1
|
dos Santos TMA, Thomson BD, Marquez MD, Pan L, Monfared TH, Kahne DE. Native β-barrel substrates pass through two shared intermediates during folding on the BAM complex. Proc Natl Acad Sci U S A 2024; 121:e2409672121. [PMID: 39378083 PMCID: PMC11494362 DOI: 10.1073/pnas.2409672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
The assembly of β-barrel proteins into membranes is mediated by the evolutionarily conserved β-barrel assembly machine (BAM) complex. In Escherichia coli, BAM folds numerous substrates which vary considerably in size and shape. How BAM is able to efficiently fold such a diverse array of β-barrel substrates is not clear. Here, we develop a disulfide crosslinking method to trap native substrates in vivo as they fold on BAM. By placing a cysteine within the luminal wall of the BamA barrel as well as in the substrate β-strands, we can compare the residence time of each substrate strand within the BamA lumen. We validated this method using two defective, slow-folding substrates. We used this method to characterize stable intermediates which occur during folding of two structurally different native substrates. Strikingly, these intermediates occur during identical stages of folding for both substrates: soon after folding has begun and just before folding is completed. We suggest that these intermediates arise due to barriers to folding that are common between β-barrel substrates, and that the BAM catalyst is able to fold so many different substrates because it addresses these common challenges.
Collapse
Affiliation(s)
| | - Benjamin D. Thomson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Melissa D. Marquez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lydia Pan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Tabasom H. Monfared
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Daniel E. Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Njenga RK, Boele J, Drepper F, Sinha K, Marouda E, Huesgen PF, Blaby-Haas C, Koch HG. Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins. Structure 2024:S0969-2126(24)00388-5. [PMID: 39419022 DOI: 10.1016/j.str.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E. coli, constitute an abundant class of ribosome-hibernating proteins, which are conserved across all proteobacteria and some other bacterial phyla. Our data demonstrate that they inhibit in vitro protein synthesis by interacting with the 50S ribosomal subunit. In vivo cross-linking combined with mass spectrometry revealed their specific interactions with proteins surrounding the ribosomal tunnel exit and even their penetration into the ribosomal tunnel. Thus, YqjD/ElaB/YgaM inhibit translation by blocking the ribosomal tunnel and thus mimic the activity of antimicrobial peptides and macrolide antibiotics.
Collapse
Affiliation(s)
- Robert Karari Njenga
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Julian Boele
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Kasturica Sinha
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Eirini Marouda
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Pitter F Huesgen
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Crysten Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
4
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
5
|
Zhang C, Chen S, Fu X, Dedkova LM, Hecht SM. Enhancement of N-Methyl Amino Acid Incorporation into Proteins and Peptides Using Modified Bacterial Ribosomes and Elongation Factor P. ACS Chem Biol 2024; 19:1330-1338. [PMID: 38769080 DOI: 10.1021/acschembio.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
N-Methylated amino acids are constituents of natural bioactive peptides and proteins. Nα-methylated amino acids appear abundantly in natural cyclic peptides, likely due to their constraint of peptide conformation and contribution to peptide stability. Peptides containing Nα-methylated amino acids have long been prepared by chemical synthesis. While such natural peptides are not produced ribosomally, recent ribosomal strategies have afforded Nα-methylated peptides. Presently, we define new strategies for the ribosomal incorporation of Nα-methylated amino acids into peptides and proteins. First, we identify modified ribosomes capable of facilitating the incorporation of six N-methylated amino acids into antibacterial scorpion peptide IsCT. Also synthesized analogously was a protein domain (RRM1) from hnRNP LL; improved yields were observed for nearly all tested N-methylated amino acids. Computational modeling of the ribosomal assembly illustrated how the distortion imposed by N-methylation could be compensated by altering the nucleotides in key 23S rRNA positions. Finally, it is known that incorporation of multiple prolines (an N-alkylated amino acid) ribosomally can be facilitated by bacterial elongation factor P. We report that supplementing endogenous EF-P during IsCT peptide and RRM1 protein synthesis gave improved yields for most of the N-methylated amino acids studied.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Xuan Fu
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Kumar S, Davis RM, Ruiz N. YdbH and YnbE form an intermembrane bridge to maintain lipid homeostasis in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2321512121. [PMID: 38748582 PMCID: PMC11126948 DOI: 10.1073/pnas.2321512121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/09/2024] [Indexed: 05/27/2024] Open
Abstract
The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating β-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through β-strand augmentation to extend the continuous hydrophobic β-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, OH43210
| | - Rebecca M. Davis
- Department of Microbiology, The Ohio State University, Columbus, OH43210
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH43210
| |
Collapse
|
8
|
Cho H, Liu Y, Chung S, Chandrasekar S, Weiss S, Shan SO. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad. Nat Commun 2024; 15:134. [PMID: 38167697 PMCID: PMC10761869 DOI: 10.1038/s41467-023-44260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
9
|
Durham RJ, Jayaraman V. Single-Molecule FRET Analyses of NMDA Receptors. Methods Mol Biol 2024; 2799:225-242. [PMID: 38727910 PMCID: PMC11164542 DOI: 10.1007/978-1-0716-3830-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) enables the real-time observation of conformational changes in a single protein molecule of interest. These observations are achieved by attaching fluorophores to proteins of interest in a site-specific manner and investigating the FRET between the fluorophores. Here we describe the method wherein the FRET is studied by adhering the protein molecules to a slide using affinity-based interactions and measuring the fluorophores' fluorescence intensity from a single molecule over time. The resulting information can be used to derive distance values for a point-to-point measurement within a protein or to calculate kinetic transition rates between various conformational states of a protein. Comparing these parameters between different conditions such as the presence of protein binding partners, application of ligands, or changes in the primary sequence of the protein can provide insights into protein structural changes as well as kinetics of these changes (if in the millisecond to second timescale) that underlie functional effects. Here we describe the procedure for conducting analyses of NMDA receptor conformational changes using the above methodology and provide a discussion of various considerations that affect the design, execution, and interpretation of similar smFRET studies.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Yeow J, Luo M, Chng SS. Molecular mechanism of phospholipid transport at the bacterial outer membrane interface. Nat Commun 2023; 14:8285. [PMID: 38092770 PMCID: PMC10719372 DOI: 10.1038/s41467-023-44144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer with outer leaflet lipopolysaccharides and inner leaflet phospholipids (PLs). This unique lipid asymmetry renders the OM impermeable to external insults, including antibiotics and bile salts. To maintain this barrier, the OmpC-Mla system removes mislocalized PLs from the OM outer leaflet, and transports them to the inner membrane (IM); in the first step, the OmpC-MlaA complex transfers PLs to the periplasmic chaperone MlaC, but mechanistic details are lacking. Here, we biochemically and structurally characterize the MlaA-MlaC transient complex. We map the interaction surfaces between MlaA and MlaC in Escherichia coli, and show that electrostatic interactions are important for MlaC recruitment to the OM. We further demonstrate that interactions with MlaC modulate conformational states in MlaA. Finally, we solve a 2.9-Å cryo-EM structure of a disulfide-trapped OmpC-MlaA-MlaC complex in nanodiscs, reinforcing the mechanism of MlaC recruitment, and highlighting membrane thinning as a plausible strategy for directing lipids for transport. Our work offers critical insights into retrograde PL transport by the OmpC-Mla system in maintaining OM lipid asymmetry.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, 117456, Singapore.
| |
Collapse
|
11
|
Jiang S, Steup LC, Kippnich C, Lazaridi S, Malengo G, Lemmin T, Yuan J. The inhibitory mechanism of a small protein reveals its role in antimicrobial peptide sensing. Proc Natl Acad Sci U S A 2023; 120:e2309607120. [PMID: 37792514 PMCID: PMC10576120 DOI: 10.1073/pnas.2309607120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
A large number of small membrane proteins have been uncovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-component system is a master regulator of the bacterial virulence program and interacts with MgrB to modulate bacterial virulence, fitness, and drug resistance. A combination of cross-linking approaches with functional assays and protein dynamic simulations revealed structural rearrangements due to interactions between MgrB and PhoQ near the membrane/periplasm interface and along the transmembrane helices. These interactions induce the movement of the PhoQ catalytic domain and the repression of its activity. Without MgrB, PhoQ appears to be much less sensitive to antimicrobial peptides, including the commonly used C18G. In the presence of MgrB, C18G promotes MgrB to dissociate from PhoQ, thus activating PhoQ via derepression. Our findings reveal the inhibitory mechanism of the small protein MgrB and uncover its importance in antimicrobial peptide sensing.
Collapse
Affiliation(s)
- Shan Jiang
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Lydia C. Steup
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Charlotte Kippnich
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Symela Lazaridi
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, 3012Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012Bern, Switzerland
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, 3012Bern, Switzerland
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| |
Collapse
|
12
|
Carmody CM, Nugen SR. Monomeric streptavidin phage display allows efficient immobilization of bacteriophages on magnetic particles for the capture, separation, and detection of bacteria. Sci Rep 2023; 13:16207. [PMID: 37758721 PMCID: PMC10533843 DOI: 10.1038/s41598-023-42626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Immobilization of bacteriophages onto solid supports such as magnetic particles has demonstrated ultralow detection limits as biosensors for the separation and detection of their host bacteria. While the potential impact of magnetized phages is high, the current methods of immobilization are either weak, costly, inefficient, or laborious making them less viable for commercialization. In order to bridge this gap, we have developed a highly efficient, site-specific, and low-cost method to immobilize bacteriophages onto solid supports. While streptavidin-biotin represents an ideal conjugation method, the functionalization of magnetic particles with streptavidin requires square meters of coverage and therefore is not amenable to a low-cost assay. Here, we genetically engineered bacteriophages to allow synthesis of a monomeric streptavidin during infection of the bacterial host. The monomeric streptavidin was fused to a capsid protein (Hoc) to allow site-specific self-assembly of up to 155 fusion proteins per capsid. Biotin coated magnetic nanoparticles were functionalized with mSA-Hoc T4 phage demonstrated in an E. coli detection assay with a limit of detection of < 10 CFU in 100 mLs of water. This work highlights the creation of genetically modified bacteriophages with a novel capsid modification, expanding the potential for bacteriophage functionalized biotechnologies.
Collapse
Affiliation(s)
- Caitlin M Carmody
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Hampton JT, Cho CCD, Coleman DD, Geng ZZ, Chen PH, Dubey G, Sylvain L, Xu S, Liu W. An amber-encoding helper phage for more efficient phage display of noncanonical amino acids. Nucleic Acids Res 2023; 51:6566-6577. [PMID: 37293959 PMCID: PMC10359598 DOI: 10.1093/nar/gkad488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Using an amber suppression-based noncanonical amino acid (ncAA) mutagenesis approach, the chemical space in phage display can be significantly expanded for drug discovery. In this work, we demonstrate the development of a novel helper phage, CMa13ile40, for continuous enrichment of amber obligate phage clones and efficient production of ncAA-containing phages. CMa13ile40 was constructed by insertion of a Candidatus Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/PylT gene cassette into a helper phage genome. The novel helper phage allowed for a continuous amber codon enrichment strategy for two different libraries and demonstrated a 100-fold increase in packaging selectivity. CMa13ile40 was then used to create two peptide libraries containing separate ncAAs, Nϵ-tert-butoxycarbonyl-lysine and Nϵ-allyloxycarbonyl-lysine, respectively. These libraries were used to identify peptide ligands that bind to the extracellular domain of ZNRF3. Each selection showed differential enrichment of unique sequences dependent upon the ncAA used. Peptides from both selections were confirmed to have low micromolar affinity for ZNRF3 that was dependent upon the presence of the ncAA used for selection. Our results demonstrate that ncAAs in phages provide unique interactions for identification of unique peptides. As an effective tool for phage display, we believe that CMa13ile40 can be broadly applied to a wide variety of applications.
Collapse
Affiliation(s)
- Joshua Trae Hampton
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Chia-Chuan Dean Cho
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Demonta D Coleman
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Peng-Hsun Chase Chen
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Gopal K Dubey
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Lauralee D Sylvain
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Wang C, Qi R, Wang R, Xu Z. Photoinduced C(sp 3)-H Functionalization of Glycine Derivatives: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Acc Chem Res 2023. [PMID: 37467427 DOI: 10.1021/acs.accounts.3c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
ConspectusPeptides are essential components of living systems and contribute to critical biological processes, such as cell proliferation, immune defense, tumor formation, and differentiation. Therefore, peptides have attracted considerable attention as targets for the development of therapeutic products. The incorporation of unnatural amino acid residues into peptides can considerably impact peptide immunogenicity, toxicity, side effects, water solubility, action duration, and distribution and enhance the peptides' druggability. Typically, the direct modification of natural amino acids is a practical and effective approach for promptly obtaining unnatural amino acids. However, selective functionalization of multiple C(sp3)-H bonds with comparable chemical reactivities in the peptide side chains remains a formidable challenge. Furthermore, chemical modifications aimed at highly reactive (nucleophilic and aromatic) groups on peptide side chains can interfere with the biological activity of peptides.In recent years, the rapid advancement of photoinduced radical reactions has made photoredox radical-radical cross-coupling a practical approach for constructing C(sp3)-C(sp3) bonds under mild conditions. Glycine, a naturally occurring amino acid and the fundamental skeleton of all α-amino acids, provides a basis for the alkylated modification of its own α-C(sp3)-H bond under mild conditions. This Account describes our recent research endeavors for systematically investigating the photocatalytic α-C(sp3)-H alkylation of glycine derivatives via radical-radical coupling between N-aryl glycinate-derived radicals and various alkyl radicals. In 2018, we disclosed the photoinduced Cu-catalyzed decarboxylative α-C(sp3)-H alkylation of glycine derivatives. Subsequently, we developed a catalyst-free method for alkylating glycine derivatives and glycine residues in peptides via electron donor-acceptor (EDA)-complex-promoted single electron transfer. Moreover, we developed a photoinduced method for the radical alkylation of N-aryl glycinate α-C(sp3)-H bonds using unactivated alkyl chlorides (iodides) under photocatalyst-free conditions. Notably, by building on racemic alkylations of glycine derivatives and glycine-residue-containing peptides, we recently stereoselectively alkylated the N-aryl glycinate α-C(sp3)-H bond using a dual-functional Cu catalyst generated in situ for synthesizing a series of unnatural chiral α-amino and C-glycoamino acids.We have developed a series of methods for synthesizing unnatural amino acids through the α-C(sp3)-H alkylation of glycine derivatives using photoredox-promoted radical coupling as a key strategy. These methods are efficient and versatile and can be used for the late-stage modification of peptides in various contexts. Our work builds on the fundamental importance of glycine as the basic scaffold of all α-amino acids and highlights the potential of radical-based chemistry for developing chemical transformations in peptide synthesis. These findings have broad implications for chemical biology and may open doors for discovering peptide drugs and developing therapeutics.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
16
|
Seki K, Galindo JL, Karim AS, Jewett MC. A Cell-Free Gene Expression Platform for Discovering and Characterizing Stop Codon Suppressing tRNAs. ACS Chem Biol 2023; 18:1324-1334. [PMID: 37257197 DOI: 10.1021/acschembio.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-canonical amino acids (ncAAs) can be incorporated into peptides and proteins to create new properties and functions. Site-specific ncAA incorporation is typically enabled by orthogonal translation systems comprising a stop codon suppressing tRNA (typically UAG), an aminoacyl-tRNA synthetase, and an ncAA of interest. Unfortunately, methods to discover and characterize suppressor tRNAs are limited because of laborious and time-consuming workflows in living cells. In this work, we develop anEscherichia coli crude extract-based cell-free gene expression system to rapidly express and characterize functional suppressor tRNAs. Our approach co-expresses orthogonal tRNAs using endogenous machinery alongside a stop-codon containing superfolder green fluorescent protein (sfGFP) reporter, which can be used as a simple read-out for suppression. As a model, we evaluate the UAG and UAA suppressing activity of several orthogonal tRNAs. Then, we demonstrate that co-transcription of two mutually orthogonal tRNAs can direct the incorporation of two unique ncAAs within a single modified sfGFP. Finally, we show that the cell-free workflow can be used to discover putative UAG-suppressor tRNAs found in metagenomic data, which are nonspecifically recognized by endogenous aminoacyl-tRNA synthetases. We anticipate that our cell-free system will accelerate the development of orthogonal translation systems for synthetic biology.
Collapse
Affiliation(s)
- Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joey L Galindo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
17
|
Winterhalter C, Pelliciari S, Stevens D, Fenyk S, Marchand E, Cronin N, Soultanas P, Costa TD, Ilangovan A, Murray H. The DNA replication initiation protein DnaD recognises a specific strand of the Bacillus subtilis chromosome origin. Nucleic Acids Res 2023; 51:4322-4340. [PMID: 37093985 PMCID: PMC10201434 DOI: 10.1093/nar/gkad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Nora B Cronin
- LonCEM, London Consortium for Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Aravindan Ilangovan
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
18
|
Dai T, Zhang L, Ran Y, Zhang M, Yang B, Lu H, Lin S, Zhang L, Zhou F. MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Nat Struct Mol Biol 2023:10.1038/s41594-023-00988-8. [PMID: 37188808 DOI: 10.1038/s41594-023-00988-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS) is an adapter that recruits and activates IRF3. However, the mechanisms underpinning the interplay between MAVS and IRF3 are largely unknown. Here we show that small ubiquitin-like modifier (SUMO)-specific protease 1 negatively regulates antiviral immunity by deSUMOylating MAVS. Upon virus infection, PIAS3-induced poly-SUMOylation promotes lysine 63-linked poly-ubiquitination and aggregation of MAVS. Notably, we observe that SUMO conjugation is required for MAVS to efficiently produce phase-separated droplets through association with a newly identified SUMO-interacting motif (SIM) in MAVS. We further identify a yet-unknown SIM in IRF3 that mediates its enrichment to the multivalent MAVS droplets. Conversely, IRF3 phosphorylation at crucial residues close to SIM rapidly disables SUMO-SIM interactions and releases activated IRF3 from MAVS. Our findings implicate SUMOylation in MAVS phase separation and suggest a thus far unknown regulatory process by which IRF3 can be efficiently recruited and released to facilitate timely activation of antiviral responses.
Collapse
Affiliation(s)
- Tong Dai
- Center for Infection & Immunity of International Institutes of Medicine, The Fourth Affiliated Hospital, ZheJiang University School of Medicine, Yiwu, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Ran
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meirong Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Bing Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Huasong Lu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shixian Lin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- Center for Infection & Immunity of International Institutes of Medicine, The Fourth Affiliated Hospital, ZheJiang University School of Medicine, Yiwu, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
20
|
Zhu X, Su Q, Xie H, Song L, Yang F, Zhang D, Wang B, Lin S, Huang J, Wu M, Liu T. SIRT1 deacetylates WEE1 and sensitizes cancer cells to WEE1 inhibition. Nat Chem Biol 2023; 19:585-595. [PMID: 36635566 DOI: 10.1038/s41589-022-01240-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
The cell-cycle checkpoint kinase WEE1 is emerging as a therapeutic target for cancer treatment. However, how its catalytic activity is regulated remains poorly understood, and reliable biomarkers for predicting response to WEE1 inhibitor remain to be identified. Here we identify an evolutionarily conserved segment surrounding its Lys177 residue that inhibits WEE1 activity through an intermolecular interaction with the catalytic kinase domain. Upon DNA damage, CHK1-dependent phosphorylation of WEE1 at Ser642 primes GCN5-mediated acetylation at Lys177, resulting in dissociation of the inhibitory segment from the kinase domain and subsequent activation of WEE1 and cell-cycle checkpoints. Conversely, SIRT1 associates with and deacetylates WEE1, which maintains it in an inactive state. Consequently, SIRT1 deficiency induces WEE1 hyperacetylation and activation, rendering cancer cells resistant to WEE1 inhibition. These results suggest that SIRT1 expression level and abundance of WEE1 Lys177 acetylation in tumor cells can serve as useful biomarkers for predicting WEE1 inhibitor sensitivity or resistance.
Collapse
Affiliation(s)
- Xiaomei Zhu
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qunshu Su
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyuan Xie
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhi Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binghong Wang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Mengjie Wu
- The Affiliated Hospital of Stomatology School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ting Liu
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Hu Z, Liang J, Su T, Zhang D, Li H, Gao X, Yao W, Song X. Minimizing the Anticodon-Recognized Loop of Methanococcus jannaschii Tyrosyl-tRNA Synthetase to Improve the Efficiency of Incorporating Noncanonical Amino Acids. Biomolecules 2023; 13:biom13040610. [PMID: 37189358 DOI: 10.3390/biom13040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
In the field of genetic code expansion (GCE), improvements in the efficiency of noncanonical amino acid (ncAA) incorporation have received continuous attention. By analyzing the reported gene sequences of giant virus species, we noticed some sequence differences at the tRNA binding interface. On the basis of the structural and activity differences between Methanococcus jannaschii Tyrosyl-tRNA Synthetase (MjTyrRS) and mimivirus Tyrosyl-tRNA Synthetase (MVTyrRS), we found that the size of the anticodon-recognized loop of MjTyrRS influences its suppression activity regarding triplet and specific quadruplet codons. Therefore, three MjTyrRS mutants with loop minimization were designed. The suppression of wild-type MjTyrRS loop-minimized mutants increased by 1.8–4.3-fold, and the MjTyrRS variants enhanced the activity of the incorporation of ncAAs by 15–150% through loop minimization. In addition, for specific quadruplet codons, the loop minimization of MjTyrRS also improves the suppression efficiency. These results suggest that loop minimization of MjTyrRS may provide a general strategy for the efficient synthesis of ncAAs-containing proteins.
Collapse
|
22
|
Miyazaki R, Akiyama Y. Analyzing protein intermediate interactions in living E. coli cells using site-specific photo-crosslinking combined with chemical crosslinking. STAR Protoc 2023; 4:102178. [PMID: 36933223 PMCID: PMC10034496 DOI: 10.1016/j.xpro.2023.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Information on protein-protein interactions is crucial in understanding protein-mediated cellular processes; however, analyzing transient and unstable interactions in living cells is challenging. Here, we present a protocol capturing the interaction between an assembly intermediate form of a bacterial outer membrane protein and β-barrel assembly machinery complex components. We describe steps for expression of a protein target, chemical crosslinking combined with in vivo photo-crosslinking and crosslinking detection procedures including immunoblotting. This protocol can be adapted to analyze interprotein interactions in other processes. For complete details on the use and execution of this protocol, please refer to Miyazaki et al. (2021).1.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
23
|
Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide. mBio 2023; 14:e0220222. [PMID: 36541759 PMCID: PMC9972910 DOI: 10.1128/mbio.02202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.
Collapse
|
24
|
Lee D, Kim MK, Choi JI. Development of Orthogonal Aminoacyl tRNA Synthetase Mutant with Enhanced Incorporation Ability with Para-azido-L-phenylalanine. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
Wu Z, Wang J. Genetic Code Expansion in Mammalian Cells. Methods Mol Biol 2023; 2676:159-167. [PMID: 37277631 DOI: 10.1007/978-1-0716-3251-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The expansion of the genetic code has enabled the incorporation of noncanonical amino acids (ncAAs) into a defined site of proteins. By introducing such a unique handle into the protein of interest (POI), bioorthogonal reactions can be utilized in live cells to monitor or manipulate the interaction, translocation, function, and modification of the POI. Here, we describe a basic protocol outlining the necessary steps to incorporate a ncAA into a POI in mammalian cells.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
26
|
Hiefinger C, Mandl S, Wieland M, Kneuttinger A. Rational design, production and in vitro analysis of photoxenoproteins. Methods Enzymol 2023; 682:247-288. [PMID: 36948704 DOI: 10.1016/bs.mie.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In synthetic biology, the artificial control of proteins by light is of growing interest since it enables the spatio-temporal regulation of downstream molecular processes. This precise photocontrol can be established by the site-directed incorporation of photo-sensitive non-canonical amino acids (ncAAs) into proteins, which generates so-called photoxenoproteins. Photoxenoproteins can be engineered using ncAAs that facilitate the irreversible activation or reversible regulation of their activity upon irradiation. In this chapter, we provide a general outline of the engineering process based on the current methodological state-of-the-art to obtain artificial photocontrol in proteins using the ncAAs o-nitrobenzyl-O-tyrosine as example for photocaged ncAAs (irreversible), and phenylalanine-4'-azobenzene as example for photoswitchable ncAAs (reversible). We thereby focus on the initial design as well as the production and characterization of photoxenoproteins in vitro. Finally, we outline the analysis of photocontrol under steady-state and non-steady-state conditions using the allosteric enzyme complexes imidazole glycerol phosphate synthase and tryptophan synthase as examples.
Collapse
Affiliation(s)
- Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sabrina Mandl
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Wieland
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Kneuttinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
27
|
Wang C, Qi R, Xu Z. Glycosyl Radical-Based Synthesis of C-Glycoamino Acids and C-Glycopeptides. Chemistry 2022; 29:e202203689. [PMID: 36586132 DOI: 10.1002/chem.202203689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Radical-based reactions usually exhibit excellent functional-group compatibilities due to their mild initiation conditions. Glycosyl radical involved C-glycosylation modifications are important strategies to achieve highly regio- and chemoselective constructions of C-glycosidic bonds or C-glycoside linkages of peptides and proteins. In this Concept, we cover recent developments in glycosyl radical-based synthesis of unnatural amino acids and late-stage modification of peptides and proteins, and provide a preliminary outlook on the possible development of this direction in the future.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| |
Collapse
|
28
|
Moen JM, Mohler K, Rogulina S, Shi X, Shen H, Rinehart J. Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine. Nat Commun 2022; 13:7226. [PMID: 36433969 PMCID: PMC9700786 DOI: 10.1038/s41467-022-34980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Protein phosphorylation is a ubiquitous post-translational modification used to regulate cellular processes and proteome architecture by modulating protein-protein interactions. The identification of phosphorylation events through proteomic surveillance has dramatically outpaced our capacity for functional assignment using traditional strategies, which often require knowledge of the upstream kinase a priori. The development of phospho-amino-acid-specific orthogonal translation systems, evolutionarily divergent aminoacyl-tRNA synthetase and tRNA pairs that enable co-translational insertion of a phospho-amino acids, has rapidly improved our ability to assess the physiological function of phosphorylation by providing kinase-independent methods of phosphoprotein production. Despite this utility, broad deployment has been hindered by technical limitations and an inability to reconstruct complex phopho-regulatory networks. Here, we address these challenges by optimizing genetically encoded phosphothreonine translation to characterize phospho-dependent kinase activation mechanisms and, subsequently, develop a multi-level protein interaction platform to directly assess the overlap of kinase and phospho-binding protein substrate networks with phosphosite-level resolution.
Collapse
Affiliation(s)
- Jack M. Moen
- grid.47100.320000000419368710Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, New Haven, CT 06516 USA
| | - Kyle Mohler
- grid.47100.320000000419368710Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, New Haven, CT 06516 USA
| | - Svetlana Rogulina
- grid.47100.320000000419368710Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, New Haven, CT 06516 USA
| | - Xiaojian Shi
- grid.47100.320000000419368710Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, New Haven, CT 06516 USA ,grid.47100.320000000419368710Wu Tsai Institute, Yale University, New Haven, CT 06520 USA
| | - Hongying Shen
- grid.47100.320000000419368710Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, New Haven, CT 06516 USA ,grid.47100.320000000419368710Wu Tsai Institute, Yale University, New Haven, CT 06520 USA
| | - Jesse Rinehart
- grid.47100.320000000419368710Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520 USA ,grid.47100.320000000419368710Systems Biology Institute, Yale University, New Haven, CT 06516 USA
| |
Collapse
|
29
|
Zuo H, Li T, Zhang D, Ma J, Zhang Z, Ou Y, Lian X, Yin J, Li Q, Zhao X. Enhancing Chromatographic Performance of Immobilized Angiotensin II Type 1 Receptor by Strain-Promoted Alkyne Azide Cycloaddition through Genetically Encoded Unnatural Amino Acid. Anal Chem 2022; 94:15711-15719. [DOI: 10.1021/acs.analchem.2c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Haiyue Zuo
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ting Li
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Dandan Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jing Ma
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zilong Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yuanyuan Ou
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaojuan Lian
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiatai Yin
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
30
|
Bei W, Luo Q, Shi H, Zhou H, Zhou M, Zhang X, Huang Y. Cryo-EM structures of LolCDE reveal the molecular mechanism of bacterial lipoprotein sorting in Escherichia coli. PLoS Biol 2022; 20:e3001823. [PMID: 36228045 PMCID: PMC9595528 DOI: 10.1371/journal.pbio.3001823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/25/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial lipoproteins perform a diverse array of functions including bacterial envelope biogenesis and microbe–host interactions. Lipoproteins in gram-negative bacteria are sorted to the outer membrane (OM) via the localization of lipoproteins (Lol) export pathway. The ATP-binding cassette (ABC) transporter LolCDE initiates the Lol pathway by selectively extracting and transporting lipoproteins for trafficking. Here, we report cryo-EM structures of LolCDE in apo, lipoprotein-bound, and AMPPNP-bound states at a resolution of 3.5 to 4.2 Å. Structure-based disulfide crosslinking, photo-crosslinking, and functional complementation assay verify the apo-state structure and reveal the molecular details regarding substrate selectivity and substrate entry route. Our studies snapshot 3 functional states of LolCDE in a transport cycle, providing deep insights into the mechanisms that underlie LolCDE-mediated lipoprotein sorting in E. coli. Lipoproteins in Gram-negative bacteria are sorted to the outer membrane via the Lol export pathway. The ABC transporter LolCDE initiates this pathway by selectively extracting and transporting lipoproteins for trafficking; this study provides a structural basis for the LolCDE-mediated bacterial lipoprotein sorting, with implications for novel antibiotic design against Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Weiwei Bei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingshan Luo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No.200 Xiao Ling Wei Street, Nanjing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (XZ); (YH)
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (XZ); (YH)
| |
Collapse
|
31
|
Tittle JM, Schwark DG, Biddle W, Schmitt MA, Fisk JD. Impact of queuosine modification of endogenous E. coli tRNAs on sense codon reassignment. Front Mol Biosci 2022; 9:938114. [PMID: 36120552 PMCID: PMC9471426 DOI: 10.3389/fmolb.2022.938114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
The extent to which alteration of endogenous tRNA modifications may be exploited to improve genetic code expansion efforts has not been broadly investigated. Modifications of tRNAs are strongly conserved evolutionarily, but the vast majority of E. coli tRNA modifications are not essential. We identified queuosine (Q), a non-essential, hypermodified guanosine nucleoside found in position 34 of the anticodons of four E. coli tRNAs as a modification that could potentially be utilized to improve sense codon reassignment. One suggested purpose of queuosine modification is to reduce the preference of tRNAs with guanosine (G) at position 34 of the anticodon for decoding cytosine (C) ending codons over uridine (U) ending codons. We hypothesized that introduced orthogonal translation machinery with adenine (A) at position 34 would reassign U-ending codons more effectively in queuosine-deficient E. coli. We evaluated the ability of introduced orthogonal tRNAs with AUN anticodons to reassign three of the four U-ending codons normally decoded by Q34 endogenous tRNAs: histidine CAU, asparagine AAU, and aspartic acid GAU in the presence and absence of queuosine modification. We found that sense codon reassignment efficiencies in queuosine-deficient strains are slightly improved at Asn AAU, equivalent at His CAU, and less efficient at Asp GAU codons. Utilization of orthogonal pair-directed sense codon reassignment to evaluate competition events that do not occur in the standard genetic code suggests that tRNAs with inosine (I, 6-deaminated A) at position 34 compete much more favorably against G34 tRNAs than Q34 tRNAs. Continued evaluation of sense codon reassignment following targeted alterations to endogenous tRNA modifications has the potential to shed new light on the web of interactions that combine to preserve the fidelity of the genetic code as well as identify opportunities for exploitation in systems with expanded genetic codes.
Collapse
|
32
|
Ma X, Wei B, Wang E. Efficient incorporation of p-azido-l-phenylalanine into the protein using organic solvents. Protein Expr Purif 2022; 200:106158. [PMID: 36007861 DOI: 10.1016/j.pep.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Azide, the most used photo-crosslinking group, facilitates the analysis of protein structure and function. This group is particularly useful when photochemically label antibodies and examine protein-protein interactions. The use of the expanded genetic code technique allows the special labeling of the functional azide group in proteins by adding the unnatural amino acid (UAA), p-azido-l-phenylalanine (AzF), in response to the amber codon during translation. However, a low UAA uptake rate due to mass transfer resistance in the cell membrane may lead to the early termination of the full-length protein. This study reports a general method for the efficient in vivo incorporation of AzF into the target protein by improving cell permeability using organic solvents. As expected, the yield of the full-length protein was significantly increased, which indicated that the AzF uptake was greatly improved due to the addition of organic solvents. Our method can serve as a good reference for improving the genetic incorporation of other kinds of UAAs into proteins.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Gynecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Enlin Wang
- The College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nat Immunol 2022; 23:1193-1207. [PMID: 35879450 DOI: 10.1038/s41590-022-01269-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Innate antiviral immunity deteriorates with aging but how this occurs is not entirely clear. Here we identified SIRT1-mediated DNA-binding domain (DBD) deacetylation as a critical step for IRF3/7 activation that is inhibited during aging. Viral-stimulated IRF3 underwent liquid-liquid phase separation (LLPS) with interferon (IFN)-stimulated response element DNA and compartmentalized IRF7 in the nucleus, thereby stimulating type I IFN (IFN-I) expression. SIRT1 deficiency resulted in IRF3/IRF7 hyperacetylation in the DBD, which inhibited LLPS and innate immunity, resulting in increased viral load and mortality in mice. By developing a genetic code expansion orthogonal system, we demonstrated the presence of an acetyl moiety at specific IRF3/IRF7 DBD site/s abolish IRF3/IRF7 LLPS and IFN-I induction. SIRT1 agonists rescued SIRT1 activity in aged mice, restored IFN signaling and thus antagonized viral replication. These findings not only identify a mechanism by which SIRT1 regulates IFN production by affecting IRF3/IRF7 LLPS, but also provide information on the drivers of innate immunosenescence.
Collapse
|
34
|
Stadler KA, Becker W, Darnhofer B, Birner-Gruenberger R, Zangger K. Overexpression of recombinant proteins containing non-canonical amino acids in Vibrio natriegens: p-azido-L-phenylalanine as coupling site for 19F-tags. Amino Acids 2022; 54:1041-1053. [PMID: 35419750 PMCID: PMC9217835 DOI: 10.1007/s00726-022-03148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022]
Abstract
Vibrio natriegens is the fastest growing organism identified so far. The minimum doubling time of only 9.4 min, the ability to utilize over 60 different carbon sources and its non-pathogenic properties make it an interesting alternative to E. coli as a new production host for recombinant proteins. We investigated the ability of the engineered V. natriegens strain, Vmax™ Express, to incorporate the non-canonical amino acid (ncAA) p-azido-L-phenylalanine (AzF) into recombinant proteins for NMR applications. AzF was incorporated into enhanced yellow fluorescent protein (EYFP) and MlaC, an intermembrane transport protein, by stop codon suppression. AzF incorporation into EYFP resulted in an improved suppression efficiency (SE) of up to 35.5 ± 0.8% and a protein titer of 26.7 ± 0.7 mg/L. The expression levels of MlaC-AzF even exceeded those of E. coli BL21 cells. For the recording of 1H-15N and 19F NMR spectra, EYFP-AzF was expressed and isotopically labeled in minimal medium and the newly introduced azido-group was used as coupling site for NMR sensitive 19F-tags. Our findings show that Vmax is a flexible expression host, suitable for the incorporation of ncAAs in recombinant proteins with the potential to surpass protein yields of E. coli. The presented method suggests the implementation of V. natriegens for expression of isotopically labeled proteins containing ncAAs, which can be chemically modified for the application in protein-observed 19F-NMR.
Collapse
Affiliation(s)
- Karina A Stadler
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Walter Becker
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
35
|
New opportunities for genetic code expansion in synthetic yeast. Curr Opin Biotechnol 2022; 75:102691. [DOI: 10.1016/j.copbio.2022.102691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
|
36
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
37
|
Scaffolding Protein GspB/OutB Facilitates Assembly of the Dickeya dadantii Type 2 Secretion System by Anchoring the Outer Membrane Secretin Pore to the Inner Membrane and to the Peptidoglycan Cell Wall. mBio 2022; 13:e0025322. [PMID: 35546537 PMCID: PMC9239104 DOI: 10.1128/mbio.00253-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phytopathogenic proteobacterium Dickeya dadantii secretes an array of plant cell wall-degrading enzymes and other virulence factors via the type 2 secretion system (T2SS). T2SSs are widespread among important plant, animal, and human bacterial pathogens. This multiprotein complex spans the double membrane cell envelope and secretes fully folded proteins through a large outer membrane pore formed by 15 subunits of the secretin GspD. Secretins are also found in the type 3 secretion system and the type 4 pili. Usually, specialized lipoproteins termed pilotins assist the targeting and assembly of secretins into the outer membrane. Here, we show that in D. dadantii, the pilotin acts in concert with the scaffolding protein GspB. Deletion of gspB profoundly impacts secretin assembly, pectinase secretion, and virulence. Structural studies reveal that GspB possesses a conserved periplasmic homology region domain that interacts directly with the N-terminal secretin domain. Site-specific photo-cross-linking unravels molecular details of the GspB-GspD complex in vivo. We show that GspB facilitates outer membrane targeting and assembly of the secretin pores and anchors them to the inner membrane while the C-terminal extension of GspB provides a scaffold for the secretin channel in the peptidoglycan cell wall. Phylogenetic analysis shows that in other bacteria, GspB homologs vary in length and domain composition and act in concert with either a cognate ATPase GspA or the pilotin GspS.
Collapse
|
38
|
Schloßhauer JL, Cavak N, Zemella A, Thoring L, Kubick S. Cell Engineering and Cultivation of Chinese Hamster Ovary Cells for the Development of Orthogonal Eukaryotic Cell-free Translation Systems. Front Mol Biosci 2022; 9:832379. [PMID: 35586195 PMCID: PMC9109823 DOI: 10.3389/fmolb.2022.832379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The investigation of protein structures, functions and interactions often requires modifications to adapt protein properties to the specific application. Among many possible methods to equip proteins with new chemical groups, the utilization of orthogonal aminoacyl-tRNA synthetase/tRNA pairs enables the site-specific incorporation of non-canonical amino acids at defined positions in the protein. The open nature of cell-free protein synthesis reactions provides an optimal environment, as the orthogonal components do not need to be transported across the cell membrane and the impact on cell viability is negligible. In the present work, it was shown that the expression of orthogonal aminoacyl-tRNA synthetases in CHO cells prior to cell disruption enhanced the modification of the pharmaceutically relevant adenosine A2a receptor. For this purpose, in complement to transient transfection of CHO cells, an approach based on CRISPR/Cas9 technology was selected to generate a translationally active cell lysate harboring endogenous orthogonal aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Niño Cavak
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Anne Zemella
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Lena Thoring
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus –Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
39
|
Perez JG, Carlson ED, Weisser O, Kofman C, Seki K, Des Soye BJ, Karim AS, Jewett MC. Improving genomically recoded Escherichia coli to produce proteins containing non-canonical amino acids. Biotechnol J 2022; 17:e2100330. [PMID: 34894206 DOI: 10.1002/biot.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
A genomically recoded Escherichia coli strain that lacks all amber codons and release factor 1 (C321.∆A) enables efficient genetic encoding of chemically diverse non-canonical amino acids (ncAAs) into proteins. While C321.∆A has opened new opportunities in chemical and synthetic biology, this strain has not been optimized for protein production, limiting its utility in widespread industrial and academic applications. To address this limitation, the construction of a series of genomically recoded organisms that are optimized for cellular protein production is described. It is demonstrated that the functional deactivation of nucleases (e.g., rne, endA) and proteases (e.g., lon) increases production of wild-type superfolder green fluorescent protein (sfGFP) and sfGFP containing two ncAAs up to ≈5-fold. Additionally, a genomic IPTG-inducible T7 RNA polymerase (T7RNAP) cassette into these strains is introduced. Using an optimized platform, the ability to introduce two identical N6 -(propargyloxycarbonyl)-L -Lysine residues site specifically into sfGFP with a 17-fold improvement in production relative to the parent strain is demonstrated. The authors envision that their library of organisms will provide the community with multiple options for increased expression of proteins with new and diverse chemistries.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Erik D Carlson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Oliver Weisser
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Benjamin J Des Soye
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
40
|
Ender A, Grafl N, Kolberg T, Findeiß S, Stadler PF, Mörl M. Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes. RNA (NEW YORK, N.Y.) 2022; 28:551-567. [PMID: 35022261 PMCID: PMC8925977 DOI: 10.1261/rna.078814.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Removal of the 5'-leader region is an essential step in the maturation of tRNA molecules in all domains of life. This reaction is catalyzed by various RNase P activities, ranging from ribonucleoproteins with ribozyme activity to protein-only forms. In Escherichia coli, the efficiency of RNase P-mediated cleavage can be controlled by computationally designed riboswitch elements in a ligand-dependent way, where the 5'-leader sequence of a tRNA precursor is either sequestered in a hairpin structure or presented as a single-stranded region accessible for maturation. In the presented work, the regulatory potential of such artificial constructs is tested on different forms of eukaryotic RNase P enzymes-two protein-only RNase P enzymes (PRORP1 and PRORP2) from Arabidopsis thaliana and the ribonucleoprotein of Homo sapiens The PRORP enzymes were analyzed in vitro as well as in vivo in a bacterial RNase P complementation system. We also tested in HEK293T cells whether the riboswitches remain functional with human nuclear RNase P. While the regulatory principle of the synthetic riboswitches applies for all tested RNase P enzymes, the results also show differences in the substrate requirements of the individual enzyme versions. Hence, such designed RNase P riboswitches represent a novel tool to investigate the impact of the structural composition of the 5'-leader on substrate recognition by different types of RNase P enzymes.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nadine Grafl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Science, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
41
|
Chakraborty A, Krause L, Klostermeier D. Determination of rate constants for conformational changes of RNA helicases by single-molecule FRET TIRF microscopy. Methods 2022; 204:428-441. [PMID: 35304246 DOI: 10.1016/j.ymeth.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.
Collapse
Affiliation(s)
| | - Linda Krause
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany.
| |
Collapse
|
42
|
Lee JU, Lee ST, Park CR, Moon B, Kim HI, Oh HB. TEMPO-Assisted Free-Radical-Initiated Peptide Sequencing Mass Spectrometry for Ubiquitin Ions: An Insight on the Gas-Phase Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:471-481. [PMID: 35099967 DOI: 10.1021/jasms.1c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
TEMPO ((2,2,6,6-tetramethylpiperidine-1-yl)oxyl)-assisted free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) is applied to the top-down tandem mass spectrometry of guanidinated ubiquitin (UB(Gu)) ions, i.e., p-TEMPO-Bn-Sc-guanidinated ubiquitin (UBT(Gu)), to shed a light on gas-phase ubiquitin conformations. Thermal activation of UBT(Gu) ions produced protein backbone fragments of radical character, i.e., a-/x- and c-/z-type fragments. It is in contrast to the collision-induced dissociation (CID) results for UB(Gu), which dominantly showed the specific charge-remote CID fragments of b-/y-type at the C-terminal side of glutamic acid (E) and aspartic acid (D). The transfer of a radical "through space" was mainly observed for the +5 and +6 UBT(Gu) ions. This provides the information about folding/unfolding and structural proximity between the positions of the incipient benzyl radical site and fragmented sites. The analysis of FRIPS MS results for the +5 charge state ubiquitin ions shows that the +5 charge state ubiquitin ions bear a conformational resemblance to the native ubiquitin (X-ray crystallography structure), particularly in the central sequence region, whereas some deviations were observed in the unstable second structure region (β2) close to the N-terminus. The ion mobility spectrometry results also corroborate the FRIPS MS results in terms of their conformations (or structures). The experimental results obtained in this study clearly demonstrate a potential of the TEMPO-assisted FRIPS MS as one of the methods for the elucidation of the overall gas-phase protein structures.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Sang Tak Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chae Ri Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
43
|
Biddle W, Schwark DG, Schmitt MA, Fisk JD. Directed Evolution Pipeline for the Improvement of Orthogonal Translation Machinery for Genetic Code Expansion at Sense Codons. Front Chem 2022; 10:815788. [PMID: 35252113 PMCID: PMC8891652 DOI: 10.3389/fchem.2022.815788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
The expansion of the genetic code beyond a single type of noncanonical amino acid (ncAA) is hindered by inefficient machinery for reassigning the meaning of sense codons. A major obstacle to using directed evolution to improve the efficiency of sense codon reassignment is that fractional sense codon reassignments lead to heterogeneous mixtures of full-length proteins with either a ncAA or a natural amino acid incorporated in response to the targeted codon. In stop codon suppression systems, missed incorporations lead to truncated proteins; improvements in activity may be inferred from increased protein yields or the production of downstream reporters. In sense codon reassignment, the heterogeneous proteins produced greatly complicate the development of screens for variants of the orthogonal machinery with improved activity. We describe the use of a previously-reported fluorescence-based screen for sense codon reassignment as the first step in a directed evolution workflow to improve the incorporation of a ncAA in response to the Arg AGG sense codon. We first screened a library with diversity introduced into both the orthogonal Methanocaldococcus jannaschii tyrosyl tRNA anticodon loop and the cognate aminoacyl tRNA synthetase (aaRS) anticodon binding domain for variants that improved incorporation of tyrosine in response to the AGG codon. The most efficient variants produced fluorescent proteins at levels indistinguishable from the E. coli translation machinery decoding tyrosine codons. Mutations to the M. jannaschii aaRS that were found to improve tyrosine incorporation were transplanted onto a M. jannaschii aaRS evolved for the incorporation of para-azidophenylalanine. Improved ncAA incorporation was evident using fluorescence- and mass-based reporters. The described workflow is generalizable and should enable the rapid tailoring of orthogonal machinery capable of activating diverse ncAAs to any sense codon target. We evaluated the selection based improvements of the orthogonal pair in a host genomically engineered for reduced target codon competition. Using this particular system for evaluation of arginine AGG codon reassignment, however, E. coli strains with genomes engineered to remove competing tRNAs did not outperform a standard laboratory E. coli strain in sense codon reassignment.
Collapse
|
44
|
Mishra PK, Kang MG, Lee H, Kim S, Choi S, Sharma N, Park CM, Ko J, Lee C, Seo JK, Rhee HW. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem Sci 2022; 13:955-966. [PMID: 35211260 PMCID: PMC8790779 DOI: 10.1039/d1sc04871f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
We developed a proximity photo-crosslinking method (Spotlight) with a 4-azido-N-ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled. Using Spotlight, we further identified the host interactome of SARS-CoV-2 nucleocapsid (N) protein, which is essential for viral genome assembly. Mass analysis of the VL1-crosslinked product of N-HaloTag in HEK293T cells showed that RNA-binding proteins in stress granules were exclusively enriched in the cross-linked samples. These results tell that our method can reveal the interactome of protein of interest within a short distance in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Subin Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Nirmali Sharma
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- School of Biological Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
45
|
Duckworth AT, Keck JL. Use of an unnatural amino acid to map helicase/DNA interfaces via photoactivated crosslinking. Methods Enzymol 2022; 672:55-74. [PMID: 35934485 PMCID: PMC10037347 DOI: 10.1016/bs.mie.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of protein/nucleic acid complexes is essential for life. From DNA replication and repair to transcription and translation, myriad different proteins bind nucleic acids to execute their essential cellular functions. Our understanding of the mechanisms underlying recognition and processing of nucleic acids can be greatly informed by mapping protein domains and residues that form interfaces with their DNA or RNA targets. Here we describe a crosslinking protocol in which the unnatural amino acid p-benzoyl-l-phenylalanine (Bpa) integrated at selected sites within the PriA DNA helicase is used to map surfaces of the protein that interact with specific positions in a synthetic DNA replication fork in vitro.
Collapse
Affiliation(s)
- Alexander T Duckworth
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
46
|
Miyazaki R, Mori H, Akiyama Y. A Photo-Crosslinking Approach to Monitoring the Assembly of an LptD Intermediate with LptE in a Living Cell. Methods Mol Biol 2022; 2548:97-107. [PMID: 36151494 DOI: 10.1007/978-1-0716-2581-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating the dynamic behavior of proteins in living cells is extremely important for understanding the physiological roles of biological processes. The site-specific in vivo photo-crosslinking approach using a photoreactive unnatural amino acid enables the analysis of protein interactions with high spatial resolution in vivo. Recently, by improving the photo-crosslinking technique, we developed the "PiXie" method for the analysis of dynamic interactions of newly synthesized proteins. Here, we describe the detailed protocols of the "PiXie" method and its application to the analysis of the assembly processes of the lipopolysaccharide translocon components, a β-barrel outer membrane protein, LptD, and a lipoprotein, LptE.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
47
|
Analysis of the conformational space and dynamics of RNA helicases by single-molecule FRET in solution and on surfaces. Methods Enzymol 2022; 673:251-310. [DOI: 10.1016/bs.mie.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Kim S, Yi H, Kim YT, Lee HS. Engineering Translation Components for Genetic Code Expansion. J Mol Biol 2021; 434:167302. [PMID: 34673113 DOI: 10.1016/j.jmb.2021.167302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.
Collapse
Affiliation(s)
- Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hanbin Yi
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Yurie T Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea.
| |
Collapse
|
49
|
Curley CL, Fedrigoni TP, Flaherty EM, Woodilla CJ, Hagan CL. Bacterial Contact-Dependent Inhibition Protein Binds near the Open Lateral Gate in BamA Prior to Toxin Translocation. Biochemistry 2021; 60:2956-2965. [PMID: 34541845 DOI: 10.1021/acs.biochem.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contact-dependent inhibition (CDI) is a mechanism of interbacterial competition in Gram-negative bacteria. The critical component of CDI systems is a large protein named CdiA; it forms a filament on the bacterial cell surface and contains a toxin domain at its C-terminal end. Upon binding to a receptor protein on the surface of a neighboring cell, CdiA delivers the toxin domain through the outer membrane of the neighboring bacterium. The mechanism of that delivery process is poorly understood. We have characterized how CdiA from E. coli EC93 binds to its receptor, BamA, to understand how this binding event might initiate the process of toxin delivery. BamA is an essential protein that assembles β-barrel proteins into the outer membranes of all Gram-negative bacteria; this assembly process depends on BamA's unique ability to open laterally in the lipid bilayer through a gate in its own membrane-embedded β-barrel. Through site-specific photo-cross-linking and mutational analysis, we demonstrate that the BamA-CdiA interaction depends on a small number of non-conserved amino acids on the extracellular surface of BamA, but the protein interface extends over a region near BamA's lateral gate. We further demonstrate that BamA's lateral gate can open without disrupting the interaction with CdiA. CdiA thus appears to initially engage BamA in a manner that could allow it to utilize BamA's lateral gate in subsequent steps in the toxin translocation process.
Collapse
Affiliation(s)
- Cameron L Curley
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Thomas P Fedrigoni
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Erin M Flaherty
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Christopher J Woodilla
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Christine L Hagan
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
50
|
DeBenedictis EA, Carver GD, Chung CZ, Söll D, Badran AH. Multiplex suppression of four quadruplet codons via tRNA directed evolution. Nat Commun 2021; 12:5706. [PMID: 34588441 PMCID: PMC8481270 DOI: 10.1038/s41467-021-25948-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Genetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon-anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.
Collapse
Affiliation(s)
- Erika A DeBenedictis
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|