1
|
Centofante E, Santoboni M, Mombelli ELJ, Rinaldi A, Mele A. Distinct Roles of Medial Prefrontal Cortex Subregions in the Consolidation and Recall of Remote Spatial Memories. eNeuro 2024; 11:ENEURO.0192-24.2024. [PMID: 39406482 PMCID: PMC11493174 DOI: 10.1523/eneuro.0192-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
It is a common belief that memories, over time, become progressively independent of the hippocampus and are gradually stored in cortical areas. This view is mainly based on evidence showing that prefrontal cortex (PFC) manipulations impair the retrieval of remote memories, while hippocampal inhibition does not. More controversial is whether activity in the medial PFC is required immediately after learning to initiate consolidation. Another question concerns functional differences among PFC subregions in forming and storing remote memories. To address these issues, we directly contrasted the effects of loss-of-function manipulations of the anterior cingulate cortex (aCC) and the ventromedial PFC, which includes the infralimbic (IL) and prelimbic (PL) cortices, before testing and immediately after training on the ability of CD1 mice to recall the hidden platform location in the Morris water maze. We injected an AAV carrying the hM4Di receptor into the PL-IL or aCC. Interestingly, pretest administrations of clozapine-N-oxide (CNO; 3 mg/kg) revealed that the aCC, but not the PL-IL, was necessary to recall remote spatial information. Furthermore, systemic post-training administration of CNO impaired memory recall at remote, but not recent, time points in both groups. These findings revealed a functional dissociation between the two prefrontal areas, demonstrating that both the PL-IL and the aCC are involved in early consolidation of remote spatial memories, but only the aCC is engaged in their recall.
Collapse
Affiliation(s)
- Eleonora Centofante
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Mattia Santoboni
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Elena L J Mombelli
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| | - Andrea Mele
- Department of Biology and Biotechnology 'C. Darwin', Centre for Research in Neurobiology 'D.Bovet', Sapienza University of Rome, Rome I-00185, Italy
| |
Collapse
|
2
|
Sekeres MJ, Schomaker J, Nadel L, Tse D. To update or to create? The influence of novelty and prior knowledge on memory networks. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230238. [PMID: 38853571 PMCID: PMC11343309 DOI: 10.1098/rstb.2023.0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 06/11/2024] Open
Abstract
Schemas are foundational mental structures shaped by experience. They influence behaviour, guide the encoding of new memories and are shaped by associated information. The adaptability of memory schemas facilitates the integration of new information that aligns with existing knowledge structures. First, we discuss how novel information consistent with an existing schema can be swiftly assimilated when presented. This cognitive updating is facilitated by the interaction between the hippocampus and the prefrontal cortex. Second, when novel information is inconsistent with the schema, it likely engages the hippocampus to encode the information as part of an episodic memory trace. Third, novelty may enhance hippocampal dopamine through either the locus coeruleus or ventral tegmental area pathways, with the pathway involved potentially depending on the type of novelty encountered. We propose a gradient theory of schema and novelty to elucidate the neural processes by which schema updating or novel memory traces are formed. It is likely that experiences vary along a familiarity-novelty continuum, and the degree to which new experiences are increasingly novel will guide whether memory for a new experience either integrates into an existing schema or prompts the creation of a new cognitive framework. This article is part of the theme issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Melanie J. Sekeres
- School of Psychology, University of Ottawa, Ottawa, OntarioK1N 6N5, Canada
| | - Judith Schomaker
- Health, Medical & Neuropsychology, Leiden University, Leiden2333 AK, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Lynn Nadel
- Department of Psychology, University of Arizona, Tucson, AZ85721, USA
| | - Dorothy Tse
- Department of Psychology, Edge Hill University, OrmskirkL39 4QP, UK
| |
Collapse
|
3
|
Buchberger ES, Joechner AK, Ngo CT, Lindenberger U, Werkle-Bergner M. Age differences in generalization, memory specificity, and their overnight fate in childhood. Child Dev 2024; 95:e270-e286. [PMID: 38516813 DOI: 10.1111/cdev.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Memory enables generalization to new situations, and memory specificity that preserves individual episodes. This study investigated generalization, memory specificity, and their overnight fate in 141 4- to 8-year-olds (computerized memory game; 71 females, tested 2020-2021 in Germany). The results replicated age effects in generalization and memory specificity, and a contingency of generalization on object conceptual properties and interobject semantic proximity. Age effects were stronger in generalization than in memory specificity, and generalization was more closely linked to the explicit regularity knowledge in older than in younger children. After an overnight delay, older children retained more generalized and specific memories and showed greater gains but only in generalization. These findings reveal distinct age differences in generalization and memory specificity across childhood.
Collapse
Affiliation(s)
- Elisa S Buchberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
4
|
Hall S. Is the Papez circuit the location of the elusive episodic memory engram? IBRO Neurosci Rep 2024; 16:249-259. [PMID: 38370006 PMCID: PMC10869290 DOI: 10.1016/j.ibneur.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
All of the brain structures and white matter that make up Papez' circuit, as well as the circuit as a whole, are implicated in the literature in episodic memory formation and recall. This paper shows that Papez' circuit has the detailed structure and connectivity that is evidently required to support the episodic memory engram, and that identifying Papez' circuit as the location of the engram answers a number of long-standing questions regarding the role of medial temporal lobe structures in episodic memory. The paper then shows that the process by which the episodic memory engram may be formed is a network-wide Hebbian potentiation termed "racetrack potentiation", whose frequency corresponds to that observed in vivo in humans for memory functions. Further, by considering the microcircuits observed in the medial temporal lobe structures forming Papez' circuit, the paper establishes the neural mechanisms behind the required functions of sensory information storage and recall, pattern completion, pattern separation, and memory consolidation. The paper shows that Papez' circuit has the necessary connectivity to gather the various elements of an episodic memory occurring within Pöppel's experienced time or "quantum of experience". Finally, the paper shows how the memory engram located in Papez' circuit might be central to the formation of a duplicate engram in the cortex enabling consolidation and long-term storage of episodic memories.
Collapse
Affiliation(s)
- Steven Hall
- Department of Psychology, University of Bolton, Deane Road, Bolton BL3 5AB, UK
| |
Collapse
|
5
|
Loetscher KB, Goldfarb EV. Integrating and fragmenting memories under stress and alcohol. Neurobiol Stress 2024; 30:100615. [PMID: 38375503 PMCID: PMC10874731 DOI: 10.1016/j.ynstr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Stress can powerfully influence the way we form memories, particularly the extent to which they are integrated or situated within an underlying spatiotemporal and broader knowledge architecture. These different representations in turn have significant consequences for the way we use these memories to guide later behavior. Puzzlingly, although stress has historically been argued to promote fragmentation, leading to disjoint memory representations, more recent work suggests that stress can also facilitate memory binding and integration. Understanding the circumstances under which stress fosters integration will be key to resolving this discrepancy and unpacking the mechanisms by which stress can shape later behavior. Here, we examine memory integration at multiple levels: linking together the content of an individual experience, threading associations between related but distinct events, and binding an experience into a pre-existing schema or sense of causal structure. We discuss neural and cognitive mechanisms underlying each form of integration as well as findings regarding how stress, aversive learning, and negative affect can modulate each. In this analysis, we uncover that stress can indeed promote each level of integration. We also show how memory integration may apply to understanding effects of alcohol, highlighting extant clinical and preclinical findings and opportunities for further investigation. Finally, we consider the implications of integration and fragmentation for later memory-guided behavior, and the importance of understanding which type of memory representation is potentiated in order to design appropriate interventions.
Collapse
Affiliation(s)
| | - Elizabeth V. Goldfarb
- Department of Psychiatry, Yale University, USA
- Department of Psychology, Yale University, USA
- Wu Tsai Institute, Yale University, USA
- National Center for PTSD, West Haven VA, USA
| |
Collapse
|
6
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Spens E, Burgess N. A generative model of memory construction and consolidation. Nat Hum Behav 2024; 8:526-543. [PMID: 38242925 PMCID: PMC10963272 DOI: 10.1038/s41562-023-01799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
Episodic memories are (re)constructed, share neural substrates with imagination, combine unique features with schema-based predictions and show schema-based distortions that increase with consolidation. Here we present a computational model in which hippocampal replay (from an autoassociative network) trains generative models (variational autoencoders) to (re)create sensory experiences from latent variable representations in entorhinal, medial prefrontal and anterolateral temporal cortices via the hippocampal formation. Simulations show effects of memory age and hippocampal lesions in agreement with previous models, but also provide mechanisms for semantic memory, imagination, episodic future thinking, relational inference and schema-based distortions including boundary extension. The model explains how unique sensory and predictable conceptual elements of memories are stored and reconstructed by efficiently combining both hippocampal and neocortical systems, optimizing the use of limited hippocampal storage for new and unusual information. Overall, we believe hippocampal replay training generative models provides a comprehensive account of memory construction, imagination and consolidation.
Collapse
Affiliation(s)
- Eleanor Spens
- UCL Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
8
|
Sherman BE, Turk-Browne NB, Goldfarb EV. Multiple Memory Subsystems: Reconsidering Memory in the Mind and Brain. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:103-125. [PMID: 37390333 PMCID: PMC10756937 DOI: 10.1177/17456916231179146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The multiple-memory-systems framework-that distinct types of memory are supported by distinct brain systems-has guided learning and memory research for decades. However, recent work challenges the one-to-one mapping between brain structures and memory types central to this taxonomy, with key memory-related structures supporting multiple functions across substructures. Here we integrate cross-species findings in the hippocampus, striatum, and amygdala to propose an updated framework of multiple memory subsystems (MMSS). We provide evidence for two organizational principles of the MMSS theory: First, opposing memory representations are colocated in the same brain structures; second, parallel memory representations are supported by distinct structures. We discuss why this burgeoning framework has the potential to provide a useful revision of classic theories of long-term memory, what evidence is needed to further validate the framework, and how this novel perspective on memory organization may guide future research.
Collapse
Affiliation(s)
| | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
- National Center for PTSD, West Haven, USA
| |
Collapse
|
9
|
Johnston CR, Quarmley M, Nelson BD, Helion C, Murty VP, Jarcho JM. Social feedback biases emerge during recall but not prediction and shift across the development of social anxiety. Proc Natl Acad Sci U S A 2023; 120:e2308593120. [PMID: 38117853 PMCID: PMC10756286 DOI: 10.1073/pnas.2308593120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/08/2023] [Indexed: 12/22/2023] Open
Abstract
Memory is a reconstructive process that can result in events being recalled as more positive or negative than they actually were. While positive recall biases may contribute to well-being, negative recall biases may promote internalizing symptoms, such as social anxiety. Adolescence is characterized by increased salience of peers and peak incidence of social anxiety. Symptoms often wax and wane before becoming more intractable during adulthood. Open questions remain regarding how and when biases for social feedback are expressed and how individual differences in biases may contribute to social anxiety across development. Two studies used a social feedback and cued response task to assess biases about being liked or disliked when retrieving memories vs. making predictions. Findings revealed a robust positivity bias about memories for social feedback, regardless of whether memories were true or false. Moreover, memory bias was associated with social anxiety in a developmentally sensitive way. Among adults (study 1), more severe symptoms of social anxiety were associated with a negativity bias. During the transition from adolescence to adulthood (study 2), age strengthened the positivity bias in those with less severe symptoms and strengthened the negativity bias in those with more severe symptoms. These patterns of bias were isolated to perceived memory retrieval and did not generalize to predictions about social feedback. These results provide initial support for a model by which schemas may infiltrate perceptions of memory for past, but not predictions of future, social events, shaping susceptibility for social anxiety, particularly during the transition into adulthood.
Collapse
Affiliation(s)
- Camille R. Johnston
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA19122
| | - Megan Quarmley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA19122
| | - Brady D. Nelson
- Department of Psychology, Stony Brook University, Stony Brook, NY11794
| | - Chelsea Helion
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA19122
| | - Vishnu P. Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA19122
| | - Johanna M. Jarcho
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA19122
| |
Collapse
|
10
|
Sullens DG, Nguyen P, Gilley K, Wiffler MB, Sekeres MJ. Hippocampal motor memory network reorganization depends on familiarity, not time. Learn Mem 2023; 30:320-324. [PMID: 38056901 PMCID: PMC10750863 DOI: 10.1101/lm.053792.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.
Collapse
Affiliation(s)
- D Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Phuoc Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia 24515, USA
| | - Madison B Wiffler
- Department of Biology, Baylor University, Waco, Texas 76798, USA
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Melanie J Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
11
|
Leshinskaya A, Nguyen MA, Ranganath C. Integration of event experiences to build relational knowledge in the human brain. Cereb Cortex 2023; 33:9997-10012. [PMID: 37492008 DOI: 10.1093/cercor/bhad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated how the human brain integrates experiences of specific events to build general knowledge about typical event structure. We examined an episodic memory area important for temporal relations, anterior-lateral entorhinal cortex, and a semantic memory area important for action concepts, middle temporal gyrus, to understand how and when these areas contribute to these processes. Participants underwent functional magnetic resonance imaging while learning and recalling temporal relations among novel events over two sessions 1 week apart. Across distinct contexts, individual temporal relations among events could either be consistent or inconsistent with each other. Within each context, during the recall phase, we measured associative coding as the difference of multivoxel correlations among related vs unrelated pairs of events. Neural regions that form integrative representations should exhibit stronger associative coding in the consistent than the inconsistent contexts. We found evidence of integrative representations that emerged quickly in anterior-lateral entorhinal cortex (at session 1), and only subsequently in middle temporal gyrus, which showed a significant change across sessions. A complementary pattern of findings was seen with signatures during learning. This suggests that integrative representations are established early in anterior-lateral entorhinal cortex and may be a pathway to the later emergence of semantic knowledge in middle temporal gyrus.
Collapse
Affiliation(s)
- Anna Leshinskaya
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Mitchell A Nguyen
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| |
Collapse
|
12
|
Forest TA, Abolghasem Z, Finn AS, Schlichting ML. Memories of structured input become increasingly distorted across development. Child Dev 2023; 94:e279-e295. [PMID: 37161780 DOI: 10.1111/cdev.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Trajectories of cognitive and neural development suggest that, despite early emergence, the ability to extract environmental patterns changes across childhood. Here, 5- to 9-year-olds and adults (N = 211, 110 females, in a large Canadian city) completed a memory test assessing what they remembered after watching a stream of shape triplets: the particular sequence in which the shapes occurred and/or their group-level structure. After accounting for developmental improvements in overall memory, all ages remembered specific transitions, while memory for group membership was only observed in older children and adults (age by test-type interaction η2 = .05). Thus, while young children form memories for specifics of structured experience, memory for derived associations is refined later-underscoring that adults and young children form different memories despite identical experience.
Collapse
Affiliation(s)
| | - Zahra Abolghasem
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Fang X, Alsbury-Nealy B, Wang Y, Frankland PW, Josselyn SA, Schlichting ML, Duncan KD. Time separating spatial memories does not influence their integration in humans. PLoS One 2023; 18:e0289649. [PMID: 37561677 PMCID: PMC10414573 DOI: 10.1371/journal.pone.0289649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
Humans can navigate through similar environments-like grocery stores-by integrating across their memories to extract commonalities or by differentiating between each to find idiosyncratic locations. Here, we investigate one factor that might impact whether two related spatial memories are integrated or differentiated: Namely, the temporal delay between experiences. Rodents have been shown to integrate memories more often when they are formed within 6 hours of each other. To test if this effect influences how humans spontaneously integrate spatial memories, we had 131 participants search for rewards in two similar virtual environments. We separated these learning experiences by either 30 minutes, 3 hours, or 27 hours. Memory integration was assessed three days later. Participants were able to integrate and simultaneously differentiate related memories across experiences. However, neither memory integration nor differentiation was modulated by temporal delay, in contrast to previous work. We further showed that both the levels of initial memory reactivation during the second experience and memory generalization to novel environments were comparable across conditions. Moreover, perseveration toward the initial reward locations during the second experience was related positively to integration and negatively to differentiation-but again, these associations did not vary by delay. Our findings identify important boundary conditions on the translation of rodent memory mechanisms to humans, motivating more research to characterize how even fundamental memory mechanisms are conserved and diverge across species.
Collapse
Affiliation(s)
- Xiaoping Fang
- Department of Psychology, University of Toronto, Toronto, Canada
- School of Psychology, Beijing Language and Culture University, Beijing, China
| | | | - Ying Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Paul W. Frankland
- Department of Psychology, University of Toronto, Toronto, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Sheena A. Josselyn
- Department of Psychology, University of Toronto, Toronto, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
14
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Li AY, Yuan JY, Pun C, Barense MD. The effect of memory load on object reconstruction: Insights from an online mouse-tracking task. Atten Percept Psychophys 2023; 85:1612-1630. [PMID: 36600154 DOI: 10.3758/s13414-022-02650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Why can't we remember everything that we experience? Previous work in the domain of object memory has suggested that our ability to resolve interference between relevant and irrelevant object features may limit how much we can remember at any given moment. Here, we developed an online mouse-tracking task to study how memory load influences object reconstruction, testing participants synchronously over virtual conference calls. We first tested up to 18 participants concurrently, replicating memory findings from a condition where participants were tested individually. Next, we examined how memory load influenced mouse trajectories as participants reconstructed target objects. We found interference between the contents of working memory and what was perceived during object reconstruction, an effect that interacted with visual similarity and memory load. Furthermore, we found interference from previously studied but currently irrelevant objects, providing evidence of object-to-location binding errors. At the greatest memory load, participants were nearly three times more likely to move their mouse cursor over previously studied nontarget objects, an effect observed primarily during object reconstruction rather than in the period before the final response. As evidence of the dynamic interplay between working memory and perception, these results show that object reconstruction behavior may be altered by (i) interference between what is represented in mind and what is currently being viewed, and (ii) interference from previously studied but currently irrelevant information. Finally, we discuss how mouse tracking can provide a rich characterization of participant behavior at millisecond temporal resolution, enormously increasing power in cognitive psychology experiments.
Collapse
Affiliation(s)
- Aedan Y Li
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - James Y Yuan
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Carson Pun
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
16
|
Miller AMP, Jacob AD, Ramsaran AI, De Snoo ML, Josselyn SA, Frankland PW. Emergence of a predictive model in the hippocampus. Neuron 2023; 111:1952-1965.e5. [PMID: 37015224 PMCID: PMC10293047 DOI: 10.1016/j.neuron.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
The brain organizes experiences into memories that guide future behavior. Hippocampal CA1 population activity is hypothesized to reflect predictive models that contain information about future events, but little is known about how they develop. We trained mice on a series of problems with or without a common statistical structure to observe how memories are formed and updated. Mice that learned structured problems integrated their experiences into a predictive model that contained the solutions to upcoming novel problems. Retrieving the model during learning improved discrimination accuracy and facilitated learning. Using calcium imaging to track CA1 activity during learning, we found that hippocampal ensemble activity became more stable as mice formed a predictive model. The hippocampal ensemble was reactivated during training and incorporated new activity patterns from each training problem. These results show how hippocampal activity supports building predictive models by organizing new information with respect to existing memories.
Collapse
Affiliation(s)
- Adam M P Miller
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alex D Jacob
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mitchell L De Snoo
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Brain, Mind, & Consciousness Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
17
|
Tambini A, Miller J, Ehlert L, Kiyonaga A, D’Esposito M. Structured memory representations develop at multiple time scales in hippocampal-cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535935. [PMID: 37066263 PMCID: PMC10104124 DOI: 10.1101/2023.04.06.535935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Influential views of systems memory consolidation posit that the hippocampus rapidly forms representations of specific events, while neocortical networks extract regularities across events, forming the basis of schemas and semantic knowledge. Neocortical extraction of schematic memory representations is thought to occur on a protracted timescale of months, especially for information that is unrelated to prior knowledge. However, this theorized evolution of memory representations across extended timescales, and differences in the temporal dynamics of consolidation across brain regions, lack reliable empirical support. To examine the temporal dynamics of memory representations, we repeatedly exposed human participants to structured information via sequences of fractals, while undergoing longitudinal fMRI for three months. Sequence-specific activation patterns emerged in the hippocampus during the first 1-2 weeks of learning, followed one week later by high-level visual cortex, and subsequently the medial prefrontal and parietal cortices. Schematic, sequence-general representations emerged in the prefrontal cortex after 3 weeks of learning, followed by the medial temporal lobe and anterior temporal cortex. Moreover, hippocampal and most neocortical representations showed sustained rather than time-limited dynamics, suggesting that representations tend to persist across learning. These results show that specific hippocampal representations emerge early, followed by both specific and schematic representations at a gradient of timescales across hippocampal-cortical networks as learning unfolds. Thus, memory representations do not exist only in specific brain regions at a given point in time, but are simultaneously present at multiple levels of abstraction across hippocampal-cortical networks.
Collapse
Affiliation(s)
- Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY
| | - Jacob Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT
| | - Luke Ehlert
- Department of Neurobiology and Behavior, University of California. Irvine, CA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA
- Department of Psychology, University of California, Berkeley, CA
| |
Collapse
|
18
|
Bullinger E, Greggers U, Menzel R. Generalization of navigation memory in honeybees. Front Behav Neurosci 2023; 17:1070957. [PMID: 36950065 PMCID: PMC10025308 DOI: 10.3389/fnbeh.2023.1070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Flying insects like the honeybee learn multiple features of the environment for efficient navigation. Here we introduce a novel paradigm in the natural habitat, and ask whether the memory of such features is generalized to novel test conditions. Foraging bees from colonies located in 5 different home areas were tested in a common area for their search flights. The home areas differed in the arrangements of rising natural objects or their lack, and in the existence or lack of elongated ground structures. The test area resembled partly or not at all the layout of landmarks in the respective home areas. In particular, the test area lacked rising objects. The search flights were tracked with harmonic radar and quantified by multiples procedures, extracting their differences on an individual basis. Random search as the only guide for searching was excluded by two model calculations. The frequencies of directions of flight sectors differed from both model calculations and between the home areas in a graded fashion. Densities of search flight fixes were used to create heat maps and classified by a partial least squares regression analysis. Classification was performed with a support vector machine in order to account for optimal hyperplanes. A rank order of well separated clusters was found that partly resemble the graded differences between the ground structures of the home areas and the test area. The guiding effect of elongated ground structures was quantified with respect to the sequence, angle and distance from these ground structures. We conclude that foragers generalize their specific landscape memory in a graded way to the landscape features in the test area, and argue that both the existence and absences of landmarks are taken into account. The conclusion is discussed in the context of the learning and generalization process in an insect, the honeybee, with an emphasis on exploratory learning in the context of navigation.
Collapse
Affiliation(s)
- Eric Bullinger
- Institut für Automatisierungstechnik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Uwe Greggers
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Abstract
A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.
Collapse
|
20
|
Berens SC, Bird CM. Hippocampal and medial prefrontal cortices encode structural task representations following progressive and interleaved training schedules. PLoS Comput Biol 2022; 18:e1010566. [PMID: 36251731 PMCID: PMC9612823 DOI: 10.1371/journal.pcbi.1010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/27/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Memory generalisations may be underpinned by either encoding- or retrieval-based generalisation mechanisms and different training schedules may bias some learners to favour one of these mechanisms over the other. We used a transitive inference task to investigate whether generalisation is influenced by progressive vs randomly interleaved training, and overnight consolidation. On consecutive days, participants learnt pairwise discriminations from two transitive hierarchies before being tested during fMRI. Inference performance was consistently better following progressive training, and for pairs further apart in the transitive hierarchy. BOLD pattern similarity correlated with hierarchical distances in the left hippocampus (HIP) and medial prefrontal cortex (MPFC) following both training schedules. These results are consistent with the use of structural representations that directly encode hierarchical relationships between task features. However, such effects were only observed in the MPFC for recently learnt relationships. Furthermore, the MPFC appeared to maintain structural representations in participants who performed at chance on the inference task. We conclude that humans preferentially employ encoding-based mechanisms to store map-like relational codes that can be used for memory generalisation. These codes are expressed in the HIP and MPFC following both progressive and interleaved training but are not sufficient for accurate inference.
Collapse
Affiliation(s)
- Sam C. Berens
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Chris M. Bird
- School of Psychology, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
21
|
Graves KN, Sherman BE, Huberdeau D, Damisah E, Quraishi IH, Turk-Browne NB. Remembering the pattern: A longitudinal case study on statistical learning in spatial navigation and memory consolidation. Neuropsychologia 2022; 174:108341. [PMID: 35961387 PMCID: PMC9578695 DOI: 10.1016/j.neuropsychologia.2022.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
Distinct brain systems are thought to support statistical learning over different timescales. Regularities encountered during online perceptual experience can be acquired rapidly by the hippocampus. Further processing during offline consolidation can establish these regularities gradually in cortical regions, including the medial prefrontal cortex (mPFC). These mechanisms of statistical learning may be critical during spatial navigation, for which knowledge of the structure of an environment can facilitate future behavior. Rapid acquisition and prolonged retention of regularities have been investigated in isolation, but how they interact in the context of spatial navigation is unknown. We had the rare opportunity to study the brain systems underlying both rapid and gradual timescales of statistical learning using intracranial electroencephalography (iEEG) longitudinally in the same patient over a period of three weeks. As hypothesized, spatial patterns were represented in the hippocampus but not mPFC for up to one week after statistical learning and then represented in the mPFC but not hippocampus two and three weeks after statistical learning. Taken together, these findings suggest that the hippocampus may contribute to the initial extraction of regularities prior to cortical consolidation.
Collapse
Affiliation(s)
- Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA.
| | - Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA
| | - David Huberdeau
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale University, 333 Cedar St., New Haven, CT, 06510, USA
| | - Imran H Quraishi
- Department of Neurology, Yale University, 800 Howard Ave., New Haven, CT, 06519, USA
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT, 06520, USA; Wu Tsai Institute, Yale University, 100 College St, New Haven, CT, 06510, USA
| |
Collapse
|
22
|
Takehara-Nishiuchi K. Flexibility of memory for future-oriented cognition. Curr Opin Neurobiol 2022; 76:102622. [PMID: 35994840 DOI: 10.1016/j.conb.2022.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Memories of daily experiences contain incidental details unique to each experience as well as common latent patterns shared with others. Neural representations focusing on the latter aspect can be reinstated by similar new experiences even though their perceptual features do not match the original experiences perfectly. Such flexible memory use allows for faster learning and better decision-making in novel situations. Here, I review evidence from rodent and primate electrophysiological studies to discuss how memory flexibility is implemented in the spiking activity of neuronal ensembles. These findings uncovered innate and learned coding properties and their potential refinement during sleep that support flexible integration and application of memories for better future adaptation.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
23
|
Cockcroft JP, Berens SC, Gaskell MG, Horner AJ. Schematic information influences memory and generalisation behaviour for schema-relevant and -irrelevant information. Cognition 2022; 227:105203. [PMID: 35717767 DOI: 10.1016/j.cognition.2022.105203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Schemas modulate memory performance for schema-congruent and -incongruent information. However, it is assumed they do not influence behaviour for information irrelevant to themselves. We assessed memory and generalisation behaviour for information related to an underlying pattern, where a schema could be extracted (schema-relevant), and information that was unrelated and therefore irrelevant to the extracted schema (schema-irrelevant). Using precision measures of long-term memory, where participants learnt associations between words and locations around a circle, we assessed memory and generalisation for schema-relevant and -irrelevant information. Words belonged to two semantic categories: human-made and natural. For one category, word-locations were clustered around one point on the circle (clustered condition), while the other category had word-locations randomly distributed (non-clustered condition). The presence of an underlying pattern in the clustered condition allows for the extraction of a schema that can support both memory and generalisation. At test, participants were presented with old (memory) and new (generalisation) words, requiring them to identify a remembered location or make a best guess. The presence of the clustered pattern modulated memory and generalisation. In the clustered condition, participants placed old and new words in locations consistent with the underlying pattern. In contrast, for the non-clustered condition, participants were less likely to place old and new non-clustered words in locations consistent with the clustered condition. Therefore, we provide evidence that the presence of schematic information modulates memory and generalisation for schema-relevant and -irrelevant information. Our results highlight the need to carefully construct appropriate schema-irrelevant control conditions such that behaviour in these conditions is not modulated by the presence of a schema. Theoretically, models of schema processing need to account for how the presence of schematic information can have consequences for information that is irrelevant to itself.
Collapse
Affiliation(s)
- Jamie P Cockcroft
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK
| | | | | | - Aidan J Horner
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK.
| |
Collapse
|
24
|
Collins T. Serial dependence tracks objects and scenes in parallel and independently. J Vis 2022; 22:4. [PMID: 35687353 PMCID: PMC9202337 DOI: 10.1167/jov.22.7.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The visual world is made up of objects and scenes. Object perception requires both discriminating an individual object from others and binding together different perceptual samples of that object across time. Such binding manifests by serial dependence, the attraction of the current perception of a visual attribute toward values of that attribute seen in the recent past. Scene perception is subserved by global mechanisms such as ensemble perception, the rapid extraction of the average feature value of a group of objects. The current study examined to what extent the perception of single objects in multi-object scenes depended on previous feature values of that object or on the average previous attribute of all objects in the ensemble. Results show that serial dependence occurs independently on two simultaneously present objects, that ensemble perception depends only on previous ensembles, and that serial dependence of an individual object occurs only for the features of that particular object. These results suggest that the temporal integration of successive perceptual samples operates simultaneously at independent levels of visual processing.
Collapse
Affiliation(s)
- Thérèse Collins
- Integrative Neuroscience and Cognition Center, University of Paris and CNRS, Paris, France.,
| |
Collapse
|
25
|
Sex Differences in the Spatial Behavior Functions of Adult-Born Neurons in Rats. eNeuro 2022; 9:ENEURO.0054-22.2022. [PMID: 35473765 PMCID: PMC9116935 DOI: 10.1523/eneuro.0054-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis modifies hippocampal circuits and behavior, but removing newborn neurons does not consistently alter spatial processing, a core function of the hippocampus. Additionally, little is known about sex differences in neurogenesis since few studies have compared males and females. Since adult-born neurons regulate the stress response, we hypothesized that spatial functions may be more prominent under aversive conditions and may differ between males and females given sex differences in stress responding. We therefore trained intact and neurogenesis-deficient rats in the spatial water maze at temperatures that vary in their degree of aversiveness. In the standard water maze, ablating neurogenesis did not alter spatial learning in either sex. However, in cold water, ablating neurogenesis had divergent sex-dependent effects: relative to intact rats, male neurogenesis-deficient rats were slower to escape the maze and female neurogenesis-deficient rats were faster. Neurogenesis promoted temperature-related changes in search strategy in females, but it promoted search strategy stability in males. Females displayed greater recruitment (Fos expression) of the dorsal hippocampus than males, particularly in cold water. However, blocking neurogenesis did not alter Fos expression in either sex. Finally, morphologic analyses revealed greater experience-dependent plasticity in males. Adult-born neurons in males and females had similar morphology at baseline but training increased spine density and reduced presynaptic terminal size, specifically in males. Collectively, these findings indicate that adult-born neurons contribute to spatial learning in stressful conditions and they provide new evidence for sex differences in their behavioral functions.
Collapse
|
26
|
Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 2022; 23:173-186. [PMID: 35027710 DOI: 10.1038/s41583-021-00548-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. .,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia. .,Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| | - Paul W Frankland
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada. .,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Shridhar S, Singh VP, Bhatt R, Kundu S, Balaji J. A new paradigm for investigating temporal order memory shows higher order associations are present in recent but not in remote retrieval. Exp Brain Res 2022; 240:611-629. [PMID: 34988597 DOI: 10.1007/s00221-021-06282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Memory of a sequence of distinct events requires encoding the temporal order as well as the intervals that separates these events. In this study, using order-place association task where the animal learns to associate the location of the food pellet to the order of entry into the event arena, we probe the nature of temporal order memory in mice. In our task, individual trials become distinct events, as the animal is trained to form a unique association between entry order and a correct location. The inter-trial intervals (> 30 min) are chosen deliberately to minimize the inputs from working memory. We develop this paradigm initially using four order-place associates and later extend it to five paired associates. Our results show that animals not only acquire these explicit (entry order to place) associations but also higher order associations that can only be inferred implicitly (temporal relation between the events) from the temporal order of these events. As an indicator of such higher order learning during the probe trial, the mice exhibit predominantly prospective errors that decline proportionally with temporal distance. On the other hand, prior to acquiring the sequence, the retrospective errors are dominant. In addition, we also tested the nature of such acquisitions when temporal order CS is presented along with flavored pellet as a compound stimulus comprising of order and flavor both simultaneously being paired with location. Results from these experiments indicate that the animal learns both order-place and flavor-place associations. Comparing with pure order-place training, we find that the additional flavor stimulus in a compound training paradigm did not interfere with the ability of the animals to acquire the order-place associations. When tested remotely, pure order-place associations could be retrieved only after a reminder training. Further higher order associations representing the temporal relationship between the events is markedly absent in the remote time.
Collapse
Affiliation(s)
- Shruti Shridhar
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - Vikram Pal Singh
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - Richa Bhatt
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - Sankhanava Kundu
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - J Balaji
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
28
|
Vallianatou CA, Alonso A, Aleman AZ, Genzel L, Stella F. Learning-Induced Shifts in Mice Navigational Strategies Are Unveiled by a Minimal Behavioral Model of Spatial Exploration. eNeuro 2021; 8:ENEURO.0553-20.2021. [PMID: 34330819 PMCID: PMC8489025 DOI: 10.1523/eneuro.0553-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Shifts in spatial patterns produced during the execution of a navigational task can be used to track the effects of the accumulation of knowledge and the acquisition of structured information about the environment. Here, we provide a quantitative analysis of mice behavior while performing a novel goal localization task in a large, modular arena, the HexMaze. To demonstrate the effects of different forms of previous knowledge we first obtain a precise statistical characterization of animals' paths with sub-trial resolution and over different phases of learning. The emergence of a flexible representation of the task is accompanied by a progressive improvement of performance, mediated by multiple, multiplexed time scales. We then use a generative mathematical model of the animal behavior to isolate the specific contributions to the final navigational strategy. We find that animal behavior can be accurately reproduced by the combined effect of a goal-oriented component, becoming stronger with the progression of learning, and of a random walk component, producing choices unrelated to the task and only partially weakened in time.
Collapse
Affiliation(s)
| | - Alejandra Alonso
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| | | | - Lisa Genzel
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| | - Federico Stella
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| |
Collapse
|
29
|
Cowan ET, Liu AA, Henin S, Kothare S, Devinsky O, Davachi L. Time-dependent transformations of memory representations differ along the long axis of the hippocampus. Learn Mem 2021; 28:329-340. [PMID: 34400534 PMCID: PMC8372564 DOI: 10.1101/lm.053438.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Research has shown that sleep is beneficial for the long-term retention of memories. According to theories of memory consolidation, memories are gradually reorganized, becoming supported by widespread, distributed cortical networks, particularly during postencoding periods of sleep. However, the effects of sleep on the organization of memories in the hippocampus itself remains less clear. In a 3-d study, participants encoded separate lists of word-image pairs differing in their opportunity for sleep-dependent consolidation. Pairs were initially studied either before or after an overnight sleep period, and were then restudied in a functional magnetic resonance imaging (fMRI) scan session. We used multivariate pattern similarity analyses to examine fine-grained effects of consolidation on memory representations in the hippocampus. We provide evidence for a dissociation along the long axis of the hippocampus that emerges with consolidation, such that representational patterns for object-word memories initially formed prior to sleep become differentiated in anterior hippocampus and more similar, or overlapping, in posterior hippocampus. Differentiation in anterior hippocampal representations correlated with subsequent behavioral performance. Furthermore, representational overlap in posterior hippocampus correlated with the duration of intervening slow wave sleep. Together, these results demonstrate that sleep-dependent consolidation promotes the reorganization of memory traces along the long axis of the hippocampus.
Collapse
Affiliation(s)
- Emily T Cowan
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Anli A Liu
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Simon Henin
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Sanjeev Kothare
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Lila Davachi
- Psychology Department, Columbia University, New York, New York 10027, USA
- Nathan Kline Institute, Orangeburg, New York 10962, USA
| |
Collapse
|
30
|
Ellis CT, Skalaban LJ, Yates TS, Bejjanki VR, Córdova NI, Turk-Browne NB. Evidence of hippocampal learning in human infants. Curr Biol 2021; 31:3358-3364.e4. [PMID: 34022155 DOI: 10.1016/j.cub.2021.04.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 01/26/2023]
Abstract
The hippocampus is essential for human memory.1 The protracted maturation of memory capacities from infancy through early childhood2-4 is thus often attributed to hippocampal immaturity.5-7 The hippocampus of human infants has been characterized in terms of anatomy,8,9 but its function has never been tested directly because of technical challenges.10,11 Here, we use recently developed methods for task-based fMRI in awake human infants12 to test the hypothesis that the infant hippocampus supports statistical learning.13-15 Hippocampal activity increased with exposure to visual sequences of objects when the temporal order contained regularities to be learned, compared to when the order was random. Despite the hippocampus doubling in anatomical volume across infancy, learning-related functional activity bore no relationship to age. This suggests that the hippocampus is recruited for statistical learning at the youngest ages in our sample, around 3 months. Within the hippocampus, statistical learning was clearer in anterior than posterior divisions. This is consistent with the theory that statistical learning occurs in the monosynaptic pathway,16 which is more strongly represented in the anterior hippocampus.17,18 The monosynaptic pathway develops earlier than the trisynaptic pathway, which is linked to episodic memory,19,20 raising the possibility that the infant hippocampus participates in statistical learning before it forms durable memories. Beyond the hippocampus, the medial prefrontal cortex showed statistical learning, consistent with its role in adult memory integration21 and generalization.22 These results suggest that the hippocampus supports the vital ability of infants to extract the structure of their environment through experience.
Collapse
Affiliation(s)
- Cameron T Ellis
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Lena J Skalaban
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Tristan S Yates
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Vikranth R Bejjanki
- Department of Psychology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - Natalia I Córdova
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
31
|
Abstract
We rely on our long-term memories to guide future behaviors, making it adaptive to prioritize the retention of goal-relevant, salient information in memory. In this review, we discuss findings from rodent and human research to demonstrate that active processes during post-encoding consolidation support the selective stabilization of recent experience into adaptive, long-term memories. Building upon literatures focused on dynamics at the cellular level, we highlight that consolidation also transforms memories at the systems level to support future goal-relevant behavior, resulting in more generalized memory traces in the brain and behavior. We synthesize previous literatures spanning animal research, human cognitive neuroscience, and cognitive psychology to propose an integrative framework for adaptive consolidation by which goal-relevant memoranda are "tagged" for subsequent consolidation, resulting in selective transformations to the structure of memories that support flexible, goal-relevant behaviors.
Collapse
|
32
|
Zeng T, Tompary A, Schapiro AC, Thompson-Schill SL. Tracking the relation between gist and item memory over the course of long-term memory consolidation. eLife 2021; 10:e65588. [PMID: 34259626 PMCID: PMC8328519 DOI: 10.7554/elife.65588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Our experiences in the world support memories not only of specific episodes but also of the generalities (the 'gist') across related experiences. It remains unclear how these two types of memories evolve and influence one another over time. In two experiments, 173 human participants encoded spatial locations from a distribution and reported both item memory (specific locations) and gist memory (center for the locations) across 1-2 months. Experiment 1 demonstrated that after 1 month, gist memory was preserved relative to item memory, despite a persistent positive correlation between them. Critically, item memories were biased toward the gist over time. Experiment 2 showed that a spatial outlier item changed this relationship and that the extraction of gist is sensitive to the regularities of items. Our results suggest that the gist starts to guide item memories over longer durations as their relative strengths change.
Collapse
Affiliation(s)
- Tima Zeng
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexa Tompary
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Anna C Schapiro
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | | |
Collapse
|
33
|
Gilboa A, Moscovitch M. No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron 2021; 109:2239-2255. [PMID: 34015252 DOI: 10.1016/j.neuron.2021.04.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Memory systems consolidation is often conceived as the linear, time-dependent, neurobiological shift of memory from hippocampal-cortical to cortico-cortical dependency. We argue that contrary to this unidirectional view of memory reorganization, information about events may be retained in multiple forms (e.g., event-specific sensory-near episodic memory, event-specific gist information, event-general schematic information, or abstract semantic memory). These representations can all form at the time of the event and may continue to coexist for long durations. Their relative strength, composition, and dominance of expression change with time and experience, with task demands, and through their dynamic interaction with one another. These different psychological mnemonic representations depend on distinct functional and structural neurobiological substrates such that there is a neural-psychological representation correspondence (NPRC) among them. We discuss how the dynamics of psychological memory representations are reflected in multiple levels of neurobiological markers and their interactions. By this view, there are only variations of synaptic consolidation and memory dynamics without assuming a distinct systems consolidation process.
Collapse
Affiliation(s)
- Asaf Gilboa
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
34
|
Vetere G, Xia F, Ramsaran AI, Tran LM, Josselyn SA, Frankland PW. An inhibitory hippocampal-thalamic pathway modulates remote memory retrieval. Nat Neurosci 2021; 24:685-693. [PMID: 33782621 PMCID: PMC8715645 DOI: 10.1038/s41593-021-00819-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2021] [Indexed: 01/30/2023]
Abstract
Memories are supported by distributed hippocampal-thalamic-cortical networks, but the brain regions that contribute to network activity may vary with memory age. This process of reorganization is referred to as systems consolidation, and previous studies have examined the relationship between the activation of different hippocampal, thalamic, and cortical brain regions and memory age at the time of recall. While the activation of some brain regions increases with memory age, other regions become less active. In mice, here we show that the active disengagement of one such brain region, the anterodorsal thalamic nucleus, is necessary for recall at remote time-points and, in addition, which projection(s) mediate such inhibition. Specifically, we identified a sparse inhibitory projection from CA3 to the anterodorsal thalamic nucleus that becomes more active during systems consolidation, such that it is necessary for contextual fear memory retrieval at remote, but not recent, time-points post-learning.
Collapse
Affiliation(s)
- Gisella Vetere
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Team Cerebral Codes and Circuits Connectivity (C4), Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Frances Xia
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Adam I. Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lina M. Tran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena A. Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul W. Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada,Correspondence and requests for materials should be addressed to P.W.F.
| |
Collapse
|
35
|
Chanales AJH, Tremblay-McGaw AG, Drascher ML, Kuhl BA. Adaptive Repulsion of Long-Term Memory Representations Is Triggered by Event Similarity. Psychol Sci 2021; 32:705-720. [PMID: 33882251 PMCID: PMC8726589 DOI: 10.1177/0956797620972490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/28/2020] [Indexed: 11/22/2023] Open
Abstract
We tested whether similarity between events triggers adaptive biases in how those events are remembered. We generated pairs of competing objects that were identical except in color and varied the degree of color similarity for the competing objects. Subjects (N = 123 across four experiments) repeatedly studied and were tested on associations between each of these objects and corresponding faces. As expected, high color similarity between competing objects created memory interference for object-face associations. Strikingly, high color similarity also resulted in a systematic bias in how the objects themselves were remembered: Competing objects with highly similar colors were remembered as being further apart (in color space) than they actually were. This repulsion of color memories increased with learning and served a clear adaptive purpose: Greater repulsion was associated with lower associative-memory interference. These findings reveal that similarity between events triggers adaptive-memory distortions that minimize interference.
Collapse
Affiliation(s)
| | | | | | - Brice A. Kuhl
- Department of Psychology, University of Oregon
- Institute of Neuroscience, University of Oregon
| |
Collapse
|
36
|
Durrant SJ, Johnson JM. Sleep’s Role in Schema Learning and Creative Insights. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the reorganisation of memories. This review is aimed at synthesising recent findings into a coherent narrative and draw overall conclusions.
Recent Findings
Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of new memories within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with creating entirely novel associations while keeping memories implicit.
Summary
Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocampal involvement, and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to play.
Collapse
|
37
|
Amir N, Suliman-Lavie R, Tal M, Shifman S, Tishby N, Nelken I. Value-complexity tradeoff explains mouse navigational learning. PLoS Comput Biol 2020; 16:e1008497. [PMID: 33306669 PMCID: PMC7758052 DOI: 10.1371/journal.pcbi.1008497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/23/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
We introduce a novel methodology for describing animal behavior as a tradeoff between value and complexity, using the Morris Water Maze navigation task as a concrete example. We develop a dynamical system model of the Water Maze navigation task, solve its optimal control under varying complexity constraints, and analyze the learning process in terms of the value and complexity of swimming trajectories. The value of a trajectory is related to its energetic cost and is correlated with swimming time. Complexity is a novel learning metric which measures how unlikely is a trajectory to be generated by a naive animal. Our model is analytically tractable, provides good fit to observed behavior and reveals that the learning process is characterized by early value optimization followed by complexity reduction. Furthermore, complexity sensitively characterizes behavioral differences between mouse strains.
Collapse
Affiliation(s)
- Nadav Amir
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Reut Suliman-Lavie
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Maayan Tal
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Sagiv Shifman
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Naftali Tishby
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
- The Benin School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
38
|
Tompary A, Zhou W, Davachi L. Schematic memories develop quickly, but are not expressed unless necessary. Sci Rep 2020; 10:16968. [PMID: 33046766 PMCID: PMC7550328 DOI: 10.1038/s41598-020-73952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Episodic memory retrieval is increasingly influenced by schematic information as memories mature, but it is unclear whether this is due to the slow formation of schemas over time, or the slow forgetting of the episodes. To address this, we separately probed memory for newly learned schemas as well as their influence on episodic memory decisions. In this experiment, participants encoded images from two categories, with the location of images in each category drawn from a different spatial distribution. They could thus learn schemas of category locations by encoding specific episodes. We found that images that were more consistent with these distributions were more precisely retrieved, and this schematic influence increased over time. However, memory for the schema distribution, measured using generalization to novel images, also became less precise over time. This incongruity suggests that schemas form rapidly, but their influence on episodic retrieval is dictated by the need to bolster fading memory representations.
Collapse
Affiliation(s)
- Alexa Tompary
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - WenXi Zhou
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, 10027, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| |
Collapse
|
39
|
Statistical prediction of the future impairs episodic encoding of the present. Proc Natl Acad Sci U S A 2020; 117:22760-22770. [PMID: 32859755 DOI: 10.1073/pnas.2013291117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Memory is typically thought of as enabling reminiscence about past experiences. However, memory also informs and guides processing of future experiences. These two functions of memory are often at odds: Remembering specific experiences from the past requires storing idiosyncratic properties that define particular moments in space and time, but by definition such properties will not be shared with similar situations in the future and thus may not be applicable to future situations. We discovered that, when faced with this conflict, the brain prioritizes prediction over encoding. Behavioral tests of recognition and source recall showed that items allowing for prediction of what will appear next based on learned regularities were less likely to be encoded into memory. Brain imaging revealed that the hippocampus was responsible for this interference between statistical learning and episodic memory. The more that the hippocampus predicted the category of an upcoming item, the worse the current item was encoded. This competition may serve an adaptive purpose, focusing encoding on experiences for which we do not yet have a predictive model.
Collapse
|
40
|
Graves KN, Antony JW, Turk-Browne NB. Finding the Pattern: On-Line Extraction of Spatial Structure During Virtual Navigation. Psychol Sci 2020; 31:1183-1190. [PMID: 32853531 DOI: 10.1177/0956797620948828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While navigating the world, we pick up on patterns of where things tend to appear. According to theories of memory and studies of animal behavior, knowledge of these patterns emerges gradually over days or weeks via consolidation of individual navigation episodes. Here, we discovered that navigation patterns can also be extracted on-line, prior to the opportunity for off-line consolidation, as a result of rapid statistical learning. Thirty human participants navigated a virtual water maze in which platform locations were drawn from a spatial distribution. Within a single session, participants increasingly navigated through the mean of the distribution. This behavior was better simulated by random walks from a model that had only an explicit representation of the current mean, compared with a model that had only memory for the individual platform locations. These results suggest that participants rapidly summarized the underlying spatial distribution and used this statistical knowledge to guide future navigation.
Collapse
|
41
|
Berens SC, Richards BA, Horner AJ. Dissociating memory accessibility and precision in forgetting. Nat Hum Behav 2020; 4:866-877. [PMID: 32514041 DOI: 10.1038/s41562-020-0888-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Forgetting involves the loss of information over time; however, we know little about what form this information loss takes. Do memories become less precise over time, or do they instead become less accessible? Here we assessed memory for word-location associations across four days, testing whether forgetting involves losses in precision versus accessibility and whether such losses are modulated by learning a generalizable pattern. We show that forgetting involves losses in memory accessibility with no changes in memory precision. When participants learned a set of related word-location associations that conformed to a general pattern, we saw a strong trade-off; accessibility was enhanced, whereas precision was reduced. However, this trade-off did not appear to be modulated by time or confer a long-term increase in the total amount of information maintained in memory. Our results place theoretical constraints on how models of forgetting and generalization account for time-dependent memory processes. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 4 June 2019. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.c.4368464.v1 .
Collapse
Affiliation(s)
- Sam C Berens
- Department of Psychology, University of York, York, UK. .,School of Psychology, University of Sussex, Brighton, UK.
| | - Blake A Richards
- Mila, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Montreal, Quebec, Canada.,Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Aidan J Horner
- Department of Psychology, University of York, York, UK. .,York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
42
|
Sathiyakumar S, Skromne Carrasco S, Saad L, Richards BA. Systems consolidation impairs behavioral flexibility. ACTA ACUST UNITED AC 2020; 27:201-208. [PMID: 32295840 PMCID: PMC7164516 DOI: 10.1101/lm.051243.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 10/26/2022]
Abstract
Behavioral flexibility is important in a changing environment. Previous research suggests that systems consolidation, a long-term poststorage process that alters memory traces, may reduce behavioral flexibility. However, exactly how systems consolidation affects flexibility is unknown. Here, we tested how systems consolidation affects: (1) flexibility in response to value changes and (2) flexibility in response to changes in the optimal sequence of actions. Mice were trained to obtain food rewards in a Y-maze by switching nose pokes between three arms. During initial training, all arms were rewarded and mice simply had to switch arms in order to maximize rewards. Then, after either a 1 or 28 d delay, we either devalued one arm, or we reinforced a specific sequence of pokes. We found that after a 1 d delay mice adapted relatively easily to the changes. In contrast, mice given a 28 d delay struggled to adapt, especially for changes to the optimal sequence of actions. Immediate early gene imaging suggested that the 28 d mice were less reliant on their hippocampus and more reliant on their medial prefrontal cortex. These data suggest that systems consolidation reduces behavioral flexibility, particularly for changes to the optimal sequence of actions.
Collapse
Affiliation(s)
- Sankirthana Sathiyakumar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Sofia Skromne Carrasco
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Lydia Saad
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Mila, Montréal, Quebec H2S 3H1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,School of Computer Science, McGill University, Montréal, Quebec H3A 2A7, Canada
| |
Collapse
|
43
|
Sherman BE, Graves KN, Turk-Browne NB. The prevalence and importance of statistical learning in human cognition and behavior. Curr Opin Behav Sci 2020; 32:15-20. [PMID: 32258249 DOI: 10.1016/j.cobeha.2020.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Statistical learning, the ability to extract regularities from the environment over time, has become a topic of burgeoning interest. Its influence on behavior, spanning infancy to adulthood, has been demonstrated across a range of tasks, both those labeled as tests of statistical learning and those from other learning domains that predated statistical learning research or that are not typically considered in the context of that literature. Given this pervasive role in human cognition, statistical learning has the potential to reconcile seemingly distinct learning phenomena and may be an under-appreciated but important contributor to a wide range of human behaviors that are studied as unrelated processes, such as episodic memory and spatial navigation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| | - Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| | | |
Collapse
|
44
|
Takehara‐Nishiuchi K. Neurobiology of systems memory consolidation. Eur J Neurosci 2020; 54:6850-6863. [DOI: 10.1111/ejn.14694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Kaori Takehara‐Nishiuchi
- Department of Psychology University of Toronto Toronto ON Canada
- Department of Cell and Systems Biology University of Toronto Toronto ON Canada
- Neuroscience Program University of Toronto Toronto ON Canada
| |
Collapse
|
45
|
Sleep Spindles Promote the Restructuring of Memory Representations in Ventromedial Prefrontal Cortex through Enhanced Hippocampal-Cortical Functional Connectivity. J Neurosci 2020; 40:1909-1919. [PMID: 31959699 DOI: 10.1523/jneurosci.1946-19.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation is hypothesized to involve the distribution and restructuring of memory representations across hippocampal and cortical regions. Theories suggest that, through extended hippocampal-cortical interactions, cortical ensembles come to represent more integrated, or overlapping, memory traces that prioritize commonalities across related memories. Sleep processes, particularly fast sleep spindles, are thought to support consolidation, but evidence for this relationship has been mostly limited to memory retention benefits. Whether fast spindles provide a mechanism for neural changes hypothesized to support consolidation, including the strengthening of hippocampal-cortical networks and integration across memory representations, remains unclear, as does the specificity of regions involved. Using functional connectivity analyses of human fMRI data (both sexes), we show that fast spindle density during overnight sleep is related to enhanced hippocampal-cortical functional connectivity the next day, when restudying information learned before sleep. Spindle density modulated connectivity in distinct hippocampal-cortical networks depending on the category of the consolidated stimuli. Specifically, spindle density correlated with functional connectivity between anterior hippocampus and ventromedial prefrontal cortex (vmPFC) for object-word pairs, and posterior hippocampus and posteromedial cortex for scene-word pairs. Using multivariate pattern analyses, we also show that fast spindle density during postlearning sleep is associated with greater pattern similarity, or representational overlap, across individual object-word memories in vmPFC the next day. Further, the relationship between fast spindle density and representational overlap in vmPFC was mediated by the degree of anterior hippocampal-vmPFC functional connectivity. Together, these results suggest that fast spindles support the network distribution of memory traces, potentially restructuring memory representations in vmPFC.SIGNIFICANCE STATEMENT How new experiences are transformed into long-term memories remains a fundamental question for neuroscience research. Theories suggest that memories are stabilized as they are reorganized in the brain, a process thought to be supported by sleep oscillations, particularly sleep spindles. Although sleep spindles have been associated with benefits in memory retention, it is not well understood how spindles modify neural memory traces. This study found that spindles during overnight sleep correlate with changes in neural memory traces, including enhanced functional connectivity in distinct hippocampal-cortical networks and increased pattern similarity among memories in the cortex. The results provide critical evidence that spindles during overnight sleep may act as a physiological mechanism for the restructuring of neural memory traces.
Collapse
|
46
|
Leshinskaya A, Thompson-Schill SL. Transformation of Event Representations along Middle Temporal Gyrus. Cereb Cortex 2020; 30:3148-3166. [PMID: 31942943 DOI: 10.1093/cercor/bhz300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When learning about events through visual experience, one must not only identify which events are visually similar but also retrieve those events' associates-which may be visually dissimilar-and recognize when different events have similar predictive relations. How are these demands balanced? To address this question, we taught participants the predictive structures among four events, which appeared in four different sequences, each cued by a distinct object. In each, one event ("cause") was predictably followed by another ("effect"). Sequences in the same relational category had similar predictive structure, while across categories, the effect and cause events were reversed. Using functional magnetic resonance imaging data, we measured "associative coding," indicated by correlated responses between effect and cause events; "perceptual coding," indicated by correlated responses to visually similar events; and "relational category coding," indicated by correlated responses to sequences in the same relational category. All three models characterized responses within the right middle temporal gyrus (MTG), but in different ways: Perceptual and associative coding diverged along the posterior to anterior axis, while relational categories emerged anteriorly in tandem with associative coding. Thus, along the posterior-anterior axis of MTG, the representation of the visual attributes of events is transformed to a representation of both specific and generalizable relational attributes.
Collapse
Affiliation(s)
- Anna Leshinskaya
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
47
|
Alonso A, van der Meij J, Tse D, Genzel L. Naïve to expert: Considering the role of previous knowledge in memory. Brain Neurosci Adv 2020; 4:2398212820948686. [PMID: 32954007 PMCID: PMC7479862 DOI: 10.1177/2398212820948686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
In humans, most of our new memories are in some way or another related to what we have already experienced. However, in memory research, especially in non-human animal research, subjects are often mostly naïve to the world. But we know that previous knowledge will change how memories are processed and which brain areas are critical at which time point. Each process from encoding, consolidation, to memory retrieval will be affected. Here, we summarise previous knowledge effects on the neurobiology of memory in both humans and non-human animals, with a special focus on schemas - associative network structures. Furthermore, we propose a new theory on how there may be a continuous gradient from naïve to expert, which would modulate the importance and role of brain areas, such as the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Alejandra Alonso
- Donders Centre for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Donders Centre for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dorothy Tse
- Center for Discovery Brain
Sciences, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh,
UK
| | - Lisa Genzel
- Donders Centre for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Sekeres MJ, Moscovitch M, Grady CL, Sullens DG, Winocur G. Reminders reinstate context-specificity to generalized remote memories in rats: relation to activity in the hippocampus and aCC. ACTA ACUST UNITED AC 2019; 27:1-5. [PMID: 31843976 PMCID: PMC6919192 DOI: 10.1101/lm.050161.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/15/2019] [Indexed: 01/23/2023]
Abstract
Conditioned fear memories that are context-specific shortly after conditioning generalize over time. We exposed rats to a context reminder 30 d after conditioning, which served to reinstate context-specificity, and investigated how this reminder alters retrieval-induced activity in the hippocampus and anterior cingulate cortex (aCC) relative to a no reminder condition. c-Fos expression in dorsal CA1 was observed following retrieval in the original context, but not in a novel context, whether or not the memory was reactivated, suggesting that dCA1 retains the context-specific representation. c-Fos was highly expressed in aCC following remote memory testing in both contexts, regardless of reminder condition, indicating that aCC develops generalized representations that are insensitive to memory reactivation.
Collapse
Affiliation(s)
- Melanie J Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - D Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Gordon Winocur
- Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Psychology, Trent University, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
49
|
Ferreira C, Charest I, Wimber M. Retrieval aids the creation of a generalised memory trace and strengthens episode-unique information. Neuroimage 2019; 201:115996. [DOI: 10.1016/j.neuroimage.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
|
50
|
Frankland PW, Josselyn SA, Köhler S. The neurobiological foundation of memory retrieval. Nat Neurosci 2019; 22:1576-1585. [PMID: 31551594 DOI: 10.1038/s41593-019-0493-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Memory retrieval involves the interaction between external sensory or internally generated cues and stored memory traces (or engrams) in a process termed 'ecphory'. While ecphory has been examined in human cognitive neuroscience research, its neurobiological foundation is less understood. To the extent that ecphory involves 'reawakening' of engrams, leveraging recently developed technologies that can identify and manipulate engrams in rodents provides a fertile avenue for examining retrieval at the level of neuronal ensembles. Here we evaluate emerging neuroscientific research of this type, using cognitive theory as a guiding principle to organize and interpret initial findings. Our Review highlights the critical interaction between engrams and retrieval cues (environmental or artificial) for memory accessibility and retrieval success. These findings also highlight the intimate relationship between the mechanisms important in forming engrams and those important in their recovery, as captured in the cognitive notion of 'encoding specificity'. Finally, we identify several questions that currently remain unanswered.
Collapse
Affiliation(s)
- Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Stefan Köhler
- Department of Psychology, University of Western Ontario, London, Ontario, Canada. .,The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|