1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Schmidt T, Wiesbeck M, Egert L, Truong TT, Danese A, Voshagen L, Imhof S, Iraci Borgia M, Deeksha, Neuner A, Köferle A, Geerlof A, Santos Dias Mourão A, Stricker S. Efficient DNA- and virus-free engineering of cellular transcriptomic states using dCas9 ribonucleoprotein (dRNP) complexes. Nucleic Acids Res 2025; 53:gkaf235. [PMID: 40156858 PMCID: PMC11952960 DOI: 10.1093/nar/gkaf235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
For genome editing, the use of CRISPR ribonucleoprotein (RNP) complexes is well established and often the superior choice over plasmid-based or viral strategies. RNPs containing dCas9 fusion proteins, which enable the targeted manipulation of transcriptomes and epigenomes, remain significantly less accessible. Here, we describe the production, delivery, and optimization of second generation CRISPRa RNPs (dRNPs). We characterize the transcriptional and cellular consequences of dRNP treatments in a variety of human target cells and show that the uptake is very efficient. The targeted activation of genes demonstrates remarkable potency, even for genes that are strongly silenced, such as developmental master transcription factors. In contrast to DNA-based CRISPRa strategies, gene activation is immediate and characterized by a sharp temporal precision. We also show that dRNPs allow very high-target multiplexing, enabling undiminished gene activation of multiple genes simultaneously. Applying these insights, we find that intensive target multiplexing at single promoters synergistically elevates gene transcription. Finally, we demonstrate in human stem and differentiated cells that the preferable features of dRNPs allow to instruct and convert cell fates efficiently without the need for DNA delivery or viral vectors.
Collapse
Affiliation(s)
- Tobias Schmidt
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Maximilian Wiesbeck
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Luisa Egert
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Thi-Tram Truong
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Anna Danese
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Lukas Voshagen
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Simon Imhof
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Matilde Iraci Borgia
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Deeksha
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Andrea M Neuner
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Anna Köferle
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - André Santos Dias Mourão
- Institute of Structural Biology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefan H Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
3
|
Wan L, Zhong P, Li P, Ren Y, Wang W, Yu M, Feng HY, Yan Z. CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a Tauopathy mouse model. Neurobiol Dis 2025; 206:106826. [PMID: 39894446 DOI: 10.1016/j.nbd.2025.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
GABAergic signaling in the brain plays a key role in regulating synaptic transmission, neuronal excitability, and cognitive processes. Large-scale sequencing has revealed the diminished expression of GABA-related genes in Alzheimer's disease (AD), however, it is largely unclear about the epigenetic mechanisms that dysregulate the transcription of these genes in AD. We confirmed that GABA synthesizing enzymes, GAD1 and GAD2, were significantly downregulated in prefrontal cortex (PFC) of AD human postmortem tissues. A tauopathy mouse model also had the significantly reduced expression of GABA-related genes, as well as the diminished GABAergic synaptic transmission in PFC pyramidal neurons. To elevate endogenous Gad1 levels, we used the CRISPR/Cas9-based epigenome editing technology to recruit histone acetyltransferase p300 to Gad1. Cells transfected with a fusion protein consisting of the nuclease-null dCas9 protein and the catalytic core of p300 (dCas9p300), as well as a guide RNA targeting Gad1 promoter (gRNAGad1), had significantly increased Gad1 mRNA expression and histone acetylation at Gad1 promoter. Furthermore, the tauopathy mouse model with PFC injection of dCas9p300 and gRNAGad1 lentiviruses had significantly elevated GABAergic synaptic currents and improved spatial memory. These results have provided an epigenetic editing-based gene-targeting strategy to restore synaptic inhibition and cognitive function in AD and related disorders.
Collapse
Affiliation(s)
- Lei Wan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Pei Li
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Yong Ren
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mingjun Yu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Henry Y Feng
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
4
|
Hamze JG, Cambra JM, Navarro-Serna S, Martinez-Serrano CA. Navigating gene editing in porcine embryos: Methods, challenges, and future perspectives. Genomics 2025; 117:111014. [PMID: 39952413 DOI: 10.1016/j.ygeno.2025.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Gene editing technologies, particularly CRISPR/Cas9, have emerged as transformative tools in genetic modification, significantly advancing the use of porcine embryos in biomedical and agricultural research. This review comprehensively examines the various methodologies for gene editing and delivery methods, such as somatic cell nuclear transfer (SCNT), microinjection, electroporation, and lipofection. This review, focuses on the advantages or limitations of using different biological sources (in vivo- vs. in vitro oocytes/embryos). Male germ cell manipulation using sperm-mediated gene transfer (SMGT) and testis-mediated gene transfer (TMGT) represent innovative approaches for producing genetically modified animals. Although these technologies have revolutionized the genetic engineering field, all these strategies face challenges, including high rates of off-target events and mosaicism. This review emphasizes the need to refine these methods, with a focus on reducing mosaicism and improving editing accuracy. Further advancements are essential to unlocking the full potential of gene editing for both agricultural applications and biomedical innovations.
Collapse
Affiliation(s)
- Julieta G Hamze
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.
| | - Josep M Cambra
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany.
| | | | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Khan MA, Herring G, Zhu JY, Oliva M, Fourie E, Johnston B, Zhang Z, Potter J, Pineda L, Pflueger J, Swain T, Pflueger C, Lloyd JPB, Secco D, Small I, Kidd BN, Lister R. CRISPRi-based circuits to control gene expression in plants. Nat Biotechnol 2025; 43:416-430. [PMID: 38769424 DOI: 10.1038/s41587-024-02236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.
Collapse
Affiliation(s)
- Muhammad Adil Khan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Gabrielle Herring
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jia Yuan Zhu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elliott Fourie
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin Johnston
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhining Zhang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jarred Potter
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Luke Pineda
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Tessa Swain
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Christian Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan N Kidd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland, Australia.
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
6
|
Batra SS, Cabrera A, Spence JP, Goell J, Anand SS, Hilton IB, Song YS. Predicting the effect of CRISPR-Cas9-based epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.03.560674. [PMID: 37873127 PMCID: PMC10592942 DOI: 10.1101/2023.10.03.560674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Epigenetic regulation orchestrates mammalian transcription, but functional links between them remain elusive. To tackle this problem, we use epigenomic and transcriptomic data from 13 ENCODE cell types to train machine learning models to predict gene expression from histone post-translational modifications (PTMs), achieving transcriptome-wide correlations of ∼ 0.70 - 0.79 for most cell types. Our models recapitulate known associations between histone PTMs and expression patterns, including predicting that acetylation of histone subunit H3 lysine residue 27 (H3K27ac) near the transcription start site (TSS) significantly increases expression levels. To validate this prediction experimentally and investigate how natural vs. engineered deposition of H3K27ac might differentially affect expression, we apply the synthetic dCas9-p300 histone acetyltransferase system to 8 genes in the HEK293T cell line and to 5 genes in the K562 cell line. Further, to facilitate model building, we perform MNase-seq to map genome-wide nucleosome occupancy levels in HEK293T. We observe that our models perform well in accurately ranking relative fold-changes among genes in response to the dCas9-p300 system; however, their ability to rank fold-changes within individual genes is noticeably diminished compared to predicting expression across cell types from their native epigenetic signatures. Our findings highlight the need for more comprehensive genome-scale epigenome editing datasets, better understanding of the actual modifications made by epigenome editing tools, and improved causal models that transfer better from endogenous cellular measurements to perturbation experiments. Together these improvements would facilitate the ability to understand and predictably control the dynamic human epigenome with consequences for human health.
Collapse
Affiliation(s)
- Sanjit Singh Batra
- Equally contributing authors
- Computer Science Division, University of California, Berkeley, CA 94720
| | - Alan Cabrera
- Equally contributing authors
- Department of Bioengineering, Rice University, TX 77005
| | - Jeffrey P. Spence
- Equally contributing authors
- Department of Genetics, Stanford University, CA 94305
| | - Jacob Goell
- Department of Bioengineering, Rice University, TX 77005
| | - Selvalakshmi S. Anand
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, TX 77005
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, TX 77005
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, TX 77005
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, CA 94720
- Department of Statistics, University of California, Berkeley, CA 94720
| |
Collapse
|
7
|
Fu Y, Yang X, Li S, Ma C, An Y, Cheng T, Liang Y, Sun S, Cheng T, Zhao Y, Wang J, Wang X, Xu P, Yin Y, Liang H, Liu N, Zou W, Chen B. Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation. Nat Commun 2025; 16:1640. [PMID: 39952932 PMCID: PMC11828908 DOI: 10.1038/s41467-025-56735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
CRISPR activation (CRISPRa) is a powerful tool for endogenous gene activation, yet the mechanisms underlying its optimal transcriptional activation remain unclear. By monitoring real-time transcriptional bursts, we find that CRISPRa modulates both burst duration and amplitude. Our quantitative imaging reveals that CRISPR-SunTag activators, with three tandem VP64-p65-Rta (VPR), form liquid-like transcriptional condensates and exhibit high activation potency. Although visible CRISPRa condensates are associated with some RNA bursts, the overall levels of phase separation do not correlate with transcriptional bursting or activation strength in individual cells. When the number of SunTag scaffolds is increased to 10 or more, solid-like condensates form, sequestering co-activators such as p300 and MED1. These condensates display low dynamicity and liquidity, resulting in ineffective gene activation. Overall, our studies characterize various phase-separated CRISPRa systems for gene activation, highlighting the foundational principles for engineering CRISPR-based programmable synthetic condensates with appropriate properties to effectively modulate gene expression.
Collapse
Affiliation(s)
- Yujuan Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoxuan Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Sihui Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Chenyang Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao An
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Shengbai Sun
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Cheng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yongyang Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianghu Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaoyue Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Pengfei Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqing Liang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Baohui Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| |
Collapse
|
8
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Berry SS, Morone DJ, Nuttle X, de Esch CE, Tai DJC, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. CELL GENOMICS 2025; 5:100770. [PMID: 39947136 PMCID: PMC11872474 DOI: 10.1016/j.xgen.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi syndrome (PWS) results from loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control the expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Shanté S Berry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Daniel J Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J C Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Garg P, Singhal G, Pareek S, Kulkarni P, Horne D, Nath A, Salgia R, Singhal SS. Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview. Biochim Biophys Acta Rev Cancer 2025; 1880:189233. [PMID: 39638158 DOI: 10.1016/j.bbcan.2024.189233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene editing techniques have emerged as powerful tools in biomedical research, offering precise manipulation of genetic material with the potential to revolutionize cancer treatment strategies. This review provides a comprehensive overview of the current landscape of gene editing technologies, including CRISPR-Cas systems, base editing, prime editing, and synthetic gene circuits, highlighting their applications and potential in cancer therapy. It discusses the mechanisms, advantages, and limitations of each gene editing approach, emphasizing their transformative impact on targeting oncogenes, tumor suppressor genes, and drug resistance mechanisms in various cancer types. The review delves into population-level interventions and precision prevention strategies enabled by gene editing technologies, including gene drives, synthetic gene circuits, and precision prevention tools, for controlling cancer-causing genes, targeting pre-cancerous lesions, and implementing personalized preventive measures. Ethical considerations, regulatory challenges, and future directions in gene editing research for cancer treatment are also addressed. This review highlights how gene editing could revolutionize precision medicine by enhancing patient care and advancing cancer treatments with targeted, personalized methods. For these benefits to be fully realized, collaboration among researchers, doctors, regulators, and patient advocates is crucial in fighting cancer and meeting clinical needs.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Gargi Singhal
- Undergraduate Medical Sciences, S.N. Medical College Agra, Uttar Pradesh 282002, India
| | - Siddhika Pareek
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields PE, Rumi MAK. mRNA Transcript Variants Expressed in Mammalian Cells. Int J Mol Sci 2025; 26:1052. [PMID: 39940824 PMCID: PMC11817330 DOI: 10.3390/ijms26031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Gene expression or gene regulation studies often assume one gene expresses one mRNA. However, contrary to the conventional idea, a single gene in mammalian cells can express multiple transcript variants translated into several different proteins. The transcript variants are generated through transcription from alternative start sites and alternative post-transcriptional processing of the precursor mRNA (pre-mRNA). In addition, gene mutations and RNA editing further enhance the diversity of the transcript variants. The transcript variants can encode proteins with various domains, expanding the functional repertoire of a single gene. Some transcript variants may not encode proteins but function as non-coding RNAs and regulate gene expression. The expression level of the transcript variants may vary between cell types or within the same cells under different biological conditions. Transcript variants are characteristic of cell differentiation in a particular tissue, and the variants may play a key role in normal development and aging. Studies also reported that some transcript variants may have roles in disease pathogenesis. The biological significances urge studying the complexity of gene expression at the transcript level. This article updates the molecular basis of transcript variants in mammalian cells, including the formation mechanisms and potential roles in host biology. Gaining insight into the transcript variants will not only identify novel mechanisms of gene regulation but also unravel the role of the variants in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.S.); (K.V.); (S.S.); (A.P.); (V.D.); (P.E.F.)
| |
Collapse
|
11
|
Yamanashi Y, Takamaru S, Okabe A, Kaito S, Azumaya Y, Kamimura YR, Yamatsugu K, Kujirai T, Kurumizaka H, Iwama A, Kaneda A, Kawashima SA, Kanai M. Chemical catalyst manipulating cancer epigenome and transcription. Nat Commun 2025; 16:887. [PMID: 39856033 PMCID: PMC11760346 DOI: 10.1038/s41467-025-56204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM in living cells without genetic engineering. Here, we report the development of a cell-permeable histone acetylation catalyst, BAHA-LANA-PEG-CPP44, which selectively enters leukemia cells, binds to chromatin, and acetylates H2BK120 of endogenous histones in a short reaction time. Time-course analyses of this in-cell catalytic reaction revealed that H2BK120 acetylation attenuates the chromatin binding of negative elongation factor E (NELFE), an onco-transcription factor. This H2BK120 acetylation-mediated removal of NELFE from chromatin reshapes transcription, slows leukemia cell viability, and reduces their tumorigenic potential in mice. Therefore, this histone acetylation catalyst provides a unique tool for elucidating the time-resolved consequences of histone PTMs and may offer a modality for cancer chemotherapy.
Collapse
Affiliation(s)
- Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinpei Takamaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Satoshi Kaito
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuto Azumaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo R Kamimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
12
|
Su-Tobon Q, Fan J, Goldstein M, Feeney K, Ren H, Autissier P, Wang P, Huang Y, Mohanty U, Niu J. CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers. Nat Commun 2025; 16:595. [PMID: 39799111 PMCID: PMC11724954 DOI: 10.1038/s41467-025-55957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimize a bacterial CRISPR-hybrid system coupled with FACS, and identified high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allows effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.
Collapse
Affiliation(s)
- Qiwen Su-Tobon
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jiayi Fan
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Kevin Feeney
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hongyuan Ren
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Peiyi Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Yingzi Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
13
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Wang Q, Ma C, Yang B, Zheng W, Liu X, Jian G. Dysregulation of DNA methylation in colorectal cancer: biomarker, immune regulation, and therapeutic potential. Int Immunopharmacol 2025; 145:113766. [PMID: 39644791 DOI: 10.1016/j.intimp.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with morbidity and mortality ranking third and second among all cancers, respectively. As a result of a sequence of genetic and DNA methylation alterations that gradually accumulate in the healthy colonic epithelium, colorectal adenomas and invasive adenocarcinomas eventually give rise to CRC. Global hypomethylation and promoter-specific DNA methylation are characteristics of CRC. The pathophysiological role of aberrant DNA methylation in malignant tumors has garnered significant interest in the last few decades. In addition, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. This review summarizes the most recent research on DNA methylation changes in CRC, including the role of DNA methylation-related enzymes in CRC tumorigenesis and biomarkers for diagnosis, predictive and prognostic. Besides, we focus on the emerging potential of epigenetic interventions to enhance antitumor immune responses and improve the CRC clinical practice.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China; Department of Pathology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bin Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenxin Zheng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xinya Liu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Gu Jian
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
15
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
16
|
Cao Y, Li X, Pan Y, Wang H, Yang S, Hong L, Ye L. CRISPR-based genetic screens advance cancer immunology. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2554-2562. [PMID: 39048715 DOI: 10.1007/s11427-023-2571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/18/2024] [Indexed: 07/27/2024]
Abstract
CRISPR technologies have revolutionized research areas ranging from fundamental science to translational medicine. CRISPR-based genetic screens offer a powerful platform for unbiased screening in various fields, such as cancer immunology. Immune checkpoint blockade (ICB) therapy has been shown to strongly affect cancer treatment. However, the currently available ICBs are limited and do not work in all cancer patients. Pooled CRISPR screens enable the identification of previously unknown immune regulators that can regulate T-cell activation, cytotoxicity, persistence, infiltration into tumors, cytokine secretion, memory formation, T-cell metabolism, and CD4+ T-cell differentiation. These novel targets can be developed as new immunotherapies or used with the current ICBs as new combination therapies that may yield synergistic efficacy. Here, we review the progress made in the development of CRISPR technologies, particularly technological advances in CRISPR screens and their application in novel target identification for immunotherapy.
Collapse
Affiliation(s)
- Yuanfang Cao
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Xueting Li
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Yumu Pan
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Huahe Wang
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Siyu Yang
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Lingjuan Hong
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Lupeng Ye
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
17
|
Boylan J, Shrem RA, Vallecillo-Viejo IC, Duvall CL, Wadzinski BE, Spiller BW. A Nanobody Toolbox for Recognizing Distinct Epitopes on Cas9. J Mol Biol 2024; 436:168836. [PMID: 39481635 PMCID: PMC11852565 DOI: 10.1016/j.jmb.2024.168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Cas9s and fusions of Cas9s have emerged as powerful tools for genetic manipulations. Fusions of Cas9 with other DNA editing enzymes have led to variants capable of single base editing and catalytically dead Cas9s have emerged as tools to specifically target desired regions of a genome. Here we describe the generation of a panel of nanobodies directed against three unique epitopes on Streptococcus pyogenes Cas9. The nanobodies were identified from a nanobody library derived from an alpaca that had been immunized with Cas9. The most potent binders recognize Cas9 and RNA bound Cas9 equally well and do not inhibit Cas9 cleavage of target DNA. These nanobodies bind non-overlapping epitopes as determined by ELISA based epitope binning experiments and mass photometry. We present the sequences of these clones and supporting biochemical data so the broader scientific community can access these reagents.
Collapse
Affiliation(s)
- Jack Boylan
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Rebecca A Shrem
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Isabel C Vallecillo-Viejo
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Craig L Duvall
- Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Brian E Wadzinski
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Benjamin W Spiller
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Departments of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
18
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
19
|
Stover JD, Trone MAR, Weston J, Lewis C, Levis H, Farhang N, Philippi M, Zeidan M, Lawrence B, Bowles RD. Therapeutic CRISPR epigenome editing of inflammatory receptors in the intervertebral disc. Mol Ther 2024; 32:3955-3973. [PMID: 39295148 PMCID: PMC11573609 DOI: 10.1016/j.ymthe.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Low back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine tumor necrosis factor α (TNF-α) has multiple signaling pathways, including proinflammatory signaling through tumor necrosis factor receptor 1 superfamily, member 1a (TNFR1 or TNFRSF1A), and has been implicated as a primary mediator of disc degeneration. We tested our ability to regulate the TNFR1 signaling pathway in vivo, utilizing CRISPR epigenome editing to slow the progression of disc degeneration in rats. Sprague-Dawley rats were treated with TNF-α and CRISPR interference (CRISPRi)-based epigenome-editing therapeutics targeting TNFR1, showing decreased behavioral pain in a disc degeneration model. Surprisingly, while treatment with the vectors alone was therapeutic, the TNF-α injection became therapeutic after TNFR1 modulation. These results suggest direct inflammatory receptor modulation as a potent strategy for treating disc degeneration.
Collapse
Affiliation(s)
- Joshua D Stover
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A R Trone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Weston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hunter Levis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew Philippi
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Michelle Zeidan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Brandon Lawrence
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
20
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
21
|
He Y, Li H, Ju X, Gong B. Developing pioneering pharmacological strategies with CRISPR/Cas9 library screening to overcome cancer drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189212. [PMID: 39521293 DOI: 10.1016/j.bbcan.2024.189212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Cancer drug resistance is a major obstacle to the effectiveness of chemoradiotherapy, targeted therapy, and immunotherapy. CRISPR/Cas9 library screening has emerged as a powerful genetic screening tool with significant potential to address this challenge. This review provides an overview of the development, methodologies, and applications of CRISPR/Cas9 library screening in the study of cancer drug resistance. We explore its role in elucidating resistance mechanisms, identifying novel anticancer targets, and optimizing treatment strategies. The use of in vivo single-cell CRISPR screens is also highlighted for their capacity to reveal T-cell regulatory networks in cancer immunotherapy. Challenges in clinical translation are discussed, including off-target effects, complexities in data interpretation, and model selection. Despite these obstacles, continuous technological advancements indicate a promising future for CRISPR/Cas9 library screening in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Yu He
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Li
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueming Ju
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Bo Gong
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
22
|
Rajaram N, Benzler K, Bashtrykov P, Jeltsch A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 2024; 27:111007. [PMID: 39429790 PMCID: PMC11490731 DOI: 10.1016/j.isci.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days. After allele-specific targeting, DNA demethylation was up to 15-fold more efficient at the targeted allele. Our data show that locus-specific and allele-specific DNA demethylation can trigger the expression of previously silenced genes. Allele-specific DNA demethylation shifted allelic expression ratios about 4-fold. Allele-specific DNA demethylation could be used to correct aberrant imprinting in patients suffering from imprinting disorders and to study the roles of individual alleles of a gene in a given cellular context.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Benzler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
23
|
Yin J, Wan H, Kong D, Liu X, Guan Y, Wu J, Zhou Y, Ma X, Lou C, Ye H, Guan N. A digital CRISPR-dCas9-based gene remodeling biocomputer programmed by dietary compounds in mammals. Cell Syst 2024; 15:941-955.e5. [PMID: 39383861 DOI: 10.1016/j.cels.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/03/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
CRISPR-dCas9 (dead Cas9 protein) technology, combined with chemical molecules and light-triggered genetic switches, offers customizable control over gene perturbation. However, these simple ON/OFF switches cannot precisely determine the sophisticated perturbation process. Here, we developed a resveratrol and protocatechuic acid-programmed CRISPR-mediated gene remodeling biocomputer (REPACRISPR) for conditional endogenous transcriptional regulation of genes in vitro and in vivo. Two REPACRISPR variants, REPACRISPRi and REPACRISPRa, were designed for the logic control of gene inhibition and activation, respectively. We successfully demonstrated the digital computations of single or multiplexed endogenous gene transcription by using REPACRISPRa. We also established mathematical models to predict the dose-responsive transcriptional levels of a target endogenous gene controlled by REPACRISPRa. Moreover, high levels of endogenous gene activation in mice mediated by the AND logic gate demonstrated computational control of CRISPR-dCas9-based epigenome remodeling in mice. This CRISPR-based biocomputer expands the synthetic biology toolbox and can potentially advance gene-based precision medicine. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jianli Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Shanghai Fengxian District Central Hospital, Shanghai 201499, China
| | - Hang Wan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xingwan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ying Guan
- School of Physics, Peking University, Beijing 100871, China; Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiali Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Wuhu Hospital, Health Science Center, East China Normal University, Wuhu City 241001, China
| | - Xiaoding Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunbo Lou
- School of Physics, Peking University, Beijing 100871, China; Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Ningzi Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
24
|
Goell J, Li J, Mahata B, Ma AJ, Kim S, Shah S, Shah S, Contreras M, Misra S, Reed D, Bedford GC, Escobar M, Hilton IB. Tailoring a CRISPR/Cas-based Epigenome Editor for Programmable Chromatin Acylation and Decreased Cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.611000. [PMID: 39345554 PMCID: PMC11429961 DOI: 10.1101/2024.09.22.611000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineering histone acylation states can inform mechanistic epigenetics and catalyze therapeutic epigenome editing opportunities. Here, we developed engineered lysine acyltransferases that enable the programmable deposition of acetylation and longer-chain acylations. We show that targeting an engineered lysine crotonyltransferase results in weak levels of endogenous enhancer activation yet retains potency when targeted to promoters. We further identify a single mutation within the catalytic core of human p300 that preserves enzymatic activity while substantially reducing cytotoxicity, enabling improved viral delivery. We leveraged these capabilities to perform single-cell CRISPR activation screening and map enhancers to the genes they regulate in situ. We also discover acylation-specific interactions and find that recruitment of p300, regardless of catalytic activity, to prime editing sites can improve editing efficiency. These new programmable epigenome editing tools and insights expand our ability to understand the mechanistic role of lysine acylation in epigenetic and cellular processes and perform functional genomic screens.
Collapse
Affiliation(s)
- Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Alex J Ma
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Spencer Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Shriya Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Contreras
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Suchir Misra
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Daniel Reed
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Guy C Bedford
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Mario Escobar
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Biosciences, Rice University, Houston, TX 77030, USA
| |
Collapse
|
25
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
27
|
Melore SM, Hamilton MC, Reddy TE. HyperCas12a enables highly-multiplexed epigenome editing screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602263. [PMID: 39026853 PMCID: PMC11257430 DOI: 10.1101/2024.07.08.602263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Interactions between multiple genes or cis-regulatory elements (CREs) underlie a wide range of biological processes in both health and disease. High-throughput screens using dCas9 fused to epigenome editing domains have allowed researchers to assess the impact of activation or repression of both coding and non-coding genomic regions on a phenotype of interest, but assessment of genetic interactions between those elements has been limited to pairs. Here, we combine a hyper-efficient version of Lachnospiraceae bacterium dCas12a (dHyperLbCas12a) with RNA Polymerase II expression of long CRISPR RNA (crRNA) arrays to enable efficient highly-multiplexed epigenome editing. We demonstrate that this system is compatible with several activation and repression domains, including the P300 histone acetyltransferase domain and SIN3A interacting domain (SID). We also show that the dCas12a platform can perform simultaneous activation and repression using a single crRNA array via co-expression of multiple dCas12a orthologues. Lastly, demonstrate that the dCas12a system is highly effective for high-throughput screens. We use dHyperLbCas12a-KRAB and a ~19,000-member barcoded library of crRNA arrays containing six crRNAs each to dissect the independent and combinatorial contributions of CREs to the dose-dependent control of gene expression at a glucocorticoid-responsive locus. The tools and methods introduced here create new possibilities for highly multiplexed control of gene expression in a wide variety of biological systems.
Collapse
Affiliation(s)
- Schuyler M. Melore
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Center for Combinatorial Gene Regulation, Duke University, Durham, NC, USA
| | - Marisa C. Hamilton
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Center for Combinatorial Gene Regulation, Duke University, Durham, NC, USA
| | - Timothy E. Reddy
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Center for Combinatorial Gene Regulation, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Neumann EN, Bertozzi TM, Wu E, Serack F, Harvey JW, Brauer PP, Pirtle CP, Coffey A, Howard M, Kamath N, Lenz K, Guzman K, Raymond MH, Khalil AS, Deverman BE, Minikel EV, Vallabh SM, Weissman JS. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 2024; 384:ado7082. [PMID: 38935715 PMCID: PMC11875203 DOI: 10.1126/science.ado7082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Edwin N. Neumann
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Tessa M. Bertozzi
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Elaine Wu
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Fiona Serack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Catherine P. Pirtle
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Alissa Coffey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Michael Howard
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nikita Kamath
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Kenney Lenz
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Kenia Guzman
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Michael H. Raymond
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University; Boston, MA 02215, USA
| | - Ahmad S. Khalil
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University; Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115. USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| |
Collapse
|
29
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
30
|
Islam F, Lewis MR, Craig JD, Leyendecker PM, Deans TL. Advancing in vivo reprogramming with synthetic biology. Curr Opin Biotechnol 2024; 87:103109. [PMID: 38520824 PMCID: PMC11162311 DOI: 10.1016/j.copbio.2024.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Reprogramming cells will play a fundamental role in shaping the future of cell therapies by developing new strategies to engineer cells for improved performance and higher-order physiological functions. Approaches in synthetic biology harness cells' natural ability to sense diverse signals, integrate environmental inputs to make decisions, and execute complex behaviors based on the health of the organism or tissue. In this review, we highlight strategies in synthetic biology to reprogram cells, and discuss how recent approaches in the delivery of modified mRNA have created new opportunities to alter cell function in vivo. Finally, we discuss how combining concepts from synthetic biology and the delivery of mRNA in vivo could provide a platform for innovation to advance in vivo cellular reprogramming.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Mitchell R Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James D Craig
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Peyton M Leyendecker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
31
|
Villalba de la Peña M, Kronholm I. Antimicrobial resistance in the wild: Insights from epigenetics. Evol Appl 2024; 17:e13707. [PMID: 38817397 PMCID: PMC11134192 DOI: 10.1111/eva.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Spreading of bacterial and fungal strains that are resistant to antimicrobials poses a serious threat to the well-being of humans, animals, and plants. Antimicrobial resistance has been mainly investigated in clinical settings. However, throughout their evolutionary history microorganisms in the wild have encountered antimicrobial substances, forcing them to evolve strategies to combat antimicrobial action. It is well known that many of these strategies are based on genetic mechanisms, but these do not fully explain important aspects of the antimicrobial response such as the rapid development of resistance, reversible phenotypes, and hetero-resistance. Consequently, attention has turned toward epigenetic pathways that may offer additional insights into antimicrobial mechanisms. The aim of this review is to explore the epigenetic mechanisms that confer antimicrobial resistance, focusing on those that might be relevant for resistance in the wild. First, we examine the presence of antimicrobials in natural settings. Then we describe the documented epigenetic mechanisms in bacteria and fungi associated with antimicrobial resistance and discuss innovative epigenetic editing techniques to establish causality in this context. Finally, we discuss the relevance of these epigenetic mechanisms on the evolutionary dynamics of antimicrobial resistance in the wild, emphasizing the critical role of priming in the adaptation process. We underscore the necessity of incorporating non-genetic mechanisms into our understanding of antimicrobial resistance evolution. These mechanisms offer invaluable insights into the dynamics of antimicrobial adaptation within natural ecosystems.
Collapse
Affiliation(s)
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
32
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
33
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Valencia-Lozano E, Cabrera-Ponce JL, Barraza A, López-Calleja AC, García-Vázquez E, Rivera-Toro DM, de Folter S, Alvarez-Venegas R. Editing of SlWRKY29 by CRISPR-activation promotes somatic embryogenesis in Solanum lycopersicum cv. Micro-Tom. PLoS One 2024; 19:e0301169. [PMID: 38557903 PMCID: PMC10984418 DOI: 10.1371/journal.pone.0301169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
At present, the development of plants with improved traits like superior quality, high yield, or stress resistance, are highly desirable in agriculture. Accelerated crop improvement, however, must capitalize on revolutionary new plant breeding technologies, like genetically modified and gene-edited crops, to heighten food crop traits. Genome editing still faces ineffective methods for the transformation and regeneration of different plant species and must surpass the genotype dependency of the transformation process. Tomato is considered an alternative plant model system to rice and Arabidopsis, and a model organism for fleshy-fruited plants. Furthermore, tomato cultivars like Micro-Tom are excellent models for tomato research due to its short life cycle, small size, and capacity to grow at high density. Therefore, we developed an indirect somatic embryo protocol from cotyledonary tomato explants and used this to generate epigenetically edited tomato plants for the SlWRKY29 gene via CRISPR-activation (CRISPRa). We found that epigenetic reprogramming for SlWRKY29 establishes a transcriptionally permissive chromatin state, as determined by an enrichment of the H3K4me3 mark. A whole transcriptome analysis of CRISPRa-edited pro-embryogenic masses and mature somatic embryos allowed us to characterize the mechanism driving somatic embryo induction in the edited tomato cv. Micro-Tom. Furthermore, we show that enhanced embryo induction and maturation are influenced by the transcriptional effector employed during CRISPRa, as well as by the medium composition and in vitro environmental conditions such as osmotic components, plant growth regulators, and light intensity.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - José Luis Cabrera-Ponce
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Aarón Barraza
- Programa de Agricultura en Zonas Áridas, CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Alberto Cristian López-Calleja
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Elsa García-Vázquez
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Diana Marcela Rivera-Toro
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Stefan de Folter
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad de Genómica Avanzada, Irapuato, Guanajuato, México
| | - Raúl Alvarez-Venegas
- Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
35
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Morone DJ, Nuttle X, de Esch CE, Tai DJ, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583177. [PMID: 38496583 PMCID: PMC10942373 DOI: 10.1101/2024.03.03.583177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B. Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R. McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Daniel J. Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E. de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J.C. Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
36
|
Swain T, Pflueger C, Freytag S, Poppe D, Pflueger J, Nguyen T, Li J, Lister R. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res 2024; 52:474-491. [PMID: 38000387 PMCID: PMC10783489 DOI: 10.1093/nar/gkad1108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.
Collapse
Affiliation(s)
- Tessa Swain
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ji Kevin Li
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
37
|
Yagci ZB, Kelkar GR, Johnson TJ, Sen D, Keung AJ. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Methods Mol Biol 2024; 2842:23-55. [PMID: 39012589 DOI: 10.1007/978-1-0716-4051-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors (EEs) enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus-specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here, we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to: account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus-specificity by considering concentration, affinity, avidity, and sequestration effects.
Collapse
Affiliation(s)
- Z Begum Yagci
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gautami R Kelkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tyler J Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Dilara Sen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
38
|
Rots MG, Jeltsch A. Development of Locus-Directed Editing of the Epigenome from Basic Mechanistic Engineering to First Clinical Applications. Methods Mol Biol 2024; 2842:3-20. [PMID: 39012588 DOI: 10.1007/978-1-0716-4051-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The introduction of CRISPR/Cas systems has resulted in a strong impulse for the field of gene-targeted epigenome/epigenetic reprogramming (EpiEditing), where EpiEditors consisting of a DNA binding part for targeting and an enzymatic part for rewriting of chromatin modifications are applied in cells to alter chromatin modifications at targeted genome loci in a directed manner. Pioneering studies preceding this era indicated causal relationships of chromatin marks instructing gene expression. The accumulating evidence of chromatin reprogramming of a given genomic locus resulting in gene expression changes opened the field for mainstream applications of this technology in basic and clinical research. The growing knowledge on chromatin biology and application of EpiEditing tools, however, also revealed a lack of predictability of the efficiency of EpiEditing in some cases. In this perspective, the dependence of critical parameters such as specificity, effectivity, and sustainability of EpiEditing on experimental settings and conditions including the expression levels and expression times of the EpiEditors, their chromatin binding affinity and specificity, and the crosstalk between EpiEditors and cellular epigenome modifiers are discussed. These considerations highlight the intimate connection between the outcome of epigenome reprogramming and the details of the technical approaches toward EpiEditing, which are the main topic of this volume of Methods in Molecular Biology. Once established in a fully functional "plug-and-play" mode, EpiEditing will allow to better understand gene expression control and to translate such knowledge into therapeutic tools. These expectations are beginning to be met as shown by various in vivo EpiEditing applications published in recent years, several companies aiming to exploit the therapeutic power of EpiEditing and the first clinical trial initiated.
Collapse
Affiliation(s)
- Marianne G Rots
- Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
39
|
Hamilton PJ, Lim CJ, Nestler EJ, Heller EA. Neuroepigenetic Editing. Methods Mol Biol 2024; 2842:129-152. [PMID: 39012593 PMCID: PMC11520296 DOI: 10.1007/978-1-0716-4051-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic regulation is intrinsic to basic neurobiological function as well as neurological disease. Regulation of chromatin-modifying enzymes in the brain is critical during both development and adulthood and in response to external stimuli. Biochemical studies are complemented by numerous next-generation sequencing (NGS) studies that quantify global changes in gene expression, chromatin accessibility, histone and DNA modifications in neurons and glial cells. Neuroepigenetic editing tools are essential to distinguish between the mere presence and functional relevance of histone and DNA modifications to gene transcription in the brain and animal behavior. This review discusses current advances in neuroepigenetic editing, highlighting methodological considerations pertinent to neuroscience, such as delivery methods and the spatiotemporal specificity of editing and it demonstrates the enormous potential of epigenetic editing for basic neurobiological research and therapeutic application.
Collapse
Affiliation(s)
- Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA
| | - Eric J Nestler
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Song MK, Kim YS. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit. Methods Mol Biol 2024; 2761:81-91. [PMID: 38427231 DOI: 10.1007/978-1-0716-3662-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The epigenome, consisting of chemical modifications to DNA and histone proteins, can alter gene expression. Clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) systems enable precise target gene-specific gene modulation by attaching different "effector" domains to the dCas9 protein to activate or repress specific genes. CRISPR/dCas9-SunTag is an improved system version, allowing more efficient and precise gene activation or repression by recruiting multiple copies of the protein of interest. A CRISPR/dCas9-SunTag-based modular epigenetic toolkit was developed, enabling gene-specific epigenetic architecture modulation. This protocol generated a stable SH-SY5Y cell line expressing the CRISPR/dCas9-SunTag-JARID1A system to study H3K4Me3-mediated promoter regulation at a 200-400 bp of fine resolution. The procedure involved designing sgRNAs, subcloning dCas9-5XGCN4 into pLvx-DsRed, validating epigenetic mark changes with ChIP, and validating gene expression changes with RT-qPCR. This epigenetic toolkit is valuable for researchers to understand the relationship between gene-specific epigenetic modifications and gene expression.
Collapse
Affiliation(s)
- Min Kyung Song
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
- College of Nursing Science, Kyung Hee University, Seoul, Republic of Korea
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
41
|
Knodel F, Pinter S, Kroll C, Rathert P. Fluorescent Reporter Systems to Investigate Chromatin Effector Proteins in Living Cells. Methods Mol Biol 2024; 2842:225-252. [PMID: 39012599 DOI: 10.1007/978-1-0716-4051-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
42
|
Noviello G, Gjaltema RAF. Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors. Methods Mol Biol 2024; 2842:57-77. [PMID: 39012590 DOI: 10.1007/978-1-0716-4051-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing has emerged as a powerful technique for targeted manipulation of the chromatin and transcriptional landscape, employing designer DNA binding domains fused with effector domains, known as epi-editors. However, the constitutive expression of dCas9-based epi-editors presents challenges, including off-target activity and lack of temporal resolution. Recent advancements of dCas9-based epi-editors have addressed these limitations by introducing innovative switch systems that enable temporal control of their activity. These systems allow precise modulation of gene expression over time and offer a means to deactivate epi-editors, thereby reducing off-target effects associated with prolonged expression. The development of novel dCas9 effectors regulated by exogenous chemical signals has revolutionized temporal control in epigenome editing, significantly expanding the researcher's toolbox. Here, we provide a comprehensive review of the current state of these cutting-edge systems and specifically discuss their advantages and limitations, offering context to better understand their capabilities.
Collapse
Affiliation(s)
- Gemma Noviello
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rutger A F Gjaltema
- Molecular & Cellular Epigenetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Mahata B, Cabrera A, Brenner DA, Guerra-Resendez RS, Li J, Goell J, Wang K, Guo Y, Escobar M, Parthasarathy AK, Szadowski H, Bedford G, Reed DR, Kim S, Hilton IB. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat Methods 2023; 20:1716-1728. [PMID: 37813990 PMCID: PMC10630135 DOI: 10.1038/s41592-023-02036-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Engineered transactivation domains (TADs) combined with programmable DNA binding platforms have revolutionized synthetic transcriptional control. Despite recent progress in programmable CRISPR-Cas-based transactivation (CRISPRa) technologies, the TADs used in these systems often contain poorly tolerated elements and/or are prohibitively large for many applications. Here, we defined and optimized minimal TADs built from human mechanosensitive transcription factors. We used these components to construct potent and compact multipartite transactivation modules (MSN, NMS and eN3x9) and to build the CRISPR-dCas9 recruited enhanced activation module (CRISPR-DREAM) platform. We found that CRISPR-DREAM was specific and robust across mammalian cell types, and efficiently stimulated transcription from diverse regulatory loci. We also showed that MSN and NMS were portable across Type I, II and V CRISPR systems, transcription activator-like effectors and zinc finger proteins. Further, as proofs of concept, we used dCas9-NMS to efficiently reprogram human fibroblasts into induced pluripotent stem cells and demonstrated that mechanosensitive transcription factor TADs are efficacious and well tolerated in therapeutically important primary human cell types. Finally, we leveraged the compact and potent features of these engineered TADs to build dual and all-in-one CRISPRa AAV systems. Altogether, these compact human TADs, fusion modules and delivery architectures should be valuable for synthetic transcriptional control in biomedical applications.
Collapse
Affiliation(s)
- Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kaiyuan Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yannie Guo
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Hailey Szadowski
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Guy Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel R Reed
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
44
|
Levis H, Weston J, Austin B, Larsen B, Ginley-Hidinger M, Gullbrand SE, Lawrence B, Bowles RD. Multiplex gene editing to promote cell survival using low-pH clustered regularly interspaced short palindromic repeats activation (CRISPRa) gene perturbation. Cytotherapy 2023; 25:1069-1079. [PMID: 37245150 PMCID: PMC10527564 DOI: 10.1016/j.jcyt.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AIMS Lower back pain is the leading cause of disability worldwide and is often linked to degenerative disc disease (DDD), the breakdown of intervertebral discs. The majority of treatment options for DDD are palliative, with clinicians prescribing medication or physical therapy to return the patient to work. Cell therapies are promising treatment options with the potential to restore functional physiological tissue and treat the underlying causes of DDD. DDD is characterized by biochemical changes in the microenvironment of the disc, including changes in nutrient levels, hypoxia, and changes in pH. Stem cell therapies are promising therapies to treat DDD, but the acidic environment in a degenerating disc significantly hinders the viability of stem cells, affecting their efficacy. Clustered regularly interspaced short palindromic repeats (CRISPR) systems allow us to engineer cell phenotypes in a well-regulated and controlled manner. Recently, CRISPR gene perturbation screens have assessed fitness, growth and provided a means for specific cell phenotype characterization. METHODS In this study, we use a CRISPR-activation (a) gene perturbation screen to identify gene upregulation targets that enhance adipose-derived stem cell survival in acidic culture conditions. RESULTS We identified 1213 prospective pro-survival genes and systematically narrowed these down to 20 genes for validation. We further narrowed down our selection to the top five prospective genes using Cell Counting Kit-8 cell viability assays in naïve adipose-derived stem cells and ACAN/Col2 CRISPRa upregulated stem cells. Finally, we examined the extracellular matrix-producing abilities of multiplex ACAN/Col2-pro-survival edited cells in pellet culture. CONCLUSIONS Using the results from the CRISPRa screen, we are able to engineer desirable cell phenotypes to improve cell viability for the potential treatment of DDD and other disease states that expose cell therapies to acidic environments, while also providing broader knowledge on genes regulating low-pH cell survival.
Collapse
Affiliation(s)
- Hunter Levis
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Jacob Weston
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Brooke Austin
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Bryce Larsen
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | | | - Sarah E Gullbrand
- Department of Orthopedic Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Brandon Lawrence
- Department of Orthopedic Surgery, The University of Utah, Salt Lake City, Utah, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA; Department of Orthopedic Surgery, The University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
45
|
Agrawal P, Harish V, Mohd S, Singh SK, Tewari D, Tatiparthi R, Harshita, Vishwas S, Sutrapu S, Dua K, Gulati M. Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies. Life Sci 2023; 330:122003. [PMID: 37544379 DOI: 10.1016/j.lfs.2023.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder brought on by mutations in the DMD gene, which prevent muscle cells from expressing the dystrophin protein. CRISPR/Cas9 technology has evolved as potential option to treat DMD due to its ability to permanently skip exons, restoring the disrupted DMD reading frame and leading to dystrophin restoration. Even though, having potential to treat DMD, the delivery, safety and efficacy of this technology is still challenging. Several delivery methods, including viral vectors, nanoparticles, and electroporation, have been explored to deliver CRISPR/Cas9 to the targeted cells. Despite the potential of CRISPR/Cas9 technology in the treatment of DMD, several limitations need to be addressed. The off-target effects of CRISPR/Cas9 are a major concern that needs to be addressed to avoid unintended mutations. The delivery of CRISPR/Cas9 to the target cells and the immune response due to the viral vectors used for delivery are a few other limitations. The clinical trials of CRISPR/Cas9 for DMD provide valuable insights into the safety and efficacy of this technology in humans and the limitations that need to be known. Therefore, in this review we insightfully discussed the challenges and limitations of CRISPR/Cas9 in the treatment of DMD and delivery strategies used, and the ongoing efforts to overcome these challenges and restore dystrophin expression in DMD patients in the ongoing trials.
Collapse
Affiliation(s)
- Pooja Agrawal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramanjireddy Tatiparthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Harshita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Srinivas Sutrapu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
46
|
Mukund AX, Tycko J, Allen SJ, Robinson SA, Andrews C, Sinha J, Ludwig CH, Spees K, Bassik MC, Bintu L. High-throughput functional characterization of combinations of transcriptional activators and repressors. Cell Syst 2023; 14:746-763.e5. [PMID: 37543039 PMCID: PMC10642976 DOI: 10.1016/j.cels.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Adi X Mukund
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sage J Allen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Cecelia Andrews
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Connor H Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Su-Tobon Q, Fan J, Feeney K, Ren H, Autissier P, Wang P, Huang Y, Niu J. CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555185. [PMID: 37693461 PMCID: PMC10491168 DOI: 10.1101/2023.08.29.555185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimized a bacterial CRISPR-hybrid system coupled with FACS, and identified novel high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allowed effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.
Collapse
|
48
|
Abstract
DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.
Collapse
Affiliation(s)
- Kartik L Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
49
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|
50
|
Stover JD, Trone MAR, Weston J, Lewis C, Levis H, Philippi M, Zeidan M, Lawrence B, Bowles RD. Therapeutic TNF-alpha Delivery After CRISPR Receptor Modulation in the Intervertebral Disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542947. [PMID: 37398456 PMCID: PMC10312567 DOI: 10.1101/2023.05.31.542947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Low back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine TNF-α has multiple pathways and has been implicated as a primary mediator of disc degeneration. We tested our ability to regulate the multiple TNF-α inflammatory signaling pathways in vivo utilizing CRISPR receptor modulation to slow the progression of disc degeneration in rats. Sprague-Dawley rats were treated with CRISPRi-based epigenome-editing therapeutics targeting TNFR1 and showed a decrease in behavioral pain in a disc degeneration model. Surprisingly, while treatment with the vectors alone was therapeutic, TNF-α injection itself became therapeutic after TNFR1 modulation. These results suggest direct inflammatory receptor modulation, to harness beneficial inflammatory signaling pathways, as a potent strategy for treating disc degeneration.
Collapse
|