1
|
Przybysz KR, Shillinglaw JE, Wheeler SR, Glover EJ. Chronic ethanol exposure produces long-lasting, subregion-specific physiological adaptations in RMTg-projecting mPFC neurons. Neuropharmacology 2024; 259:110098. [PMID: 39117106 DOI: 10.1016/j.neuropharm.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) that are thought to facilitate maladaptive behaviors that interfere with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is functionally altered by chronic ethanol exposure. Our recent work identified dense input from the mPFC to the RMTg, yet the effects of chronic ethanol exposure on this circuitry is unknown. In the current study, we examined physiological changes after chronic ethanol exposure in prelimbic (PL) and infralimbic (IL) mPFC neurons projecting to the RMTg. Adult male Long-Evans rats were injected with fluorescent retrobeads into the RMTg and rendered dependent using a 14-day chronic intermittent ethanol (CIE) vapor exposure paradigm. Whole-cell patch-clamp electrophysiological recordings were performed in fluorescently-labeled (RMTg-projecting) and -unlabeled (projection-undefined) layer 5 pyramidal neurons 7-10 days following ethanol exposure. CIE exposure significantly increased intrinsic excitability as well as spontaneous excitatory and inhibitory postsynaptic currents (sE/IPSCs) in RMTg-projecting IL neurons. In contrast, no lasting changes in excitability were observed in RMTg-projecting PL neurons, although a CIE-induced reduction in excitability was observed in projection-undefined PL neurons. CIE exposure also increased the frequency of sEPSCs in RMTg-projecting PL neurons. These data uncover novel subregion- and circuit-specific neuroadaptations in the mPFC following chronic ethanol exposure and reveal that the IL mPFC-RMTg projection is uniquely vulnerable to long-lasting effects of chronic ethanol exposure. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Joel E Shillinglaw
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Shannon R Wheeler
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jun DJ, Shannon R, Tschida K, Smith DM. The Infralimbic, but not the Prelimbic Cortex is needed for a Complex Olfactory Memory Task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618554. [PMID: 39463969 PMCID: PMC11507807 DOI: 10.1101/2024.10.15.618554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in memory and behavioral flexibility, and a growing body of evidence suggests that the prelimbic (PL) and infralimbic (IL) subregions contribute differently to these processes. Studies of fear conditioning and goal-directed learning suggest that the PL promotes behavioral responses and memory retrieval, while the IL inhibits them. Other studies have shown that the mPFC is engaged under conditions of high interference. This raises the possibility that the PL and IL play differing roles in resolving interference. To examine this, we first used chemogenetics (DREADDs) to suppress mPFC neuronal activity and tested subjects on a conditional discrimination task known to be sensitive to muscimol inactivation. After confirming the effectiveness of the DREADD procedures, we conducted a second experiment to examine the PL and IL roles in a high interference memory task. We trained rats on two consecutive sets of conflicting odor discrimination problems, A and B, followed by test sessions involving a mid-session switch between the problem sets. Controls repeatedly performed worse on Set A, suggesting that learning Set B inhibited the rats' ability to retrieve Set A memories (i.e. retroactive interference). PL inactivation rats performed similarly to controls. However, IL inactivation rats did not show this effect, suggesting that the IL plays a critical role in suppressing the retrieval of previously acquired memories that may interfere with retrieval of more recent memories. These results suggest that the IL plays a critical role in memory control processes needed for resolving interference.
Collapse
Affiliation(s)
- Dahae J. Jun
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Rebecca Shannon
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Katherine Tschida
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - David M. Smith
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| |
Collapse
|
4
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
5
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
6
|
Sequeira MK, Stachowicz KM, Seo EH, Yount ST, Gourley SL. Cocaine disrupts action flexibility via glucocorticoid receptors. iScience 2024; 27:110148. [PMID: 38989467 PMCID: PMC11233908 DOI: 10.1016/j.isci.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Many addictive drugs increase stress hormone levels. They also alter the propensity of organisms to prospectively select actions based on long-term consequences. We hypothesized that cocaine causes inflexible action by increasing circulating stress hormone levels, activating the glucocorticoid receptor (GR). We trained mice to generate two nose pokes for food and then required them to update action-consequence associations when one response was no longer reinforced. Cocaine delivered in adolescence or adulthood impaired the capacity of mice to update action strategies, and inhibiting CORT synthesis rescued action flexibility. Next, we reduced Nr3c1, encoding GR, in the orbitofrontal cortex (OFC), a region of the brain responsible for interlacing new information into established routines. Nr3c1 silencing preserved action flexibility and dendritic spine abundance on excitatory neurons, despite cocaine. Spines are often considered substrates for learning and memory, leading to the discovery that cocaine degrades the representation of new action memories, obstructing action flexibility.
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Kathryn M. Stachowicz
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Esther H. Seo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Sophie T. Yount
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
7
|
Zangen E, Hadar S, Lawrence C, Obeid M, Rasras H, Hanzin E, Aslan O, Zur E, Schulcz N, Cohen-Hatab D, Samama Y, Nir S, Li Y, Dobrotvorskia I, Sabbah S. Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nat Commun 2024; 15:5501. [PMID: 38951486 PMCID: PMC11217280 DOI: 10.1038/s41467-024-49794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.
Collapse
Affiliation(s)
- Elyashiv Zangen
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shira Hadar
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Christopher Lawrence
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Mustafa Obeid
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Hala Rasras
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ella Hanzin
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ori Aslan
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Eyal Zur
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Nadav Schulcz
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Daniel Cohen-Hatab
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yona Samama
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Sarah Nir
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yi Li
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Irina Dobrotvorskia
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
8
|
Cai Y, Ge J, Pan ZZ. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front Neurosci 2024; 18:1331864. [PMID: 38327845 PMCID: PMC10847313 DOI: 10.3389/fnins.2024.1331864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC-BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC-BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC-BLA pathway is sufficient to drive a negative emotion state and the mPFC-amygdala circuit is tonically active in cortical regulation of emotional behaviors.
Collapse
Affiliation(s)
| | | | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Jing L, Ma C, Xu L, Richter-Levin G. Distinct Neural Representations and Cognitive Behaviors Attributable to Naturally Developed Active Avoidance or Reactive Escape Strategies in the Male Rat. Int J Neuropsychopharmacol 2023; 26:761-772. [PMID: 37725443 PMCID: PMC10674082 DOI: 10.1093/ijnp/pyad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The high individual variability in coping with stress is often attributed to genetic background differences, sustained environmental conditions, or a combination of both. However, the neural mechanisms underlying coping style variability are still poorly understood. METHODS Here we examined the impact of a single extended emotional challenge on coping style variability and the associated involvement of the hippocampus, medial prefrontal cortex (mPFC), and periaqueductal gray (PAG). Male Sprague-Dawley rats (n = 170) were trained in an extended 2-way shuttle avoidance (eTWSA) task for 7 days, and daily avoidance rates were measured. Forced swim test, elevated plus maze, or Morris water maze was tested before or after eTWSA exposure. Excitotoxic lesion of the hippocampal dentate gyrus (DG) was performed by Ibotenic infusion. Transient pharmacological blocking of DG, mPFC, or PAG was performed by muscimol or CNQX+TTX infusion. RESULTS Exposing rats to eTWSA was found to lead to naturally developing dichotomous, not continuous, coping styles, which we termed active avoidance (AA) or reactive escape (RE). Prior emotional responses did not predict the developing coping style. AA was associated with beneficial outcomes, including reduced behavioral despair and improved spatial learning. RE led to impaired spatial retrieval. AA was abolished by lesioning or pharmacological blocking of the DG. RE was prevented by blocking mPFC or PAG. CONCLUSION The results indicate that a single exposure to a significant emotional challenge can lead, in otherwise healthy individuals, to dichotomous development of an active or reactive coping style with distinctive neural correlates and subsequent behavioral significance.
Collapse
Affiliation(s)
- Liang Jing
- Sagol Department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Israel
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Chen Ma
- Sagol Department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- Key Laboratory of Animal Models and Human Disease Mechanisms, Lab of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Israel
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Lab of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China
- Mental Health Institute, Second Xiangya Hospital of Central South University, Changsha, China
- KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Israel
| |
Collapse
|
10
|
Martín-González E, Prados-Pardo Á, Sawiak SJ, Dalley JW, Padro D, Ramos-Cabrer P, Mora S, Moreno-Montoya M. Mapping the neuroanatomical abnormalities in a phenotype of male compulsive rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:19. [PMID: 37932782 PMCID: PMC10626819 DOI: 10.1186/s12993-023-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Compulsivity is considered a transdiagnostic dimension in obsessive-compulsive and related disorders, characterized by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico-striatal-thalamic-cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected for low- (LD) and high- (HD) compulsive drinking behavior on a schedule-induced polydipsia (SIP) task. Regional brain morphology was assessed using ex-vivo high-resolution magnetic resonance imaging (MRI). Voxel-based morphometry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofrontal cortex, striatum, amygdala, hippocampus, midbrain, sub-thalamic nucleus, and cerebellum. By contrast, the medial prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico-basal ganglia structures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. Such abnormalities may be relevant to the etiology of compulsive disorders in humans.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Santiago Mora
- Department of Neuroscience, University of Copenhagen Panum Institute, Copenhagen, Denmark
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|
11
|
Ross RA, Kim A, Das P, Li Y, Choi YK, Thompson AT, Douglas E, Subramanian S, Ramos K, Callahan K, Bolshakov VY, Ressler KJ. Prefrontal cortex melanocortin 4 receptors (MC4R) mediate food intake behavior in male mice. Physiol Behav 2023; 269:114280. [PMID: 37369302 PMCID: PMC10528493 DOI: 10.1016/j.physbeh.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Melanocortin 4 receptor (MC4R) activity in the hypothalamus is crucial for regulation of metabolism and food intake. The peptide ligands for the MC4R are associated with feeding, energy expenditure, and also with complex behaviors that orchestrate energy intake and expenditure, but the downstream neuroanatomical and neurochemical targets associated with these behaviors are elusive. In addition to strong expression in the hypothalamus, the MC4R is highly expressed in the medial prefrontal cortex, a region involved in executive function and decision-making. METHODS Using viral techniques in genetically modified male mice combined with molecular techniques, we identify and define the effects on feeding behavior of a novel population of MC4R expressing neurons in the infralimbic (IL) region of the cortex. RESULTS Here, we describe a novel population of MC4R-expressing neurons in the IL of the mouse prefrontal cortex that are glutamatergic, receive input from melanocortinergic neurons, and project to multiple regions that coordinate appetitive responses to food-related stimuli. The neurons are stimulated by application of MC4R-specific peptidergic agonist, THIQ. Deletion of MC4R from the IL neurons causes increased food intake and body weight gain and impaired executive function in simple food-related behavior tasks. CONCLUSION Together, these data suggest that MC4R neurons of the IL play a critical role in the regulation of food intake in male mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry, McLean Hospital, Boston, MA, USA.
| | - Angela Kim
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Priyanka Das
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kat Ramos
- Northeastern University, Boston, MA, USA
| | - Kathryn Callahan
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Sampedro-Viana D, Cañete T, Sanna F, Oliveras I, Castillo-Ruiz M, Corda MG, Giorgi O, Tobeña A, Fernández-Teruel A. c-Fos expression after neonatal handling in social brain regions: Distinctive profile of RHA-rat schizophrenia model on a social preference test. Behav Brain Res 2023; 453:114625. [PMID: 37567256 DOI: 10.1016/j.bbr.2023.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Neonatal handling (NH) is an environmental manipulation that induces long-lasting changes in behavioural, neuroendocrine, and neuroanatomical processes in rodents. We have previously reported that NH treatment increases social interaction preference in an animal model of schizophrenia-relevant features, the Roman high-avoidance (RHA) rats. The present study was aimed at evaluating whether the increase of social behaviour/preference due to NH treatment in RHA rats is associated with differences in c-Fos expression levels in some of the brain areas that integrate the "social brain". To this aim, we evaluated the performance of adult male rats from both Roman rat strains (RHA vs. RLA -Roman low-avoidance- rats), either untreated (control) or treated with NH (administered during the first 21 days of life) in a social interaction task. For the analyses of c-Fos activation untreated and NH-treated animals were divided into three different experimental conditions: undisturbed home cage controls (HC); rats exposed to the testing set-up context (CTX); and rats exposed to a social interaction (SI) test. It was found that, compared with their RLA counterparts, NH treatment increased social behaviour in RHA rats, and also specifically enhanced c-Fos expression in RHA rats tested for SI in some brain areas related to social behaviour, i.e. the infralimbic cortex (IL) and the medial posterodorsal amygdala (MePD) regions.
Collapse
Affiliation(s)
- D Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - T Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - F Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - I Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mdm Castillo-Ruiz
- Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - M G Corda
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - O Giorgi
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - A Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - A Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
13
|
Glover EJ, Margaret Starr E, Gascon A, Clayton-Stiglbauer K, Amegashie CL, Selchick AH, Vaughan DT, Wayman WN, Woodward JJ, Chandler LJ. Involvement of cortical input to the rostromedial tegmental nucleus in aversion to foot shock. Neuropsychopharmacology 2023; 48:1455-1464. [PMID: 37221326 PMCID: PMC10425416 DOI: 10.1038/s41386-023-01612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Andres Gascon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kacey Clayton-Stiglbauer
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christen L Amegashie
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alyson H Selchick
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Wesley N Wayman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
15
|
Eddy KT, Plessow F, Breithaupt L, Becker KR, Slattery M, Mancuso CJ, Izquierdo AM, Van De Water AL, Kahn DL, Dreier MJ, Ebrahimi S, Deckersbach T, Thomas JJ, Holsen LM, Misra M, Lawson EA. Neural activation of regions involved in food reward and cognitive control in young females with anorexia nervosa and atypical anorexia nervosa versus healthy controls. Transl Psychiatry 2023; 13:220. [PMID: 37353543 DOI: 10.1038/s41398-023-02494-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023] Open
Abstract
Anorexia nervosa (AN) and atypical AN (AtypAN) are complex neurobiological illnesses that typically onset in adolescence with an often treatment-refractory and chronic illness trajectory. Aberrant eating behaviors in this population have been linked to abnormalities in food reward and cognitive control, but prior studies have not examined respective contributions of clinical characteristics and metabolic state. Research is needed to identify specific disruptions and inform novel intervention targets to improve outcomes. Fifty-nine females with AN (n = 34) or AtypAN (n = 25), ages 10-22 years, all ≤90% expected body weight, and 34 age-matched healthy controls (HC) completed a well-established neuroimaging food cue paradigm fasting and after a standardized meal, and we used ANCOVA models to investigate main and interaction effects of Group and Appetitive State on blood oxygenation level-dependent (BOLD) activation for the contrast of exposure to high-calorie food images minus objects. We found main effects of Group with greater BOLD activation in the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, caudate, and putamen for AN/AtypAN versus HC groups, and in the three-group model including AN, AtypAN, and HC (sub-)groups, where differences were primarily driven by greater activation in the AtypAN subgroup versus HC group. We found a main effect of Appetitive State with increased premeal BOLD activation in the hypothalamus, amygdala, nucleus accumbens, and caudate for models that included AN/AtypAN and HC groups, and in BOLD activation in the nucleus accumbens for the model that included AN, AtypAN, and HC (sub-)groups. There were no interaction effects of Group with Appetitive State for any of the models. Our findings demonstrate robust feeding-state independent group effects reflecting greater neural activation of specific regions typically associated with reward and cognitive control processing across AN and AtypAN relative to healthy individuals in this food cue paradigm. Differential activation of specific brain regions in response to the passive viewing of high-calorie food images may underlie restrictive eating behavior in this clinical population.
Collapse
Affiliation(s)
- Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kendra R Becker
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Avery L Van De Water
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Women's Health, Department of Medicine, and Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Danielle L Kahn
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Melissa J Dreier
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Seda Ebrahimi
- Cambridge Eating Disorders Center, Cambridge, MA, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences, Diploma Hochschule, Bad Sooden-Allendorf, Germany
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Laura M Holsen
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, and Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Endocrinology, Mass General for Children, Boston, MA, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Sequeira MK, Swanson AM, Kietzman HW, Gourley SL. Cocaine and habit training cause dendritic spine rearrangement in the prelimbic cortex. iScience 2023; 26:106240. [PMID: 37153443 PMCID: PMC10156587 DOI: 10.1016/j.isci.2023.106240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Successfully navigating dynamic environments requires organisms to learn the consequences of their actions. The prelimbic prefrontal cortex (PL) formulates action-consequence memories and is modulated by addictive drugs like cocaine. We trained mice to obtain food rewards and then unexpectedly withheld reinforcement, triggering new action-consequence memory. New memory was disrupted by cocaine when delivered immediately following non-reinforcement, but not when delayed, suggesting that cocaine disrupted memory consolidation. Cocaine also rapidly inactivated cofilin, a primary regulator of the neuronal actin cytoskeleton. This observation led to the discovery that cocaine also within the time of memory consolidation elevated dendritic spine elimination and blunted spine formation rates on excitatory PL neurons, culminating in thin-type spine attrition. Training drug-naive mice to utilize inflexible response strategies also eliminated thin-type dendritic spines. Thus, cocaine may disrupt action-consequence memory, at least in part, by recapitulating neurobiological sequalae occurring in the formation of inflexible habits.
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Andrew M. Swanson
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Henry W. Kietzman
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
17
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
18
|
Moorman DE, Aston-Jones G. Prelimbic and infralimbic medial prefrontal cortex neuron activity signals cocaine seeking variables across multiple timescales. Psychopharmacology (Berl) 2023; 240:575-594. [PMID: 36464693 PMCID: PMC10406502 DOI: 10.1007/s00213-022-06287-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
19
|
Lin LH, Narender R, Zak PJ. Why people keep watching: neurophysiologic immersion during video consumption increases viewing time and influences behavior. Front Behav Neurosci 2022; 16:1053053. [PMID: 36582406 PMCID: PMC9792976 DOI: 10.3389/fnbeh.2022.1053053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Streaming services provide people with a seemingly infinite set of entertainment choices. This large set of options makes the decision to view alternative content or stop consuming content altogether compelling. Yet, nearly all experimental studies of the attributes of video content and their ability to influence behavior require that participants view stimuli in their entirety. The present study measured neurophysiologic responses while participants viewed videos with the option to stop viewing without penalty in order to identify signals that capture the neural value of content. A post-video behavioral choice was included to reduce the likelihood that measured neurophysiologic responses were noise rather than signal. We found that a measure derived from neurophysiologic Immersion predicted how long participants would watch a video. Further, the time spent watching a video increased the likelihood that it influenced behavior. The analysis indicates that the neurologic value one receives helps explain why people continue to watch videos and why they are influenced by them.
Collapse
Affiliation(s)
- Li-Hsin Lin
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States,Department of Economics, McMaster University, Hamilton, ON, Canada
| | - Rainita Narender
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States
| | - Paul J. Zak
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States,*Correspondence: Paul J. Zak
| |
Collapse
|
20
|
Local production of corticotropin-releasing hormone in prefrontal cortex modulates male-specific novelty exploration. Proc Natl Acad Sci U S A 2022; 119:e2211454119. [PMID: 36442105 PMCID: PMC9894189 DOI: 10.1073/pnas.2211454119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.
Collapse
|
21
|
Mesa JR, Wesson DW, Schwendt M, Knackstedt LA. The roles of rat medial prefrontal and orbitofrontal cortices in relapse to cocaine-seeking: A comparison across methods for identifying neurocircuits. ADDICTION NEUROSCIENCE 2022; 4:100031. [PMID: 36277334 PMCID: PMC9583858 DOI: 10.1016/j.addicn.2022.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large body of research supports the notion that regions of the rodent frontal cortex regulate reinstatement of cocaine seeking after cessation of intravenous cocaine self-administration. However, earlier studies identifying the roles of medial (mPFC) and orbital prefrontal cortices (OFC) in reinstatement relied on pharmacological inactivation methods, which indiscriminately inhibited cells within a target region. Here, we first review the anatomical borders and pathways of the rat mPFC and OFC. Next, we compare and contrast findings from more recent cocaine seeking and reinstatement studies that used chemogenetics, optogenetics, or advanced tracing to manipulate specific local cell types or input/output projections of the mPFC and OFC subregions. We found that these studies largely corroborated the roles for mPFC subregions as ascribed by pharmacological inactivation studies. Namely, the prelimbic cortex generally drives cocaine seeking behaviors while the infralimbic cortex is recruited to inhibit cocaine seeking by extinction training but may contribute to seeking after prolonged abstinence. While the OFC remains understudied, we suggest it should not be overlooked, and, as with prelimbic and infralimbic cortices, we identify specific pathways of interest for future studies.
Collapse
Affiliation(s)
- Javier R. Mesa
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA,Corresponding author at: Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA. (J.R. Mesa)
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lori A. Knackstedt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Girotti M, Carreno FR, Morilak DA. Role of Orbitofrontal Cortex and Differential Effects of Acute and Chronic Stress on Motor Impulsivity Measured With 1-Choice Serial Reaction Time Test in Male Rats. Int J Neuropsychopharmacol 2022; 25:1026-1036. [PMID: 36087292 PMCID: PMC9743967 DOI: 10.1093/ijnp/pyac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deficits in motor impulsivity, that is, the inability to inhibit a prepotent response, are frequently observed in psychiatric conditions. Several studies suggest that stress often correlates with higher impulsivity. Among the brain areas affected by stress, the orbitofrontal cortex (OFC) is notable because of its role in impulse control. OFC subregions with unique afferent and efferent circuitry play distinct roles in impulse control, yet it is not clear what OFC subregions are engaged during motor impulsivity tasks. METHODS In this study we used a rodent test of motor impulsivity, the 1-choice serial reaction time test, to explore activation of OFC subregions either during a well-learned motor impulsivity task or in a challenge task with a longer wait time that increases premature responding. We also examined the effects of acute inescapable stress, chronic intermittent cold stress and chronic unpredictable stress on motor impulsivity. RESULTS Fos expression increased in the lateral OFC and agranular insular cortex during performance in both the mastered and challenge conditions. In the ventral OFC, Fos expression increased only during challenge, and within the medial OFC, Fos was not induced in either condition. Inescapable stress produced a transient effect on premature responses in the mastered task, whereas chronic intermittent cold stress and chronic unpredictable stress altered premature responses in both conditions in ways specific to each stressor. CONCLUSIONS These results suggest that different OFC subregions have different roles in motor impulse control, and the effects of stress vary depending on the nature and duration of the stressor.
Collapse
Affiliation(s)
- Milena Girotti
- Correspondence: Milena Girotti, PhD, Department of Pharmacology, Mail Code 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA ()
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
23
|
Kietzman HW, Trinoskey-Rice G, Blumenthal SA, Guo JD, Gourley SL. Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity. Nat Commun 2022; 13:4768. [PMID: 35970891 PMCID: PMC9378688 DOI: 10.1038/s41467-022-32388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/28/2022] [Indexed: 01/17/2023] Open
Abstract
Social experiences influence decision making, including decision making lacking explicit social content, yet mechanistic factors are unclear. We developed a new procedure, social incentivization of future choice (SIFC). Female mice are trained to nose poke for equally-preferred foods, then one food is paired with a novel conspecific, and the other with a novel object. Mice later respond more for the conspecific-associated food. Thus, prior social experience incentivizes later instrumental choice. SIFC is pervasive, occurring following multiple types of social experiences, and is not attributable to warmth or olfactory cues alone. SIFC requires the prelimbic prefrontal cortex (PL), but not the neighboring orbitofrontal cortex. Further, inputs from the basolateral amygdala to the PL and outputs to the nucleus accumbens are necessary for SIFC, but not memory for a conspecific. Basolateral amygdala→PL connections may signal the salience of social information, leading to the prioritization of coincident rewards via PL→nucleus accumbens outputs.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sarah A Blumenthal
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jidong D Guo
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
24
|
Mair RG, Francoeur MJ, Krell EM, Gibson BM. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Front Behav Neurosci 2022; 16:928610. [PMID: 35864847 PMCID: PMC9294389 DOI: 10.3389/fnbeh.2022.928610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Medial prefrontal cortex (mPFC) interacts with distributed networks that give rise to goal-directed behavior through afferent and efferent connections with multiple thalamic nuclei and recurrent basal ganglia-thalamocortical circuits. Recent studies have revealed individual roles for different thalamic nuclei: mediodorsal (MD) regulation of signaling properties in mPFC neurons, intralaminar control of cortico-basal ganglia networks, ventral medial facilitation of integrative motor function, and hippocampal functions supported by ventral midline and anterior nuclei. Large scale mapping studies have identified functionally distinct cortico-basal ganglia-thalamocortical subnetworks that provide a structural basis for understanding information processing and functional heterogeneity within the basal ganglia. Behavioral analyses comparing functional deficits produced by lesions or inactivation of specific thalamic nuclei or subregions of mPFC or the basal ganglia have elucidated the interdependent roles of these areas in adaptive goal-directed behavior. Electrophysiological recordings of mPFC neurons in rats performing delayed non-matching-to position (DNMTP) and other complex decision making tasks have revealed populations of neurons with activity related to actions and outcomes that underlie these behaviors. These include responses related to motor preparation, instrumental actions, movement, anticipation and delivery of action outcomes, memory delay, and spatial context. Comparison of results for mPFC, MD, and ventral pallidum (VP) suggest critical roles for mPFC in prospective processes that precede actions, MD for reinforcing task-relevant responses in mPFC, and VP for providing feedback about action outcomes. Synthesis of electrophysiological and behavioral results indicates that different networks connecting mPFC with thalamus and the basal ganglia are organized to support distinct functions that allow organisms to act efficiently to obtain intended outcomes.
Collapse
Affiliation(s)
- Robert G. Mair
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Miranda J. Francoeur
- Neural Engineering and Translation Labs, University of California, San Diego, San Diego, CA, United States
| | - Erin M. Krell
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Brett M. Gibson
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| |
Collapse
|
25
|
Shan Q, Yu X, Tian Y. Reduction of excitatory synaptic transmission efficacy in the infralimbic prefrontal cortex potentially contributes to impairment of contextual fear memory extinction in aged mice. J Gerontol A Biol Sci Med Sci 2022; 78:930-937. [PMID: 35778266 DOI: 10.1093/gerona/glac137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Human beings are living longer than ever before and cognitive decline experienced by aged adults, such as compromise in cognitive flexibility, has been attracting more and more attention. One such example is the aging-related impairment of memory extinction. However, its underlying neural basis, especially the functional basis at the synapse level, is largely unknown. This study verifies that Pavlovian contextual fear memory extinction is impaired in aged mice. A large body of previous studies have shown that the infralimbic prefrontal cortex (ilPFC) plays a pivotal role in memory extinction. Correspondingly, this study reveals an aging-related reduction in the efficacy of excitatory synaptic transmission onto the ilPFC pyramidal neurons via electrophysiology recordings. This study further suggests that this reduced excitation potentially contributes to the aging-related impairment of contextual fear memory extinction: chemogenetically suppressing the activity of the ilPFC pyramidal neurons in young mice impairs contextual fear memory extinction, whereas chemogenetically compensating the reduced excitation of the ilPFC pyramidal neurons in aged mice restores contextual fear memory extinction. This study identifies a functional synaptic plasticity in the ilPFC pyramidal neurons that potentially contributes to the aging-related impairment of contextual fear memory extinction, which would potentially help to develop a therapy to treat related cognitive decline in aged human adults.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Divergent encoding of active avoidance behavior in corticostriatal and corticolimbic projections. Sci Rep 2022; 12:10731. [PMID: 35750718 PMCID: PMC9232563 DOI: 10.1038/s41598-022-14930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Active avoidance behavior, in which an animal performs an action to avoid a stressor, is crucial for survival and may provide insight into avoidance behaviors seen in anxiety disorders. Active avoidance requires the dorsomedial prefrontal cortex (dmPFC), which is thought to regulate avoidance via downstream projections to the striatum and amygdala. However, the endogenous activity of dmPFC projections during active avoidance learning has never been recorded. Here we utilized fiber photometry to record from the dmPFC and its axonal projections to the dorsomedial striatum (DMS) and the basolateral amygdala (BLA) during active avoidance learning in both male and female mice. We examined neural activity during conditioned stimulus (CS) presentations and during clinically relevant behaviors such as active avoidance or cued freezing. Both prefrontal projections showed learning-related increases in activity during CS onset throughout active avoidance training. The dmPFC as a whole showed increased and decreased patterns of activity during avoidance and cued freezing, respectively. Finally, dmPFC-DMS and dmPFC-BLA projections show divergent encoding of active avoidance behavior, with the dmPFC-DMS projection showing increased activity and the dmPFC-BLA projection showing decreased activity during active avoidance. Our results demonstrate task-relevant encoding of active avoidance in projection-specific dmPFC subpopulations that play distinct but complementary roles in active avoidance learning.
Collapse
|
27
|
Hamel L, Cavdaroglu B, Yeates D, Nguyen D, Riaz S, Patterson D, Khan N, Kirolos N, Roper K, Ha QA, Ito R. Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment. J Neurosci 2022; 42:3811-3822. [PMID: 35351827 PMCID: PMC9087743 DOI: 10.1523/jneurosci.2175-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been associated with the expression of adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, reported effects of mPFC manipulations on cue-elicited natural reward-seeking and inhibition thereof have been varied, with few studies examining cortico-striatal contributions in tasks that require adaptive responding to cues signaling reward and punishment within the same session. The current study aimed to better elucidate the role of mPFC and NAc subdivisions, and their functional connectivity in cue-elicited adaptive responding using a novel discriminative cue responding task. Male Long-Evans rats learned to lever-press on a VR5 schedule for a discriminative cue signaling reward, and to avoid pressing the same lever in the presence of another cue signaling punishment. Postacquisition, prelimbic (PL) and infralimbic (IL) areas of the mPFC, NAc core, shell, PL-core, or IL-shell circuits were pharmacologically or chemogenetically inhibited while animals performed under (1) nonreinforced (extinction) conditions, where the appetitive and aversive cues were presented in alternating trials alone or as a compound stimulus; and (2) reinforced conditions, whereby cued responding was accompanied by associated outcomes. PL and IL inactivation attenuated nonreinforced and reinforced goal-directed cue responding, whereas NAc core and shell inactivation impaired nonreinforced responding for the appetitive, but not aversive cue. Furthermore, PL-core and IL-shell inhibition disinhibited nonreinforced but not reinforced cue responding. Our findings implicate the mPFC as a site of confluence of motivationally significant cues and outcomes, and in the regulation of nonreinforced cue responding via downstream NAc targets.SIGNIFICANCE STATEMENT The ability to discriminate and respond appropriately to environmental cues that signal availability of reward or punishment is essential for survival. The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been implicated in adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, less is known about the role they play in orchestrating adaptive responses to natural reward and punishment cues within the same behavioral task. Here, using a novel discriminative cue responding task combined with pharmacological or chemogenetic inhibition of mPFC, NAc and mPFC-NAc circuits, we report that mPFC is critically involved in responding to changing cued response-outcomes, both when the responses are reinforced, and nonreinforced. Furthermore, the mPFC coordinates nonreinforced discriminative cue responding by suppressing inappropriate responding via downstream NAc targets.
Collapse
Affiliation(s)
- Laurie Hamel
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Bilgehan Cavdaroglu
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - David Nguyen
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Patterson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Nardin Kirolos
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Katherine Roper
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Quynh An Ha
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| |
Collapse
|
28
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Calabrese JR, Goetschius LG, Murray L, Kaplan MR, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS. Mapping frontostriatal white matter tracts and their association with reward-related ventral striatum activation in adolescence. Brain Res 2022; 1780:147803. [PMID: 35090884 DOI: 10.1016/j.brainres.2022.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
The ventral striatum (VS) is implicated in reward processing and motivation. Human and non-human primate studies demonstrate that the VS and prefrontal cortex (PFC), which comprise the frontostriatal circuit, interact to influence motivated behavior. However, there is a lack of research that precisely maps and quantifies VS-PFC white matter tracts. Moreover, no studies have linked frontostriatal white matter to VS activation. Using a multimodal neuroimaging approach with diffusion MRI (dMRI) and functional MRI (fMRI), the present study had two objectives: 1) to chart white matter tracts between the VS and specific PFC structures and 2) assess the association between the degree of VS-PFC white matter tract connectivity and VS activation in 187 adolescents. White matter connectivity was assessed with probabilistic tractography and functional activation was examined with two fMRI tasks (one task with social reward and another task using monetary reward). We found widespread but variable white matter connectivity between the VS and areas of the PFC, with the anterior insula and subgenual cingulate cortex demonstrating the greatest degree of connectivity with the VS. VS-PFC structural connectivity was related to functional activation in the VS though activation depended on the specific PFC region and reward task.
Collapse
Affiliation(s)
| | | | - Laura Murray
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Megan R Kaplan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Detailed mapping of behavior reveals the formation of prelimbic neural ensembles across operant learning. Neuron 2022; 110:674-685.e6. [PMID: 34921779 PMCID: PMC8899843 DOI: 10.1016/j.neuron.2021.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
The prelimbic cortex (PrL) is involved in the organization of operant behaviors, but the relationship between longitudinal PrL neural activity and operant learning and performance is unknown. Here, we developed deep behavior mapping (DBM) to identify behavioral microstates in video recordings. We combined DBM with longitudinal calcium imaging to quantify behavioral tuning in PrL neurons as mice learned an operant task. We found that a subset of PrL neurons were strongly tuned to highly specific behavioral microstates, both task and non-task related. Overlapping neural ensembles were tiled across consecutive microstates in the response-reinforcer sequence, forming a continuous map. As mice learned the operant task, weakly tuned neurons were recruited into new ensembles, with a bias toward behaviors similar to their initial tuning. In summary, our data suggest that the PrL contains neural ensembles that jointly encode a map of behavioral states that is fine grained, is continuous, and grows during operant learning.
Collapse
|
31
|
Li B, Jiang J, Zhou L, Tao X, Sun Q, Liu J, Liu Y, Pang G. Blockade of 5-Hydroxytryptamine 2A Receptor Attenuates Precipitation of Naloxone-Induced Withdrawal Symptoms in Opioid-Exposed Mice. Front Behav Neurosci 2022; 15:797217. [PMID: 35221941 PMCID: PMC8864093 DOI: 10.3389/fnbeh.2021.797217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Heroin dependency has become a global problem and has caused significant clinical and socioeconomic burdens along with devastating medical consequences. Chronic drug exposure alters the expression and functional activity of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) in the brain. Furthermore, pharmacological blockade of 5-HT2ARs reduces cue-induced cocaine craving behaviors. In this study, we explored the influence of 5-HT2ARs on heroin-withdrawal behaviors in mice. Black C57BL/6J mice were given gradually increasing (10–50 mg/kg over 4.5 days) doses of heroin to induce heroin dependency, after which naloxone was given to precipitate withdrawal symptoms. MDL100907, a selective and potent 5-HT2AR antagonist, attenuated naloxone-precipitated withdrawal symptoms in these mice. In addition, 5-HT2AR protein levels increased significantly in the medial prefrontal cortex (mPFC), while phosphorylation of extracellular signal-regulated kinase (p-ERK) decreased in the mPFC after heroin exposure. In conclusion, these results suggest that 5-HT2ARs might be involved in the development of opioid dependency and that pharmacological blocking of 5-HT2ARs might be a new therapeutic strategy for heroin dependency.
Collapse
Affiliation(s)
- Bing Li
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Junyu Jiang
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Li Zhou
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xinrong Tao
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Qixian Sun
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jiaxin Liu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yang Liu
- Center for Medical Research, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Gang Pang
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Gang Pang,
| |
Collapse
|
32
|
Jefferson T, Kelly CJ, Martina M. Differential Rearrangement of Excitatory Inputs to the Medial Prefrontal Cortex in Chronic Pain Models. Front Neural Circuits 2022; 15:791043. [PMID: 35002635 PMCID: PMC8738091 DOI: 10.3389/fncir.2021.791043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic pain patients suffer a disrupted quality of life not only from the experience of pain itself, but also from comorbid symptoms such as depression, anxiety, cognitive impairment, and sleep disturbances. The heterogeneity of these symptoms support the idea of a major involvement of the cerebral cortex in the chronic pain condition. Accordingly, abundant evidence shows that in chronic pain the activity of the medial prefrontal cortex (mPFC), a brain region that is critical for executive function and working memory, is severely impaired. Excitability of the mPFC depends on the integrated effects of intrinsic excitability and excitatory and inhibitory inputs. The main extracortical sources of excitatory input to the mPFC originate in the thalamus, hippocampus, and amygdala, which allow the mPFC to integrate multiple information streams necessary for cognitive control of pain including sensory information, context, and emotional salience. Recent techniques, such as optogenetic methods of circuit dissection, have made it possible to tease apart the contributions of individual circuit components. Here we review the synaptic properties of these main glutamatergic inputs to the rodent mPFC, how each is altered in animal models of chronic pain, and how these alterations contribute to pain-associated mPFC deactivation. By understanding the contributions of these individual circuit components, we strive to understand the broad spectrum of chronic pain and comorbid pathologies, how they are generated, and how they might be alleviated.
Collapse
Affiliation(s)
- Taylor Jefferson
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
33
|
Kearns AM, Siemsen BM, Hopkins JL, Weber RA, Scofield MD, Peters J, Reichel CM. Chemogenetic inhibition of corticostriatal circuits reduces cued reinstatement of methamphetamine seeking. Addict Biol 2022; 27:e13097. [PMID: 34431593 PMCID: PMC8809357 DOI: 10.1111/adb.13097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Methamphetamine (meth) causes enduring changes within the medial prefrontal cortex (mPFC) and the nucleus accumbens (NA). Projections from the mPFC to the NA have a distinct dorsal-ventral distribution, with the prelimbic (PL) mPFC projecting to the NAcore, and the infralimbic (IL) mPFC projecting to the NAshell. Inhibition of these circuits has opposing effects on cocaine relapse. Inhibition of PL-NAcore reduces cued reinstatement of cocaine seeking and IL-NAshell inhibition reinstates cocaine seeking. Meth, however, exhibits a different profile, as pharmacological inhibition of either the PL or IL decrease cued reinstatement of meth-seeking. The potentially opposing roles of the PL-NAcore and IL-NAshell projections remain to be explored in the context of cued meth seeking. Here we used an intersectional viral vector approach that employs a retrograde delivery of Cre from the NA and Cre-dependent expression of DREADD in the mPFC, in both male and female rats to inhibit or activate these parallel pathways. Inhibition of the PL-NAcore circuit reduced cued reinstatement of meth seeking under short and long-access meth self-administration and after withdrawal with and without extinction. Inhibition of the IL-NAshell also decreased meth cued reinstatement. Activation of the parallel circuits was without an effect. These studies show that inhibition of the PL-NAcore or the IL-NAshell circuits can inhibit reinstated meth seeking. Thus, the neural circuitry mediating cued reinstatement of meth seeking is similar to cocaine in the dorsal, but not ventral, mPFC-NA circuit.
Collapse
Affiliation(s)
- Angela M. Kearns
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Benjamin M. Siemsen
- Department of Anesthesiology Medical University of South Carolina Charleston South Carolina USA
| | - Jordan L. Hopkins
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Rachel A. Weber
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Michael D. Scofield
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
- Department of Anesthesiology Medical University of South Carolina Charleston South Carolina USA
| | - Jamie Peters
- Department of Anesthesiology University of Colorado Denver Aurora Colorado USA
- Department of Pharmacology University of Colorado Denver Aurora Colorado USA
| | - Carmela M. Reichel
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
34
|
Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology 2022; 47:247-259. [PMID: 34545196 PMCID: PMC8617299 DOI: 10.1038/s41386-021-01155-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder can be viewed as a disorder of fear dysregulation. An abundance of research suggests that the prefrontal cortex is central to fear processing-that is, how fears are acquired and strategies to regulate or diminish fear responses. The current review covers foundational research on threat or fear acquisition and extinction in nonhuman animals, healthy humans, and patients with posttraumatic stress disorder, through the lens of the involvement of the prefrontal cortex in these processes. Research harnessing advances in technology to further probe the role of the prefrontal cortex in these processes, such as the use of optogenetics in rodents and brain stimulation in humans, will be highlighted, as well other fear regulation approaches that are relevant to the treatment of posttraumatic stress disorder and involve the prefrontal cortex, namely cognitive regulation and avoidance/active coping. Despite the large body of translational research, many questions remain unanswered and posttraumatic stress disorder remains difficult to treat. We conclude by outlining future research directions related to the role of the prefrontal cortex in fear processing and implications for the treatment of posttraumatic stress disorder.
Collapse
Affiliation(s)
- M. Alexandra Kredlow
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| | - Robert J. Fenster
- grid.38142.3c000000041936754XDivision of Depression and Anxiety, McLean Hospital; Department of Psychiatry, Harvard Medical School, Cambridge, MA USA
| | - Emma S. Laurent
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| | - Kerry J. Ressler
- grid.38142.3c000000041936754XDivision of Depression and Anxiety, McLean Hospital; Department of Psychiatry, Harvard Medical School, Cambridge, MA USA
| | - Elizabeth A. Phelps
- grid.38142.3c000000041936754XDepartment of Psychology, Harvard University, Cambridge, MA USA
| |
Collapse
|
35
|
Gourley SL, Srikanth KD, Woon EP, Gil-Henn H. Pyk2 Stabilizes Striatal Medium Spiny Neuron Structure and Striatal-Dependent Action. Cells 2021; 10:3442. [PMID: 34943950 PMCID: PMC8700592 DOI: 10.3390/cells10123442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
In day-to-day life, we often choose between pursuing familiar behaviors that have been rewarded in the past or adjusting behaviors when new strategies might be more fruitful. The dorsomedial striatum (DMS) is indispensable for flexibly arbitrating between old and new behavioral strategies. The way in which DMS neurons host stable connections necessary for sustained flexibility is still being defined. An entry point to addressing this question may be the structural scaffolds on DMS neurons that house synaptic connections. We find that the non-receptor tyrosine kinase Proline-rich tyrosine kinase 2 (Pyk2) stabilizes both dendrites and spines on striatal medium spiny neurons, such that Pyk2 loss causes dendrite arbor and spine loss. Viral-mediated Pyk2 silencing in the DMS obstructs the ability of mice to arbitrate between rewarded and non-rewarded behaviors. Meanwhile, the overexpression of Pyk2 or the closely related focal adhesion kinase (FAK) enhances this ability. Finally, experiments using combinatorial viral vector strategies suggest that flexible, Pyk2-dependent action involves inputs from the medial prefrontal cortex (mPFC), but not the ventrolateral orbitofrontal cortex (OFC). Thus, Pyk2 stabilizes the striatal medium spiny neuron structure, likely providing substrates for inputs, and supports the capacity of mice to arbitrate between novel and familiar behaviors, including via interactions with the medial-prefrontal cortex.
Collapse
Affiliation(s)
- Shannon L. Gourley
- Yerkes National Primate Research Center, Department of Pediatrics, Emory University School of Medicine, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA;
| | - Kolluru D. Srikanth
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Ellen P. Woon
- Yerkes National Primate Research Center, Department of Pediatrics, Emory University School of Medicine, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA;
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
36
|
Nett KE, LaLumiere RT. Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? Neurosci Biobehav Rev 2021; 131:704-721. [PMID: 34624366 PMCID: PMC8642304 DOI: 10.1016/j.neubiorev.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The rodent infralimbic cortex (IL) is implicated in higher order executive functions such as reward seeking and flexible decision making. However, the precise nature of its role in these processes is unclear. Early evidence indicated that the IL promotes the extinction and ongoing inhibition of fear conditioning and cocaine seeking. However, evidence spanning other behavioral domains, such as natural reward seeking and habit-based learning, suggests a more nuanced understanding of IL function. As techniques have advanced and more studies have examined IL function, identifying a unifying explanation for its behavioral function has become increasingly difficult. Here, we discuss evidence of IL function across motivated behaviors, including associative learning, drug seeking, natural reward seeking, and goal-directed versus habit-based behaviors, and emphasize how context-specific encoding and heterogeneous IL neuronal populations may underlie seemingly conflicting findings in the literature. Together, the evidence suggests that a major IL function is to facilitate the encoding and updating of contingencies between cues and behaviors to guide subsequent behaviors.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
37
|
Feng XY, Hu HD, Chen J, Long C, Yang L, Wang L. Acute neuroinflammation increases excitability of prefrontal parvalbumin interneurons and their functional recruitment during novel object recognition. Brain Behav Immun 2021; 98:48-58. [PMID: 34403738 DOI: 10.1016/j.bbi.2021.08.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/09/2023] Open
Abstract
There is an emerging body of literature suggesting that unlike the chronic neuroinflammatory response, acute neuroinflammation is self-regulated and is beneficial for central nervous system homeostasis and cognitive integrity. However, the neurophysiological alterations upon acute neuroinflammation and their implications on cognitive function remain poorly understood. In the present study, we reliably established a mouse model of acute and self-limiting neuroinflammation by administering a single intraperitoneal injection of low-dose lipopolysaccharide, which induced reversible sickness behavior and increased pro-inflammatory cytokine expression in the medial prefrontal cortex (mPFC). During acute neuroinflammation, fast-spiking parvalbumin-expressing interneurons (PV interneurons) in the mPFC exhibited a hyperexcitable phenotype exemplified by increased input resistance, decreased rheobase current, and a higher frequency of action potentials. Furthermore, PV interneurons in the prelimbic subregion of the mPFC were excessively recruited into circuits supporting novel object recognition memory, which remained intact after acute neuroinflammation. Together, our findings suggest that alterations in PV neuronal excitability resulting from acute neuroinflammation may mediate neuronal recruitment and confer a beneficial outcome on functional integrity of NOR circuit in the mPFC.
Collapse
Affiliation(s)
- Xiao-Yi Feng
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Hai-Dong Hu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
38
|
Green JT, Bouton ME. New functions of the rodent prelimbic and infralimbic cortex in instrumental behavior. Neurobiol Learn Mem 2021; 185:107533. [PMID: 34673264 PMCID: PMC8653515 DOI: 10.1016/j.nlm.2021.107533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
The prelimbic and infralimbic cortices of the rodent medial prefrontal cortex mediate the effects of context and goals on instrumental behavior. Recent work from our laboratory has expanded this understanding. Results have shown that the prelimbic cortex is important for the modulation of instrumental behavior by the context in which the behavior is learned (but not other contexts), with context potentially being broadly defined (to include at least previous behaviors). We have also shown that the infralimbic cortex is important in the expression of extensively-trained instrumental behavior, regardless of whether that behavior is expressed as a stimulus-response habit or a goal-directed action. Some of the most recent data suggest that infralimbic cortex may control the currently active behavioral state (e.g., habit vs. action or acquisition vs. extinction) when two states have been learned. We have also begun to examine prelimbic and infralimbic cortex function as key nodes of discrete circuits and have shown that prelimbic cortex projections to an anterior region of the dorsomedial striatum are important for expression of minimally-trained instrumental behavior. Overall, the use of an associative learning perspective on instrumental learning has allowed the research to provide new perspectives on how these two "cognitive" brain regions contribute to instrumental behavior.
Collapse
Affiliation(s)
- John T Green
- Department of Psychological Science, University of Vermont, United States.
| | - Mark E Bouton
- Department of Psychological Science, University of Vermont, United States
| |
Collapse
|
39
|
Madangopal R, Ramsey LA, Weber SJ, Brenner MB, Lennon VA, Drake OR, Komer LE, Tunstall BJ, Bossert JM, Shaham Y, Hope BT. Inactivation of the infralimbic cortex decreases discriminative stimulus-controlled relapse to cocaine seeking in rats. Neuropsychopharmacology 2021; 46:1969-1980. [PMID: 34162997 PMCID: PMC8429767 DOI: 10.1038/s41386-021-01067-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023]
Abstract
Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Megan B Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Veronica A Lennon
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia R Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lauren E Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Brendan J Tunstall
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
40
|
Ríos-Flórez JA, Lima RRM, Morais PLAG, de Medeiros HHA, Cavalcante JS, Junior ESN. Medial prefrontal cortex (A32 and A25) projections in the common marmoset: a subcortical anterograde study. Sci Rep 2021; 11:14565. [PMID: 34267273 PMCID: PMC8282874 DOI: 10.1038/s41598-021-93819-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
This study was aimed at establishing the subcorticals substrates of the cognitive and visceromotor circuits of the A32 and A25 cortices of the medial prefrontal cortex and their projections and interactions with subcortical complexes in the common marmoset monkey (Callithrix jacchus). The study was primarily restricted to the nuclei of the diencephalon and amygdala. The common marmoset is a neotropical primate of the new world, and the absence of telencephalic gyrus favors the mapping of neuronal fibers. The biotinylated dextran amine was employed as an anterograde tracer. There was an evident pattern of rostrocaudal distribution of fibers within the subcortical nuclei, with medial orientation. Considering this distribution, fibers originating from the A25 cortex were found to be more clustered in the diencephalon and amygdala than those originating in the A32 cortex. Most areas of the amygdala received fibers from both cortices. In the diencephalon, all regions received projections from the A32, while the A25 fibers were restricted to the thalamus, hypothalamus, and epithalamus at different densities. Precise deposits of neuronal tracers provided here may significantly contribute to expand our understanding of specific connectivity among the medial prefrontal cortex with limbic regions and diencephalic areas, key elements to the viscerocognitive process.
Collapse
Affiliation(s)
- Jorge Alexander Ríos-Flórez
- Neuroanatomy Laboratory, Department of Morphology, Federal University of Rio Grande Do Norte, Natal, Brazil.
| | - Ruthnaldo R M Lima
- Neuroanatomy Laboratory, Department of Morphology, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, the University of the State of Rio Grande Do Norte, Mossoro, Brazil
| | | | | | | |
Collapse
|
41
|
Yang SS, Mack NR, Shu Y, Gao WJ. Prefrontal GABAergic Interneurons Gate Long-Range Afferents to Regulate Prefrontal Cortex-Associated Complex Behaviors. Front Neural Circuits 2021; 15:716408. [PMID: 34322002 PMCID: PMC8313241 DOI: 10.3389/fncir.2021.716408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023] Open
Abstract
Prefrontal cortical GABAergic interneurons (INs) and their innervations are essential for the execution of complex behaviors such as working memory, social behavior, and fear expression. These behavior regulations are highly dependent on primary long-range afferents originating from the subcortical structures such as mediodorsal thalamus (MD), ventral hippocampus (vHPC), and basolateral amygdala (BLA). In turn, the regulatory effects of these inputs are mediated by activation of parvalbumin-expressing (PV) and/or somatostatin expressing (SST) INs within the prefrontal cortex (PFC). Here we review how each of these long-range afferents from the MD, vHPC, or BLA recruits a subset of the prefrontal interneuron population to exert precise control of specific PFC-dependent behaviors. Specifically, we first summarize the anatomical connections of different long-range inputs formed on prefrontal GABAergic INs, focusing on PV versus SST cells. Next, we elaborate on the role of prefrontal PV- and SST- INs in regulating MD afferents-mediated cognitive behaviors. We also examine how prefrontal PV- and SST- INs gate vHPC afferents in spatial working memory and fear expression. Finally, we discuss the possibility that prefrontal PV-INs mediate fear conditioning, predominantly driven by the BLA-mPFC pathway. This review will provide a broad view of how multiple long-range inputs converge on prefrontal interneurons to regulate complex behaviors and novel future directions to understand how PFC controls different behaviors.
Collapse
Affiliation(s)
- Sha-Sha Yang
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States,Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Nancy R. Mack
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Yousheng Shu
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States,*Correspondence: Wen-Jun Gao,
| |
Collapse
|
42
|
Whyte AJ, Trinoskey-Rice G, Davies RA, Woon EP, Foster SL, Shapiro LP, Li DC, Srikanth KD, Gil-Henn H, Gourley SL. Cell Adhesion Factors in the Orbitofrontal Cortex Control Cue-Induced Reinstatement of Cocaine Seeking and Amygdala-Dependent Goal Seeking. J Neurosci 2021; 41:5923-5936. [PMID: 34074735 PMCID: PMC8265806 DOI: 10.1523/jneurosci.0781-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Repeated cocaine exposure causes dendritic spine loss in the orbitofrontal cortex, which might contribute to poor orbitofrontal cortical function following drug exposure. One challenge, however, has been verifying links between neuronal structural plasticity and behavior, if any. Here we report that cocaine self-administration triggers the loss of dendritic spines on excitatory neurons in the orbitofrontal cortex of male and female mice (as has been reported in rats). To understand functional consequences, we locally ablated neuronal β1-integrins, cell adhesion receptors that adhere cells to the extracellular matrix and thus support dendritic spine stability. Degradation of β1-integrin tone: (1) caused dendritic spine loss, (2) exaggerated cocaine-seeking responses in a cue-induced reinstatement test, and (3) impaired the ability of mice to integrate new learning into familiar routines, a key function of the orbitofrontal cortex. Stimulating Abl-related gene kinase, overexpressing Proline-rich tyrosine kinase, and inhibiting Rho-associated coiled-coil containing kinase corrected response strategies, uncovering a β1-integrin-mediated signaling axis that controls orbitofrontal cortical function. Finally, use of a combinatorial gene silencing/chemogenetic strategy revealed that β1-integrins support the ability of mice to integrate new information into established behaviors by sustaining orbitofrontal cortical connections with the basolateral amygdala.SIGNIFICANCE STATEMENT Cocaine degenerates dendritic spines in the orbitofrontal cortex, a region of the brain involved in interlacing new information into established behaviors. One challenge has been verifying links between cellular structural stability and behavior, if any. In this second of two related investigations, we study integrin family receptors, which adhere cells to the extracellular matrix and thereby stabilize dendritic spines (see also DePoy et al., 2019). We reveal that β1-integrins in the orbitofrontal cortex control food- and cocaine-seeking behaviors. For instance, β1-integrin loss amplifies cocaine-seeking behavior and impairs the ability of mice to integrate new learning into familiar routines. We identify likely intracellular signaling partners by which β1-integrins support orbitofrontal cortical function and connectivity with the basolateral amygdala.
Collapse
Affiliation(s)
- Alonzo J Whyte
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Rachel A Davies
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Ellen P Woon
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
| | - Stephanie L Foster
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
| | - Lauren P Shapiro
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| | - Dan C Li
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
| | | | - Hava Gil-Henn
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30329
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30329
| |
Collapse
|
43
|
Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacology 2021; 46:1399-1406. [PMID: 33230269 PMCID: PMC8209220 DOI: 10.1038/s41386-020-00909-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
The prelimbic (PL) region of prefrontal cortex has been implicated in both driving and suppressing cocaine seeking in animal models of addiction. We hypothesized that these opposing roles for PL may be supported by distinct efferent projections. While PL projections to nucleus accumbens core have been shown to be involved in driving reinstatement of cocaine seeking, PL projections to the rostromedial tegmental nucleus (RMTg) may instead suppress reinstatement of cocaine seeking, due to the role of RMTg in behavioral inhibition. Here, we used a functional disconnection approach to temporarily disrupt the PL-RMTg pathway during cue- or cocaine-induced reinstatement. Male Sprague Dawley rats self-administered cocaine during daily 2-h sessions for ≥10 days and then underwent extinction training. Reinstatement of extinguished cocaine seeking was elicited by cocaine-associated cues or cocaine prime. Prior to reinstatement, rats received microinjections of the GABA agonists baclofen/muscimol (1/0.1 mM) into unilateral PL and the AMPA receptor antagonist NBQX (1 mM) into contralateral or ipsilateral RMTg. Functional disconnection of PL-RMTg via contralateral inactivation markedly increased cue-induced reinstatement, but did not increase cocaine-induced reinstatement or drive reinstatement of extinguished cocaine seeking in the absence of cues or cocaine. Enhanced cue-induced reinstatement was also observed with ipsilateral inactivation of PL and RMTg, but not with unilateral inactivation of PL or RMTg alone, indicating that both ipsilateral and contralateral projections from PL to RMTg have an inhibitory influence on behavior. These data further support a suppressive role for PL in cocaine seeking by implicating PL efferent projections to RMTg in inhibiting cue-induced reinstatement.
Collapse
|
44
|
Decoding the Role of Gut-Microbiome in the Food Addiction Paradigm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136825. [PMID: 34202073 PMCID: PMC8297196 DOI: 10.3390/ijerph18136825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Eating behaviour is characterised by a solid balance between homeostatic and hedonic regulatory mechanisms at the central level and highly influenced by peripheral signals. Among these signals, those generated by the gut microbiota have achieved relevance in recent years. Despite this complex regulation, under certain circumstances eating behaviour can be deregulated becoming addictive. Although there is still an ongoing debate about the food addiction concept, studies agree that patients with eating addictive behaviour present similar symptoms to those experienced by drug addicts, by affecting central areas involved in the control of motivated behaviour. In this context, this review tries to summarise the main data regarding the role of the gut microbiome in eating behaviour and how a gut dysbiosis can be responsible for a maladaptive behaviour such as “food addiction”.
Collapse
|
45
|
Loewke AC, Minerva AR, Nelson AB, Kreitzer AC, Gunaydin LA. Frontostriatal Projections Regulate Innate Avoidance Behavior. J Neurosci 2021; 41:5487-5501. [PMID: 34001628 PMCID: PMC8221601 DOI: 10.1523/jneurosci.2581-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
The dorsomedial prefrontal cortex (dmPFC) has been linked to avoidance and decision-making under conflict, key neural computations altered in anxiety disorders. However, the heterogeneity of prefrontal projections has obscured identification of specific top-down projections involved. While the dmPFC-amygdala circuit has long been implicated in controlling reflexive fear responses, recent work suggests that dmPFC-dorsomedial striatum (DMS) projections may be more important for regulating avoidance. Using fiber photometry recordings in both male and female mice during the elevated zero maze task, we show heightened neural activity in frontostriatal but not frontoamygdalar projection neurons during exploration of the anxiogenic open arms. Additionally, using optogenetics, we demonstrate that this frontostriatal projection preferentially excites postsynaptic D1 receptor-expressing neurons in the DMS and causally controls innate avoidance behavior. These results support a model for prefrontal control of defensive behavior in which the dmPFC-amygdala projection controls reflexive fear behavior and the dmPFC-striatum projection controls anxious avoidance behavior.SIGNIFICANCE STATEMENT The medial prefrontal cortex has been extensively linked to several behavioral symptom domains related to anxiety disorders, with much of the work centered around reflexive fear responses. Comparatively little is known at the mechanistic level about anxious avoidance behavior, a core feature across anxiety disorders. Recent work has suggested that the striatum may be an important hub for regulating avoidance behaviors. Our work uses optical circuit dissection techniques to identify a specific corticostriatal circuit involved in encoding and controlling avoidance behavior. Identifying neural circuits for avoidance will enable the development of more targeted symptom-specific treatments for anxiety disorders.
Collapse
Affiliation(s)
- Adrienne C Loewke
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158
| | - Adelaide R Minerva
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
- Kavli Institute for Fundamental Neuroscience is at University of California, San Francisco, San Francisco, California 94158
| | - Anatol C Kreitzer
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
- Kavli Institute for Fundamental Neuroscience is at University of California, San Francisco, San Francisco, California 94158
- Department of Physiology, University of California, San Francisco, San Francisco, California 94158
- Neurological Disease Institute, Gladstone Institutes, San Francisco, California 94158
| | - Lisa A Gunaydin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158
- Kavli Institute for Fundamental Neuroscience is at University of California, San Francisco, San Francisco, California 94158
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
46
|
Omura J, Fuchikami M, Araki M, Miyagi T, Okamoto Y, Morinobu S. Chemogenetic activation of the mPFC alleviates impaired fear memory extinction in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110090. [PMID: 32896603 DOI: 10.1016/j.pnpbp.2020.110090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Although impaired extinction of fear memory (EFM) is a hallmark symptom of posttraumatic stress disorder (PTSD), the mechanisms underlying the impairment are unknown. Activation of the infralimbic cortex (IL) in the medial prefrontal cortex (mPFC) has been reported to predict successful fear extinction, whereas functionally disrupting this region impairs extinction. We examined whether chemogenetic activation of the IL could alleviate impaired EFM in a single prolonged stress (SPS) rat model of PTSD. METHODS Chemogenetic activation of IL and prelimbic (PL) excitatory neurons was undertaken to evaluate EFM using a contextual fear conditioning paradigm. Neuronal activity in the IL was recorded using a 32-multichannel silicon electrode. To examine histological changes in the mPFC, apoptosis was measured by TUNEL staining. RESULTS Chemogenetic activation of excitatory neurons in the IL, but not the PL, enhanced EFM in sham rats and resulted in alleviation of EFM impairment in SPS rats. The alleviation of impaired EFM in SPS rats was observed during the extinction test session. Neuronal activity in the IL of SPS rats was lower than that of sham rats after clozapine-n-oxide administration. Increased apoptosis was found in the IL of SPS rats. CONCLUSIONS These findings suggest that a decreased excitatory response in the IL due, at least in part, to an increase in apoptosis in SPS rats leads to impaired EFM, and that neuronal activation during extinction training could be useful for the treatment of impaired EFM in PTSD patients.
Collapse
Affiliation(s)
- Jun Omura
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Motoaki Araki
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| |
Collapse
|
47
|
Shapiro LP, Pitts EG, Li DC, Barbee BR, Hinton EA, Bassell GJ, Gross C, Gourley SL. The PI3-Kinase p110β Isoform Controls Severity of Cocaine-Induced Sequelae and Alters the Striatal Transcriptome. Biol Psychiatry 2021; 89:959-969. [PMID: 33773752 PMCID: PMC8202243 DOI: 10.1016/j.biopsych.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The PI3-kinase (PI3K) complex is a well-validated target for mitigating cocaine-elicited sequelae, but pan-PI3K inhibitors are not viable long-term treatment options. The PI3K complex is composed of p110 catalytic and regulatory subunits, which can be individually manipulated for therapeutic purposes. However, this possibility has largely not been explored in behavioral contexts. METHODS Here, we inhibited PI3K p110β in the medial prefrontal cortex (mPFC) of cocaine-exposed mice. Behavioral models for studying relapse, sensitization, and decision-making biases were paired with protein quantification, RNA sequencing, and cell type-specific chemogenetic manipulation and RNA quantification to determine whether and how inhibiting PI3K p110β confers resilience to cocaine. RESULTS Viral-mediated PI3K p110β silencing reduced cue-induced reinstatement of cocaine seeking by half, blocked locomotor sensitization, and restored mPFC synaptic marker content after exposure to cocaine. Cocaine blocked the ability of mice to select actions based on their consequences, and p110β inhibition restored this ability. Silencing dopamine D2 receptor-expressing excitatory mPFC neurons mimicked cocaine, impairing goal-seeking behavior, and again, p110β inhibition restored goal-oriented action. We verified the presence of p110β in mPFC neurons projecting to the dorsal striatum and orbitofrontal cortex and found that inhibiting p110β in the mPFC altered the expression of functionally defined gene clusters within the dorsal striatum and not orbitofrontal cortex. CONCLUSIONS Subunit-selective PI3K silencing potently mitigates drug seeking, sensitization, and decision-making biases after exposure to cocaine. We suggest that inhibiting PI3K p110β provides neuroprotection against cocaine by triggering coordinated corticostriatal adaptations.
Collapse
Affiliation(s)
- Lauren P. Shapiro
- Graduate Program in Molecular and Systems Pharmacology, Emory University,Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Elizabeth G. Pitts
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Dan C. Li
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology, Emory University,Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Elizabeth A. Hinton
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Gary J. Bassell
- Graduate Program in Neuroscience, Emory University,Department of Cell Biology, Emory University
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Shannon L. Gourley
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University,Children’s Healthcare of Atlanta
| |
Collapse
|
48
|
Le Merre P, Ährlund-Richter S, Carlén M. The mouse prefrontal cortex: Unity in diversity. Neuron 2021; 109:1925-1944. [PMID: 33894133 DOI: 10.1016/j.neuron.2021.03.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The prefrontal cortex (PFC) is considered to constitute the highest stage of neural integration and to be devoted to representation and production of actions. Studies in primates have laid the foundation for theories regarding the principles of prefrontal function and provided mechanistic insights. The recent surge of studies of the PFC in mice holds promise for evolvement of present theories and development of novel concepts, particularly regarding principles shared across mammals. Here we review recent empirical work on the mouse PFC capitalizing on the experimental toolbox currently privileged to studies in this species. We conclude that this line of research has revealed cellular and structural distinctions of the PFC and neuronal activity with direct relevance to theories regarding the functions of the PFC. We foresee that data-rich mouse studies will be key to shed light on the general prefrontal architecture and mechanisms underlying cognitive aspects of organized actions.
Collapse
Affiliation(s)
- Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.
| |
Collapse
|
49
|
Food-Seeking Behavior Is Mediated by Fos-Expressing Neuronal Ensembles Formed at First Learning in Rats. eNeuro 2021; 8:ENEURO.0373-20.2021. [PMID: 33472867 PMCID: PMC8174054 DOI: 10.1523/eneuro.0373-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal ensembles in the infralimbic cortex (IL) develop after prolonged food self-administration training. However, rats demonstrate evidence of learning the food self-administration response as early as day 1, with responding quickly increasing to asymptotic levels. Since the contribution of individual brain regions to task performance shifts over the course of training, it remains unclear whether IL ensembles are gradually formed and refined over the course of extensive operant training, or whether functionally-relevant ensembles might be recruited and formed as early as the initial acquisition of food self-administration behavior. Here, we aimed to determine the role of IL ensembles at the earliest possible point after demonstrable learning of a response-outcome association. We first allowed rats to lever press for palatable food pellets and stopped training rats once their behavior evidenced the response-outcome association (learners). We compared their food-seeking behavior and neuronal activation (Fos protein expression) to similarly trained rats that did not form this association (non-learners). Learners had greater food-seeking behavior and neuronal activation within the medial prefrontal cortex (mPFC), suggesting that mPFC subregions might encode initial food self-administration memories. To test the functional relevance of mPFC Fos-expressing ensembles to subsequent food seeking, we tested region-wide inactivation of the IL using muscimol+baclofen and neuronal ensemble-specific ablation using the Daun02 inactivation procedure. Both region-wide inactivation and ensemble-specific inactivation of the IL significantly decreased food seeking. These data suggest that IL neuronal ensembles form during initial learning of food self-administration behavior, and furthermore, that these ensembles play a functional role in food seeking.
Collapse
|
50
|
Nardo T, Batchelor J, Berry J, Francis H, Jafar D, Borchard T. Cognitive Remediation as an Adjunct Treatment for Substance Use Disorders: A Systematic Review. Neuropsychol Rev 2021; 32:161-191. [PMID: 33871785 DOI: 10.1007/s11065-021-09506-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022]
Abstract
Substance use disorders are associated with diverse neuropsychological impairments, with deficits in memory and executive functioning commonly observed. Cognitive remediation has been shown to be effective in other populations with cognitive impairments in these domains, including those with psychiatric disorders and acquired brain injuries, and it has been hypothesised to be similarly effective for those in treatment for substance use disorders. We aimed to systematically review the evidence for cognitive remediation interventions administered as an adjunct treatment to substance use rehabilitation. Studies were included if participants were receiving substance use treatment, if improving cognitive functioning was the main focus of the intervention and if they used an experimental design with a control condition receiving treatment-as-usual or an active control intervention. Two independent reviewers agreed on the final selection of 32 studies, encompassing cognitive remediation for working memory, memory, executive functioning and general cognition. Significant differences between intervention and control groups for cognitive test results and treatment outcomes were extracted and compared across treatment approaches. The review found considerable heterogeneity across studies, including in the types of interventions, the nature of participants and the outcome measures used. Further, a lack of quality studies with sufficient power meant that limited conclusions could be drawn, highlighting a need for further replication and research. However, findings indicate that cognitive remediation remains a promising potential avenue for improving cognition and treatment outcomes for those in treatment for substance use disorders. Protocol submitted prospectively to PROSPERO 30.09.2019, CRD42020150978.
Collapse
Affiliation(s)
- Talia Nardo
- Macquarie University, North Ryde, NSW, 2109, Australia.
| | | | - Jamie Berry
- Macquarie University, North Ryde, NSW, 2109, Australia.,Advanced Neuropsychological Treatment Services, Strathfield South, NSW, 2136, Australia
| | | | - Deyyan Jafar
- Macquarie University, North Ryde, NSW, 2109, Australia
| | | |
Collapse
|