CONCLUSION Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and β-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Republic of Ireland
| | | |
Collapse
|
12
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Santos R, Lokmane L, Ozdemir D, Traoré C, Agesilas A, Hakibilen C, Lenkei Z, Zala D. Local glycolysis fuels actomyosin contraction during axonal retraction. J Cell Biol 2023; 222:e202206133. [PMID: 37902728 PMCID: PMC10616508 DOI: 10.1083/jcb.202206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.
Collapse
Affiliation(s)
- Renata Santos
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Institut des Sciences Biologiques, Centre national de la recherche scientifique, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l’Ecole Normale Supérieure, École Normale Supérieure, Centre national de la recherche scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Dersu Ozdemir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Clément Traoré
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Annabelle Agesilas
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Coralie Hakibilen
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Diana Zala
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| |
Collapse
|
14
|
Wang S, Jiang W, Jin X, Qi Q, Liang Q. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering. Crit Rev Biotechnol 2023; 43:1211-1225. [PMID: 36130803 DOI: 10.1080/07388551.2022.2103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
To date, many metabolic engineering tools and strategies have been developed, including tools for cofactor engineering, which is a common strategy for bioproduct synthesis. Cofactor engineering is used for the regulation of pyridine nucleotides, including NADH/NAD+ and NADPH/NADP+, and adenosine triphosphate/adenosine diphosphate (ATP/ADP), which is crucial for maintaining redox and energy balance. However, the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP cannot be monitored in real time using traditional methods. Recently, many biosensors for detecting, monitoring, and regulating the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP have been developed. Although cofactor biosensors have been mainly developed for use in mammalian cells, the potential application of cofactor biosensors in metabolic engineering in bacterial and yeast cells has received recent attention. Coupling cofactor biosensors with genetic circuits is a promising strategy in metabolic engineering for optimizing the production of biochemicals. In this review, we focus on the development of biosensors for NADH/NAD+, NADPH/NADP+, and ATP/ADP and the potential application of these biosensors in metabolic engineering. We also provide critical perspectives, identify current research challenges, and provide guidance for future research in this promising field.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Lemma B, Nelson CM. Spatial patterning of energy metabolism during tissue morphogenesis. Curr Opin Cell Biol 2023; 85:102235. [PMID: 37696131 PMCID: PMC10840784 DOI: 10.1016/j.ceb.2023.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
Biophysical signaling organizes forces to drive tissue morphogenesis, a process co-opted during disease progression. The systematic buildup of forces at the tissue scale is energetically demanding. Just as mechanical forces, gene expression, and concentrations of morphogens vary spatially across a developing tissue, there might similarly be spatial variations in energy consumption. Recent studies have started to uncover the connections between spatial patterns of mechanical forces and spatial patterns of energy metabolism. Here, we define and review the concept of energy metabolism during tissue morphogenesis. We highlight experiments showing spatial variations in energy metabolism across several model systems, categorized by morphogenetic motif, including convergent extension, branching, and migration. Finally, we discuss approaches to further enable quantitative measurements of energy production and consumption during morphogenesis.
Collapse
Affiliation(s)
- Bezia Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Fukushima CT, Dancil IS, Clary H, Shah N, Nadtochiy SM, Brookes PS. Reactive Oxygen Species Generation by Reverse Electron Transfer at Mitochondrial Complex I Under Simulated Early Reperfusion Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568136. [PMID: 38045326 PMCID: PMC10690194 DOI: 10.1101/2023.11.21.568136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ischemic tissues accumulate succinate, which is rapidly oxidized upon reperfusion, driving a burst of mitochondrial reactive oxygen species (ROS) generation that triggers cell death. In isolated mitochondria with succinate as the sole metabolic substrate under non-phosphorylating conditions, 90% of ROS generation is from reverse electron transfer (RET) at the Q site of respiratory complex I (Cx-I). Together, these observations suggest Cx-I RET is the source of pathologic ROS in reperfusion injury. However, numerous factors present in early reperfusion may impact Cx-I RET, including: (i) High [NADH]; (ii) High [lactate]; (iii) Mildly acidic pH; (iv) Defined ATP/ADP ratios; (v) Presence of the nucleosides adenosine and inosine; and (vi) Defined free [Ca2+]. Herein, experiments with mouse cardiac mitochondria revealed that under simulated early reperfusion conditions including these factors, overall mitochondrial ROS generation was only 56% of that seen with succinate alone, and only 52% of this ROS was assignable to Cx-I RET. The residual non-RET ROS could be partially assigned to complex III (Cx-III) with the remainder likely originating from other ROS sources upstream of the Cx-I Q site. Together, these data suggest the relative contribution of Cx-I RET ROS to reperfusion injury may be overestimated, and other ROS sources may contribute a significant fraction of ROS in early reperfusion.
Collapse
Affiliation(s)
- Caio Tabata Fukushima
- Department of Anesthesiology, University of Rochester Medical Center
- Department of Biochemistry, University of Rochester Medical Center
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Ian-Shika Dancil
- Department of Anesthesiology, University of Rochester Medical Center
| | - Hannah Clary
- Department of Biochemistry, University of Rochester Medical Center
| | - Nidhi Shah
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | | | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| |
Collapse
|
17
|
Kobiita A, Silva PN, Schmid MW, Stoffel M. FoxM1 coordinates cell division, protein synthesis, and mitochondrial activity in a subset of β cells during acute metabolic stress. Cell Rep 2023; 42:112986. [PMID: 37590136 DOI: 10.1016/j.celrep.2023.112986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Pancreatic β cells display functional and transcriptional heterogeneity in health and disease. The sequence of events leading to β cell heterogeneity during metabolic stress is poorly understood. Here, we characterize β cell responses to early metabolic stress in vivo by employing RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), single-cell RNA-seq (scRNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and real-time imaging to decipher temporal events of chromatin remodeling and gene expression regulating the unfolded protein response (UPR), protein synthesis, mitochondrial function, and cell-cycle progression. We demonstrate that a subpopulation of β cells with active UPR, decreased protein synthesis, and insulin secretary capacities is more susceptible to proliferation after insulin depletion. Alleviation of endoplasmic reticulum (ER) stress precedes the progression of the cell cycle and mitosis and ensures appropriate insulin synthesis. Furthermore, metabolic stress rapidly activates key transcription factors including FoxM1, which impacts on proliferative and quiescent β cells by regulating protein synthesis, ER stress, and mitochondrial activity via direct repression of mitochondrial-encoded genes.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Hauptstrasse 34, 8750 Glarus, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland.
| |
Collapse
|
18
|
Debruyne AC, Okkelman IA, Dmitriev RI. Balance between the cell viability and death in 3D. Semin Cell Dev Biol 2023; 144:55-66. [PMID: 36117019 DOI: 10.1016/j.semcdb.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.
Collapse
Affiliation(s)
- Angela C Debruyne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
19
|
Gooz M, Maldonado EN. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Front Oncol 2023; 13:1152553. [PMID: 37427141 PMCID: PMC10326048 DOI: 10.3389/fonc.2023.1152553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
21
|
Yin Q, Zhao D, Chang Y, Liu B, Liu Y, Liu M. Functional DNA Superstructures Exhibit Positive Homotropic Allostery in Ligand Binding. Angew Chem Int Ed Engl 2023; 62:e202303838. [PMID: 37071541 DOI: 10.1002/anie.202303838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Inspired by intrinsically disordered proteins in nature, DNA aptamers can be engineered to display strongly homotropic allosteric (or cooperative) ligand binding, representing a unique feature that could be of great utility in applications such as biosensing, imaging and drug delivery. The use of an intrinsic disorder mechanism, however, comes with an inherent drawback of significantly reduced overall binding affinity. We hypothesize that it could be addressed via the design of multivalent supramolecular aptamers. We built functional DNA superstructures (denoted as 3D DNA), made of long-chain DNA containing tandem repeating DNA aptamers (or concatemeric aptamers). The 3D DNA systems exhibit highly cooperative binding to both small molecules and proteins, without loss of binding affinities of their parent aptamers. We further produced a highly responsive sensor for fluorescence imaging of glutamate stimulation-evoked adenosine triphosphate (ATP) release in neurons, as well as force stimulus-triggered ATP release in astrocytes.
Collapse
Affiliation(s)
- Qingxin Yin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Dan Zhao
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| |
Collapse
|
22
|
Crosas-Molist E, Graziani V, Maiques O, Pandya P, Monger J, Samain R, George SL, Malik S, Salise J, Morales V, Le Guennec A, Atkinson RA, Marti RM, Matias-Guiu X, Charras G, Conte MR, Elosegui-Artola A, Holt M, Sanz-Moreno V. AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration. Nat Commun 2023; 14:2740. [PMID: 37217519 PMCID: PMC10202939 DOI: 10.1038/s41467-023-38292-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Pahini Pandya
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Joanne Monger
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Samantha L George
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Saba Malik
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Jerrine Salise
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Valle Morales
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Adrien Le Guennec
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - R Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077, Toulouse, Cedex 4, France
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, CIBERONC, IRB Lleida, Lleida, 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB Lleida, CIBERONC, Lleida, 25198, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, CIBERONC, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Mark Holt
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London BHF Centre of Research Excellence, London, SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
23
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
24
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
25
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Pozo M, Milà-Guasch M, Haddad-Tóvolli R, Boudjadja M, Chivite I, Toledo M, Gómez-Valadés A, Eyre E, Ramírez S, Obri A, Ben-Ami Bartal I, D'Agostino G, Costa-Font J, Claret M. Negative energy balance hinders prosocial helping behavior. Proc Natl Acad Sci U S A 2023; 120:e2218142120. [PMID: 37023123 PMCID: PMC10104524 DOI: 10.1073/pnas.2218142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023] Open
Abstract
The internal state of an animal, including homeostatic requirements, modulates its behavior. Negative energy balance stimulates hunger, thus promoting a range of actions aimed at obtaining food. While these survival actions are well established, the influence of the energy status on prosocial behavior remains unexplored. We developed a paradigm to assess helping behavior in which a free mouse was faced with a conspecific trapped in a restrainer. We measured the willingness of the free mouse to liberate the confined mouse under diverse metabolic conditions. Around 42% of ad libitum-fed mice exhibited a helping behavior, as evidenced by the reduction in the latencies to release the trapped cagemate. This behavior was independent of subsequent social contact reward and was associated with changes in corticosterone indicative of emotional contagion. This decision-making process was coupled with reduced blood glucose excursions and higher Adenosine triphosphate (ATP):Adenosine diphosphate (ADP) ratios in the forebrain of helper mice, suggesting that it was a highly energy-demanding process. Interestingly, chronic (food restriction and type 2 diabetes) and acute (chemogenetic activation of hunger-promoting AgRP neurons) situations mimicking organismal negative energy balance and enhanced appetite attenuated helping behavior toward a distressed conspecific. To investigate similar effects in humans, we estimated the influence of glycated hemoglobin (a surrogate of long-term glycemic control) on prosocial behavior (namely charity donation) using the Understanding Society dataset. Our results evidenced that organismal energy status markedly influences helping behavior and that hypothalamic AgRP neurons are at the interface of metabolism and prosocial behavior.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel-Aviv University, 6997801Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, 6997801Tel Aviv, Israel
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Joan Costa-Font
- Department of Health Policy, London School of Economics and Political Science, WC2A 2AELondon, United Kingdom
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
- School of Medicine, Universitat de Barcelona, 08036Barcelona, Spain
| |
Collapse
|
27
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Zhou L, Liu L, Chang MA, Ma C, Chen W, Chen P. Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip. Biosens Bioelectron 2023; 225:115064. [PMID: 36680970 PMCID: PMC9918721 DOI: 10.1016/j.bios.2023.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Real-time monitoring in the tumor microenvironment provides critical insights of cancer progression and mechanistic understanding of responses to cancer treatments. However, clinical challenges and significant questions remain regarding assessment of limited clinical tissue samples, establishment of validated, controllable pre-clinical cancer models, monitoring of static versus dynamic markers, and the translation of insights gained from in vitro tumor microenvironments to systematic investigation and understanding in clinical practice. State-of-art tumor-on-a-chip strategies will be reviewed herein, and emerging real-time sensing and monitoring platforms for on-chip analysis of tumor microenvironment will also be examined. The integration of the sensors with tumor-on-a-chip platforms to provide spatiotemporal information of the tumor microenvironment and the associated challenges will be further evaluated. Though optimal integrated systems for in situ monitoring are still in evolution, great promises lie ahead that will open new paradigm for rapid, comprehensive analysis of cancer development and assist clinicians with powerful tools to guide the diagnosis, prognosis and treatment course in cancer.
Collapse
Affiliation(s)
- Lang Zhou
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Muammar Ali Chang
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Pengyu Chen
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
29
|
Liu HL, Ahmed SA, Jiang QC, Shen Q, Zhan K, Wang K. Gold Nanotriangle-Assembled Nanoporous Structures for Electric Field-Assisted Surface-Enhanced Raman Scattering Detection of Adenosine Triphosphate. ACS Sens 2023; 8:1280-1286. [PMID: 36920780 DOI: 10.1021/acssensors.2c02759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A reliable, rapid, cost-effective, and simple method for the detection of biomolecules would greatly promote the research of analytical detection of single molecules. A nanopore-based analytical technique is promising for detecting biomolecules. Conventional electrochemical nanopores cannot distinguish biomolecules precisely because of their fast translocation speed and limited electrochemical information. Therefore, it is highly desirable to develop electrochemical surface-enhanced Raman scattering (SERS) nanopores to obtain multidimensional information. Herein, we designed and fabricated gold nanotriangle (AuNT)-assembled porous structures at the tip of a glass capillary using dithiol adenosine triphosphate (ATP) aptamers as cross-linking molecules. The AuNTs exhibited an edge length of 57.3 ± 6.2 nm and thickness of about 15 nm. The gold nanoporous structure (GPS) showed a strong ion rectification even at a high concentration of electrolyte (2 M) and a high SERS activity. Based on these designed structures, SERS and electrochemistry techniques were combined to control the rapid movement of ATP to the vicinity of the GPS by an applied potential of +1 V, where ATP was concentrated by ATP aptamers and the molecular signals were amplified by SERS. As a result, the GPS successfully detected ATP at a concentration as low as 10-7 M.
Collapse
Affiliation(s)
- Hai-Ling Liu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiu-Cen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kan Zhan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Chen L, Chen M, Luo M, Li Y, Liao B, Hu M, Yu Q. Ratiometric NAD + Sensors Reveal Subcellular NAD + Modulators. ACS Sens 2023; 8:1518-1528. [PMID: 36931900 DOI: 10.1021/acssensors.2c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Mapping NAD+ dynamics in live cells and human is essential for translating NAD+ interventions into effective therapies. Yet, genetically encoded NAD+ sensors with better specificity and pH resistance are still needed for the cost-effective monitoring of NAD+ in both subcellular compartments and clinical samples. Here, we introduce multicolor, resonance energy transfer-based NAD+ sensors covering nano- to millimolar concentration ranges for clinical NAD+ measurement and subcellular NAD+ visualization. The sensors captured the blood NAD+ increase induced by NMN supplementation and revealed the distinct subcellular effects of NAD+ precursors and modulators. The sensors then enabled high-throughput screenings for mitochondrial and nuclear NAD+ modulators and identified α-GPC, a cognition-related metabolite that induces NAD+ redistribution from mitochondria to the nucleus relative to the total adenine nucleotides, which was further confirmed by NAD+ FRET microscopy.
Collapse
Affiliation(s)
- Liuqing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen 518055, China
| | - Meiting Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mupeng Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bagen Liao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510150, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510150, China
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen 518055, China
| |
Collapse
|
31
|
Padilla-Parra S. Time-resolved single virus tracking and spectral imaging to understand HIV-1 entry and fusion. Biol Cell 2023; 115:e2200082. [PMID: 36440600 DOI: 10.1111/boc.202200082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Single Virus Tracking (SVT) is a key technique to understand how individual viral particles evolve during the infection cycle. In the case of the human immunodeficiency virus (HIV-1), this technology, which can be employed using a simple and affordable wide-field microscope, has proven to be very useful in the first steps of infection, such as the kinetics of the fusion reaction or the point of fusion within live cells. Here, we describe how SVT in combination with other spectral imaging approaches is a powerful technique to illuminate crucial mechanistic aspects of the HIV-1 fusion reaction. We also stress the role of our laboratory in elucidating a few mechanistic aspects of retroviral fusion employing SVT such as: (i) the role of dynamin, (ii) how metabolism modulates membrane composition and cholesterol and its impact in fusion, (iii) the importance of envelope glycoprotein (Env) intra- and inter-molecular dynamics for neutralization, or (iv) the time-resolved fusion stoichiometry in three characteristic steps for the HIV-1 prefusion step. These observations constitute a good testimony of the complexity of retroviral fusion and show the strength of SVT when applied to live cells and combined with quantitative spectral approaches. Finally, we propose several crucial remaining questions around HIV-1 fusion and how the combined use of these technologies, always in live cells, will be able to shed light into the intricacies of arguably the most important step of the HIV-1 infection cycle.
Collapse
Affiliation(s)
- Sergi Padilla-Parra
- Faculty of Life Sciences & Medicine, Department of Infectious Diseases, King's College London, London, UK.,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
32
|
Turbitt J, Brennan L, Moffett RC, Flatt PR, Johnson PRV, Tarasov AI, McClenaghan NH. NKCC transport mediates the insulinotropic effects of taurine and other small neutral amino acids. Life Sci 2023; 316:121402. [PMID: 36669678 DOI: 10.1016/j.lfs.2023.121402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIMS Despite its high concentration in pancreatic islets of Langerhans and broad range of antihyperglycemic effects, the route facilitating the import of dietary taurine into pancreatic β-cell and mechanisms underlying its insulinotropic activity are unclear. We therefore studied the impact of taurine on beta-cell function, alongside that of other small neutral amino acids, L-alanine and L-proline. MAIN METHODS Pharmacological profiling of insulin secretion was conducted using clonal BRIN BD11 β-cells, the impact of taurine on the metabolic fate of glucose carbons was assessed using NMR and the findings were verified by real-time imaging of Ca2+ dynamics in the cytosol of primary mouse and human islet beta-cells. KEY FINDINGS In our hands, taurine, alanine and proline induced secretory responses that were dependent on the plasma membrane depolarisation, import of Ca2+, homeostasis of K+ and Na+ as well as on cell glycolytic and oxidative metabolism. Taurine shifted the balance between the oxidation and anaplerosis towards the latter, in BRIN BD11 beta-cells. Furthermore, the amino acid signalling was significantly attenuated by inhibition of Na+-K+-Cl- symporter (NKCC). SIGNIFICANCE These data suggest that taurine, like L-alanine and L-proline, acutely induces glucose-dependent insulin-secretory responses by modulating electrogenic Na+ transport, with potential role of intracellular K+ and Cl- in the signal transduction. The acute action delineated would be consistent with antidiabetic potential of dietary taurine supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - R Charlotte Moffett
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| | - Paul R V Johnson
- Nuffeld Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE Oxford, UK; Oxford Biomedical Research Centre (OxBRC), UK.
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; Nuffeld Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, OX3 7LE Oxford, UK; Oxford Biomedical Research Centre (OxBRC), UK.
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; Department of Life Sciences, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland.
| |
Collapse
|
33
|
Tamima U, Sarkar S, Islam MR, Shil A, Kim KH, Reo YJ, Jun YW, Banna H, Lee S, Ahn KH. A Small-Molecule Fluorescence Probe for Nuclear ATP. Angew Chem Int Ed Engl 2023; 62:e202300580. [PMID: 36792537 DOI: 10.1002/anie.202300580] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Fluorescence monitoring of ATP in different organelles is now feasible with a few biosensors developed, which, however, show low sensitivity, limited biocompatibility, and accessibility. Small-molecule ATP probes that alleviate those limitations thus have received much attention recently, leading to a few ATP probes that target several organelles except for the nucleus. We disclose the first small-molecule probe that selectively detects nuclear ATP through reversible binding, with 25-fold fluorescence enhancement at pH 7.4 and excellent selectivity against various biologically relevant species. Using the probe, we observed 2.1-3.3-fold and 3.9-7.8-fold higher nuclear ATP levels in cancerous cell lines and tumor tissues compared with normal cell lines and tissues, respectively, which are explained by the higher nuclear ATP level in the mitosis phase. The probe has great potential for studying nuclear ATP-associated biology.
Collapse
Affiliation(s)
- Umme Tamima
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Md Reyazul Islam
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Kyeong Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Hasanul Banna
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Soobin Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673 (Republic of, Korea
| |
Collapse
|
34
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
35
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
36
|
Chen X, Wang T, Guan Y, Ouyang Q, Lou C, Qian L. The Topological Characteristics of Biological Ratio-Sensing Networks. Life (Basel) 2023; 13:life13020351. [PMID: 36836707 PMCID: PMC9965423 DOI: 10.3390/life13020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Ratio sensing is a fundamental biological function observed in signal transduction and decision making. In the synthetic biology context, ratio sensing presents one of the elementary functions for cellular multi-signal computation. To investigate the mechanism of the ratio-sensing behavior, we explored the topological characteristics of biological ratio-sensing networks. With exhaustive enumeration of three-node enzymatic and transcriptional regulatory networks, we found that robust ratio sensing was highly dependent on network structure rather than network complexity. Specifically, a set of seven minimal core topological structures and four motifs were deduced to be capable of robust ratio sensing. Further investigations on the evolutionary space of robust ratio-sensing networks revealed highly clustered domains surrounding the core motifs which suggested their evolutionary plausibility. Our study revealed the network topological design principles of ratio-sensing behavior and provided a design scheme for constructing regulatory circuits with ratio-sensing behavior in synthetic biology.
Collapse
Affiliation(s)
- Xinmao Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Tianze Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Ying Guan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Correspondence: (Q.O.); (C.L.); (L.Q.)
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Q.O.); (C.L.); (L.Q.)
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Correspondence: (Q.O.); (C.L.); (L.Q.)
| |
Collapse
|
37
|
Li X, Zhang Y, Xu L, Wang A, Zou Y, Li T, Huang L, Chen W, Liu S, Jiang K, Zhang X, Wang D, Zhang L, Zhang Z, Zhang Z, Chen X, Jia W, Zhao A, Yan X, Zhou H, Zhu L, Ma X, Ju Z, Jia W, Wang C, Loscalzo J, Yang Y, Zhao Y. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metab 2023; 35:200-211.e9. [PMID: 36309010 PMCID: PMC10560847 DOI: 10.1016/j.cmet.2022.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023]
Abstract
Despite its central importance in cellular metabolism, many details remain to be determined regarding subcellular lactate metabolism and its regulation in physiology and disease, as there is sensitive spatiotemporal resolution of lactate distribution, and dynamics remains a technical challenge. Here, we develop and characterize an ultrasensitive, highly responsive, ratiometric lactate sensor, named FiLa, enabling the monitoring of subtle lactate fluctuations in living cells and animals. Utilizing FiLa, we demonstrate that lactate is highly enriched in mammalian mitochondria and compile an atlas of subcellular lactate metabolism that reveals lactate as a key hub sensing various metabolic activities. In addition, FiLa sensors also enable direct imaging of elevated lactate levels in diabetic mice and facilitate the establishment of a simple, rapid, and sensitive lactate assay for point-of-care clinical screening. Thus, FiLa sensors provide powerful, broadly applicable tools for defining the spatiotemporal landscape of lactate metabolism in health and disease.
Collapse
Affiliation(s)
- Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinan Zhang
- Center for Translational Medicine, The Metabolic Diseases Biobank, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Huang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Weicai Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Kun Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiuze Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zeyi Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Jia
- Center for Translational Medicine, The Metabolic Diseases Biobank, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Aihua Zhao
- Center for Translational Medicine, The Metabolic Diseases Biobank, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xinfeng Yan
- Translational Medical Center for Stem Cell Therapy, Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haimeng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Weiping Jia
- Center for Translational Medicine, The Metabolic Diseases Biobank, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China.
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
38
|
Abstract
Metabolomics is a continuously dynamic field of research that is driven by demanding research questions and technological advances alike. In this review we highlight selected recent and ongoing developments in the area of mass spectrometry-based metabolomics. The field of view that can be seen through the metabolomics lens can be broadened by adoption of separation techniques such as hydrophilic interaction chromatography and ion mobility mass spectrometry (going broader). For a given biospecimen, deeper metabolomic analysis can be achieved by resolving smaller entities such as rare cell populations or even single cells using nano-LC and spatially resolved metabolomics or by extracting more useful information through improved metabolite identification in untargeted metabolomic experiments (going deeper). Integration of metabolomics with other (omics) data allows researchers to further advance in the understanding of the complex metabolic and regulatory networks in cells and model organisms (going further). Taken together, diverse fields of research from mechanistic studies to clinics to biotechnology applications profit from these technological developments.
Collapse
Affiliation(s)
- Sofia Moco
- Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
39
|
Colorimetric Detection of ATP by a Chlorophosphonazo III -based Mg 2+ Complex in Aqueous Solution via Indicator Displacement Approach. J Fluoresc 2023; 33:255-260. [PMID: 36401733 DOI: 10.1007/s10895-022-03063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/27/2022] [Indexed: 11/20/2022]
Abstract
A simple and effective colorimetric detection of adenosine 5-triphosphate (ATP) in 100% aqueous media was developed based on an indicator displacement approach (IDA). A commercially available dye, Chlorophosphonazo III (CPA), was utilized as the indicator and the ATP detection was achieved using the complex of CPA with Mg2+ in a 2:1 stoichiometric ratio (CPA2-Mg2+) through the regeneration of CPA by the binding of ATP to Mg2+. Upon addition of a series of anions to the CPA2-Mg2+ complex, only the appearance of the solution of the complex with ATP exhibited a color change from blue to purple which can be detected by the naked eye. Moreover, the ATP recognition was not hampered by the presence of other anions. Hence, CPA2-Mg2+ is efficient in ATP highly selective and sensitive colorimetric detection in 100% aqueous media.
Collapse
|
40
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
41
|
Matera C, Bregestovski P. Light-Controlled Modulation and Analysis of Neuronal Functions. Int J Mol Sci 2022; 23:12921. [PMID: 36361710 PMCID: PMC9657357 DOI: 10.3390/ijms232112921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 04/15/2024] Open
Abstract
Light is an extraordinary tool allowing us to read out and control neuronal functions thanks to its unique properties: it has a great degree of bioorthogonality and is minimally invasive; it can be precisely delivered with high spatial and temporal precision; and it can be used simultaneously or consequently at multiple wavelengths and locations [...].
Collapse
Affiliation(s)
- Carlo Matera
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Piotr Bregestovski
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix-Marseille University, 13005 Marseille, France
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| |
Collapse
|
42
|
Bose S, Yao H, Huang Q, Whitaker R, Kontos CD, Previs RA, Shen X. Using genetically encoded fluorescent biosensors to interrogate ovarian cancer metabolism. J Ovarian Res 2022; 15:114. [PMID: 36266675 PMCID: PMC9585869 DOI: 10.1186/s13048-022-01046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy and patients present with significant metastatic burden, particularly to the adipose-rich microenvironment of the omentum. Recent evidence has highlighted the importance of metabolic adaptations in enabling this metastasis, leading to significant interest in evolving the arsenal of tools used to study OC metabolism. In this study, we demonstrate the capability of genetically encoded fluorescent biosensors to study OC, with a focus on 3D organoid models that better recapitulate in vivo tumor microenvironments. MATERIALS AND METHODS Plasmids encoding the metabolic biosensors HyPer, iNap, Peredox, and Perceval were transfected into 15 ovarian cancer cell lines to assay oxidative stress, NADPH/NADP+, NADH/NAD+, and ATP/ADP, respectively. Fluorescence readings were used to assay dynamic metabolic responses to omental conditioned media (OCM) and 100 μM carboplatin treatment. SKOV3 cells expressing HyPer were imaged as 2D monolayers, 3D organoids, and as in vivo metastases via an intravital omental window. We further established organoids from ascites collected from Stage III/IV OC patients with carboplatin-resistant or carboplatin-sensitive tumors (n = 8 total). These patient-derived organoids (PDOs) were engineered to express HyPer, and metabolic readings of oxidative stress were performed during treatment with 100 μM carboplatin. RESULTS Exposure to OCM or carboplatin induced heterogenous metabolic changes in 15 OC cell lines, as measured using metabolic sensors. Oxidative stress of in vivo omental metastases, measured via intravital imaging of metastasizing SKOV3-HyPer cells, was more closely recapitulated by SKOV3-HyPer organoids than by 2D monolayers. Finally, carboplatin treatment of HyPer-expressing PDOs induced higher oxidative stress in organoids derived from carboplatin-resistant patients than from those derived from carboplatin-sensitive patients. CONCLUSIONS Our study showed that biosensors provide a useful method of studying dynamic metabolic changes in preclinical models of OC, including 3D organoids and intravital imaging. As 3D models of OC continue to evolve, the repertoire of biosensors will likely serve as valuable tools to probe the metabolic changes of clinical importance in OC.
Collapse
Affiliation(s)
- Shree Bose
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Haipei Yao
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Christopher D Kontos
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca A Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Lewis DD, Gong T, Xu Y, Tan C. Frequency dependent growth of bacteria in living materials. Front Bioeng Biotechnol 2022; 10:948483. [PMID: 36159663 PMCID: PMC9493075 DOI: 10.3389/fbioe.2022.948483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The fusion of living bacteria and man-made materials represents a new frontier in medical and biosynthetic technology. However, the principles of bacterial signal processing inside synthetic materials with three-dimensional and fluctuating environments remain elusive. Here, we study bacterial growth in a three-dimensional hydrogel. We find that bacteria expressing an antibiotic resistance module can take advantage of ambient kinetic disturbances to improve growth while encapsulated. We show that these changes in bacterial growth are specific to disturbance frequency and hydrogel density. This remarkable specificity demonstrates that periodic disturbance frequency is a new input that engineers may leverage to control bacterial growth in synthetic materials. This research provides a systematic framework for understanding and controlling bacterial information processing in three-dimensional living materials.
Collapse
Affiliation(s)
- Daniel D. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA, United States
- Integrative Genetics and Genomics, University of California, Davis, CA, United States
| | - Ting Gong
- Department of Biomedical Engineering, University of California, Davis, CA, United States
| | - Yuanwei Xu
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, CA, United States
- *Correspondence: Cheemeng Tan,
| |
Collapse
|
44
|
Zhang M, Yang B, Zhang J, Song Y, Wang W, Li N, Wang Y, Li W, Wang J. Monitoring the Dynamic Regulation of the Mitochondrial GTP‐to‐GDP Ratio with a Genetically Encoded Fluorescent Biosensor. Angew Chem Int Ed Engl 2022; 61:e202201266. [DOI: 10.1002/anie.202201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Meiqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| | - Bo Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| | - Jiayuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
- Wellcome Centre for Human Genetics University of Oxford Roosevelt Dr, Headington Oxford OX3 7BN UK
| | - Yuxin Song
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| | - Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology Department of Chemical Biology School of Pharmaceutical Sciences Peking University Peking University Beijing 100191 China
| |
Collapse
|
45
|
Monitoring glycolytic dynamics in single cells using a fluorescent biosensor for fructose 1,6-bisphosphate. Proc Natl Acad Sci U S A 2022; 119:e2204407119. [PMID: 35881794 PMCID: PMC9351453 DOI: 10.1073/pnas.2204407119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular metabolism is regulated over space and time to ensure that energy production is efficiently matched with consumption. Fluorescent biosensors are useful tools for studying metabolism as they enable real-time detection of metabolite abundance with single-cell resolution. For monitoring glycolysis, the intermediate fructose 1,6-bisphosphate (FBP) is a particularly informative signal as its concentration is strongly correlated with flux through the whole pathway. Using GFP insertion into the ligand-binding domain of the Bacillus subtilis transcriptional regulator CggR, we developed a fluorescent biosensor for FBP termed HYlight. We demonstrate that HYlight can reliably report the real-time dynamics of glycolysis in living cells and tissues, driven by various metabolic or pharmacological perturbations, alone or in combination with other physiologically relevant signals. Using this sensor, we uncovered previously unknown aspects of β-cell glycolytic heterogeneity and dynamics.
Collapse
|
46
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
47
|
Pan Y, Luan X, Zeng F, Xu Q, Li Z, Gao Y, Liu X, Li X, Han X, Shen J, Song Y. Hollow covalent organic framework-sheltering CRISPR/Cas12a as an in-vivo nanosensor for ATP imaging. Biosens Bioelectron 2022; 209:114239. [DOI: 10.1016/j.bios.2022.114239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022]
|
48
|
Zois CE, Hendriks AM, Haider S, Pires E, Bridges E, Kalamida D, Voukantsis D, Lagerholm BC, Fehrmann RSN, den Dunnen WFA, Tarasov AI, Baba O, Morris J, Buffa FM, McCullagh JSO, Jalving M, Harris AL. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation. Cell Death Dis 2022; 13:573. [PMID: 35764612 PMCID: PMC9240045 DOI: 10.1038/s41419-022-05005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10-12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.
Collapse
Affiliation(s)
- Christos E Zois
- Molecular Oncology Laboratories, Department of Oncology, Oxford University, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | - Anne M Hendriks
- Molecular Oncology Laboratories, Department of Oncology, Oxford University, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Esther Bridges
- Molecular Oncology Laboratories, Department of Oncology, Oxford University, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Dimitra Kalamida
- Department of Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Voukantsis
- The Bioinformatics Hub, Department of Oncology, University of Oxford, Oxford, UK
| | | | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Otto Baba
- Tokushima University Graduate School, Tokushima, Japan
| | - John Morris
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Mathilde Jalving
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, Oxford University, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
49
|
Zhang M, Yang B, Zhang J, Song Y, Wang W, Li N, Wang Y, Li W, Wang J. Monitoring the Dynamic Regulation of the Mitochondrial GTP‐to‐GDP Ratio with a Genetically Encoded Fluorescent Biosensor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meiqi Zhang
- Peking University School of Pharmaceutical Sciences Department of Chemical Biology CHINA
| | - Bo Yang
- Peking University School of Pharmaceutical Sciences Department of Chemical Biology CHINA
| | - Jiayuan Zhang
- University of Oxford Wellcome Centre for Human Genetics UNITED KINGDOM
| | - Yuxin Song
- Peking University School of Pharmaceutical Sciences Department of Chemical Biology CHINA
| | - Weibo Wang
- Peking University School of Pharmaceutical Sciences Chemical Biology CHINA
| | - Na Li
- Peking University School of Pharmaceutical Sciences Chemical Biology CHINA
| | - Yuan Wang
- Peking University School of Pharmaceutical Sciences Chemical Biology CHINA
| | - Wenzhe Li
- Peking University School of Pharmaceutical Sciences Chemical Biology CHINA
| | - Jing Wang
- Peking University School of Pharmaceutical Sciences Chemical Biology 38 Xueyuan Rd, Haidian Distict 100191 Beijing CHINA
| |
Collapse
|
50
|
White D, Yang Q. Genetically Encoded ATP Biosensors for Direct Monitoring of Cellular ATP Dynamics. Cells 2022; 11:1920. [PMID: 35741049 PMCID: PMC9221525 DOI: 10.3390/cells11121920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/06/2022] Open
Abstract
Adenosine 5'-triphosphate, or ATP, is the primary molecule for storing and transferring energy in cells. ATP is mainly produced via oxidative phosphorylation in mitochondria, and to a lesser extent, via glycolysis in the cytosol. In general, cytosolic glycolysis is the primary ATP producer in proliferative cells or cells subjected to hypoxia. On the other hand, mitochondria produce over 90% of cellular ATP in differentiated cells under normoxic conditions. Under pathological conditions, ATP demand rises to meet the needs of biosynthesis for cellular repair, signaling transduction for stress responses, and biochemical processes. These changes affect how mitochondria and cytosolic glycolysis function and communicate. Mitochondria undergo remodeling to adapt to the imbalanced demand and supply of ATP. Otherwise, a severe ATP deficit will impair cellular function and eventually cause cell death. It is suggested that ATP from different cellular compartments can dynamically communicate and coordinate to adapt to the needs in each cellular compartment. Thus, a better understanding of ATP dynamics is crucial to revealing the differences in cellular metabolic processes across various cell types and conditions. This requires innovative methodologies to record real-time spatiotemporal ATP changes in subcellular regions of living cells. Over the recent decades, numerous methods have been developed and utilized to accomplish this task. However, this is not an easy feat. This review evaluates innovative genetically encoded biosensors available for visualizing ATP in living cells, their potential use in the setting of human disease, and identifies where we could improve and expand our abilities.
Collapse
Affiliation(s)
- Donnell White
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Qinglin Yang
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|