1
|
Wang YQ, Ma WX, Kong LX, Zhang H, Yuan PC, Qu WM, Liu CF, Huang ZL. Ambient chemical and physical approaches for the modulation of sleep and wakefulness. Sleep Med Rev 2024; 79:102015. [PMID: 39447526 DOI: 10.1016/j.smrv.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Humans spend a third of their lives asleep. While the sleep-wake behaviors are primarily modulated by homeostasis and circadian rhythm, several ambient chemical and physical factors, including light, sound, odor, vibration, temperature, electromagnetic radiation, and ultrasound, also affect sleep and wakefulness. Light at different wavelengths has different effects on sleep and wakefulness. Sound not only promotes but also suppresses sleep; this effect is mediated by certain nuclei, including the pedunculopontine nucleus and inferior colliculus. Certain sleep-promoting odorants regulate sleep through the involvement of the olfactory bulb and olfactory tubercle. In addition, vibrations may induce sleep through the vestibular system. A modest increase in ambient temperature leads to an increase in sleep duration through the involvement of the preoptic area. Electromagnetic radiation has a dual effect on sleep-wake behaviors. The stimulation produced by the ambient chemical and physical factors activates the peripheral sensory system, which converts the chemical and physical stimuli into nerve impulses. This signal is then transmitted to the central nervous system, including several nuclei associated with the modulation of sleep-wake behaviors. This review summarizes the effects of ambient chemical and physical factors on the regulation of sleep and wakefulness, as well as the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Gürses G, Ömeroğlu Akkoç Fİ, Aktı A, Körez MK. Effectiveness of wearing glasses with green lenses on dental anxiety for third-molar surgery: A randomized clinical trial. J Am Dent Assoc 2024; 155:496-503.e1. [PMID: 38520420 DOI: 10.1016/j.adaj.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Dental anxiety is a common problem for oral surgeries. This study investigated the effectiveness of wearing glasses with green lenses in reducing dental anxiety, blood pressure, heart rate, and intraoperative pain in patients undergoing first-time third-molar surgery. METHODS The authors planned this study as a randomized and parallel-group clinical trial. Patients' dental anxiety was measured with the use of a visual analog scale and a State-Trait Anxiety Inventory for baseline measurement purposes. At the same time, blood pressure, oxygen saturation, and heart rate values were recorded. Patients were given glasses with clear or green lenses, depending on their group. After 10 minutes, all parameters were measured again for preoperative measurement. Patients wore glasses with either green or clear lenses throughout the operation. After the operation, patients were asked to estimate the degree of intraoperative pain using the visual analog scale. RESULTS The study included 128 patients. On the basis of the change between baseline and preoperative measurements, the authors found a statistically significant difference in anxiety and heart rate. Intraoperative pain showed a significant difference between groups. No significant changes were found in blood pressure and oxygen saturation. CONCLUSIONS Patients with anxiety could wear low-cost, easy-to-use glasses with green lenses for 10 minutes before an operation to reduce anxiety and heart rate. In addition, wearing glasses during the surgical procedure can reduce intraoperative pain. PRACTICAL IMPLICATIONS By means of using glasses with green lenses throughout the procedure, existing anxiety and pain can be reduced. An operation can be performed more comfortably for both the patient and the dentist. This clinical trial was registered at ClinicalTrials.gov. The registration number is NCT05584696.
Collapse
|
3
|
Contreras E, Liang C, Mahoney HL, Javier JL, Luce ML, Labastida Medina K, Bozza T, Schmidt TM. Flp-recombinase mouse line for genetic manipulation of ipRGCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592761. [PMID: 38766000 PMCID: PMC11100754 DOI: 10.1101/2024.05.06.592761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Light has myriad impacts on behavior, health, and physiology. These signals originate in the retina and are relayed to the brain by more than 40 types of retinal ganglion cells (RGCs). Despite a growing appreciation for the diversity of RGCs, how these diverse channels of light information are ultimately integrated by the ~50 retinorecipient brain targets to drive these light-evoked effects is a major open question. This gap in understanding primarily stems from a lack of genetic tools that specifically label, manipulate, or ablate specific RGC types. Here, we report the generation and characterization of a new mouse line (Opn4FlpO), in which FlpO is expressed from the Opn4 locus, to manipulate the melanopsin-expressing, intrinsically photosensitive retinal ganglion cells. We find that the Opn4FlpO line, when crossed to multiple reporters, drives expression that is confined to ipRGCs and primarily labels the M1-M3 subtypes. Labeled cells in this mouse line show the expected intrinsic, melanopsin-based light response and morphological features consistent with the M1-M3 subtypes. In alignment with the morphological and physiological findings, we see strong innervation of non-image forming brain targets by ipRGC axons, and weaker innervation of image forming targets in Opn4FlpO mice labeled using AAV-based and FlpO-reporter lines. Consistent with the FlpO insertion disrupting the endogenous Opn4 transcript, we find that Opn4FlpO/FlpO mice show deficits in the pupillary light reflex, demonstrating their utility for behavioral research in future experiments. Overall, the Opn4FlpO mouse line drives Flp-recombinase expression that is confined to ipRGCs and most effectively drives recombination in M1-M3 ipRGCs. This mouse line will be of broad use to those interested in manipulating ipRGCs through a Flp-based recombinase for intersectional studies or in combination with other, non-Opn4 Cre driver lines.
Collapse
Affiliation(s)
- E Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - C Liang
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - H L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - J L Javier
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - M L Luce
- Department of Neurobiology, Northwestern University, Evanston, IL
| | | | - T Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - T M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL
- Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
4
|
Huang X, Tao Q, Ren C. A Comprehensive Overview of the Neural Mechanisms of Light Therapy. Neurosci Bull 2024; 40:350-362. [PMID: 37555919 PMCID: PMC10912407 DOI: 10.1007/s12264-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 08/10/2023] Open
Abstract
Light is a powerful environmental factor influencing diverse brain functions. Clinical evidence supports the beneficial effect of light therapy on several diseases, including depression, cognitive dysfunction, chronic pain, and sleep disorders. However, the precise mechanisms underlying the effects of light therapy are still not well understood. In this review, we critically evaluate current clinical evidence showing the beneficial effects of light therapy on diseases. In addition, we introduce the research progress regarding the neural circuit mechanisms underlying the modulatory effects of light on brain functions, including mood, memory, pain perception, sleep, circadian rhythm, brain development, and metabolism.
Collapse
Affiliation(s)
- Xiaodan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Fuchs F, Robin-Choteau L, Schneider A, Hugueny L, Ciocca D, Serchov T, Bourgin P. Delaying circadian sleep phase under ultradian light cycle causes time-of-day-dependent alteration of cognition and mood. Sci Rep 2023; 13:20313. [PMID: 37985784 PMCID: PMC10662432 DOI: 10.1038/s41598-023-44931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023] Open
Abstract
Light exerts powerful and pervasive effects on physiology and behaviour. These effects can be indirect, through clock synchronization and phase adjustment of circadian rhythms, or direct, independent of the circadian process. Exposure to light at inappropriate times, as commonly experienced in today's society, leads to increased prevalence of circadian, sleep and mood disorders as well as cognitive impairments. In mice, exposure to an ultradian 3.5 h light/3.5 h dark cycle (T7) for several days has been shown to impair behaviour through direct, non-circadian, photic effects, a claim we challenge here. We first confirmed that T7 cycle induces a lengthening of the circadian period resulting in a day by day phase-delay of both activity and sleep rhythms. Spatial novelty preference test performed at different circadian time points in mice housed under T7 cycle demonstrated that cognitive deficit was restrained to the subjective night. Mice under the same condition also showed a modification of stress-induced despair-like behaviour in the forced swim test. Therefore, our data demonstrate that ultradian light cycles cause time-of-day-dependent alteration of cognition and mood through clock period lengthening delaying circadian sleep phase, and not through a direct photic influence. These results are of critical importance for the clinical applications of light therapy in the medical field and for today's society to establish lighting recommendations for shift work, schools, hospitals and homes.
Collapse
Affiliation(s)
- Fanny Fuchs
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Ludivine Robin-Choteau
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- European Center for Diabetes Studies (CEED), Strasbourg, France
| | - Aline Schneider
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
| | - Laurence Hugueny
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Dominique Ciocca
- Chronobiotron-UMS3415-CNRS/University of Strasbourg, Strasbourg, France
| | - Tsvetan Serchov
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences (INCI)-UPR 3212-CNRS/University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
- Sleep Disorders Center and CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, 1 place de l'Hôpital, 67000, Strasbourg, France.
| |
Collapse
|
7
|
Contreras E, Bhoi JD, Sonoda T, Birnbaumer L, Schmidt TM. Melanopsin activates divergent phototransduction pathways in intrinsically photosensitive retinal ganglion cell subtypes. eLife 2023; 12:e80749. [PMID: 37937828 PMCID: PMC10712949 DOI: 10.7554/elife.80749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Melanopsin signaling within intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes impacts a broad range of behaviors from circadian photoentrainment to conscious visual perception. Yet, how melanopsin phototransduction within M1-M6 ipRGC subtypes impacts cellular signaling to drive diverse behaviors is still largely unresolved. The identity of the phototransduction channels in each subtype is key to understanding this central question but has remained controversial. In this study, we resolve two opposing models of M4 phototransduction, demonstrating that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dispensable for this process and providing support for a pathway involving melanopsin-dependent potassium channel closure and canonical transient receptor potential (TRPC) channel opening. Surprisingly, we find that HCN channels are likewise dispensable for M2 phototransduction, contradicting the current model. We instead show that M2 phototransduction requires TRPC channels in conjunction with T-type voltage-gated calcium channels, identifying a novel melanopsin phototransduction target. Collectively, this work resolves key discrepancies in our understanding of ipRGC phototransduction pathways in multiple subtypes and adds to mounting evidence that ipRGC subtypes employ diverse phototransduction cascades to fine-tune cellular responses for downstream behaviors.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern UniversityEvanstonUnited States
| | - Jacob D Bhoi
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Takuma Sonoda
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health SciencesDurhamUnited States
- Institute of Biomedical Research (BIOMED), Catholic University of ArgentinaBuenos AiresArgentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Department of Ophthalmology, Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
8
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Huang Y, Liao P, Yu J, Chen S. Light disrupts social memory via a retina-to-supraoptic nucleus circuit. EMBO Rep 2023; 24:e56839. [PMID: 37531065 PMCID: PMC10561173 DOI: 10.15252/embr.202356839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The formation of social memory between individuals of the opposite sex is crucial for expanding mating options or establishing monogamous pair bonding. A specialized neuronal circuit that regulates social memory could enhance an individual's mating opportunities and provide a parallel pathway for computing social behaviors. While the influence of light exposure on various forms of memory, such as fear and object memory, has been studied, its modulation of social recognition memory remains unclear. Here, we demonstrate that acute exposure to light impairs social recognition memory (SRM) in mice. Unlike sound and touch stimuli, light inhibits oxytocin neurons in the supraoptic nucleus (SON) via M1 SON-projecting intrinsically photosensitive retinal ganglion cells (ipRGCs) and GABAergic neurons in the perinuclear zone of the SON (pSON). We further show that optogenetic activation of SON oxytocin neurons using channelrhodopsin is sufficient to enhance SRM performance, even under light conditions. Our findings unveil a dedicated neuronal circuit through which luminance affects SRM, utilizing a non-image-forming visual pathway, distinct from the canonical modulatory role of the oxytocin system.
Collapse
Affiliation(s)
- Yu‐Fan Huang
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Po‐Yu Liao
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Jo‐Hsien Yu
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Shih‐Kuo Chen
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
10
|
Arimitsu T, Fukutomi R, Kumagai M, Shibuma H, Yamanishi Y, Takahashi KI, Gima H, Seto Y, Adachi H, Arai H, Higuchi M, Ohgi S, Ohta H. Designing artificial circadian environments with multisensory cares for supporting preterm infants' growth in NICUs. Front Neurosci 2023; 17:1152959. [PMID: 37694118 PMCID: PMC10491019 DOI: 10.3389/fnins.2023.1152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Previous studies suggest the importance of stable circadian environments for fetuses to achieve sound physiology and intrauterine development. This idea is also supported by epidemiological and animal studies, in which pregnant females exposed to repeated shifting of light-dark cycles had increased rates of reproductive abnormalities and adverse pregnancy outcomes. In response to such findings, artificial circadian environments with light-dark (LD) cycles have been introduced to NICUs to promote better physical development of preterm infants. Such LD cycles, however, may not be fully effective for preterm infants who are less than 30 weeks gestational age (WGA) since they are too premature to be adequately responsive to light. Instead, circadian rhythmicity of incubated preterm infants less than 30 WGA may be able to be developed through stimulation of the non-visual senses such as touch and sound.
Collapse
Affiliation(s)
- Takeshi Arimitsu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- The Japan Developmental Care Study Group, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
| | - Rika Fukutomi
- Section of Pediatric Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
| | - Mayuko Kumagai
- Department of Nursing, Akita University Graduate School of Medicine, Akita, Japan
| | - Hayato Shibuma
- Department of Rehabilitation, Yamagata Saisei Hospital, Yamagata, Japan
| | - Yoko Yamanishi
- Department of Occupational Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kei-ichi Takahashi
- Department of Occupational Therapy, Akita University Graduate School of Medicine, Akita, Japan
| | - Hirotaka Gima
- The Japan Developmental Care Study Group, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshitaka Seto
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroyuki Adachi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Hirokazu Arai
- Department of Neonatology, Akita Red Cross Hospital, Akita, Japan
| | - Masakatsu Higuchi
- The Japan Developmental Care Study Group, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
- Department of Occupational Therapy, Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Shohei Ohgi
- The Japan Developmental Care Study Group, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
- Department of Physical Therapy, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
| | - Hidenobu Ohta
- The Japan Developmental Care Study Group, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
- Department of Occupational Therapy, Akita University Graduate School of Medicine, Akita, Japan
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Asai Hospital, Chiba, Japan
| |
Collapse
|
11
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
13
|
Fifel K, Yanagisawa M, Deboer T. Mechanisms of Sleep/Wake Regulation under Hypodopaminergic State: Insights from MitoPark Mouse Model of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203170. [PMID: 36515271 PMCID: PMC9929135 DOI: 10.1002/advs.202203170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8-11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
| | - Tom Deboer
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| |
Collapse
|
14
|
Meng JJ, Shen JW, Li G, Ouyang CJ, Hu JX, Li ZS, Zhao H, Shi YM, Zhang M, Liu R, Chen JT, Ma YQ, Zhao H, Xue T. Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis. Cell 2023; 186:398-412.e17. [PMID: 36669474 DOI: 10.1016/j.cell.2022.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023]
Abstract
Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.
Collapse
Affiliation(s)
- Jian-Jun Meng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Wei Shen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Guang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Jie Ouyang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Xi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Shuo Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Shi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Rong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ju-Tao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Qian Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhao
- College of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
16
|
Bergum N, Berezin CT, King CM, Vigh J. µ-Opioid Receptors Expressed by Intrinsically Photosensitive Retinal Ganglion Cells Contribute to Morphine-Induced Behavioral Sensitization. Int J Mol Sci 2022; 23:15870. [PMID: 36555511 PMCID: PMC9781919 DOI: 10.3390/ijms232415870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Opioid drugs are the most effective tools for treating moderate to severe pain. Despite their analgesic efficacy, long-term opioid use can lead to drug tolerance, addiction, and sleep/wake disturbances. While the link between opioids and sleep/wake problems is well-documented, the mechanism underlying opioid-related sleep/wake problems remains largely unresolved. Importantly, intrinsically photosensitive retinal ganglion cells (ipRGCs), the cells that transmit environmental light/dark information to the brain's sleep/circadian centers to regulate sleep/wake behavior, express μ-opioid receptors (MORs). In this study, we explored the potential contribution of ipRGCs to opioid-related sleep/circadian disruptions. Using implanted telemetry transmitters, we measured changes in horizontal locomotor activity and body temperature in mice over the course of a chronic morphine paradigm. Mice lacking MORs expressed by ipRGCs (McKO) exhibited reduced morphine-induced behavioral activation/sensitization compared with control littermates with normal patterns of MOR expression. Contrastingly, mice lacking MORs globally (MKO) did not acquire morphine-induced locomotor activation/sensitization. Control mice also showed morphine-induced hypothermia in both the light and dark phases, while McKO littermates only exhibited morphine-induced hypothermia in the dark. Interestingly, only control animals appeared to acquire tolerance to morphine's hypothermic effect. Morphine, however, did not acutely decrease the body temperature of MKO mice. These findings support the idea that MORs expressed by ipRGCs could contribute to opioid-related sleep/wake problems and thermoregulatory changes.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Connie M. King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Brock O, Gelegen C, Sully P, Salgarella I, Jager P, Menage L, Mehta I, Jęczmień-Łazur J, Djama D, Strother L, Coculla A, Vernon AC, Brickley S, Holland P, Cooke SF, Delogu A. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J Neurosci 2022; 42:9158-9179. [PMID: 36280260 PMCID: PMC9761691 DOI: 10.1523/jneurosci.0112-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Collapse
Affiliation(s)
- Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cigdem Gelegen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Peter Sully
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Ishita Mehta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Jagoda Jęczmień-Łazur
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Deyl Djama
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Angelica Coculla
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philip Holland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Wolfson Centre for Age Related Disease, King's College London, London SE1 1UL, United Kingdom
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
18
|
Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiol Sleep Circadian Rhythms 2022; 13:100078. [PMID: 35800978 PMCID: PMC9254600 DOI: 10.1016/j.nbscr.2022.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
|
19
|
Milićević N, Bergen AA, Felder-Schmittbuhl MP. Per1 mutation enhances masking responses in mice. Chronobiol Int 2022; 39:1533-1538. [PMID: 36189750 DOI: 10.1080/07420528.2022.2126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light can restrict the activity of an animal to a diurnal or nocturnal niche by synchronizing its endogenous clock (entrainment) which controls the sleep wake cycle. Light can also directly change an animal's activity level (masking). In mice, high illumination levels decrease activity, i.e. negative masking occurs. To investigate the role of core circadian clock genes Per1 and Per2 in masking, we used a 5-day behavioral masking protocol consisting of 3 h pulses of light given in the night at various illuminances (4-5 lux, 20 lux and 200 lux). Mice lacking the Per1 gene had decreased locomotion in the presence of a light pulse compared to wild-type, Per2 and Per1 Per2 double mutant mice. Per2 single mutant and Per1 Per2 double mutant mice did not show significantly different masking responses compared to wild-type controls. This suggests that Per1 suppresses negative masking responses in mice.
Collapse
Affiliation(s)
- Nemanja Milićević
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Queen Emma Centre for Personalized Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
21
|
Bergum N, Berezin CT, Vigh J. A retinal contribution to opioid-induced sleep disorders? Front Neurosci 2022; 16:981939. [PMID: 35992901 PMCID: PMC9388851 DOI: 10.3389/fnins.2022.981939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic opioid use is linked to persistent and severe sleep/wake disturbances in patients. These opioid-related sleep problems increase risk for developing opioid dependence, mood disorders and in turn overdose in chronic pain patients receiving opioid therapy. Despite the well-established link between long-term opioid use and sleep disorders, the mechanism by which opioids perturb sleep remains unclear. Interestingly, animal studies indicate that opioids disrupt sleep/wake behaviors by altering an animal’s ability to synchronize their circadian rhythms to environmental light cycles (i.e., photoentrainment). A specific subset of retinal cells known as intrinsically photosensitive retinal ganglion cells (ipRGCs) that express μ-opioid receptors are exclusively responsible for transmitting environmental light information to sleep/circadian centers in the brain. Thus, this review will focus on the effect of opioids on ipRGCs and their projection regions that are involved in the photoentrainment of sleep/wake behaviors. Lastly, we discuss the viability of ipRGCs as a potential therapeutic target for treating opioid-related sleep/wake problems.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Casey-Tyler Berezin
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Jozsef Vigh,
| |
Collapse
|
22
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
23
|
Roenneberg T, Foster RG, Klerman EB. The circadian system, sleep, and the health/disease balance: a conceptual review. J Sleep Res 2022; 31:e13621. [PMID: 35670313 PMCID: PMC9352354 DOI: 10.1111/jsr.13621] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
The field of "circadian medicine" is a recent addition to chronobiology and sleep research efforts. It represents a logical step arising from the increasing insights into the circadian system and its interactions with life in urbanised societies; applying these insights to the health/disease balance at home and in the medical practice (outpatient) and clinic (inpatient). Despite its fast expansion and proliferating research efforts, circadian medicine lacks a formal framework to categorise the many observations describing interactions among the circadian system, sleep, and the health/disease balance. A good framework allows us to categorise observations and then assign them to one or more components with hypothesised interactions. Such assignments can lead to experiments that document causal (rather than correlational) relationships and move from describing observations to discovering mechanisms. This review details such a proposed formal framework for circadian medicine and will hopefully trigger discussion among our colleagues, so that the framework can be improved and expanded. As the basis of the framework for circadian medicine, we define "circadian health" and how it links to general health. We then define interactions among the circadian system, sleep, and the health/disease balance and put the framework into the context of the literature with examples from six domains of health/disease balance: fertility, cancer, immune system, mental health, cardiovascular, and metabolism.
Collapse
Affiliation(s)
- Till Roenneberg
- Institute of Medical Psychology and Institute for Occupational, Social and Environmental Medicine, Munich, Germany
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, UK
| | - Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
25
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
27
|
Wang Y, Guo Z, Zi C, Wu P, Lv X, Chen L, Chen F, Zhang G, Wang J. CircRNA expression in chicken granulosa cells illuminated with red light. Poult Sci 2022; 101:101734. [PMID: 35202895 PMCID: PMC8866055 DOI: 10.1016/j.psj.2022.101734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Red light (RL) can improve egg production in Jinghai Yellow hens. Circular RNAs (circRNAs) are novel, non-coding RNAs, but the molecular mechanism underlying circRNA function during follicular development in hens under monochromatic light has not been established. Herein, we compared expression profiles of granulosa cells (GCs) from small yellow follicles (SYFs) from hens under RL and white light (WL). A total of 2,468 circRNAs were identified, of which 22 were differentially expressed (DE) in the RL and WL groups. DE circRNA host genes were enriched in ovarian steroidogenesis, and MAPK and PI3K-Akt signaling pathways. Furthermore, DE circRNA_0320 and circRNA_0185 interacted with miR-143-3p, which targets the follicle-stimulating hormone receptor and is essential for GC differentiation and follicle development. These findings will facilitate further analysis of the molecular mechanism leading to GC development in hens raised under monochromatic light, which could lead to increased egg production.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Zhenyu Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Chen Zi
- Department of Pathology, Linyi People's Hospital, Linyi 276000, Shandong Province, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
| |
Collapse
|
28
|
Direct Effects of Light on Sleep under Ultradian Light-Dark Cycles Depend on Circadian Time and Pulses Duration. Clocks Sleep 2022; 4:208-218. [PMID: 35466270 PMCID: PMC9036312 DOI: 10.3390/clockssleep4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Ultradian light–dark cycles in rodents are a precious tool to study the direct effects of repeated light exposures on sleep, in order to better understand the underlying mechanisms. This study aims to precisely evaluate the effects of light and dark exposures, according to circadian time, on sleep and waking distribution and quality, and to determine if these effects depend on the duration of light and dark pulses. To do this, mice were exposed to 24 h-long ultradian light–dark cycles with different durations of pulses: T2 cycle (1 h of light/1 h of dark) and T7 cycle (3.5 h of light/3.5 h of dark). Exposure to light not only promotes NREM and REM sleep and inhibits wake, but also drastically alters alertness and modifies sleep depth. These effects are modulated by circadian time, appearing especially during early subjective night, and their kinetics is highly dependent on the duration of pulses, suggesting that in the case of pulses of longer duration, the homeostatic process could overtake light direct influence for shaping sleep and waking distribution.
Collapse
|
29
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
30
|
Villar-Martinez MD, Goadsby PJ. Dim the Lights: A Narrative Review of Photophobia in Migraine. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A preference for darkness is one of the main associated features in people with migraine, the cause remaining a mystery until some decades ago. In this article, we describe the epidemiology of photophobia in migraine and explain the pathophysiological mechanisms following an anatomical structure. In addition, we review the current management of migraine and photophobia. Ongoing characterization of patients with photophobia and its different manifestations continues to increase our understanding of the intricate pathophysiology of migraine and vice versa. Detailed phenotyping of the patient with photophobia is encouraged.
Collapse
|
31
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Slow vision: Measuring melanopsin-mediated light effects in animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:117-143. [DOI: 10.1016/bs.pbr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
34
|
Fasick JI, Algrain H, Samuels C, Mahadevan P, Schweikert LE, Naffaa ZJ, Robinson PR. Spectral tuning and deactivation kinetics of marine mammal melanopsins. PLoS One 2021; 16:e0257436. [PMID: 34653198 PMCID: PMC8519484 DOI: 10.1371/journal.pone.0257436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.
Collapse
Affiliation(s)
- Jeffry I. Fasick
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Haya Algrain
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Courtland Samuels
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Padmanabhan Mahadevan
- Department of Biological Sciences, The University of Tampa, Tampa, Florida, United States of America
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Zaid J. Naffaa
- Department of Biological Sciences, Kean University, Union, New Jersey, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
35
|
Li G, Chen Y, Tang X, Li CSR. Alcohol use severity and the neural correlates of the effects of sleep disturbance on sustained visual attention. J Psychiatr Res 2021; 142:302-311. [PMID: 34416549 PMCID: PMC8429210 DOI: 10.1016/j.jpsychires.2021.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 01/09/2023]
Abstract
Alcohol misuse is associated with sleep disturbance and cognitive dysfunction. However, the neural processes inter-relating the severity of alcohol use, sleep disturbance and cognitive performance remain under-investigated. We addressed this issue with a dataset of 964 subjects (504 women) curated from the Human Connectome Project. Participants were assessed with the Pittsburgh Sleep Quality Index (PSQI) and fMRI while identifying relational dimension pictures and matching dimension pictures (as a control) in alternating blocks. Imaging data were analyzed with published routines and the results were evaluated at a corrected threshold. Subjects showed lower accuracy rate and longer reaction time (RT) in relational than control blocks. The difference in RT between the two blocks (RTRel-Con) was driven primarily by the RT and correlated positively with performance accuracy of relational trials, suggesting that a more cautious response (i.e., longer RTRel-Con) improved accuracy. The severity of alcohol use, identified from principal component analysis of drinking metrics, was positively correlated with sleep disturbance. Further, whole-brain regression identified activity of the superior colliculus (SC) during relational vs. control blocks in positive and negative correlation with RTRel-Con and PSQI score, respectively. Mediation and path analyses demonstrated a significant model: more severe alcohol use → greater sleep disturbance → diminished SC activity → impaired performance. These findings support the influences of alcohol misuse on sleep and suggest neural correlates that mediate the relationship between sleep disturbance and altered sustained attention in young adults.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT,Address correspondence to: C.-S. Ray Li, Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT 06519-1109, U.S.A. Phone: +1 203-974-7354, or Xiaoying Tang, 815-2 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China Phone: +86 010-68915998,
| |
Collapse
|
36
|
Bertolesi GE, Debnath N, Atkinson-Leadbeater K, Niedzwiecka A, McFarlane S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol Ecol 2021; 30:6659-6676. [PMID: 34592025 DOI: 10.1111/mec.16203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Crypsis increases survival by reducing predator detection. Xenopus laevis tadpoles decode light properties from the substrate to induce two responses: a cryptic coloration response where dorsal skin pigmentation is adjusted to the colour of the substrate (background adaptation) and a behavioural crypsis where organisms move to align with a specific colour surface (background preference). Both processes require organisms to detect reflected light from the substrate. We explored the relationship between background adaptation and preference and the light properties able to trigger both responses. We also analysed which retinal photosensor (type II opsin) is involved. Our results showed that these two processes are segregated mechanistically, as there is no correlation between the preference for a specific background with the level of skin pigmentation, and different dorsal retina-localized type II opsins appear to underlie the two crypsis modes. Indeed, inhibition of melanopsin affects background adaptation but not background preference. Instead, we propose pinopsin is the photosensor involved in background preference. pinopsin mRNA is co-expressed with mRNA for the sws1 cone photopigment in dorsally located photoreceptors. Importantly, the developmental onset of pinopsin expression aligns with the emergence of the preference for a white background, but after the background adaptation phenotype appears. Furthermore, white background preference of tadpoles is associated with increased pinopsin expression, a feature that is lost in premetamorphic froglets along with a preference for a white background. Thus, our data show a mechanistic dissociation between background adaptation and background preference, and we suggest melanopsin and pinopsin, respectively, initiate the two responses.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Nilakshi Debnath
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | | | - Anna Niedzwiecka
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Arns M, Kooij JJS, Coogan AN. Review: Identification and Management of Circadian Rhythm Sleep Disorders as a Transdiagnostic Feature in Child and Adolescent Psychiatry. J Am Acad Child Adolesc Psychiatry 2021; 60:1085-1095. [PMID: 33556454 DOI: 10.1016/j.jaac.2020.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Sleep disturbances are highly frequent features in a range of child and adolescent psychiatric conditions. However, it is commonly not clear if such sleep problems represent symptomatic features of, comorbidities of, or risk factors for these conditions. It is believed that underlying dysfunction in the daily biological (circadian) clock may play important roles in the etiology of many sleep disorders, and circadian rhythm changes are reported in a number of neuropsychiatric conditions. The aim of this review was to explore the key identifying features of circadian rhythm disorders (CRDs) in child and adolescent psychiatry and address how such disorders may be managed in the clinic. METHOD A narrative review was conducted of the extant literature of CRDs in children and adolescents with psychiatric conditions. RESULTS Key biological and social factors that contribute to CRDs in children and adolescents, and the cognitive and neurobehavioral consequences resulting from insufficient sleep were outlined. The roles of melatonin and other chronotherapeutic and behavioral interventions for the management of CRDs were also outlined. Further, the importance of careful investigation of circadian rhythm abnormalities in shaping the most effective treatment plan according to chronobiological principles was highlighted. CONCLUSION CRDs are common in children and adolescents with psychiatric conditions and arise out of complex interactions between biological and social factors. Careful clinical attention to and management of CRDs in child and adolescent psychiatry have the potential for significant benefit not only in the domain of sleep but also in a range of cognitive, affective, and behavioral outcomes.
Collapse
Affiliation(s)
- Martijn Arns
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, and Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - J J Sandra Kooij
- Amsterdam University Medical Center, Amsterdam, and PsyQ, Expertise Center Adult ADHD, the Hague, the Netherlands
| | | |
Collapse
|
38
|
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021; 12:5115. [PMID: 34433830 PMCID: PMC8387462 DOI: 10.1038/s41467-021-25378-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep. The preoptic area (POA) is critical for sleep regulation but its role in acute, non-circadian, light effects on sleep are unclear. The authors show that intrinsically photosensitive retinal ganglion cells provide substantial input into the POA and through these modulate the amount of non-rapid eye movement (NREM) sleep.
Collapse
|
39
|
[Intrinsically photosensitive retinal ganglion cells]. Ophthalmologe 2021; 119:358-366. [PMID: 34350494 PMCID: PMC9005408 DOI: 10.1007/s00347-021-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
Hintergrund Melanopsin exprimierende, intrinsisch-photosensitive retinale Ganglienzellen (ipRGCs) bilden neben Stäbchen und Zapfen die dritte Klasse von retinalen Photorezeptoren. Diese kleine, heterogene Zellfamilie vermittelt ein weites Spektrum an Aufgaben überwiegend des nicht-bildformenden Sehens. Fragestellung Diese Arbeit soll einen Einblick in das aktuelle Verständnis der Funktion und der funktionellen Diversität der ipRGCs geben sowie klinisch und translational relevante Aspekte beleuchten. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse ipRGCs machen etwa 1–2 % aller retinalen Ganglienzellen aus und bilden dabei 6 spezialisierte Subtypen. Mit ihrem Photopigment Melanopsin sind sie in der Lage, unabhängig von synaptischem Input Lichtinformationen an das Gehirn weiterzuleiten oder lichtabhängig zu modifizieren. Je nach Subtyp vermitteln sie so nichtvisuelle Aufgaben wie die Synchronisation der inneren Uhr oder den Pupillenreflex, greifen aber auch in das bildformende System ein. ipRGCs weisen eine differenzielle Widerstandskraft gegenüber Optikusschädigung auf, was sie zu einem attraktiven Studienobjekt für die Entwicklung neuroprotektiver Therapieansätze macht. Melanopsin rückt zudem als optogenetisches Werkzeug, etwa in der prosthetischen Gentherapie, in den Fokus. Schlussfolgerungen Häufige klinische Beobachtungen lassen sich nur mit Kenntnis des ipRGC-Systems verstehen. Ihre neuronale Vernetzung und die intrazelluläre Signalverarbeitung sind Gegenstand aktiver Forschung, die neue translationale Ansätze hervorbringt.
Collapse
|
40
|
Hubbard J, Kobayashi Frisk M, Ruppert E, Tsai JW, Fuchs F, Robin-Choteau L, Husse J, Calvel L, Eichele G, Franken P, Bourgin P. Dissecting and modeling photic and melanopsin effects to predict sleep disturbances induced by irregular light exposure in mice. Proc Natl Acad Sci U S A 2021; 118:e2017364118. [PMID: 34155139 PMCID: PMC8237663 DOI: 10.1073/pnas.2017364118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Artificial lighting, day-length changes, shift work, and transmeridian travel all lead to sleep-wake disturbances. The nychthemeral sleep-wake cycle (SWc) is known to be controlled by output from the central circadian clock in the suprachiasmatic nuclei (SCN), which is entrained to the light-dark cycle. Additionally, via intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (Opn4), short-term light-dark alternations exert direct and acute influences on sleep and waking. However, the extent to which longer exposures typically experienced across the 24-h day exert such an effect has never been clarified or quantified, as disentangling sustained direct light effects (SDLE) from circadian effects is difficult. Recording sleep in mice lacking a circadian pacemaker, either through transgenesis (Syt10cre/creBmal1fl/- ) or SCN lesioning and/or melanopsin-based phototransduction (Opn4-/- ), we uncovered, contrary to prevailing assumptions, that the contribution of SDLE is as important as circadian-driven input in determining SWc amplitude. Specifically, SDLE were primarily mediated (>80%) through melanopsin, of which half were then relayed through the SCN, revealing an ancillary purpose for this structure, independent of its clock function in organizing SWc. Based on these findings, we designed a model to estimate the effect of atypical light-dark cycles on SWc. This model predicted SWc amplitude in mice exposed to simulated transequatorial or transmeridian paradigms. Taken together, we demonstrate this SDLE is a crucial mechanism influencing behavior on par with the circadian system. In a broader context, these findings mandate considering SDLE, in addition to circadian drive, for coping with health consequences of atypical light exposure in our society.
Collapse
Affiliation(s)
- Jeffrey Hubbard
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Mio Kobayashi Frisk
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Elisabeth Ruppert
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Jessica W Tsai
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Fanny Fuchs
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Ludivine Robin-Choteau
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- European Center for Diabetes Studies, 67200 Strasbourg, France
| | - Jana Husse
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Laurent Calvel
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice Bourgin
- CNRS-Unité Propre de Recherche (UPR) 3212, Institute of Cellular and Integrative Neurosciences, 67084 Strasbourg, France;
- International Research Center for ChronoSomnology, Translational Medicine Federation Strasbourg, Sleep Disorders Center, Strasbourg University Hospital, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
41
|
Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021; 126:3-14. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023]
Abstract
Nearly all mammals display robust daily rhythms of physiology and behavior. These approximately 24-h cycles, known as circadian rhythms, are driven by a master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and affect biological processes ranging from metabolism to immune function. Perhaps the most overt output of the circadian clock is the sleep-wake cycle, the integrity of which is critical for health and homeostasis of the organism. In this review, we summarize our current understanding of the circadian regulation of sleep. We discuss the neural circuitry and molecular mechanisms underlying daily sleep timing, and the trajectory of circadian regulation of sleep across development. We conclude by proposing future research priorities for the field that will significantly advance our mechanistic understanding of the circadian regulation of sleep.
Collapse
Affiliation(s)
- Raymond E A Sanchez
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| | - Franck Kalume
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Shi HY, Xu W, Guo H, Dong H, Qu WM, Huang ZL. Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light. Sleep 2021; 43:5573593. [PMID: 31552427 DOI: 10.1093/sleep/zsz212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/16/2019] [Indexed: 11/12/2022] Open
Abstract
Light has immediate effects on sleep in rodents, but the neural pathways underlying the effect remain to be elucidated. The intergeniculate leaflet (IGL) containing GABAergic neurons receives direct retinal inputs. We hypothesized that IGL GABAergic neurons may mediate light-induced sleep. EEG/electromyogram recording, immunohistochemistry, electrophysiology, optogenetics, fiber photometry, behavioral tests, and cell-specific destruction were employed to investigate the role of IGL GABAergic neurons in the regulation of acute light-induced sleep. Here, EEG/electromyogram recordings revealed that acute light exposure during the nocturnal active phase in mice induced a significant increase in non-rapid eye movement and rapid eye movement sleep compared with controls. Immunohistochemistry showed that acute light exposure for 2 hours in the active phase induced an increase in c-Fos expression in the IGL, whereas lights-off in the rest phase inhibited it. Patch clamp coupled with optogenetics demonstrated that retinal ganglion cells had monosynaptic functional connections to IGL GABAergic neurons. Calcium activity by fiber photometry in freely behaving mice showed that light exposure increased the activity of IGL GABAergic neurons. Furthermore, lesion of IGL GABAergic neurons by caspase-3 virus significantly attenuated the sleep-promoting effect of light exposure during active phases. Collectively, these results clearly indicated that the IGL is one of key nuclei mediating light-induced sleep in mice.
Collapse
Affiliation(s)
- Huan-Ying Shi
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Han Guo
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Szalontai Ö, Tóth A, Pethő M, Keserű D, Hajnik T, Détári L. Homeostatic sleep regulation in the absence of the circadian sleep-regulating component: effect of short light-dark cycles on sleep-wake stages and slow waves. BMC Neurosci 2021; 22:13. [PMID: 33639837 PMCID: PMC7913432 DOI: 10.1186/s12868-021-00619-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aside from the homeostatic and circadian components, light has itself an important, direct as well as indirect role in sleep regulation. Light exerts indirect sleep effect by modulating the circadian rhythms. Exposure to short light-dark cycle (LD 1:1, 1:1 h light - dark) eliminates the circadian sleep regulatory component but direct sleep effect of light could prevail. The aim of the present study was to examine the interaction between the light and the homeostatic influences regarding sleep regulation in a rat model. METHODS Spontaneous sleep-wake and homeostatic sleep regulation by sleep deprivation (SD) and analysis of slow waves (SW) were examined in Wistar rats exposed to LD1:1 condition using LD12:12 regime as control. RESULTS Slow wave sleep (SWS) and REM sleep were both enhanced, while wakefulness (W) was attenuated in LD1:1. SWS recovery after 6-h total SD was more intense in LD1:1 compared to LD12:12 and SWS compensation was augmented in the bright hours. Delta power increment during recovery was caused by the increase of SW number in both cases. More SW was seen during baseline in the second half of the day in LD1:1 and after SD compared to the LD12:12. Increase of SW number was greater in the bright hours compared to the dark ones after SD in LD1:1. Lights ON evoked immediate increase in W and decrease in both SWS and REM sleep during baseline LD1:1 condition, while these changes ceased after SD. Moreover, the initial decrease seen in SWS after lights ON, turned to an increase in the next 6-min bin and this increase was stronger after SD. These alterations were caused by the change of the epoch number in W, but not in case of SWS or REM sleep. Lights OFF did not alter sleep-wake times immediately, except W, which was increased by lights OFF after SD. CONCLUSIONS Present results show the complex interaction between light and homeostatic sleep regulation in the absence of the circadian component and indicate the decoupling of SW from the homeostatic sleep drive in LD1:1 lighting condition.
Collapse
Affiliation(s)
- Örs Szalontai
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
44
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
45
|
Contreras EO, Dearing CG, Ashinhurst CA, Fish BA, Hossain SN, Rey AM, Silva PD, Thompson S. Pupillary reflex and behavioral masking responses to light as functional measures of retinal degeneration in mice. PLoS One 2021; 16:e0244702. [PMID: 33493166 PMCID: PMC7833141 DOI: 10.1371/journal.pone.0244702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pre-clinical testing of retinal pathology and treatment efficacy depends on reliable and valid measures of retinal function. The electroretinogram (ERG) and tests of visual acuity are the ideal standard, but can be unmeasurable while useful vision remains. Non-image-forming responses to light such as the pupillary light reflex (PLR) are attractive surrogates. However, it is not clear how accurately such responses reflect changes in visual capability in specific disease models. The purpose of this study was to test whether measures of non-visual responses to light correlate with previously determined visual function in two photoreceptor degenerations. METHODS The sensitivity of masking behavior (light induced changes in running wheel activity) and the PLR were measured in 3-month-old wild-type mice (WT) with intact inner retinal circuitry, Pde6b-rd1/rd1 mice (rd1) with early and rapid loss of rods and cones, and Prph2-Rd2/Rd2 mice (Rd2) with a slower progressive loss of rods and cones. RESULTS In rd1 mice, negative masking had increased sensitivity, positive masking was absent, and the sensitivity of the PLR was severely reduced. In Rd2 mice, positive masking identified useful vision at higher light levels, but there was a limited decrease in the irradiance sensitivity of negative masking and the PLR, and the amplitude of change for both underestimated the reduction in irradiance sensitivity of image-forming vision. CONCLUSIONS Together these data show that in a given disease, two responses to light can be affected in opposite ways, and that for a given response to light, the change in the response does not accurately represent the degree of pathology. However, the extent of the deficit in the PLR means that even a limited rescue of rod/cone function might be measured by increased PLR amplitude. In addition, positive masking has the potential to measure effective treatment in both models by restoring responses or shifting thresholds to lower irradiances.
Collapse
Affiliation(s)
- Ethan O. Contreras
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Carley G. Dearing
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
- College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States of America
| | - Crystal A. Ashinhurst
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Betty A. Fish
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Sajila N. Hossain
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Ariana M. Rey
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Primal D. Silva
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| |
Collapse
|
46
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
47
|
Photosensitive ganglion cells: A diminutive, yet essential population. ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA 2020; 96:299-315. [PMID: 34092284 DOI: 10.1016/j.oftale.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last two decades, when RGCs giving rise to this pathway were first discovered.
Collapse
|
48
|
Xie B, Zhang Y, Qi H, Yao H, Shang Y, Yuan S, Zhang J. Red light exaggerated sepsis-induced learning impairments and anxiety-like behaviors. Aging (Albany NY) 2020; 12:23739-23760. [PMID: 33197883 PMCID: PMC7762485 DOI: 10.18632/aging.103940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/01/2020] [Indexed: 01/01/2023]
Abstract
Light exerts critical non-visual effects on a multitude of physiological processes and behaviors, including sleep-wake behavior and cognitive function. In this study, we investigated the effects of continued exposure to different colors of light on cognitive function after sepsis in old mice. We found that exposure to red light, but not green light, exaggerated learning impairments and anxiety-like behaviors after sepsis. Red light also induced remarkable splenomegaly and altered the diversity and composition of the fecal microbiota. Pseudo germ-free mice transplanted with fecal bacteria from septic mice exposed to red light developed the same behavioral defects and splenomegaly as their donors. Intriguingly, splenectomy and subdiaphragmatic vagotomy reversed the learning impairments and anxiety-like behaviors resulting from red light exposure after sepsis. After subdiaphragmatic vagotomy, no differences in behavior or spleen size were observed among pseudo germ-free mice transplanted with fecal bacteria from septic mice exposed to different colors of light. Our results suggested that red light exposure after sepsis in old mice causes gut microbiota dysfunction, thus stimulating signaling through the subdiaphragmatic vagus nerve that induces splenomegaly and aggravates learning impairments and anxiety-like behaviors.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Qi
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
49
|
Smith AK, Conger JR, Hedayati B, Kim JJ, Amoozadeh S, Mehta M. The Effect of a Screen Protector on Blue Light Intensity Emitted from Different Hand-held Devices. Middle East Afr J Ophthalmol 2020; 27:177-181. [PMID: 33488015 PMCID: PMC7813134 DOI: 10.4103/meajo.meajo_2_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/06/2020] [Accepted: 10/11/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE: In response to growing concern about the effect of blue light on ocular tissue, companies have created mobile device screen protectors to block blue light. This project evaluates one of these screen protectors' ability to reduce blue light intensity. METHODS: The intensity of light at 450 nm from an iPhone 8, iPhone X, and iPad was measured in a dark room. The averages of three measurements were taken with and without the screen protector at different distances, settings of brightness, and Apple's night shift (NS) mode. Results were analyzed using paired t-tests. RESULTS: At 33 cm, 100% brightness, and 0% NS, the screen protector decreased intensity by 43.9%, 32.3%, and 34.9% for the iPhone 8, iPhone X, and iPad, respectively. At 33 cm and 100% brightness, increasing NS mode from 0% to 100% decreased intensity by 81.2%, 84.2%, and 86.5%. At 33 cm without NS, decreasing the brightness from 100% to 0% decreased intensity by 99.5%, 99.8%, and 97.8%. CONCLUSIONS: The screen protector decreased the intensity at 450 nm for every setting other than those at 0% brightness. Decreasing brightness and applying NS mode were more effective in reducing blue light. More research is needed to determine the benefits of decreasing blue light exposure from electronic devices.
Collapse
Affiliation(s)
- Andrew K Smith
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, USA
| | - Jordan R Conger
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, USA
| | - Bobak Hedayati
- School of Medicine, University of California, Irvine, USA
| | - Jeff J Kim
- School of Medicine, University of California, Irvine, USA
| | | | - Mitul Mehta
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, USA
| |
Collapse
|
50
|
Beier C, Zhang Z, Yurgel M, Hattar S. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. J Comp Neurol 2020; 529:1863-1875. [PMID: 33104235 PMCID: PMC10081000 DOI: 10.1002/cne.25061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Retinal ganglion cells (RGCs), the output neurons of the retina, allow us to perceive our visual environment. RGCs respond to rod/cone input through the retinal circuitry, however, a small population of RGCs are in addition intrinsically photosensitive (ipRGCs) and project to unique targets in the brain to modulate a broad range of subconscious visual behaviors such as pupil constriction and circadian photoentrainment. Despite the discovery of ipRGCs nearly two decades ago, there is still little information about how or if conventional RGCs (non-ipRGCs) target ipRGC-recipient nuclei to influence subconscious visual behavior. Using a dual recombinase fluorescent reporter strategy, we showed that conventional RGCs innervate many subconscious ipRGC-recipient nuclei, apart from the suprachiasmatic nucleus. We revealed previously unrecognized stratification patterns of retinal innervation from ipRGCs and conventional RGCs in the ventral portion of the lateral geniculate nucleus. Further, we found that the percent innervation of ipRGCs and conventional RGCs across ipsi- and contralateral nuclei differ. Our data provide a blueprint to understand how conventional RGCs and ipRGCs innervate different brain regions to influence subconscious visual behaviors.
Collapse
Affiliation(s)
- Corinne Beier
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| | - Ze Zhang
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, NIMH, NIH, Bethesda, Maryland, USA
| |
Collapse
|