1
|
Yang Y, Wu X, Pan Y, Wang Y, Lian X, Dong C, Liu W, Wang S, Lei Y. Collagen Hydrogel Tube Microbioreactors for Cell and Tissue Manufacturing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631570. [PMID: 39829742 PMCID: PMC11741382 DOI: 10.1101/2025.01.08.631570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The production of mammalian cells in large quantities is essential for various applications. However, scaling up cell culture using existing bioreactors poses significant technical challenges and high costs. To address this, we previously developed an innovative 3D culture system, known as the AlgTube cell culture system, for high-density cell cultivation. This system involves processing cells into microscale alginate hydrogel tubes, which are suspended in the culture medium within a vessel. These hydrogel tubes shield cells from hydrodynamic stress and maintain the cell mass below 400 µm in diameter, facilitating efficient mass transport and creating a favorable microenvironment for cell growth. Under optimized conditions, AlgTubes supported long-term culture with high cell viability, rapid expansion (1000-fold increase over 9 days per passage), and high yield (5×10⁸ cells/mL), offering significant advantages over conventional methods. Despite these benefits, AlgTubes have critical drawbacks. They are mechanically fragile, with frequent breakage during culture leading to cell leakage and production failures. Additionally, many cell types exhibit poor growth due to the inability to adhere to the alginate surface, making alginate hydrogel microtubes unsuitable for industrial-scale cell production. To overcome these challenges, we developed a novel collagen hydrogel tube-based microbioreactor system in this work. This system provides enhanced robustness and adhesion, enabling scalable, cost-effective, and efficient cell production for a wide range of applications.
Collapse
|
2
|
Abou-Shanab AM, Gaser OA, Soliman MW, Oraby A, Salah RA, Gabr M, Edris AAF, Mohamed I, El-Badri N. Human amniotic membrane scaffold enhances adipose mesenchymal stromal cell mitochondrial bioenergetics promoting their regenerative capacities. Mol Cell Biochem 2024:10.1007/s11010-024-05094-x. [PMID: 39453499 DOI: 10.1007/s11010-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024]
Abstract
The human amniotic membrane (hAM) has been applied as a scaffold in tissue engineering to sustain stem cells and enhance their regenerative capacities. We investigated the molecular and biochemical regulations of mesenchymal stromal cells (MSCs) cultured on hAM scaffold in a three-dimensional (3D) setting. Culture of adipose-MSCs (AMSCs) on decellularized hAM showed significant improvement in their viability, proliferative capacity, resistance to apoptosis, and enhanced MSC markers expression. These cultured MSCs displayed altered expression of markers associated with pro-angiogenesis and inflammation and demonstrated increased potential for differentiation into adipogenic and osteogenic lineages. The hAM scaffold modulated cellular respiration by upregulating glycolysis in MSCs as evidenced by increased glucose consumption, cellular pyruvate and lactate production, and upregulation of glycolysis markers. These metabolic changes modulated mitochondrial oxidative phosphorylation (OXPHOS) and altered the production of reactive oxygen species (ROS), expression of OXPHOS markers, and total antioxidant capacity. They also significantly boosted the urea cycle and altered the mitochondrial ultrastructure. Similar findings were observed in bone marrow-derived MSCs (BMSCs). Live cell imaging of BMSCs cultured in the same 3D environment revealed dynamic changes in cellular activity and interactions with its niche. These findings provide evidence for the favorable properties of hAM as a biomimetic scaffold for enhancing the in vitro functionality of MSCs and supporting their potential usefulness in clinical applications.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Alaa Oraby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
3
|
Cadena MA, Sing A, Taylor K, Jin L, Ning L, Amoli MS, Singh Y, Lanjewar SN, Tomov ML, Serpooshan V, Sloan SA. A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development. Adv Healthc Mater 2024; 13:e2401603. [PMID: 38815975 PMCID: PMC11518656 DOI: 10.1002/adhm.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.
Collapse
Affiliation(s)
- Melissa A. Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kylie Taylor
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Yamini Singh
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - The Brain Organoid Hub
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha N. Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, US
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Gwon K, Dharmesh E, Nguyen KM, Schornack AMR, de Hoyos-Vega JM, Ceylan H, Stybayeva G, Peterson QP, Revzin A. Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids. MICROSYSTEMS & NANOENGINEERING 2024; 10:127. [PMID: 39261472 PMCID: PMC11390961 DOI: 10.1038/s41378-024-00747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
Human pluripotent stem cells (hPSCs) represent an excellent cell source for regenerative medicine and tissue engineering applications. However, there remains a need for robust and scalable differentiation of stem cells into functional adult tissues. In this paper, we sought to address this challenge by developing magnetic microcapsules carrying hPSC spheroids. A co-axial flow-focusing microfluidic device was employed to encapsulate stem cells in core-shell microcapsules that also contained iron oxide magnetic nanoparticles (MNPs). These microcapsules exhibited excellent response to an external magnetic field and could be held at a specific location. As a demonstration of utility, magnetic microcapsules were used for differentiating hPSC spheroids as suspension cultures in a stirred bioreactor. Compared to standard suspension cultures, magnetic microcapsules allowed for more efficient media change and produced improved differentiation outcomes. In the future, magnetic microcapsules may enable better and more scalable differentiation of hPSCs into adult cell types and may offer benefits for cell transplantation.
Collapse
Affiliation(s)
- Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Ether Dharmesh
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Kianna M Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
6
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
7
|
Bai B, Liu Y, Huang J, Wang S, Chen H, Huo Y, Zhou H, Liu Y, Feng S, Zhou G, Hua Y. Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305580. [PMID: 38127989 PMCID: PMC10916654 DOI: 10.1002/advs.202305580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Collapse
Affiliation(s)
- Baoshuai Bai
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yanhan Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OphthalmologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinyi Huang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Sinan Wang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hongying Chen
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yingying Huo
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yu Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Shiqing Feng
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yujie Hua
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| |
Collapse
|
8
|
Pitrez PR, Monteiro LM, Borgogno O, Nissan X, Mertens J, Ferreira L. Cellular reprogramming as a tool to model human aging in a dish. Nat Commun 2024; 15:1816. [PMID: 38418829 PMCID: PMC10902382 DOI: 10.1038/s41467-024-46004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.
Collapse
Affiliation(s)
- Patricia R Pitrez
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luis M Monteiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- IIIUC-institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Coimbra, 3030-789, Portugal
| | - Oliver Borgogno
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xavier Nissan
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic diseases, Evry cedex, France
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
9
|
Cesur S. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles. Eur J Pharm Biopharm 2024; 194:36-48. [PMID: 38036066 DOI: 10.1016/j.ejpb.2023.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Drug delivery systems based on synthetic and natural polymers offer a new approach with a capacity to control the release of bio-active agents within time. In this work, we present different designs of Polycaprolactone (PCL) 3D scaffolds containing Polyvinylpyrrolidone (PVP) nanoparticles that can store a hydrophilic drug. The drug delivery system, combined of PCL and PVP polymers fabricated by additive manufacturing, aims for a solution for longer and more stabled drug delivery carrier. The drug, planned to be released to the targeted area, is sprayed with the electrospray method inside PVP nanoparticles on the different layers of the fabricated PCL scaffolds 3D printing. This makes obtaining a layered and porous scaffold and drug-loaded nanoparticles within this structure easier. Obtained PCL scaffolds containing Tetracyclines (Tet) loaded PVP nanoparticles showed that drug encapsulation into the interlayer extended the release time and exhibited a controlled release profile for days. Moreover, produced scaffolds have good biocompatibility and no harmful effects. The combination of 3D scaffolds and drug-loaded nanoparticles aims to develop new functional scaffolds by targeting more efficient and longer-lasting drug delivery.
Collapse
Affiliation(s)
- Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Turkey.
| |
Collapse
|
10
|
Ma M, Shen W, Li B, Sun M, Lin D, Meng L. Optimization of a concentrated growth factor/mesoporous bioactive glass composite scaffold and its application in rabbit mandible defect regeneration. Biomater Sci 2023; 11:6357-6372. [PMID: 37584200 DOI: 10.1039/d3bm00805c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Maxillofacial bone defect repair and regeneration remains a tremendous challenge in the field of stomatology. However, the limited osteoinductivity of artificial materials and the high cost of bioactive agents restrain their clinical translation. This study aimed to construct an economical and efficient concentrated growth factor/mesoporous bioactive glass (CGF/MBG) composite scaffold for bone regeneration. The biochemical composition and biological effects of different forms of CGFs were systematically compared, and the results showed that CGF-conditioned medium effectively promoted proliferation, migration and osteogenesis of allogenic BMSCs. Gel phase CGF (gpCGF) exhibited superior bioactivity and osteoinductivity to liquid phase CGF (lpCGF) and liquid/gel mixed phase CGF (lgpCGF), and was further applied to construct CGF/MBG scaffolds. In vitro studies demonstrated that co-culture with gpCGF-conditioned medium further enhanced the biocompatibility of MBG, increasing cell adhesion and proliferation on the scaffold. On this basis, two compositing approaches to construct the scaffold by fibrin gel formation (CGF/FG/MBG) and freeze-drying (fdCGF/MBG) were applied, and the biological efficacy of CGFs was compared in vivo. In a rabbit mandibular defect model, higher osteogenic efficiency in in situ bone regeneration of CGF/FG/MBG composite scaffolds was proved, compared with fdCGF/MBG. Taken together, the CGF/FG/MBG composite scaffold is expected to be an efficient bone repairing therapy for clinical translation, and the CGF-composited scaffold using gpCGF and the fibrin gel formation method is a promising way to enhance the bioactivity and osteoinductivity of current clinical bone repairing materials, providing new thoughts on the development of future orthopedic biomaterials.
Collapse
Affiliation(s)
- Mengran Ma
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Wenjing Shen
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Beibei Li
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Mengwen Sun
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
11
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Yamatani Y, Nakai K. Comprehensive comparison of gene expression diversity among a variety of human stem cells. NAR Genom Bioinform 2022; 4:lqac087. [PMCID: PMC9706419 DOI: 10.1093/nargab/lqac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Several factors, including tissue origins and culture conditions, affect the gene expression of undifferentiated stem cells. However, understanding the basic identity across different stem cells has not been pursued well despite its importance in stem cell biology. Thus, we aimed to rank the relative importance of multiple factors to gene expression profile among undifferentiated human stem cells by analyzing publicly available RNA-seq datasets. We first conducted batch effect correction to avoid undefined variance in the dataset as possible. Then, we highlighted the relative impact of biological and technical factors among undifferentiated stem cell types: a more influence on tissue origins in induced pluripotent stem cells than in other stem cell types; a stronger impact of culture condition in embryonic stem cells and somatic stem cell types, including mesenchymal stem cells and hematopoietic stem cells. In addition, we found that a characteristic gene module, enriched in histones, exhibits higher expression across different stem cell types that were annotated by specific culture conditions. This tendency was also observed in mouse stem cell RNA-seq data. Our findings would help to obtain general insights into stem cell quality, such as the balance of differentiation potentials that undifferentiated stem cells possess.
Collapse
Affiliation(s)
- Yukiyo Yamatani
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kenta Nakai
- To whom correspondence should be addressed. Tel: +81 3 5449 5131; Fax: +81 3 5449 5133;
| |
Collapse
|
13
|
Hunckler MD, Levine AD. Navigating ethical challenges in the development and translation of biomaterials research. Front Bioeng Biotechnol 2022; 10:949280. [PMID: 36204464 PMCID: PMC9530811 DOI: 10.3389/fbioe.2022.949280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomaterials--from implanted iron teeth in the second century to intraocular lenses, artificial joints, and stents today--have long been used clinically. Today, biomaterials researchers and biomedical engineers are pushing beyond these inert synthetic alternatives and incorporating complex multifunctional materials to control biological interactions and direct physiological processes. These advances are leading to novel strategies for targeted drug delivery, drug screening, diagnostics and imaging, gene therapy, tissue regeneration, and cell transplantation. While the field has survived ethical transgressions in the past, the rapidly expanding scope of biomaterials science, combined with the accelerating clinical translation of this diverse field calls for urgent attention to the complex and challenging ethical dilemmas these advances pose. This perspective responds to this call, examining the intersection of research ethics -- the sets of rules, principles and norms guiding responsible scientific inquiry -- and ongoing advances in biomaterials. While acknowledging the inherent tensions between certain ethical norms and the pressures of the modern scientific and engineering enterprise, we argue that the biomaterials community needs to proactively address ethical issues in the field by, for example, updating or adding specificity to codes of ethics, modifying training programs to highlight the importance of ethical research practices, and partnering with funding agencies and journals to adopt policies prioritizing the ethical conduct of biomaterials research. Together these actions can strengthen and support biomaterials as its advances are increasingly commercialized and impacting the health care system.
Collapse
Affiliation(s)
- Michael D. Hunckler
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Aaron D. Levine
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, Georgia, United States
- *Correspondence: Aaron D. Levine,
| |
Collapse
|
14
|
Xu X, Feng Q, Ma X, Deng Y, Zhang K, Ooi HS, Yang B, Zhang ZY, Feng B, Bian L. Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture. Biomaterials 2022; 289:121802. [PMID: 36152514 DOI: 10.1016/j.biomaterials.2022.121802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Long-term maintenance of embryonic stem cells (ESCs) in the undifferentiated state is still challenging. Compared with traditional 2D culture methods, 3D culture in biomaterials such as hydrogels is expected to better support the long-term self-renewal of ESCs by emulating the biophysical and biochemical properties of the extracellular matrix (ECM). Although prior studies showed that soft and degradable hydrogels favor the 3D growth of ESCs, few studies have examined the impact of the structural dynamics of the hydrogel matrix on ESC behaviors. Herein, we report a gelatin-based structurally dynamic hydrogel (GelCD hydrogel) that emulates the intrinsic structural dynamics of the ECM. Compared with covalently crosslinked gelatin hydrogels (GelMA hydrogels) with similar stiffness and biodegradability, GelCD hydrogels significantly promote the clonal expansion and viability of encapsulated mouse ESCs (mESCs) independent of MMP-mediated hydrogel degradation. Furthermore, GelCD hydrogels better maintain the pluripotency of encapsulated mESCs than do traditional 2D culture methods that use MEF feeder cells or medium supplementation with GSK3β and MEK 1/2 inhibitors (2i). When cultured in GelCD hydrogels for an extended period (over 2 months) with cell passaging every 7 days, mESCs preserve their normal morphology and maintain their pluripotency and full differentiation capability. Our findings highlight the critical role of the structural dynamics of the hydrogel matrix in accommodating the volume expansion that occurs during clonal ESC growth, and we believe that our dynamic hydrogels represent a valuable tool to support the long-term 3D culture of ESCs.
Collapse
Affiliation(s)
- Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing, 400044, China
| | - Xun Ma
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong SAR, 999077, China; School of Biomedical Sciences, Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine (iTERM), CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China
| | - Hon Son Ooi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, China.
| | - Bo Feng
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong SAR, 999077, China; School of Biomedical Sciences, Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine (iTERM), CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Adibi-Motlagh B, Hashemi E, Akhavan O, Khezri J, Rezaei A, Zamani Amir Zakria J, Siadat SD, Sahebghadam Lotfi A, Farmany A. Immobilization of modular peptides on graphene cocktail for differentiation of human mesenchymal stem cells to hepatic-like cells. Front Chem 2022; 10:943003. [PMID: 36105306 PMCID: PMC9465031 DOI: 10.3389/fchem.2022.943003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, two novel biomimetic modular peptide motifs based on the alpha-2 subunit of type IV collagen (CO4A2) were designed and immobilized on a graphene platform to imitate integrin and heparan sulfate- (HS-) binding proteins. The in silico study was used to design 9-mer K[KGDRGD]AG and 10-mer KK[SGDRGD]AG for testing designed Integrin-Binding Peptide (dIBP) and HS-Binding Peptide (dHBP). The virtual docking technique was used to optimize the peptide motifs and their relevant receptors. Molecular dynamic (MD) simulation was used to evaluate the stability of peptide-receptor complexes. The effect of the platform on the differentiation of human mesenchymal stem cells (hMSCs) to hepatic-like cells (HLCs) was evaluated. After differentiation, some hepatic cells’ molecular markers such as albumin, AFP, CK-18, and CK-19 were successfully followed. Graphene-heparan sulfate binding peptide (G-HSBP) enhances the mature hepatic markers’ expression instead of control (p ≤ 0.05). The pathological study showed that the designed platform is safe, and no adverse effects were seen till 21 days after implantation.
Collapse
Affiliation(s)
- Behzad Adibi-Motlagh
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Hashemi
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Jafar Khezri
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Zamani Amir Zakria
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Abbas Sahebghadam Lotfi, ; Abbas Farmany,
| | - Abbas Farmany
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implant Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Abbas Sahebghadam Lotfi, ; Abbas Farmany,
| |
Collapse
|
16
|
Mohajeri M, Eskandari M, Ghazali ZS, Ghazali HS. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomed Phys Eng Express 2022; 8. [PMID: 35073537 DOI: 10.1088/2057-1976/ac4e2d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Cell encapsulation within the microspheres using a semi-permeable polymer allows the two-way transfer of molecules such as oxygen, nutrients, and growth factors. The main advantages of cell encapsulation technology include controlling the problems involved in transplanting rejection in tissue engineering applications and reducing the long-term need for immunosuppressive drugs following organ transplantation to eliminate the side effects. Cell-laden microgels can also be used in 3D cell cultures, wound healing, and cancerous clusters for drug testing. Since cell encapsulation is used for different purposes, several techniques have been developed to encapsulate cells. Droplet-based microfluidics is one of the most valuable techniques in cell encapsulating. This study aimed to review the geometries and the mechanisms proposed in microfluidic systems to precisely control cell-laden microgels production with different biopolymers. We also focused on alginate gelation techniques due to their essential role in cell encapsulation applications. Finally, some applications of these microgels and researches will be explored.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Hanieh Sadat Ghazali
- Department of Nanobiotechnology, Tarbiat Modares University, Jalal Aleahmad-Tehran-Iran, Tehran, 14115-111, Iran (the Islamic Republic of)
| |
Collapse
|
17
|
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. BIOMICROFLUIDICS 2022; 16:011501. [PMID: 35145569 PMCID: PMC8816519 DOI: 10.1063/5.0074631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 05/08/2023]
Abstract
Modern neuroscience increasingly relies on 3D models to study neural circuitry, nerve regeneration, and neural disease. Several different biofabrication approaches have been explored to create 3D neural tissue model structures. Among them, 3D bioprinting has shown to have great potential to emerge as a high-throughput/high precision biofabrication strategy that can address the growing need for 3D neural models. Here, we have reviewed the design principles for neural tissue engineering. The main challenge to adapt printing technologies for biofabrication of neural tissue models is the development of neural bioink, i.e., a biomaterial with printability and gelation properties and also suitable for neural tissue culture. This review shines light on a vast range of biomaterials as well as the fundamentals of 3D neural tissue printing. Also, advances in 3D bioprinting technologies are reviewed especially for bioprinted neural models. Finally, the techniques used to evaluate the fabricated 2D and 3D neural models are discussed and compared in terms of feasibility and functionality.
Collapse
Affiliation(s)
| | - Hamed Tahmooressi
- Department of Mechanical Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Hojatollah Rezaei Nejad
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | | | - Su-Royn Shin
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
- Authors to whom correspondence should be addressed: and
| | - Mina Hoorfar
- Faculty of Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
18
|
Yao C, Zhang R, Tang J, Yang D. Rolling circle amplification (RCA)-based DNA hydrogel. Nat Protoc 2021; 16:5460-5483. [PMID: 34716450 DOI: 10.1038/s41596-021-00621-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
DNA hydrogels have unique properties, including sequence programmability, precise molecular recognition, stimuli-responsiveness, biocompatibility and biodegradability, that have enabled their use in diverse applications ranging from material science to biomedicine. Here, we describe a rolling circle amplification (RCA)-based synthesis of 3D DNA hydrogels with rationally programmed sequences and tunable physical, chemical and biological properties. RCA is a simple and highly efficient isothermal enzymatic amplification strategy to synthesize ultralong single-stranded DNA that benefits from mild reaction conditions, and stability and efficiency in complex biological environments. Other available methods for synthesis of DNA hydrogels include hybridization chain reactions, which need a large amount of hairpin strands to produce DNA chains, and PCR, which requires temperature cycling. In contrast, the RCA process is conducted at a constant temperature and requires a small amount of circular DNA template. In this protocol, the polymerase phi29 catalyzes the elongation and displacement of DNA chains to amplify DNA, which subsequently forms a 3D hydrogel network via various cross-linking strategies, including entanglement of DNA chains, multi-primed chain amplification, hybridization between DNA chains, and hybridization with functional moieties. We also describe how to use the protocol for isolation of bone marrow mesenchymal stem cells and cell delivery. The whole protocol takes ~2 d to complete, including hydrogel synthesis and applications in cell isolation and cell delivery.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China.
| |
Collapse
|
19
|
Wu J, Liyarita BR, Zhu H, Liu M, Hu X, Shao F. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49705-49712. [PMID: 34658242 DOI: 10.1021/acsami.1c14445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With inherent biocompatibility, biodegradability, and unique programmability, hydrogels with a DNA framework show great potential in three-dimensional (3D) cell culture. Here, a DNA hydrogel was assembled by a dendritic DNA with four branches. The hydrogel showed tunable mechanical strength and reversible thixotropy even under a nanomolar DNA concentration. The cell culture medium can be converted into the hydrogel isothermally at physiological temperature. This DNA hydrogel allows both cancer and somatic cells to be seeded in situ and to achieve high proliferation and viability. The bis-entity of dendritic branches enabled the specific loading of bioactive clues to regulate cell behaviors. Thus, the dendritic DNA-assembled hydrogel could serve as a highly biocompatible, readily functionalizing, and easy-casting gel platform for 3D cell culture.
Collapse
Affiliation(s)
- Jingyuan Wu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Bella Rosa Liyarita
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Haishuang Zhu
- ZJU-UIUC Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Ming Liu
- Temasek Laboratories@NTU, Nanyang Technological University, 637371 Singapore
| | - Xiao Hu
- School of Materials Science and Engineering and Environment Chemistry and Materials Centre, NEWRI, Nanyang Technological University, 637371 Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| |
Collapse
|
20
|
Kuo YC, Tsao CW, Rajesh R. Dual-sized inverted colloidal crystal scaffolds grafted with GDF-8 and Wnt3a for enhancing differentiation of iPS cells toward islet β-cells. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Specific Blood Cells Derived from Pluripotent Stem Cells: An Emerging Field with Great Potential in Clinical Cell Therapy. Stem Cells Int 2021; 2021:9919422. [PMID: 34434242 PMCID: PMC8380505 DOI: 10.1155/2021/9919422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Widely known for self-renewal and multilineage differentiation, stem cells can be differentiated into all specialized tissues and cells in the body. In the past few years, a number of researchers have focused on deriving hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) as alternative sources for clinic. Existing findings demonstrated that it is feasible to obtain HSCs and certain mature blood lineages from PSCs, except for several issues to be addressed. This short review outlines the technologies used for hematopoietic differentiation in recent years. In addition, the therapeutic value of PSCs as a potential source of various blood cells is also discussed as well as its challenges and directions in future clinical applications.
Collapse
|
22
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
24
|
Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol 2021; 42:468-486. [PMID: 34187261 DOI: 10.1080/07388551.2021.1932716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three-dimensional (3D) cell cultures offer an unparalleled platform to recreate spatial arrangements of cells in vitro. 3D cell culture systems have gained increasing interest due to their evident advantages in providing more physiologically relevant information and more predictive data compared to their two-dimensional (2D) counterpart. Design and well-established fabrication of organoids (a particular type of 3D cell culture system) are nowadays considered a pivotal achievement for their ability to replicate in vitro cytoarchitecture and the functionalities of an organ. In this condition, pluripotent stem cells self-organize into 3D structures mimicking the in vivo microenvironments, architectures and multi-lineage differentiation. Scaffolds are key supporting elements in these 3D constructs, and Matrigel is the most commonly used matrix despite its relevant translation limitations including animal-derived sources, non-defined composition, batch-to-batch variability and poorly tailorable properties. Alternatively, 3D synthetic scaffolds, including self-assembling peptides, show promising biocompatibility and biomimetic properties, and can be tailored on specific target tissue/cells. In this review, we discuss the recent advances on 3D cell culture systems and organoids, promising tools for tissue engineering and regenerative medicine applications. For this purpose, we will describe the current state-of-the-art on 3D cell culture systems and organoids based on currently available synthetic-based biomaterials (including tailored self-assembling peptides) either tested in in vivo animal models or developed in vitro with potential application in the field of tissue engineering, with the aim to inspire researchers to take on such promising platforms for clinical applications in the near future.
Collapse
Affiliation(s)
- Amanda Marchini
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
25
|
Mahmood MA, Popescu AC. 3D Printing at Micro-Level: Laser-Induced Forward Transfer and Two-Photon Polymerization. Polymers (Basel) 2021; 13:2034. [PMID: 34206309 PMCID: PMC8271989 DOI: 10.3390/polym13132034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
Laser-induced forward transfer (LIFT) and two-photon polymerization (TPP) have proven their abilities to produce 3D complex microstructures at an extraordinary level of sophistication. Indeed, LIFT and TPP have supported the vision of providing a whole functional laboratory at a scale that can fit in the palm of a hand. This is only possible due to the developments in manufacturing at micro- and nano-scales. In a short time, LIFT and TPP have gained popularity, from being a microfabrication innovation utilized by laser experts to become a valuable instrument in the hands of researchers and technologists performing in various research and development areas, such as electronics, medicine, and micro-fluidics. In comparison with conventional micro-manufacturing methods, LIFT and TPP can produce exceptional 3D components. To gain benefits from LIFT and TPP, in-detail comprehension of the process and the manufactured parts' mechanical-chemical characteristics is required. This review article discusses the 3D printing perspectives by LIFT and TPP. In the case of the LIFT technique, the principle, classification of derivative methods, the importance of flyer velocity and shock wave formation, printed materials, and their properties, as well as various applications, have been discussed. For TPP, involved mechanisms, the difference between TPP and single-photon polymerization, proximity effect, printing resolution, printed material properties, and different applications have been analyzed. Besides this, future research directions for the 3D printing community are reviewed and summarized.
Collapse
Affiliation(s)
- Muhammad Arif Mahmood
- Laser Department, National Institute for Laser, Plasma and Radiation Physics (INFLPR), 077125 Magurele, Ilfov, Romania;
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Andrei C. Popescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), 077125 Magurele, Ilfov, Romania
| |
Collapse
|
26
|
Nam K, Im BI, Kim T, Kim YM, Roh YH. Anisotropically Functionalized Aptamer-DNA Nanostructures for Enhanced Cell Proliferation and Target-Specific Adhesion in 3D Cell Cultures. Biomacromolecules 2021; 22:3138-3147. [PMID: 34111930 DOI: 10.1021/acs.biomac.1c00619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of supramolecular hydrogel scaffolds for the precise positioning of biochemical cues is paramount for applications such as tissue engineering. Nucleic acid engineering allows fabrication of three-dimensional (3D) nanostructures with high variability and nanoscale precision. In this study, aptamers were anisotropically functionalized onto branched DNA nanostructures to control their cell adhesion capability, and their efficiency as biological signal inducers for 3D cell cultivation was investigated. Each arm of the X-shaped DNA nanostructure (X-DNA) was functionalized with photo-cross-linkable or cell adhesion moieties, and the steric hindrance of the 3D DNA nanostructures on a cell was optimized. X-DNA nanostructures with cell-positioning parameters were rapidly photopolymerized to form hybrid hydrogels, and their effects on cell behaviors and positions were investigated. We observed that aptamer-functionalized X-DNA nanostructures exhibited significantly enhanced cell proliferation and provided homogeneous distribution and target-specific adhesion of encapsulated cells within hydrogel matrices. Overall, the anisotropic functionalization of DNA nanostructures provides a controllable function for the advancement of conventional 3D culture platforms.
Collapse
Affiliation(s)
- Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byeol I Im
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taehyung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Wang C, Yang X, Zhang X, Liu B, Liu W, Shen Y, Gao Z, Yin Q, Wang C, Zhou J. TMT-based quantitative proteome profiles reveal the memory function of a whole heart decellularized matrix for neural stem cell trans-differentiation into the cardiac lineage. Biomater Sci 2021; 9:3692-3704. [PMID: 34008595 DOI: 10.1039/d0bm01287d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whole organ or tissue decellularized matrices are a promising scaffold for tissue engineering because they maintain the specific memory of the original organ or tissue. A whole organ or tissue decellularized matrix contains extracellular matrix (ECM) components, and exhibits ultrastructural and mechanical properties, which could significantly regulate the fate of stem cells. To better understand the memory function of whole organ decellularized matrices, we constructed a heart decellularized matrix and seeded cross-embryonic layer stem cells - neural stem cells (NSCs) to repopulate the matrix, engineering cardiac tissue, in which a large number of NSCs differentiated into the neural lineage, but besides that, NSCs showed an obvious tendency of trans-differentiating into cardiac lineage cells. The results demonstrated that the whole heart decellularized microenvironment possesses memory function. To reveal the underlying mechanism, TMT-based quantitative proteomics analysis was used to identify the differently expressed proteins in the whole heart decellularized matrix compared with a brain decellularized matrix. 937 of the proteins changed over 1.5 fold, with 573 of the proteins downregulated and 374 of the proteins upregulated, among which integrin ligands in the ECM serve as key signals in regulating NSC fate. The findings here provide a novel insight into the memory function of tissue-specific microenvironments and pave the way for the therapeutic application of personalized tissues.
Collapse
Affiliation(s)
- Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Xiaoning Yang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Baijun Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Yuan Shen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Zhongbao Gao
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Qi Yin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| |
Collapse
|
28
|
Wang Z, Zuo F, Liu Q, Wu X, Du Q, Lei Y, Wu Z, Lin H. Comparative Study of Human Pluripotent Stem Cell-Derived Endothelial Cells in Hydrogel-Based Culture Systems. ACS OMEGA 2021; 6:6942-6952. [PMID: 33748608 PMCID: PMC7970572 DOI: 10.1021/acsomega.0c06187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) are promising cell sources for drug discovery, tissue engineering, and studying or treating vascular diseases. However, hPSC-ECs derived from different culture methods display different phenotypes. Herein, we made a detailed comparative study of hPSC-ECs from three different culture systems (e.g., 2D, 3D PNIPAAm-PEG hydrogel, and 3D alginate hydrogel cultures) based on our previous reports. We expanded hPSCs and differentiated them into ECs in three culture systems. Both 3D hydrogel systems could mimic an in vivo physiologically relevant microenvironment to protect cells from shear force and prevent cell agglomeration, leading to a high culture efficiency and a high volumetric yield. We demonstrated that hPSC-ECs produced from both hydrogel systems had similar results as 2D-ECs. The transcriptome analysis showed that PEG-ECs and alginate-ECs displayed a functional phenotype due to their higher gene expressions in vasculature development, extracellular matrix, angiogenesis, and glycolysis, while 2D-ECs showed a proliferative phenotype due to their higher gene expressions in cell proliferation. Taken together, both PEG- and alginate-hydrogel systems will significantly advance the applications of hPSC-ECs in various biomedical fields.
Collapse
Affiliation(s)
- Zhanqi Wang
- Department
of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fuxing Zuo
- Department
of Neurosurgery, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Liu
- Department
of Obstetrics, Beijing Obstetrics and Gynecology
Hospital Capital Medical University, Beijing 100006, China
| | - Xuesheng Wu
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Du
- Department
of Biological Systems Engineering, University
of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yuguo Lei
- Department
of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhangmin Wu
- Department
of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Haishuang Lin
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
29
|
Sun L, Ma Y, Niu H, Liu Y, Yuan Y, Liu C. Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxia‐Mimetic Hydrogel. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202008515] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 01/06/2025]
Abstract
AbstractDue to the limited ability for perfusion, traditional intramembranous ossification (IMO) often fails to recapitulate the natural regeneration process of most long bones and craniofacial bones. Alternatively, endochondral ossification (ECO) strategy has emerged and has been evidenced to circumvent the drawbacks in the routine application of IMO. Here, an injectable, poly(glycerol sebacate)‐co‐poly (ethylene glycol)/polyacrylic acid (PEGS/PAA) hydrogels are successfully developed to induce a hypoxia‐mimicking environment and subsequently recapitulate ECO via in situ iron chelation. With the incorporation of PAA, these hydrogels present remarkable viscoelasticity and high efficacy of iron ion‐chelating after injection, giving rise to the activation of HIF‐1α signaling pathway and suppression of inflammatory responses, and thereby improving chondrogenic differentiation in the early stage and facilitating vascularization in the later stage, which consequently trigger typical ECO. More importantly, through sustained and stable expression of HIF‐1α regulated by PEGS/PAA hydrogels throughout the regeneration, a harmonious chondrogenic/osteogenic balance can be struck and thereby accelerating the progress of ECO compared to the PEGS. The findings provide an efficient strategy to achieve in situ ECO via biomaterial‐based iron ion‐chelating and ensuing hypoxia‐mimicking, representing a novel and promising concept for future application in bone regeneration.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
30
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
31
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
32
|
Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11:488. [PMID: 33198821 PMCID: PMC7667734 DOI: 10.1186/s13287-020-02003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes β cell maturation is poorly understood. Methods We established a stepwise method to induce high-efficiency differentiation of human embryonic stem cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression, pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs. The mechanisms were considered from the perspectives of cell–cell and cell–extracellular matrix interactions which are fundamentally different between 2D and 3D cultures. Results The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the expression of β cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression. Conclusion We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature, functional β cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the signaling events that regulate endocrine specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02003-z.
Collapse
|
33
|
Yan H, Rong L, Xiao D, Zhang M, Sheikh SP, Sui X, Lu M. Injectable and self-healing hydrogel as a stem cells carrier for treatment of diabetic erectile dysfunction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111214. [DOI: 10.1016/j.msec.2020.111214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
34
|
Goh SK, Halfter W, Richardson T, Bertera S, Vaidya V, Candiello J, Bradford M, Banerjee I. Organ-specific ECM arrays for investigating Cell-ECM interactions during stem cell differentiation. Biofabrication 2020; 13. [PMID: 33045682 DOI: 10.1088/1758-5090/abc05f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which are important physiological regulators of stem cell function and fate. Recapitulating this native ECM microenvironment niche is best facilitated by decellularized tissue/ organ derived ECM, which can faithfully reproduce the physiological environment with high fidelity to in vivo condition and promote tissue-specific cellular development and maturation. Recognizing the need for organ specific ECM in a 3D culture environment in driving phenotypic differentiation and maturation of hPSCs, we fabricated an ECM array platform using native-mimicry ECM from decellularized organs (namely pancreas, liver and heart), which allows cell-ECM interactions in both 2D and 3D configuration. The ECM array was integrated with rapid quantitative imaging for a systematic investigation of matrix protein profiles and sensitive measurement of cell-ECM interaction during hPSC differentiation. We tested our platform by elucidating the role of the three different organ-specific ECM in supporting induced pancreatic differentiation of hPSCs. While the focus of this report is on pancreatic differentiation, the developed platform is versatile to be applied to characterize any lineage specific differentiation.
Collapse
Affiliation(s)
- Saik Kia Goh
- University of Pittsburgh, Pittsburgh, 15261, UNITED STATES
| | - Willi Halfter
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Thomas Richardson
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Suzanne Bertera
- Allegheny Health Network, Pittsburgh, Pennsylvania, UNITED STATES
| | - Vimal Vaidya
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Joe Candiello
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Mahalia Bradford
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Ipsita Banerjee
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, UNITED STATES
| |
Collapse
|
35
|
Zhang L, D'Amora U, Ronca A, Li Y, Mo X, Zhou F, Yuan M, Ambrosio L, Wu J, Raucci MG. In vitro and in vivo biocompatibility and inflammation response of methacrylated and maleated hyaluronic acid for wound healing. RSC Adv 2020; 10:32183-32192. [PMID: 35518130 PMCID: PMC9056621 DOI: 10.1039/d0ra06025a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past few years, different in vitro and in vivo studies have been highlighting the great potentiality of hyaluronic acid (HA) as a biomaterial in wound healing treatment thanks to its good capability to induce mesenchymal and epithelial cell growth and differentiation, angiogenesis, and collagen deposition. However, the need to improve its mechanical properties as well as its residence time has led scientists to study new functionalization strategies. In this work, chemically modified HA-based hydrogels were obtained by methacrylic and maleic functionalization. Methacrylated (MEHA) and maleated HA (MAHA) hydrogels have shown important physico-chemical properties. The present study provides a deeper insight into the biocompatibility of both synthesized materials and their effects on tissue inflammation using in vitro and in vivo models. To this aim, different cell lines involved in wound healing, human dermal fibroblasts, human adipose-derived stem cells and human umbilical vein endothelial cells, were seeded on MEHA and MAHA hydrogels. Furthermore, an inflammation study was carried out on a murine macrophage cell line to assess the effects of both hydrogels on inflammatory and anti-inflammatory interleukin production. The results showed that both MAHA and MEHA supported cell proliferation with anti-inflammation ability as highlighted by the increased levels of IL-10 (57.92 ± 9.87 pg mL-1 and 68.08 ± 13.94 pg mL-1, for MEHA and MAHA, respectively). To investigate the inflammatory response at tissue/implant interfaces, an in vivo study was also performed by subcutaneous implantation of the materials in BALB/c mice for up to 28 days. In these analyses, no significant chronic inflammation reaction was demonstrated in either MEHA or MAHA in the long-term implantation.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Burn and Plastic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen P. R. China
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University Guangzhou P. R. China
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council Naples Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council Naples Italy
| | - Yuanyuan Li
- Department of Burn and Plastic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen P. R. China
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University Guangzhou P. R. China
| | - Xiaoying Mo
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University Guangzhou P. R. China
| | - Fei Zhou
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University Guangzhou P. R. China
| | - Mingzhou Yuan
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University Guangzhou P. R. China
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council Naples Italy
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen P. R. China
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University Guangzhou P. R. China
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council Naples Italy
| |
Collapse
|
36
|
Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 2020; 8:4887-4905. [PMID: 32830832 DOI: 10.1039/d0bm00390e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning is historically related to tissue engineering due to its ability to produce nano-/microscale fibrous materials with mechanical and functional properties that are extremely similar to those of the extracellular matrix of living tissues. The general interest in electrospun fibrous matrices has recently expanded to cancer research both as scaffolds for in vitro cancer modelling and as patches for in vivo therapeutic delivery. In this review, we examine electrospinning by providing a brief description of the process and overview of most materials used in this process, discussing the effect of changing the process parameters on fiber conformations and assemblies. Then, we describe two different applications of electrospinning in service of cancer research: firstly, as three-dimensional (3D) fibrous materials for generating in vitro pre-clinical cancer models; and secondly, as patches encapsulating anticancer agents for in vivo delivery.
Collapse
Affiliation(s)
- Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
38
|
García-Fernández C, López-Fernández A, Borrós S, Lecina M, Vives J. Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Green DW, Watson JA, Watson GS, Stamboulis A. Sequenced Somatic Cell Reprogramming and Differentiation Inside Nested Hydrogel Droplets. ACTA ACUST UNITED AC 2020; 4:e2000071. [PMID: 32597033 DOI: 10.1002/adbi.202000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 11/08/2022]
Abstract
The efficient genesis of pluripotent cells or therapeutic cells for regenerative medicine involves several external manipulations and conditioning protocols, which drives down clinical applicability. Automated programming of the genesis by microscale physical forces and chronological biochemistry can increase clinical success. The design and fabrication of nested polysaccharide droplets (millimeter-sized) with cell sustaining properties of natural tissues and intrinsic properties for time and space evolution of cell transformation signals between somatic cells, pluripotent cells and differentiated therapeutic cells in a swift and efficient manner without the need for laborious external manipulation are reported. Cells transform between phenotypic states by having single and double nested droplets constituted with extracellular matrix proteins and reprogramming, and differentiation factors infused chronologically across the droplet space. The cell transformation into germ layer cells and bone cells is successfully tested in vitro and in vivo and promotes the formation of new bone tissues. Thus, nested droplets with BMP-2 loaded guests synthesize mineralized bone tissue plates along the length of a cranial non-union bone defect at 4 weeks. The advantages of sequenced somatic cell reprogramming and differentiation inside an individual hydrogel module without external manipulation, promoted by formulating tissue mimetic physical, mechanical, and chemical microenvironments are shown.
Collapse
Affiliation(s)
- David W Green
- School of Metallurgy and Materials, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jolanta A Watson
- School of Science and Engineering, University of the Sunshine Coast, Fraser Coast, Hervey Bay, QLD, 4655, Australia
| | - Gregory S Watson
- School of Science and Engineering, University of the Sunshine Coast, Fraser Coast, Hervey Bay, QLD, 4655, Australia
| | - Artemis Stamboulis
- School of Metallurgy and Materials, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
40
|
Zhou N, Ma X, Bernaerts KV, Ren P, Hu W, Zhang T. Expansion of Ovarian Cancer Stem-like Cells in Poly(ethylene glycol)-Cross-Linked Poly(methyl vinyl ether-alt-maleic acid) and Alginate Double-Network Hydrogels. ACS Biomater Sci Eng 2020; 6:3310-3326. [DOI: 10.1021/acsbiomaterials.9b01967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Naizhen Zhou
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoe Ma
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
41
|
Miranda CMFDC, Therrien J, Leonel LCPC, Smith OE, Miglino MA, Smith LC. Decellularization of Extracellular Matrix from Equine Skeletal Muscle. J Equine Vet Sci 2020; 90:102962. [PMID: 32534761 DOI: 10.1016/j.jevs.2020.102962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 02/06/2020] [Indexed: 01/29/2023]
Abstract
Equine represents an attractive animal model for musculoskeletal tissue diseases, exhibiting much similarity to the injuries that occur in humans. Cell therapy and tissue bioengineering have been widely used as a therapeutic alternative by regenerative medicine in musculoskeletal diseases. Thus, the aim of this study was to produce an acellular biomaterial of equine skeletal muscle and to evaluate its effectiveness in supporting the in vitro culture of equine induced pluripotency stem cells (iPSCs). Biceps femoris samples were frozen at -20°C for 4 days and incubated in 1% sodium dodecyl sulfate (SDS), 5 mM EDTA + 50 mM Tris and 1% Triton X-100; the effectiveness of the decellularization was evaluated by the absence of remnant nuclei (histological and 4',6-diamidino-2-phenylindole [DAPI] analysis), preservation of extracellular matrix (ECM) proteins (immunofluorescence and immunohistochemistry) and organization of ECM ultrastructure (scanning electron microscopy). Decellularized samples were recellularized with iPSCs at the concentration of 50,000 cells/cm2 and cultured in vitro for 9 days, and the presence of the cells in the biomaterial was evaluated by histological analysis and presence of nuclei. Decellularized biomaterial showed absence of remnant nuclei and muscle fibers, as well as the preservation of ECM architecture, vascular network and proteins, laminin, fibronectin, elastin, collagen III and IV. After cellularization, iPSC nuclei were present at 9 days after incubation, indicating the decellularized biomaterial-supported iPSC survival. It is concluded that the ECM biomaterial produced from the decellularized equine skeletal muscle has potential for iPSC adhesion, representing a promising biomaterial for regenerative medicine in the therapy of musculoskeletal diseases.
Collapse
Affiliation(s)
- Carla Maria Figueiredo de Carvalho Miranda
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Jacinthe Therrien
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | - Olivia Eilers Smith
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Lawrence Charles Smith
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
42
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
43
|
Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D. Double Rolling Circle Amplification Generates Physically Cross-Linked DNA Network for Stem Cell Fishing. J Am Chem Soc 2020; 142:3422-3429. [PMID: 31893497 DOI: 10.1021/jacs.9b11001] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have been widely studied in cell biology and utilized in cell-based therapies, and fishing stem cells from marrow is highly challenging due to the ultralow content. Herein, a physically cross-linked DNA network-based cell fishing strategy is reported, achieving efficient capture, 3D envelop, and enzyme-triggered release of bone marrow mesenchymal stem cells (BMSCs). DNA network is constructed via a double rolling circle amplification method and through the intertwining and self-assembly of two strands of ultralong DNA chains. DNA-chain-1 containing aptamer sequences ensures specific anchor with BMSCs from marrow. Hybridization between DNA-chain-1 and DNA-chain-2 enables the cross-link of cell-anchored DNA chains to form a 3D network, thus realizing cell envelop and separation. DNA network creates a favorable microenvironment for 3D cell culture, and remarkably the physically cross-linked DNA network shows no damage to cells. DNA network is digested by nuclease, realizing the deconstruction from DNA network to fragments, and achieving enzyme-triggered cell release; after release, the activity of cells is well maintained. The strategy provides a powerful and effective method for fishing stem cells from tens of thousands of nontarget cells.
Collapse
Affiliation(s)
- Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Han Tang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Weijian Wu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Jianpu Tang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300071 , People's Republic of China
| | - Dan Luo
- Department of Biological & Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
44
|
Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D Printed Neural Regeneration Devices. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [PMID: 32038121 PMCID: PMC7007064 DOI: 10.1002/adfm.201906237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/16/2023]
Abstract
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.
Collapse
Affiliation(s)
- Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicolas S Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sung Hyun Park
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
45
|
McKee C, Brown C, Chaudhry GR. Self-Assembling Scaffolds Supported Long-Term Growth of Human Primed Embryonic Stem Cells and Upregulated Core and Naïve Pluripotent Markers. Cells 2019; 8:cells8121650. [PMID: 31888235 PMCID: PMC6952907 DOI: 10.3390/cells8121650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
The maintenance and expansion of human embryonic stem cells (ESCs) in two-dimensional (2-D) culture is technically challenging, requiring routine manipulation and passaging. We developed three-dimensional (3-D) scaffolds to mimic the in vivo microenvironment for stem cell proliferation. The scaffolds were made of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups, which self-assembled via a Michael addition reaction. When primed ESCs (H9 cells) were mixed with PEG polymers, they were encapsulated and grew for an extended period, while maintaining their viability, self-renewal, and differentiation potential both in vitro and in vivo. Three-dimensional (3-D) self-assembling scaffold-grown cells displayed an upregulation of core pluripotency genes, OCT4, NANOG, and SOX2. In addition, the expression of primed markers decreased, while the expression of naïve markers substantially increased. Interestingly, the expression of mechanosensitive genes, YAP and TAZ, was also upregulated. YAP inhibition by Verteporfin abrogated the increased expression of YAP/TAZ as well as core and naïve pluripotent markers. Evidently, the 3-D culture conditions induced the upregulation of makers associated with a naïve state of pluripotency in the primed cells. Overall, our 3-D culture system supported the expansion of a homogenous population of ESCs and should be helpful in advancing their use for cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3350
| |
Collapse
|
46
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
47
|
Shan W, Wang B, Xu Y, Li X, Li X, Wang H, Lin Y, Tie R, Zhao Q, Wang J, Zheng W, Hu Y, Shi J, Yu X, Huang H. Generation of hematopoietic cells from mouse pluripotent stem cells in a 3D culture system of self-assembling peptide hydrogel. J Cell Physiol 2019; 235:2080-2090. [PMID: 31389001 DOI: 10.1002/jcp.29110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 01/18/2023]
Abstract
In vitro generation of hematopoietic stem cells from pluripotent stem cells (PSCs) can be regarded as novel therapeutic approaches for replacing bone marrow transplantation without immune rejection or graft versus host disease. To date, many different approaches have been evaluated in terms of directing PSCs toward different hematopoietic cell types, yet, low efficiency and no function restrict the further hematopoietic differentiation study, our research aims to develop a three dimension (3D) hematopoietic differentiation approach that serves as recapitulation of embryonic development in vitro to a degree of complexity not achievable in a two dimension culture system. We first found that mouse PSCs could be efficiently induced to hematopoietic differentiation with an expression of hematopoietic makers, such as c-kit, CD41, and CD45 within self-assembling peptide hydrogel. Colony-forming cells assay results suggested mouse PSCs (mPSCs) could be differentiated into multipotential progenitor cells and 3D induction system derived hematopoietic colonies owned potential of differentiating into lymphocyte cells. In addition, in vivo animal transplantation experiment showed that mPSCs (CD45.2) could be embedded into nonobese diabetic/severe combined immunodeficiency mice (CD45.1) with about 3% engraftment efficiency after 3 weeks transplantation. This study demonstrated that we developed the 3D induction approach that could efficiently promote the hematopoietic differentiation of mPSCs in vitro and obtained the multipotential progenitors that possessed the short-term engraftment potential.
Collapse
Affiliation(s)
- Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huafang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianhao Zhao
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinyong Wang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Xie P, Du J, Li Y, Wu J, He H, Jiang X, Liu C. Robust hierarchical porous MBG scaffolds with promoted biomineralization ability. Colloids Surf B Biointerfaces 2019; 178:22-31. [DOI: 10.1016/j.colsurfb.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
|
49
|
Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2019; 42:107353. [PMID: 30794878 DOI: 10.1016/j.biotechadv.2019.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
During an average individual's lifespan, the human heart pumps nearly 200 million liters of blood delivered by approximately 3 billion heartbeats. Therefore, it is not surprising that native myocardium under this incredible demand is extraordinarily complex, both structurally and functionally. As a result, successful engineering of adult-mimetic functional cardiac tissues is likely to require utilization of highly specialized biomaterials representative of the native extracellular microenvironment. There is currently no single biomaterial that fully recapitulates the architecture or the biochemical and biomechanical properties of adult myocardium. However, significant effort has gone toward designing highly functional materials and tissue constructs that may one day provide a ready source of cardiac tissue grafts to address the overwhelming burden of cardiomyopathic disease. In the near term, biomaterial-based scaffolds are helping to generate in vitro systems for querying the mechanisms underlying human heart homeostasis and disease and discovering new, patient-specific therapeutics. When combined with advances in minimally-invasive cardiac delivery, ongoing efforts will likely lead to scalable cell and biomaterial technologies for use in clinical practice. In this review, we describe recent progress in the field of cardiac tissue engineering with particular emphasis on use of biomaterials for therapeutic tissue design and delivery.
Collapse
|
50
|
Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, Wang Z, Anderson D, Liu K, Gu L, Zhang C, Lei Y. Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports 2019; 12:84-97. [PMID: 30527760 PMCID: PMC6335449 DOI: 10.1016/j.stemcr.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Human pluripotent stem cell-derived vascular smooth muscle cells (hPSC-VSMCs) are of great value for disease modeling, drug screening, cell therapies, and tissue engineering. However, producing a high quantity of hPSC-VSMCs with current cell culture technologies remains very challenging. Here, we report a scalable method for manufacturing hPSC-VSMCs in alginate hydrogel microtubes (i.e., AlgTubes), which protect cells from hydrodynamic stresses and limit cell mass to <400 μm to ensure efficient mass transport. The tubes provide cells a friendly microenvironment, leading to extremely high culture efficiency. We have shown that hPSC-VSMCs can be generated in 10 days with high viability, high purity, and high yield (∼5.0 × 108 cells/mL). Phenotype and gene expression showed that VSMCs made in AlgTubes and VSMCs made in 2D cultures were similar overall. However, AlgTube-VSMCs had higher expression of genes related to vasculature development and angiogenesis, and 2D-VSMCs had higher expression of genes related to cell death and biosynthetic processes.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Du
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Leonard Akert
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhanqi Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Dirk Anderson
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kan Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chi Zhang
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|