1
|
Ba W, Nollet M, Yin C, Yu X, Wong S, Miao A, Beckwith EJ, Harding EC, Ma Y, Yustos R, Vyssotski AL, Wisden W, Franks NP. A REM-active basal ganglia circuit that regulates anxiety. Curr Biol 2024; 34:3301-3314.e4. [PMID: 38944034 DOI: 10.1016/j.cub.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.
Collapse
Affiliation(s)
- Wei Ba
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Chunyu Yin
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sara Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| | - William Wisden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Smeele SQ, Tyndel SA, Klump BC, Alarcón‐Nieto G, Aplin LM. callsync: An R package for alignment and analysis of multi-microphone animal recordings. Ecol Evol 2024; 14:e11384. [PMID: 38799392 PMCID: PMC11116754 DOI: 10.1002/ece3.11384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
To better understand how vocalisations are used during interactions of multiple individuals, studies are increasingly deploying on-board devices with a microphone on each animal. The resulting recordings are extremely challenging to analyse, since microphone clocks drift non-linearly and record the vocalisations of non-focal individuals as well as noise. Here we address this issue with callsync, an R package designed to align recordings, detect and assign vocalisations to the caller, trace the fundamental frequency, filter out noise and perform basic analysis on the resulting clips. We present a case study where the pipeline is used on a dataset of six captive cockatiels (Nymphicus hollandicus) wearing backpack microphones. Recordings initially had a drift of ~2 min, but were aligned to within ~2 s with our package. Using callsync, we detected and assigned 2101 calls across three multi-hour recording sessions. Two had loud beep markers in the background designed to help the manual alignment process. One contained no obvious markers, in order to demonstrate that markers were not necessary to obtain optimal alignment. We then used a function that traces the fundamental frequency and applied spectrographic cross correlation to show a possible analytical pipeline where vocal similarity is visually assessed. The callsync package can be used to go from raw recordings to a clean dataset of features. The package is designed to be modular and allows users to replace functions as they wish. We also discuss the challenges that might be faced in each step and how the available literature can provide alternatives for each step.
Collapse
Affiliation(s)
- Simeon Q. Smeele
- Cognitive & Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Human Behavior, Ecology and CultureMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of BiologyUniversity of KonstanzConstanceGermany
- Department of EcoscienceAarhus UniversityAarhusDenmark
| | - Stephen A. Tyndel
- Cognitive & Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzConstanceGermany
| | - Barbara C. Klump
- Cognitive & Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Behavioral and Cognitive BiologyUniversity of ViennaViennaAustria
| | - Gustavo Alarcón‐Nieto
- Cognitive & Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzConstanceGermany
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
| | - Lucy M. Aplin
- Cognitive & Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
3
|
Tossell K, Yu X, Giannos P, Anuncibay Soto B, Nollet M, Yustos R, Miracca G, Vicente M, Miao A, Hsieh B, Ma Y, Vyssotski AL, Constandinou T, Franks NP, Wisden W. Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus. Nat Neurosci 2023; 26:1805-1819. [PMID: 37735497 PMCID: PMC10545541 DOI: 10.1038/s41593-023-01430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Berta Anuncibay Soto
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Mikal Vicente
- Department of Life Sciences, Imperial College London, London, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich-ETH Zürich, Zürich, Switzerland
| | - Tim Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
- Care Research and Technology Centre, UK Dementia Research Institute, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
4
|
Nagy M, Naik H, Kano F, Carlson NV, Koblitz JC, Wikelski M, Couzin ID. SMART-BARN: Scalable multimodal arena for real-time tracking behavior of animals in large numbers. SCIENCE ADVANCES 2023; 9:eadf8068. [PMID: 37656798 PMCID: PMC10854427 DOI: 10.1126/sciadv.adf8068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels. Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously. This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices). The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis. The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.
Collapse
Affiliation(s)
- Máté Nagy
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- MTA-ELTE Lendület Collective Behavior Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Hemal Naik
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecology of Animal Societies, Max-Planck Institute of Animal Behavior, Konstanz, Germany
| | - Fumihiro Kano
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nora V. Carlson
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Zoology, Faculty of Science/Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jens C. Koblitz
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Iain D. Couzin
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Meaux E, He C, Zeng X, He R, Jiang A, Goodale E. Audience effects in a group‐living bird: How contact call rate is affected by vegetation and group size and composition. Ecol Evol 2023; 13:e9909. [PMID: 36969923 PMCID: PMC10037432 DOI: 10.1002/ece3.9909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
Contact calling is a ubiquitous behavior of group‐living animals. Yet in birds, beyond a general connection with group cohesion, its precise function is not well‐understood, nor is it clear what stimulates changes in contact call rate. In an aviary experiment, we asked whether Swinhoe's White‐eyes, Zosterops simplex, would regulate their own production of contact calls to maintain a specific rate at the group level. Specifically, we hypothesized that the sudden cessation of the group‐level call rate could indicate an immediate predation threat, and we predicted that birds in smaller groups would call more to maintain a high call rate. We also investigated the effects of environmental characteristics, such as vegetation density, and social stimuli, such as the presence of certain individuals, on the rate of three different contact call types. To calculate mean individual‐level rates, we measured the group‐level rate and divided it by the number of birds in the aviary. We found that the individual‐level rate of the most common call types increased with a greater group size, the opposite pattern to what would be expected if birds were maintaining a specific group‐level rate. Vegetation density did not affect any call rate. However, individual‐level rates of all call types decreased when birds were in subgroups with individuals of differing dominance status, and the rate of some call types increased when birds were with affiliated individuals. Our results do not support the hypothesis that contact calls are related to habitat structure or immediate predation risk. Rather, they appear to have a social function, used for communication within or between groups depending on the call type. Increases in call rates could recruit affiliated individuals, whereas subordinates could withhold calls so that dominants are unable to locate them, leading to fluctuations in contact calling in different social contexts.
Collapse
Affiliation(s)
- Estelle Meaux
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of Forestry, Guangxi UniversityNanningGuangxiChina
| | - Chao He
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of Forestry, Guangxi UniversityNanningGuangxiChina
| | - Xiaolei Zeng
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of Forestry, Guangxi UniversityNanningGuangxiChina
| | - Ruchuan He
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of Forestry, Guangxi UniversityNanningGuangxiChina
| | - Aiwu Jiang
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of Forestry, Guangxi UniversityNanningGuangxiChina
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of Forestry, Guangxi UniversityNanningGuangxiChina
- Department of Health and Environmental ScienceXi'an Jiaotong‐Liverpool UniversitySuzhouJiangsuChina
| |
Collapse
|
6
|
Lorenz C, Hao X, Tomka T, Rüttimann L, Hahnloser RH. Interactive extraction of diverse vocal units from a planar embedding without the need for prior sound segmentation. FRONTIERS IN BIOINFORMATICS 2023; 2:966066. [PMID: 36710910 PMCID: PMC9880044 DOI: 10.3389/fbinf.2022.966066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 01/15/2023] Open
Abstract
Annotating and proofreading data sets of complex natural behaviors such as vocalizations are tedious tasks because instances of a given behavior need to be correctly segmented from background noise and must be classified with minimal false positive error rate. Low-dimensional embeddings have proven very useful for this task because they can provide a visual overview of a data set in which distinct behaviors appear in different clusters. However, low-dimensional embeddings introduce errors because they fail to preserve distances; and embeddings represent only objects of fixed dimensionality, which conflicts with vocalizations that have variable dimensions stemming from their variable durations. To mitigate these issues, we introduce a semi-supervised, analytical method for simultaneous segmentation and clustering of vocalizations. We define a given vocalization type by specifying pairs of high-density regions in the embedding plane of sound spectrograms, one region associated with vocalization onsets and the other with offsets. We demonstrate our two-neighborhood (2N) extraction method on the task of clustering adult zebra finch vocalizations embedded with UMAP. We show that 2N extraction allows the identification of short and long vocal renditions from continuous data streams without initially committing to a particular segmentation of the data. Also, 2N extraction achieves much lower false positive error rate than comparable approaches based on a single defining region. Along with our method, we present a graphical user interface (GUI) for visualizing and annotating data.
Collapse
Affiliation(s)
- Corinna Lorenz
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Xinyu Hao
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Tianjin University, School of Electrical and Information Engineering, Tianjin, China
| | - Tomas Tomka
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Linus Rüttimann
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Richard H.R. Hahnloser
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Ide K, Takahashi S. A Review of Neurologgers for Extracellular Recording of Neuronal Activity in the Brain of Freely Behaving Wild Animals. MICROMACHINES 2022; 13:1529. [PMID: 36144152 PMCID: PMC9502354 DOI: 10.3390/mi13091529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous monitoring of animal behavior and neuronal activity in the brain enables us to examine the neural underpinnings of behaviors. Conventionally, the neural activity data are buffered, amplified, multiplexed, and then converted from analog to digital in the head-stage amplifier, following which they are transferred to a storage server via a cable. Such tethered recording systems, intended for indoor use, hamper the free movement of animals in three-dimensional (3D) space as well as in large spaces or underwater, making it difficult to target wild animals active under natural conditions; it also presents challenges in realizing its applications to humans, such as the Brain-Machine Interfaces (BMI). Recent advances in micromachine technology have established a wireless logging device called a neurologger, which directly stores neural activity on ultra-compact memory media. The advent of the neurologger has triggered the examination of the neural correlates of 3D flight, underwater swimming of wild animals, and translocation experiments in the wild. Examples of the use of neurologgers will provide an insight into understanding the neural underpinnings of behaviors in the natural environment and contribute to the practical application of BMI. Here we outline the monitoring of the neural underpinnings of flying and swimming behaviors using neurologgers. We then focus on neuroethological findings and end by discussing their future perspectives.
Collapse
|
8
|
Larsen LB, Adam I, Berman GJ, Hallam J, Elemans CPH. Driving singing behaviour in songbirds using a multi-modal, multi-agent virtual environment. Sci Rep 2022; 12:13414. [PMID: 35927295 PMCID: PMC9352672 DOI: 10.1038/s41598-022-16456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Interactive biorobotics provides unique experimental potential to study the mechanisms underlying social communication but is limited by our ability to build expressive robots that exhibit the complex behaviours of birds and small mammals. An alternative to physical robots is to use virtual environments. Here, we designed and built a modular, audio-visual 2D virtual environment that allows multi-modal, multi-agent interaction to study mechanisms underlying social communication. The strength of the system is an implementation based on event processing that allows for complex computation. We tested this system in songbirds, which provide an exceptionally powerful and tractable model system to study social communication. We show that pair-bonded zebra finches (Taeniopygia guttata) communicating through the virtual environment exhibit normal call timing behaviour, males sing female directed song and both males and females display high-intensity courtship behaviours to their mates. These results suggest that the environment provided is sufficiently natural to elicit these behavioral responses. Furthermore, as an example of complex behavioral annotation, we developed a fully unsupervised song motif detector and used it to manipulate the virtual social environment of male zebra finches based on the number of motifs sung. Our virtual environment represents a first step in real-time automatic behaviour annotation and animal–computer interaction using higher level behaviours such as song. Our unsupervised acoustic analysis eliminates the need for annotated training data thus reducing labour investment and experimenter bias.
Collapse
Affiliation(s)
| | - Iris Adam
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - John Hallam
- University of Southern Denmark, SDU-Biorobotics, Odense, Denmark
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Yu X, Zhao G, Wang D, Wang S, Li R, Li A, Wang H, Nollet M, Chun YY, Zhao T, Yustos R, Li H, Zhao J, Li J, Cai M, Vyssotski AL, Li Y, Dong H, Franks NP, Wisden W. A specific circuit in the midbrain detects stress and induces restorative sleep. Science 2022; 377:63-72. [PMID: 35771921 PMCID: PMC7612951 DOI: 10.1126/science.abn0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mice, social defeat stress (SDS), an ethological model for psychosocial stress, induces sleep. Such sleep could enable resilience, but how stress promotes sleep is unclear. Activity-dependent tagging revealed a subset of ventral tegmental area γ-aminobutyric acid (GABA)-somatostatin (VTAVgat-Sst) cells that sense stress and drive non-rapid eye movement (NREM) and REM sleep through the lateral hypothalamus and also inhibit corticotropin-releasing factor (CRF) release in the paraventricular hypothalamus. Transient stress enhances the activity of VTAVgat-Sst cells for several hours, allowing them to exert their sleep effects persistently. Lesioning of VTAVgat-Sst cells abolished SDS-induced sleep; without it, anxiety and corticosterone concentrations remained increased after stress. Thus, a specific circuit allows animals to restore mental and body functions by sleeping, potentially providing a refined route for treating anxiety disorders.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - You Young Chun
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tianyuan Zhao
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022; 70:1506-1519. [PMID: 35212422 DOI: 10.1002/glia.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Central pattern generators (CPGs) generate the rhythmic and coordinated neural features necessary for the proper conduction of complex behaviors. In particular, CPGs are crucial for complex motor behaviors such as locomotion, mastication, respiration, and vocal production. While the importance of these networks in modulating behavior is evident, the mechanisms driving these CPGs are still not fully understood. On the other hand, accumulating evidence suggests that astrocytes have a significant role in regulating the function of some of these CPGs. Here, we review the location, function, and role of astrocytes in locomotion, respiration, and mastication CPGs and propose that, similarly, astrocytes may also play a significant role in the vocalization CPG.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
11
|
Eisenring E, Eens M, Pradervand J, Jacot A, Baert J, Ulenaers E, Lathouwers M, Evens R. Quantifying song behavior in a free-living, light-weight, mobile bird using accelerometers. Ecol Evol 2022; 12:e8446. [PMID: 35127007 PMCID: PMC8803288 DOI: 10.1002/ece3.8446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
To acquire a fundamental understanding of animal communication, continuous observations in a natural setting and at an individual level are required. Whereas the use of animal-borne acoustic recorders in vocal studies remains challenging, light-weight accelerometers can potentially register individuals' vocal output when this coincides with body vibrations. We collected one-dimensional accelerometer data using light-weight tags on a free-living, crepuscular bird species, the European Nightjar (Caprimulgus europaeus). We developed a classification model to identify four behaviors (rest, sing, fly, and leap) from accelerometer data and, for the purpose of this study, validated the classification of song behavior. Male nightjars produce a distinctive "churring" song while they rest on a stationary song post. We expected churring to be associated with body vibrations (i.e., medium-amplitude body acceleration), which we assumed would be easy to distinguish from resting (i.e., low-amplitude body acceleration). We validated the classification of song behavior using simultaneous GPS tracking data (i.e., information on individuals' movement and proximity to audio recorders) and vocal recordings from stationary audio recorders at known song posts of one tracked individual. Song activity was detected by the classification model with an accuracy of 92%. Beyond a threshold of 20 m from the audio recorders, only 8% of the classified song bouts were recorded. The duration of the detected song activity (i.e., acceleration data) was highly correlated with the duration of the simultaneously recorded song bouts (correlation coefficient = 0.87, N = 10, S = 21.7, p = .001). We show that accelerometer-based identification of vocalizations could serve as a promising tool to study communication in free-living, small-sized birds and demonstrate possible limitations of audio recorders to investigate individual-based variation in song behavior.
Collapse
Affiliation(s)
- Elena Eisenring
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | - Marcel Eens
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| | | | - Alain Jacot
- Swiss Ornithological InstituteField Station ValaisSionSwitzerland
| | - Jan Baert
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
- Terrestrial Ecology UnitDepartment of BiologyGhent UniversityGhentBelgium
| | - Eddy Ulenaers
- Agentschap Natuur en BosRegio Noord‐LimburgBrusselsBelgium
| | - Michiel Lathouwers
- Research Group: Zoology, Biodiversity and ToxicologyCentre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
- Department of GeographyInstitute of Life, Earth and Environment (ILEE)University of NamurNamurBelgium
| | - Ruben Evens
- Department of BiologyBehavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
- Max Planck Institute for OrnithologySeewiesenGermany
| |
Collapse
|
12
|
Harding EC, Ba W, Zahir R, Yu X, Yustos R, Hsieh B, Lignos L, Vyssotski AL, Merkle FT, Constandinou TG, Franks NP, Wisden W. Nitric Oxide Synthase Neurons in the Preoptic Hypothalamus Are NREM and REM Sleep-Active and Lower Body Temperature. Front Neurosci 2021; 15:709825. [PMID: 34720852 PMCID: PMC8551479 DOI: 10.3389/fnins.2021.709825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
When mice are exposed to external warmth, nitric oxide synthase (NOS1) neurons in the median and medial preoptic (MnPO/MPO) hypothalamus induce sleep and concomitant body cooling. However, how these neurons regulate baseline sleep and body temperature is unknown. Using calcium photometry, we show that NOS1 neurons in MnPO/MPO are predominantly NREM and REM active, especially at the boundary of wake to NREM transitions, and in the later parts of REM bouts, with lower activity during wakefulness. In addition to releasing nitric oxide, NOS1 neurons in MnPO/MPO can release GABA, glutamate and peptides. We expressed tetanus-toxin light-chain in MnPO/MPO NOS1 cells to reduce vesicular release of transmitters. This induced changes in sleep structure: over 24 h, mice had less NREM sleep in their dark (active) phase, and more NREM sleep in their light (sleep) phase. REM sleep episodes in the dark phase were longer, and there were fewer REM transitions between other vigilance states. REM sleep had less theta power. Mice with synaptically blocked MnPO/MPO NOS1 neurons were also warmer than control mice at the dark-light transition (ZT0), as well as during the dark phase siesta (ZT16-20), where there is usually a body temperature dip. Also, at this siesta point of cooled body temperature, mice usually have more NREM, but mice with synaptically blocked MnPO/MPO NOS1 cells showed reduced NREM sleep at this time. Overall, MnPO/MPO NOS1 neurons promote both NREM and REM sleep and contribute to chronically lowering body temperature, particularly at transitions where the mice normally enter NREM sleep.
Collapse
Affiliation(s)
- Edward C. Harding
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Wei Ba
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Reesha Zahir
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Bryan Hsieh
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Leda Lignos
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alexei L. Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zurich, Switzerland
| | - Florian T. Merkle
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Timothy G. Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute Care Research and Technology, Imperial College London, London, United Kingdom
| | - Nicholas P. Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute at Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute at Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, Wang D, Li H, Zhang P, Shi Y, Yustos R, Vyssotski AL, Dong H, Franks NP, Wisden W. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry 2021; 26:5213-5228. [PMID: 32555422 PMCID: PMC8589652 DOI: 10.1038/s41380-020-0810-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023]
Abstract
The ventral tegmental area (VTA), an important source of dopamine, regulates goal- and reward-directed and social behaviors, wakefulness, and sleep. Hyperactivation of dopamine neurons generates behavioral pathologies. But any roles of non-dopamine VTA neurons in psychiatric illness have been little explored. Lesioning or chemogenetically inhibiting VTA GABAergic (VTAVgat) neurons generated persistent wakefulness with mania-like qualities: locomotor activity was increased; sensitivity to D-amphetamine was heightened; immobility times decreased on the tail suspension and forced swim tests; and sucrose preference increased. Furthermore, after sleep deprivation, mice with lesioned VTAVgat neurons did not catch up on lost sleep, even though they were starting from a sleep-deprived baseline, suggesting that sleep homeostasis was bypassed. The mania-like behaviors, including the sleep loss, were reversed by valproate, and re-emerged when treatment was stopped. Lithium salts and lamotrigine, however, had no effect. Low doses of diazepam partially reduced the hyperlocomotion and fully recovered the immobility time during tail suspension. The mania like-behaviors mostly depended on dopamine, because giving D1/D2/D3 receptor antagonists reduced these behaviors, but also partially on VTAVgat projections to the lateral hypothalamus (LH). Optically or chemogenetically inhibiting VTAVgat terminals in the LH elevated locomotion and decreased immobility time during the tail suspension and forced swimming tests. VTAVgat neurons help set an animal's (and perhaps human's) mental and physical activity levels. Inputs inhibiting VTAVgat neurons intensify wakefulness (increased activity, enhanced alertness and motivation), qualities useful for acute survival. In the extreme, however, decreased or failed inhibition from VTAVgat neurons produces mania-like qualities (hyperactivity, hedonia, decreased sleep).
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK.
| | - Wei Ba
- Department of Life Sciences, Imperial College London, London, UK
| | - Guangchao Zhao
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London, UK
| | - Lu Yin
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Dan Wang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Huiming Li
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Peng Zhang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Youran Shi
- Department of Life Sciences, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zurich, Switzerland
| | - Hailong Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| |
Collapse
|
14
|
Abstract
Animal vocalizations serve a wide range of functions including territorial defense, courtship, social cohesion, begging, and vocal learning. Whereas many insights have been gained from observational studies and experiments using auditory stimulation, there is currently no technology available for the selective control of vocal communication in small animal groups. We developed a system for real-time control of vocal interactions among separately housed animals. The system is implemented on a field-programmable gate array (FPGA) and it allows imposing arbitrary communication networks among up to four animals. To minimize undesired transitive sound leakage, we adopted echo attenuation and sound squelching algorithms. In groups of three zebra finches, we restrict vocal communication in circular and in hierarchical networks and thereby mimic complex eavesdropping and middleman situations.
Collapse
|
15
|
Reichert MS, Enriquez MS, Carlson NV. New dimensions for animal communication networks: space and time. Integr Comp Biol 2021; 61:814-824. [PMID: 33744960 DOI: 10.1093/icb/icab013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Communication is a social process and usually occurs in a network of signalers and receivers. While social network analysis has received enormous recent attention from animal behaviorists, there have been relatively few attempts to apply these techniques to communication networks. Communication networks have the potential to offer novel insights into social network studies, and yet are especially challenging subjects, largely because of their unique spatiotemporal characteristics. Namely, signals propagate through the environment, often dissociating from the body of the signaler, to influence receiver behavior. The speed of signal propagation and the signal's active space will affect the congruence of communication networks and other types of social network; in extreme cases the signal may persist and only first be detected long after the signaler has left the area. Other signals move more rapidly and over greater distances than the signaler could possibly move to reach receivers. We discuss the spatial and temporal consequences of signaling in networks and highlight the distinction between the physical location of the signaler and the spread of influence of its signals, the effects of signal modality and receiver sensitivity on communication network properties, the potential for feedbacks between network layers, and approaches to analyzing spatial and temporal change in communication networks in conjunction with other network layers.
Collapse
Affiliation(s)
| | | | - Nora V Carlson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior
| |
Collapse
|
16
|
Yamahachi H, Zai AT, Tachibana RO, Stepien AE, Rodrigues DI, Cavé-Lopez S, Lorenz C, Arneodo EM, Giret N, Hahnloser RHR. Undirected singing rate as a non-invasive tool for welfare monitoring in isolated male zebra finches. PLoS One 2020; 15:e0236333. [PMID: 32776943 PMCID: PMC7416931 DOI: 10.1371/journal.pone.0236333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
Research on the songbird zebra finch (Taeniopygia guttata) has advanced our behavioral, hormonal, neuronal, and genetic understanding of vocal learning. However, little is known about the impact of typical experimental manipulations on the welfare of these birds. Here we explore whether the undirected singing rate can be used as an indicator of welfare. We tested this idea by performing a post hoc analysis of singing behavior in isolated male zebra finches subjected to interactive white noise, to surgery, or to tethering. We find that the latter two experimental manipulations transiently but reliably decreased singing rates. By contraposition, we infer that a high-sustained singing rate is suggestive of successful coping or improved welfare in these experiments. Our analysis across more than 300 days of song data suggests that a singing rate above a threshold of several hundred song motifs per day implies an absence of an acute stressor or a successful coping with stress. Because singing rate can be measured in a completely automatic fashion, its observation can help to reduce experimenter bias in welfare monitoring. Because singing rate measurements are non-invasive, we expect this study to contribute to the refinement of the current welfare monitoring tools in zebra finches.
Collapse
Affiliation(s)
- Homare Yamahachi
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anja T. Zai
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ryosuke O. Tachibana
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Diana I. Rodrigues
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sophie Cavé-Lopez
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Corinna Lorenz
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, Orsay, France
| | - Ezequiel M. Arneodo
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, Orsay, France
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Aulsebrook AE, Lesku JA, Mulder RA, Goymann W, Vyssotski AL, Jones TM. Streetlights Disrupt Night-Time Sleep in Urban Black Swans. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Ma Y, Miracca G, Yu X, Harding EC, Miao A, Yustos R, Vyssotski AL, Franks NP, Wisden W. Galanin Neurons Unite Sleep Homeostasis and α2-Adrenergic Sedation. Curr Biol 2019; 29:3315-3322.e3. [PMID: 31543455 PMCID: PMC6868514 DOI: 10.1016/j.cub.2019.07.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Our urge to sleep increases with time spent awake, until sleep becomes inescapable. The sleep following sleep deprivation is longer and deeper, with an increased power of delta (0.5–4 Hz) oscillations, a phenomenon termed sleep homeostasis [1, 2, 3, 4]. Although widely expressed genes regulate sleep homeostasis [1, 4, 5, 6, 7, 8, 9, 10] and the process is tracked by somnogens and phosphorylation [1, 3, 7, 11, 12, 13, 14], at the circuit level sleep homeostasis has remained mysterious. Previously, we found that sedation induced with α2-adrenergic agonists (e.g., dexmedetomidine) and sleep homeostasis both depend on the preoptic (PO) hypothalamus [15, 16]. Dexmedetomidine, increasingly used for long-term sedation in intensive care units [17], induces a non-rapid-eye-movement (NREM)-like sleep but with undesirable hypothermia [18, 19]. Within the PO, various neuronal subtypes (e.g., GABA/galanin and glutamate/NOS1) induce NREM sleep [20, 21, 22] and concomitant body cooling [21, 22]. This could be because NREM sleep’s restorative effects depend on lower body temperature [23, 24]. Here, we show that mice with lesioned PO galanin neurons have reduced sleep homeostasis: in the recovery sleep following sleep deprivation there is a diminished increase in delta power, and the mice catch up little on lost sleep. Furthermore, dexmedetomidine cannot induce high-power delta oscillations or sustained hypothermia. Some hours after dexmedetomidine administration to wild-type mice there is a rebound in delta power when they enter normal NREM sleep, reminiscent of emergence from torpor. This delta rebound is reduced in mice lacking PO galanin neurons. Thus, sleep homeostasis and dexmedetomidine-induced sedation require PO galanin neurons and likely share common mechanisms. This is the first identification of a cell type underlying sleep homeostasis Preoptic galanin neurons are essential for sleep homeostasis Galanin neurons mediate the sedative and hypothermic actions of dexmedetomidine Dexmedetomidine causes an EEG delta power rebound dependent on galanin neurons
Collapse
Affiliation(s)
- Ying Ma
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College, London SW7 2AZ, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
19
|
Yu X, Ma Y, Harding EC, Yustos R, Vyssotski AL, Franks NP, Wisden W. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep 2019; 42:zsz031. [PMID: 30722053 PMCID: PMC6519916 DOI: 10.1093/sleep/zsz031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/12/2022] Open
Abstract
Acute chemogenetic inhibition of histamine (HA) neurons in adult mice induced nonrapid eye movement (NREM) sleep with an increased delta power. By contrast, selective genetic lesioning of HA neurons with caspase in adult mice exhibited a normal sleep-wake cycle overall, except at the diurnal start of the lights-off period, when they remained sleepier. The amount of time spent in NREM sleep and in the wake state in mice with lesioned HA neurons was unchanged over 24 hr, but the sleep-wake cycle was more fragmented. Both the delayed increase in wakefulness at the start of the night and the sleep-wake fragmentation are similar phenotypes to histidine decarboxylase knockout mice, which cannot synthesize HA. Chronic loss of HA neurons did not affect sleep homeostasis after sleep deprivation. However, the chronic loss of HA neurons or chemogenetic inhibition of HA neurons did notably reduce the ability of the wake-promoting compound modafinil to sustain wakefulness. Thus, part of modafinil's wake-promoting actions arise through the HA system.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, UK
| | | | - Raquel Yustos
- Department of Life Sciences, Imperial College London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, UK
- UK Dementia Research Institute at Imperial College London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, UK
- UK Dementia Research Institute at Imperial College London, UK
| |
Collapse
|
20
|
Gent TC, Vyssotski AL, Detotto C, Isler S, Wehrle M, Bettschart-Wolfensberger R. Is xenon a suitable euthanasia agent for mice? Vet Anaesth Analg 2019; 46:652-657. [PMID: 31151872 DOI: 10.1016/j.vaa.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To compare behavioural and electrophysiological variables of mice undergoing gas euthanasia with either xenon (Xe) or carbon dioxide (CO2). STUDY DESIGN Single animals chronically instrumented for electroencephalography (EEG) recording were randomized to undergo euthanasia with either CO2 or Xe (n = 6 animals per group). ANIMALS Twelve adult (>6 weeks old) male C57Bl6/n mice. METHODS Mice were surgically instrumented with EEG and electromyogram electrodes. Following a 7-day recovery period, animals were placed individually in a sealed chamber and a 5-minute baseline recorded in 21% O2. Gas [100% Xe (n = 6) or 100% CO2 (n = 6)] was then added to the chamber at 30% chamber volume minute-1 (2.8 L minute-1) until cessation of breathing. EEG, behaviour (jumping and freezing) and locomotion speed were recorded throughout. RESULTS Mice undergoing single gas euthanasia with Xe did not show jumping or freezing behaviours and had reduced locomotion speed compared to baseline, in contrast to CO2, which resulted in increases in these variables. EEG recordings revealed sedative effects from Xe but heightened arousal from CO2. CONCLUSIONS Our data suggest that Xe may be less aversive than CO2 when using a 30% chamber volume minute-1 fill rate and could improve the welfare of mice undergoing gas euthanasia.
Collapse
Affiliation(s)
- Thomas C Gent
- Section of Anaesthesiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Alexei L Vyssotski
- Institute for Neuroinformatics, University of Zürich and ETH Zurich, Zurich, Switzerland
| | - Carlotta Detotto
- Section of Anaesthesiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Isler
- Natur- und Tierpark Goldau, Goldau, Switzerland
| | | | | |
Collapse
|
21
|
Greif S, Yovel Y. Using on-board sound recordings to infer behaviour of free-moving wild animals. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb184689. [PMID: 30728226 DOI: 10.1242/jeb.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Technological advances in the last 20 years have enabled researchers to develop increasingly sophisticated miniature devices (tags) that record an animal's behaviour not from an observational, external viewpoint, but directly on the animals themselves. So far, behavioural research with these tags has mostly been conducted using movement or acceleration data. But on-board audio recordings have become more and more common following pioneering work in marine mammal research. The first questions that come to mind when recording sound on-board animals concern their vocal behaviour. When are they calling? How do they adjust their behaviour? What acoustic parameters do they change and how? However, other topics like foraging behaviour, social interactions or environmental acoustics can now be addressed as well and offer detailed insight into the animals' daily life. In this Review, we discuss the possibilities, advantages and limitations of on-board acoustic recordings. We focus primarily on bats as their active-sensing, echolocating lifestyle allows many approaches to a multi-faceted acoustic assessment of their behaviour. The general ideas and concepts, however, are applicable to many animals and hopefully will demonstrate the versatility of on-board acoustic recordings and stimulate new research.
Collapse
Affiliation(s)
- Stefan Greif
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Detotto C, Isler S, Wehrle M, Vyssotski AL, Bettschart-Wolfensberger R, Gent TC. Nitrogen gas produces less behavioural and neurophysiological excitation than carbon dioxide in mice undergoing euthanasia. PLoS One 2019; 14:e0210818. [PMID: 30703117 PMCID: PMC6354991 DOI: 10.1371/journal.pone.0210818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/02/2019] [Indexed: 12/04/2022] Open
Abstract
Carbon dioxide (CO2) is one of the most commonly used gas euthanasia agents in mice, despite reports of aversion and nociception. Inert gases such as nitrogen (N2) may be a viable alternative to carbon dioxide. Here we compared behavioural and electrophysiological reactions to CO2 or N2 at either slow fill or rapid fill in C57Bl/6 mice undergoing gas euthanasia. We found that mice euthanised with CO2 increased locomotor activity compared to baseline, whereas mice exposed to N2 decreased locomotion. Furthermore, mice exposed to CO2 showed significantly more vertical jumps and freezing episodes than mice exposed to N2. We further found that CO2 exposure resulted in increased theta:delta of the EEG, a measure of excitation, whereas the N2 decreased theta:delta. Differences in responses were not oxygen-concentration dependent. Taken together, these results demonstrate that CO2 increases both behavioural and electrophysiological excitation as well as producing a fear response, whereas N2 reduces behavioural activity and central neurological depression and may be less aversive although still produces a fear response. Further studies are required to evaluate N2 as a suitable euthanasia agent for mice.
Collapse
Affiliation(s)
- Carlotta Detotto
- Section of Anaesthesiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sarah Isler
- Natur- und Tierpark Goldau, Goldau, Switzerland
| | | | | | | | - Thomas C. Gent
- Section of Anaesthesiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019; 22:106-119. [PMID: 30559475 PMCID: PMC6390936 DOI: 10.1038/s41593-018-0288-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022]
Abstract
We screened for novel circuits in the mouse brain that promote wakefulness. Chemogenetic activation experiments and electroencephalogram recordings pointed to glutamatergic/nitrergic (NOS1) and GABAergic neurons in the ventral tegmental area (VTA). Activating glutamatergic/NOS1 neurons, which were wake- and rapid eye movement (REM) sleep-active, produced wakefulness through projections to the nucleus accumbens and the lateral hypothalamus. Lesioning the glutamate cells impaired the consolidation of wakefulness. By contrast, activation of GABAergic VTA neurons elicited long-lasting non-rapid-eye-movement-like sleep resembling sedation. Lesioning these neurons produced an increase in wakefulness that persisted for at least 4 months. Surprisingly, these VTA GABAergic neurons were wake- and REM sleep-active. We suggest that GABAergic VTA neurons may limit wakefulness by inhibiting the arousal-promoting VTA glutamatergic and/or dopaminergic neurons and through projections to the lateral hypothalamus. Thus, in addition to its contribution to goal- and reward-directed behaviors, the VTA has a role in regulating sleep and wakefulness.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
| | - Wen Li
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Julia J Harris
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London, UK
| | - Wei Ba
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Dan Wang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Long Li
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Juan Guo
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yuqi Li
- Department of Life Sciences, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Zürich, Switzerland
| | | | - Qianzi Yang
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China
| | - Hailong Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shanxi, China.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- Centre for Neurotechnology, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- Centre for Neurotechnology, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| |
Collapse
|
24
|
Stidsholt L, Johnson M, Beedholm K, Jakobsen L, Kugler K, Brinkløv S, Salles A, Moss CF, Madsen PT. A 2.6‐g sound and movement tag for studying the acoustic scene and kinematics of echolocating bats. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Stidsholt
- ZoophysiologyDepartment of BioscienceAarhus University Aarhus Denmark
| | - Mark Johnson
- ZoophysiologyDepartment of BioscienceAarhus University Aarhus Denmark
- Scottish Oceans InstituteUniversity of St Andrews St Andrews Scotland
| | - Kristian Beedholm
- ZoophysiologyDepartment of BioscienceAarhus University Aarhus Denmark
| | - Lasse Jakobsen
- Sound and Behaviour GroupInstitute of BiologyUniversity of Southern Denmark Odense Denmark
| | - Kathrin Kugler
- Division of NeurobiologyDepartment of Biologie IILudwig Maximilians University Martinsried Germany
| | - Signe Brinkløv
- ZoophysiologyDepartment of BioscienceAarhus University Aarhus Denmark
- Sound and Behaviour GroupInstitute of BiologyUniversity of Southern Denmark Odense Denmark
| | - Angeles Salles
- Department of Psychological and Brain SciencesJohns Hopkins University Baltimore Maryland
| | - Cynthia F. Moss
- Department of Psychological and Brain SciencesJohns Hopkins University Baltimore Maryland
| | - Peter Teglberg Madsen
- ZoophysiologyDepartment of BioscienceAarhus University Aarhus Denmark
- Aarhus Institute of Advanced Studies Aarhus C Denmark
| |
Collapse
|
25
|
Palaniappan R, Sundaraj K, Sundaraj S, Huliraj N, Revadi S. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine. ACTA ACUST UNITED AC 2018; 63:383-394. [DOI: 10.1515/bmt-2016-0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/20/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Background:
Auscultation is a medical procedure used for the initial diagnosis and assessment of lung and heart diseases. From this perspective, we propose assessing the performance of the extreme learning machine (ELM) classifiers for the diagnosis of pulmonary pathology using breath sounds.
Methods:
Energy and entropy features were extracted from the breath sound using the wavelet packet transform. The statistical significance of the extracted features was evaluated by one-way analysis of variance (ANOVA). The extracted features were inputted into the ELM classifier.
Results:
The maximum classification accuracies obtained for the conventional validation (CV) of the energy and entropy features were 97.36% and 98.37%, respectively, whereas the accuracies obtained for the cross validation (CRV) of the energy and entropy features were 96.80% and 97.91%, respectively. In addition, maximum classification accuracies of 98.25% and 99.25% were obtained for the CV and CRV of the ensemble features, respectively.
Conclusion:
The results indicate that the classification accuracy obtained with the ensemble features was higher than those obtained with the energy and entropy features.
Collapse
|
26
|
Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, Vyssotski AL, Wisden W, Franks NP. A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Curr Biol 2018; 28:2263-2273.e4. [PMID: 30017485 PMCID: PMC6078908 DOI: 10.1016/j.cub.2018.05.054] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 11/27/2022]
Abstract
Mammals, including humans, prepare for sleep by nesting and/or curling up, creating microclimates of skin warmth. To address whether external warmth induces sleep through defined circuitry, we used c-Fos-dependent activity tagging, which captures populations of activated cells and allows them to be reactivated to test their physiological role. External warming tagged two principal groups of neurons in the median preoptic (MnPO)/medial preoptic (MPO) hypothalamic area. GABA neurons located mainly in MPO produced non-rapid eye movement (NREM) sleep but no body temperature decrease. Nitrergic-glutamatergic neurons in MnPO-MPO induced both body cooling and NREM sleep. This circuitry explains how skin warming induces sleep and why the maximal rate of core body cooling positively correlates with sleep onset. Thus, the pathways that promote NREM sleep, reduced energy expenditure, and body cooling are inextricably linked, commanded by the same neurons. This implies that one function of NREM sleep is to lower brain temperature and/or conserve energy.
Collapse
Affiliation(s)
- Edward C Harding
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; UK Dementia Research Institute at Imperial College London, London SW7 2AZ, UK
| | - Nathanael Andrews
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Zhiwen Ye
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Leda Lignos
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Wei Ba
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - William Wisden
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; Centre for Neurotechnology, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute at Imperial College London, London SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; Centre for Neurotechnology, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute at Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. Challenges and solutions for studying collective animal behaviour in the wild. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170005. [PMID: 29581390 PMCID: PMC5882975 DOI: 10.1098/rstb.2017.0005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2017] [Indexed: 01/24/2023] Open
Abstract
Mobile animal groups provide some of the most compelling examples of self-organization in the natural world. While field observations of songbird flocks wheeling in the sky or anchovy schools fleeing from predators have inspired considerable interest in the mechanics of collective motion, the challenge of simultaneously monitoring multiple animals in the field has historically limited our capacity to study collective behaviour of wild animal groups with precision. However, recent technological advancements now present exciting opportunities to overcome many of these limitations. Here we review existing methods used to collect data on the movements and interactions of multiple animals in a natural setting. We then survey emerging technologies that are poised to revolutionize the study of collective animal behaviour by extending the spatial and temporal scales of inquiry, increasing data volume and quality, and expediting the post-processing of raw data.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Lacey F Hughey
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Andrew M Hein
- Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Santa Cruz, CA 95060, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Ariana Strandburg-Peshkin
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurstrasse 190, 8057 Zurich, Switzerland
| | - Frants H Jensen
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
28
|
Gelegen C, Miracca G, Ran MZ, Harding EC, Ye Z, Yu X, Tossell K, Houston CM, Yustos R, Hawkins ED, Vyssotski AL, Dong HL, Wisden W, Franks NP. Excitatory Pathways from the Lateral Habenula Enable Propofol-Induced Sedation. Curr Biol 2018; 28:580-587.e5. [PMID: 29398217 PMCID: PMC5835141 DOI: 10.1016/j.cub.2017.12.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022]
Abstract
The lateral habenula has been widely studied for its contribution in generating reward-related behaviors [1, 2]. We have found that this nucleus plays an unexpected role in the sedative actions of the general anesthetic propofol. The lateral habenula is a glutamatergic, excitatory hub that projects to multiple targets throughout the brain, including GABAergic and aminergic nuclei that control arousal [3-5]. When glutamate release from the lateral habenula in mice was genetically blocked, the ability of propofol to induce sedation was greatly diminished. In addition to this reduced sensitivity to propofol, blocking output from the lateral habenula caused natural non-rapid eye movement (NREM) sleep to become highly fragmented, especially during the rest ("lights on") period. This fragmentation was largely reversed by the dual orexinergic antagonist almorexant. We conclude that the glutamatergic output from the lateral habenula is permissive for the sedative actions of propofol and is also necessary for the consolidation of natural sleep.
Collapse
Affiliation(s)
- Cigdem Gelegen
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Mingzi Z Ran
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Zhiwen Ye
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Kyoko Tossell
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Catriona M Houston
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Edwin D Hawkins
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich/ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Hailong L Dong
- Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - William Wisden
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; Centre of Excellence in Neurotechnology and UK Dementia Research Institute, Imperial College London, South Kensington SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK; Centre of Excellence in Neurotechnology and UK Dementia Research Institute, Imperial College London, South Kensington SW7 2AZ, UK.
| |
Collapse
|
29
|
Grigolato S, Mologni O, Proto AR, Zimbalatti G, Cavalli R. Assessment of noise level and noise propagation generated by light-lift helicopters in mountain natural environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:88. [PMID: 29352356 DOI: 10.1007/s10661-018-6464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
The use of helicopter rises discussion about environmental noise propagation especially when it operates in proximity of environmentally sensitive areas (ESAs) for an extended period because of its potential implications in wildlife behaviours. In order to support decisions on helicopter logging operation management in proximity of ESAs, this study focused on (i) analysing the noise spectrum of a light-lift helicopter during logging operations and on (ii) assessing the noise propagation in the surrounding environments. This study investigated a helicopter logging operation for wood fuel extraction in the eastern part of the Italian Alps. The potential disturbance area covered for the entire helicopter logging operation was evaluated by a specific GIS application according to hearing sensitivity of the most sensitive wildlife species in the study area (different strigiform species). The noise level at the ground appeared to be affected by the location regardless both the use of equivalent continuous sound pressures level dB(A) (LAeq) and the single-event level (SEL) noise metrics. The lowest values were recorded when the helicopter was flown over the sound meter level located under the forest canopy, while the highest was recorded when the helicopter was unhooking the loads at the landing. The GIS application highlighted the consistent of the exceeded noise area (weighted to strigiform hearing range and sensitivity) for the lower frequency bands (0.016-0.250 kHz). A more restricted exceeded noise area concerned instead the most sensitive frequency bands" for the strigiform (1-2 kHz). Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Stefano Grigolato
- Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell'Università 16, 35040, Legnaro, Padova, Italy.
| | - Omar Mologni
- Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell'Università 16, 35040, Legnaro, Padova, Italy
| | - Andrea Rosario Proto
- Department of Agriculture, Università degli Studi di Reggio Calabria, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Giuseppe Zimbalatti
- Department of Agriculture, Università degli Studi di Reggio Calabria, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Raffaele Cavalli
- Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell'Università 16, 35040, Legnaro, Padova, Italy
| |
Collapse
|
30
|
Hyland Bruno J, Tchernichovski O. Regularities in zebra finch song beyond the repeated motif. Behav Processes 2017; 163:53-59. [PMID: 29122641 DOI: 10.1016/j.beproc.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 01/01/2023]
Abstract
The proliferation of birdsong research into the neural mechanisms of vocal learning is indebted to the remarkable stereotypy of the zebra finch's song motif. Motifs are composed of several syllables, which birds learn to produce in a fixed order. But at a higher level of organization-the bout-zebra finch song is no longer stereotyped. Song bouts include several repetitions of the motif, which are often linked by a variable number of short "connector" vocalizations. In this conceptual methods paper, we show that combinatorial analysis alone yields an incomplete description of this bout-level structure. In contrast, studying birdsong as a time-varying analog signal can reveal patterns of flexibility in the rhythmic organization of song bouts. Visualizing large song-samples in sorted raster plots shows that motifs are strung together via two distinct categories of connections: tight or loose. Loose connections allow considerable timing variation across renditions. Even among co-tutored birds that acquired similar motifs, we observe strong individual variability in rhythms and temporal plasticity of song bouts. These findings suggest that vocal flexibility could potentially allow individuals to express a variety of behavioral states through their songs, even in species that sing only a single stereotyped motif.
Collapse
Affiliation(s)
- Julia Hyland Bruno
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, HN 621, New York, NY 10065, USA; Psychology PhD Program, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| | - Ofer Tchernichovski
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, HN 621, New York, NY 10065, USA; Psychology PhD Program, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
31
|
Müller MS, Vyssotski AL, Yamamoto M, Yoda K. Heart rate variability reveals that a decrease in parasympathetic (‘rest-and-digest’) activity dominates autonomic stress responses in a free-living seabird. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:117-126. [DOI: 10.1016/j.cbpa.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
32
|
Burke CJ, Kisko TM, Pellis SM, Euston DR. Avoiding escalation from play to aggression in adult male rats: The role of ultrasonic calls. Behav Processes 2017; 144:72-81. [PMID: 28941795 DOI: 10.1016/j.beproc.2017.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022]
Abstract
Play fighting is most commonly associated with juvenile animals, but in some species, including rats, it can continue into adulthood. Post-pubertal engagement in play fighting is often rougher and has an increased chance of escalation to aggression, making the use of play signals to regulate the encounter more critical. During play, both juvenile and adult rats emit many 50-kHz calls and some of these may function as play facilitating signals. In the present study, unfamiliar adult male rats were introduced in a neutral enclosure and their social interactions were recorded. While all pairs escalated their playful encounters to become rougher, only the pairs in which one member was devocalized escalated to serious biting. A Monte Carlo shuffling technique was used for the analysis of the correlations between the overt playful and aggressive actions performed and the types and frequencies of various 50-kHz calls that were emitted. The analysis revealed that lower frequency (20-30kHz) calls with a flat component maybe particularly critical for de-escalating encounters and so allowing play to continue. Moreover, coordinating calls reciprocally, with either the same call mimicked in close, temporal association or with complementary calls emitted by participants as they engage in complementary actions (e.g., attacking the nape, being attacked on the nape), appeared to be ways with which calls could be potentially used to avoid escalation to aggression and so sustain playful interactions.
Collapse
Affiliation(s)
- Candace J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David R Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
33
|
Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons. J Neurosci 2017; 36:11171-11184. [PMID: 27807161 DOI: 10.1523/jneurosci.3714-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep. SIGNIFICANCE STATEMENT Many people who find it hard to get to sleep take sedatives. Zolpidem (Ambien) is the most widely prescribed "sleeping pill." It makes the inhibitory neurotransmitter GABA work better at its receptors throughout the brain. The sleep induced by zolpidem does not resemble natural sleep because it produces a lower power in the brain waves that occur while we are sleeping. We show using mouse genetics that zolpidem only needs to work on specific parts and cell types of the brain, including histamine neurons in the hypothalamus, to induce sleep but without reducing the power of the sleep. This knowledge could help in the design of sleeping pills that induce a more natural sleep.
Collapse
|
34
|
Adret P, Cochran JS, Suarez Roda M. Airborne vs. radio-transmitted vocalizations in two primates: a technical report. BIOACOUSTICS 2017. [DOI: 10.1080/09524622.2017.1335617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Patrice Adret
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
| | | | | |
Collapse
|
35
|
Brumm H, Zollinger SA, Niemelä PT, Sprau P. Measurement artefacts lead to false positives in the study of birdsong in noise. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12766] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henrik Brumm
- Communication and Social Behaviour Group Max Planck Institute for Ornithology 82319 Seewiesen Germany
| | - Sue Anne Zollinger
- Communication and Social Behaviour Group Max Planck Institute for Ornithology 82319 Seewiesen Germany
| | - Petri T. Niemelä
- Behavioural Ecology, Department of Biology Ludwig‐Maximilians‐University Munich 82152 Planegg‐Martinsried Germany
| | - Philipp Sprau
- Behavioural Ecology, Department of Biology Ludwig‐Maximilians‐University Munich 82152 Planegg‐Martinsried Germany
| |
Collapse
|
36
|
Kisko TM, Wöhr M, Pellis VC, Pellis SM. From Play to Aggression: High-Frequency 50-kHz Ultrasonic Vocalizations as Play and Appeasement Signals in Rats. Curr Top Behav Neurosci 2017; 30:91-108. [PMID: 26728173 DOI: 10.1007/7854_2015_432] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When rats engage in playful interactions, they emit appetitive 50-kHz ultrasonic vocalizations (USVs). We investigated the role of 50-kHz USVs in the playful behavior of both juvenile and adult rats. A cohort of juvenile rats was surgically devocalized and allowed to interact with either devocalized or intact partners as juveniles and again as adults. A substantial decrease in playful motivation was seen for pairs of devocalized rats, as well as all intact rats housed with devocalized ones. In pairs in which at least one partner could vocalize, there was no difference in the number of playful interactions as compared to controls. Further investigation revealed that, within the playful episode itself, 50-kHz USVs are more likely to appear before a playful attack is launched than after, regardless of the attacking partner's ability to vocalize, and when one partner is pinned on its back by another, it is the rat that is on top that is more likely to emit 50-kHz USVs. These findings suggest that, for juveniles, 50-kHz USVs may have a critical function in maintaining and facilitating playful motivation, but a more limited role in signaling playful actions. In adults, however, whatever the motivational role of such calling may be, the various kinds of USVs appear to serve critical communicatory functions. For instance, when pairs of adult males that are unfamiliar with one another encounter each other in a neutral arena, they play together, but if one partner is devocalized, there is a significantly higher likelihood that the interaction will escalate to become aggressive. While the relative roles of appetitive 50-kHz and aversive 22-kHz USVs in this context remain to be determined, our overall findings for play in both juveniles and adults suggest that 50-kHz USVs likely have multiple functions, with different functions being more prevalent at some ages and contexts than others.
Collapse
Affiliation(s)
- Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032, Marburg, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032, Marburg, Germany
| | - Vivien C Pellis
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sergio M Pellis
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
37
|
Thiebault A, Pistorius P, Mullers R, Tremblay Y. Seabird acoustic communication at sea: a new perspective using bio-logging devices. Sci Rep 2016; 6:30972. [PMID: 27492779 PMCID: PMC4974508 DOI: 10.1038/srep30972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
Most seabirds are very noisy at their breeding colonies, when aggregated in high densities. Calls are used for individual recognition and also emitted during agonistic interactions. When at sea, many seabirds aggregate over patchily distributed resources and may benefit from foraging in groups. Because these aggregations are so common, it raises the question of whether seabirds use acoustic communication when foraging at sea? We deployed video-cameras with built in microphones on 36 Cape gannets (Morus capensis) during the breeding season of 2010–2011 at Bird Island (Algoa Bay, South Africa) to study their foraging behaviour and vocal activity at sea. Group formation was derived from the camera footage. During ~42 h, calls were recorded on 72 occasions from 16 birds. Vocalization exclusively took place in the presence of conspecifics, and mostly in feeding aggregations (81% of the vocalizations). From the observation of the behaviours of birds associated with the emission of calls, we suggest that the calls were emitted to avoid collisions between birds. Our observations show that at least some seabirds use acoustic communication when foraging at sea. These findings open up new perspectives for research on seabirds foraging ecology and their interactions at sea.
Collapse
Affiliation(s)
- Andréa Thiebault
- Department of Zoology, Nelson Mandela Metropolitan University, South Campus, PO Box 77000, Port Elizabeth 6031, South Africa.,Marine Apex Predator Research Unit, Institute for Coastal and Marine Research, Nelson Mandela Metropolitan University, South Campus, PO Box 77000, Port Elizabeth 6031, South Africa
| | - Pierre Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology, Nelson Mandela Metropolitan University, South Campus, PO Box 77000, Port Elizabeth 6031, South Africa.,Marine Apex Predator Research Unit, Institute for Coastal and Marine Research, Nelson Mandela Metropolitan University, South Campus, PO Box 77000, Port Elizabeth 6031, South Africa
| | - Ralf Mullers
- Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0787, South Africa
| | - Yann Tremblay
- Institut de Recherche pour le Développement, UMR MARBEC 248: Marine Biodiversity, Exploitation and Conservation, Avenue Jean Monnet CS 30171, 34203 Sète cedex, France
| |
Collapse
|
38
|
Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell'Omo G, Lipp HP, Wikelski M, Vyssotski AL. Evidence that birds sleep in mid-flight. Nat Commun 2016; 7:12468. [PMID: 27485308 PMCID: PMC4976198 DOI: 10.1038/ncomms12468] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Many birds fly non-stop for days or longer, but do they sleep in flight and if so, how? It is commonly assumed that flying birds maintain environmental awareness and aerodynamic control by sleeping with only one eye closed and one cerebral hemisphere at a time. However, sleep has never been demonstrated in flying birds. Here, using electroencephalogram recordings of great frigatebirds (Fregata minor) flying over the ocean for up to 10 days, we show that they can sleep with either one hemisphere at a time or both hemispheres simultaneously. Also unexpectedly, frigatebirds sleep for only 0.69 h d−1 (7.4% of the time spent sleeping on land), indicating that ecological demands for attention usually exceed the attention afforded by sleeping unihemispherically. In addition to establishing that birds can sleep in flight, our results challenge the view that they sustain prolonged flights by obtaining normal amounts of sleep on the wing. Whether and how birds sleep during long-distance flights has remained a mystery. Here, Rattenborg and colleagues show for the first time that frigatebirds can sleep during flight, but do so in remarkably small amounts.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen 82319, Germany
| | - Bryson Voirin
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen 82319, Germany.,California Academy of Sciences, San Francisco, California 94118, USA
| | - Sebastian M Cruz
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany
| | - Ryan Tisdale
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen 82319, Germany
| | | | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zurich 8057, Switzerland.,School of Laboratory Medicine and Medical Sciences, Department of Physiology, Kwazulu-Natal University, Durban 4000, South Africa
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany.,Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich 8057, Switzerland
| |
Collapse
|
39
|
Gill LF, D'Amelio PB, Adreani NM, Sagunsky H, Gahr MC, Maat A. A minimum‐impact, flexible tool to study vocal communication of small animals with precise individual‐level resolution. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa F. Gill
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Pietro B. D'Amelio
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Nicolas M. Adreani
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Hannes Sagunsky
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Manfred C. Gahr
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| | - Andries Maat
- Max Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 82319 Seewiesen Germany
| |
Collapse
|
40
|
Benichov JI, Globerson E, Tchernichovski O. Finding the Beat: From Socially Coordinated Vocalizations in Songbirds to Rhythmic Entrainment in Humans. Front Hum Neurosci 2016; 10:255. [PMID: 27375455 PMCID: PMC4893489 DOI: 10.3389/fnhum.2016.00255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds' abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a "vocal robot" partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans.
Collapse
Affiliation(s)
- Jonathan I Benichov
- Department of Psychology, Hunter College, City University of New York New York, NY, USA
| | - Eitan Globerson
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel; Jerusalem Academy of Music and DanceJerusalem, Israel
| | - Ofer Tchernichovski
- Department of Psychology, Hunter College, City University of New York New York, NY, USA
| |
Collapse
|
41
|
Cauchoix M, Chaine AS. How Can We Study the Evolution of Animal Minds? Front Psychol 2016; 7:358. [PMID: 27014163 PMCID: PMC4791388 DOI: 10.3389/fpsyg.2016.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior.
Collapse
Affiliation(s)
| | - Alexis S Chaine
- Institute for Advanced Study in ToulouseToulouse, France; Station for Experimental Ecology in Moulis, CNRSMoulis, France
| |
Collapse
|
42
|
Benichov JI, Benezra SE, Vallentin D, Globerson E, Long MA, Tchernichovski O. The Forebrain Song System Mediates Predictive Call Timing in Female and Male Zebra Finches. Curr Biol 2016; 26:309-18. [PMID: 26774786 PMCID: PMC4747672 DOI: 10.1016/j.cub.2015.12.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 12/30/2022]
Abstract
The dichotomy between vocal learners and non-learners is a fundamental distinction in the study of animal communication. Male zebra finches (Taeniopygia guttata) are vocal learners that acquire a song resembling their tutors', whereas females can only produce innate calls. The acoustic structure of short calls, produced by both males and females, is not learned. However, these calls can be precisely coordinated across individuals. To examine how birds learn to synchronize their calls, we developed a vocal robot that exchanges calls with a partner bird. Because birds answer the robot with stereotyped latencies, we could program it to disrupt each bird's responses by producing calls that are likely to coincide with the bird's. Within minutes, the birds learned to avoid this disruptive masking (jamming) by adjusting the timing of their responses. Notably, females exhibited greater adaptive timing plasticity than males. Further, when challenged with complex rhythms containing jamming elements, birds dynamically adjusted the timing of their calls in anticipation of jamming. Blocking the song system cortical output dramatically reduced the precision of birds' response timing and abolished their ability to avoid jamming. Surprisingly, we observed this effect in both males and females, indicating that the female song system is functional rather than vestigial. We suggest that descending forebrain projections, including the song-production pathway, function as a general-purpose sensorimotor communication system. In the case of calls, it enables plasticity in vocal timing to facilitate social interactions, whereas in the case of songs, plasticity extends to developmental changes in vocal structure.
Collapse
Affiliation(s)
- Jonathan I Benichov
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA; Doctoral Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Sam E Benezra
- Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Daniela Vallentin
- Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eitan Globerson
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel; Jerusalem Academy of Music and Dance, Jerusalem 91904, Israel
| | - Michael A Long
- Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ofer Tchernichovski
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA
| |
Collapse
|
43
|
|
44
|
Snijders L, van Rooij EP, Henskens MF, van Oers K, Naguib M. Dawn song predicts behaviour during territory conflicts in personality-typed great tits. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Jarvis ED. Listening in. eLife 2015; 4:e11665. [PMID: 26486860 PMCID: PMC4612131 DOI: 10.7554/elife.11665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zebra finches communicate with each other in ways that are more complex than previously thought.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology and the Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|
46
|
Gill LF, Goymann W, Ter Maat A, Gahr M. Patterns of call communication between group-housed zebra finches change during the breeding cycle. eLife 2015; 4. [PMID: 26441403 PMCID: PMC4592938 DOI: 10.7554/elife.07770] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/04/2015] [Indexed: 11/13/2022] Open
Abstract
Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems.
Collapse
Affiliation(s)
- Lisa F Gill
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | - Manfred Gahr
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
47
|
Fukushima M, Rauske PL, Margoliash D. Temporal and rate code analysis of responses to low-frequency components in the bird's own song by song system neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1103-14. [PMID: 26319311 DOI: 10.1007/s00359-015-1037-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/17/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Auditory feedback (AF) plays a critical role in vocal learning. Previous studies in songbirds suggest that low-frequency (<~1 kHz) components may be salient cues in AF. We explored this with auditory stimuli including the bird's own song (BOS) and BOS variants with increased relative power at low frequencies (LBOS). We recorded single units from BOS-selective neurons in two forebrain nuclei (HVC and Area X) in anesthetized zebra finches. Song-evoked responses were analyzed based on both rate (spike counts) and temporal coding of spike trains. The BOS and LBOS tended to evoke similar spike-count responses in substantially overlapping populations of neurons in both HVC and Area X. Analysis of spike patterns demonstrated temporal coding information that discriminated among the BOS and LBOS stimuli significantly better than spike counts in the majority of HVC (94 %) and Area X (85 %) neurons. HVC neurons contained more and a broader range of temporal coding information to discriminate among the stimuli than Area X neurons. These results are consistent with a role of spike timing in coding differences in the spectral components of BOS in HVC and Area X neurons.
Collapse
Affiliation(s)
- Makoto Fukushima
- Department of Psychology, University of Chicago, Chicago, IL, 60637, USA.
| | - Peter L Rauske
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel Margoliash
- Department of Psychology, University of Chicago, Chicago, IL, 60637, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
48
|
Wakefulness Is Governed by GABA and Histamine Cotransmission. Neuron 2015; 87:164-78. [PMID: 26094607 PMCID: PMC4509551 DOI: 10.1016/j.neuron.2015.06.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
Abstract
Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of “histaminergic” axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl− currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas. Histaminergic axons corelease GABA into the neocortex and striatum The released GABA produces slow tonic inhibition Reducing vgat expression in histaminergic neurons increases wakefulness Histamine-GABA axons will coordinate tonic inhibition over large cortical areas
Collapse
|
49
|
Couchoux C, Aubert M, Garant D, Réale D. Spying on small wildlife sounds using affordable collar-mounted miniature microphones: an innovative method to record individual daylong vocalisations in chipmunks. Sci Rep 2015; 5:10118. [PMID: 25944509 PMCID: PMC4650754 DOI: 10.1038/srep10118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/30/2015] [Indexed: 11/15/2022] Open
Abstract
Technological advances can greatly benefit the scientific community by making new areas of research accessible. The study of animal vocal communication, in particular, can gain new insights and knowledge from technological improvements in recording equipment. Our comprehension of the acoustic signals emitted by animals would be greatly improved if we could continuously track the daily natural emissions of individuals in the wild, especially in the context of integrating individual variation into evolutionary ecology research questions. We show here how this can be accomplished using an operational tiny audio recorder that can easily be fitted as an on-board acoustic data-logger on small free-ranging animals. The high-quality 24 h acoustic recording logged on the spy microphone device allowed us to very efficiently collect daylong chipmunk vocalisations, giving us much more detailed data than the classical use of a directional microphone over an entire field season. The recordings also allowed us to monitor individual activity patterns and record incredibly long resting heart rates, and to identify self-scratching events and even whining from pre-emerging pups in their maternal burrow.
Collapse
Affiliation(s)
- Charline Couchoux
- Département des Sciences Biologiques, Université du Québec à Montréal, H3C 3P8 Montréal, QC, Canada
| | - Maxime Aubert
- Département des Sciences Biologiques, Université du Québec à Montréal, H3C 3P8 Montréal, QC, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, J1K 2R1, Sherbrooke, QC, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, H3C 3P8 Montréal, QC, Canada
| |
Collapse
|
50
|
The effects of delayed auditory feedback revealed by bone conduction microphone in adult zebra finches. Sci Rep 2015; 5:8800. [PMID: 25739659 PMCID: PMC4350079 DOI: 10.1038/srep08800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/04/2015] [Indexed: 11/29/2022] Open
Abstract
Vocal control and learning are critically dependent on auditory feedback in songbirds and humans. Continuous delayed auditory feedback (cDAF) robustly disrupts speech fluency in normal humans and has ameliorative effects in some stutterers; however, evaluations of the effects of cDAF on songbirds are rare. We exposed singing young (141–151 days old) adult zebra finch males to high-amplitude cDAF. cDAF exposure was achieved by the recording of bone-conducted sounds using a piezoelectric accelerometer, which resulted in high-quality song recordings that were relatively uncontaminated by airborne sounds. Under this condition of cDAF, birds rapidly (2–6 days) changed their song syllable timing. The one bird for which we were able to maintain the accelerometer recordings over a long period of time recovered slowly over more than a month after cDAF was discontinued. These results demonstrate that cDAF can cause substantial changes in the motor program for syllable timing generation over short intervals of time in adult zebra finches.
Collapse
|