1
|
Nguyen‐Duc J, de Riedmatten I, Spencer APC, Perot J, Olszowy W, Jelescu I. Mapping Activity and Functional Organisation of the Motor and Visual Pathways Using ADC-fMRI in the Human Brain. Hum Brain Mapp 2025; 46:e70110. [PMID: 39835608 PMCID: PMC11747996 DOI: 10.1002/hbm.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function. To demonstrate the specificity and value of ADC-fMRI, both ADC- and BOLD-fMRI data were collected at 3 T in human subjects during visual stimulation and motor tasks. The first aim of this study was to identify an acquisition design for ADC that minimises BOLD contributions. By examining the timings in responses, we report that ADC 0/1 timeseries (acquired with b values of 0 and 1 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ ) exhibit residual vascular contamination, while ADC 0.2/1 timeseries (with b values of 0.2 and 1 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ ) show minimal BOLD influence and higher sensitivity to neuromorphological coupling. Second, a general linear model was employed to identify activation clusters for ADC 0.2/1 and BOLD, from which the average ADC and BOLD responses were calculated. The negative ADC response exhibited a significantly reduced delay relative to the task onset and offset as compared to BOLD. This early onset further supports the notion that ADC is sensitive to neuromorphological rather than neurovascular coupling. Remarkably, in the group-level analysis, positive BOLD activation clusters were detected in the visual and motor cortices, while the negative ADC clusters mainly highlighted pathways in white matter connected to the motor cortex. In the averaged individual level analysis, negative ADC activation clusters were also present in the visual cortex. This finding confirmed the reliability of negative ADC as an indicator of brain function, even in regions with lower vascularisation such as white matter. Finally, we established that ADC-fMRI time courses yield the expected functional organisation of the visual system, including both grey and white matter regions of interest. Functional connectivity matrices were used to perform hierarchical clustering of brain regions, where ADC-fMRI successfully reproduced the expected structure of the dorsal and ventral visual pathways. This organisation was not replicated with the b = 0.2 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ diffusion-weighted time courses, which can be seen as a proxy for BOLD (via T2-weighting). These findings underscore the robustness of ADC time courses in functional MRI studies, offering complementary insights into BOLD-fMRI regarding brain function and connectivity patterns.
Collapse
Affiliation(s)
- Jasmine Nguyen‐Duc
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Ines de Riedmatten
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Arthur P. C. Spencer
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Jean‐Baptiste Perot
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Wiktor Olszowy
- Data Science Unit, Science and ResearchDsm‐Firmenich AGKaiseraugstSwitzerland
| | - Ileana Jelescu
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
2
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
3
|
Picha SG, Hojjati SH, Nayak S, Ozoria S, Chernek P, Calimag J, Yazdi BG, Razlighi QR. Negative BOLD Responses Surpass Positive Responses in Task Specificity, Reflecting Neural Reconfigurations Better Than Functional Connectivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317658. [PMID: 39606398 PMCID: PMC11601682 DOI: 10.1101/2024.11.20.24317658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective To investigate whether the Negative BOLD Response (NBR) is more task-specific than the Positive BOLD Response (PBR) during cognitive tasks and to determine whether task-evoked activity reflects brain reconfigurations during different tasks better than functional connectivity. Methods Functional Magnetic Resonance Imaging (fMRI) data were collected from 214 participants under 50 years old (152 in Dataset 1 and 62 in Dataset 2) performing twelve cognitive tasks spanning vocabulary, speed of processing, fluid reasoning, and memory domains. Data analysis included subject-level and group-level analyses, focusing on comparing the spatial patterns and task specificity of NBR and PBR through similarity measures using Dice coefficients. Additionally, functional connectivity was assessed using the Multi-session Hierarchical Bayesian Model (MS-HBM) to evaluate its sensitivity to task-induced brain reconfigurations compared to task-evoked activity. Results NBR demonstrated significantly greater task specificity compared to PBR across all cognitive tasks, with lower mean Dice coefficients for NBR maps (mean: 0.44, SD: 0.13) than for PBR maps (mean: 0.67, SD: 0.09; t(65) = 18.38, p < 0.001). Functional connectivity analyses indicated that the default mode network (DMN) remained stable across tasks, suggesting that task-evoked activity reflects task-specific brain reconfigurations better than functional connectivity. Conclusion The findings confirm that NBR is inherently more task-specific than PBR and that task-evoked activity provides a more sensitive measure of task-specific neural reconfigurations than functional connectivity. This enhances our understanding of the neural mechanisms underlying cognitive processes and highlights the importance of considering NBR in cognitive neuroscience research.
Collapse
Affiliation(s)
- Saman Gholipour Picha
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Siddharth Nayak
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
- Albert Einstein College of Medicine, New York, NY, United States
| | - Sindy Ozoria
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Peter Chernek
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Jenseric Calimag
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Bardiya Ghaderi Yazdi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
5
|
Shao X, Guo F, Kim J, Ress D, Zhao C, Shou Q, Jann K, Wang DJJ. Laminar multi-contrast fMRI at 7T allows differentiation of neuronal excitation and inhibition underlying positive and negative BOLD responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.01.24305167. [PMID: 39040201 PMCID: PMC11261924 DOI: 10.1101/2024.04.01.24305167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A major challenge for human neuroimaging using functional MRI is the differentiation of neuronal excitation and inhibition which may induce positive and negative BOLD responses. Here we present an innovative multi-contrast laminar functional MRI technique that offers comprehensive and quantitative imaging of neurovascular (CBF, CBV, BOLD) and metabolic (CMRO2) responses across cortical layers at 7 Tesla. This technique was first validated through a finger-tapping experiment, revealing 'double-peak' laminar activation patterns within the primary motor cortex. By employing a ring-shaped visual stimulus that elicited positive and negative BOLD responses, we further observed distinct neurovascular and metabolic responses across cortical layers and eccentricities in the primary visual cortex. This suggests potential feedback inhibition of neuronal activities in both superficial and deep cortical layers underlying the negative BOLD signals in the fovea, and also illustrates the neuronal activities in visual areas adjacent to the activated eccentricities.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - JungHwan Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
6
|
Dresbach S, Gulban OF, Steinbach T, Eck J, Kashyap S, Kaas A, Weiskopf N, Goebel R, Huber R. Laminar CBV and BOLD response-characteristics over time and space in the human primary somatosensory cortex at 7T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600746. [PMID: 39372740 PMCID: PMC11451658 DOI: 10.1101/2024.06.26.600746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Uncovering the cortical representation of the body has been at the core of human brain mapping for decades, with special attention given to the digits. In the last decade, advances in functional magnetic resonance imaging (fMRI) technologies have opened the possibility of noninvasively unraveling the 3rd dimension of digit representations in humans along cortical layers. In laminar fMRI it is common to combine the use of the highly sensitive blood oxygen level dependent (BOLD) contrast with cerebral blood volume sensitive measurements, like vascular space occupancy (VASO), that are more specific to the underlying neuronal populations. However, the spatial and temporal VASO response characteristics across cortical depth to passive stimulation of the digits are still unknown. Therefore, we characterized haemodynamic responses to vibrotactile stimulation of individual digit-tips across cortical depth at 0.75 mm in-plane spatial resolution using BOLD and VASO fMRI at 7T. We could identify digit-specific regions of interest (ROIs) in putative Brodmann area 3b, following the known anatomical organization. In the ROIs, the BOLD response increased towards the cortical surface due to the draining vein effect, while the VASO response was more shifted towards middle cortical layers, likely reflecting bottom-up input from the thalamus, as expected. Interestingly, we also found slightly negative BOLD and VASO responses for non-preferred digits in the ROIs, potentially indicating neuronal surround inhibition. Finally, we explored the temporal signal dynamics for BOLD and VASO as a function of distance from activation peaks resulting from stimulation of contralateral digits. With this analysis, we showed a triphasic response consisting of an initial peak and a subsequent negative deflection during stimulation, followed by a positive post-stimulus response in BOLD and to some extent in VASO. While similar responses were reported with invasive methods in animal models, here we demonstrate a potential neuronal excitation-inhibition mechanism in a center-surround architecture across layers in the human somatosensory cortex. Given that, unlike in animals, human experiments do not rely on anesthesia and can readily implement extensive behavioral testing, obtaining this effect in humans is an important step towards further uncovering the functional significance of the different aspects of the triphasic response.
Collapse
|
7
|
Arya P, Kolodny NH, Gobes SMH. Tracing the development of learned song preferences in the female zebra finch brain with functional magnetic resonance imaging. Dev Neurobiol 2024; 84:47-58. [PMID: 38466218 PMCID: PMC11009042 DOI: 10.1002/dneu.22934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.
Collapse
Affiliation(s)
- Payal Arya
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 02481, USA
| | - Nancy H. Kolodny
- Chemistry Department, Wellesley College, Wellesley, Massachusetts 02481, USA
| | - Sharon M. H. Gobes
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 02481, USA
| |
Collapse
|
8
|
Gil R, Valente M, Shemesh N. Rat superior colliculus encodes the transition between static and dynamic vision modes. Nat Commun 2024; 15:849. [PMID: 38346973 PMCID: PMC10861507 DOI: 10.1038/s41467-024-44934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The visual continuity illusion involves a shift in visual perception from static to dynamic vision modes when the stimuli arrive at high temporal frequency, and is critical for recognizing objects moving in the environment. However, how this illusion is encoded across the visual pathway remains poorly understood, with disparate frequency thresholds at retinal, cortical, and behavioural levels suggesting the involvement of other brain areas. Here, we employ a multimodal approach encompassing behaviour, whole-brain functional MRI, and electrophysiological measurements, for investigating the encoding of the continuity illusion in rats. Behavioural experiments report a frequency threshold of 18±2 Hz. Functional MRI reveal that superior colliculus signals transition from positive to negative at the behaviourally-driven threshold, unlike thalamic and cortical areas. Electrophysiological recordings indicate that these transitions are underpinned by neural activation/suppression. Lesions in the primary visual cortex reveal this effect to be intrinsic to the superior colliculus (under a cortical gain effect). Our findings highlight the superior colliculus' crucial involvement in encoding temporal frequency shifts, especially the change from static to dynamic vision modes.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
9
|
Nuttall R, El Mir A, Jäger C, Letz S, Wohlschläger A, Schneider G. Broadly applicable methods for the detection of artefacts in electroencephalography acquired simultaneously with hemodynamic recordings. MethodsX 2023; 11:102376. [PMID: 37767154 PMCID: PMC10520509 DOI: 10.1016/j.mex.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Electroencephalography (EEG) data, acquired simultaneously with magnetic resonance imaging (MRI), must be corrected for artefacts related to MR gradient switches (GS) and the cardioballistic (CB) effect. Canonical approaches require additional signal acquisition for artefact detection (e.g., MR volume onsets, ECG), without which the EEG data would be rendered uncleanable from these artefacts.•We present two broadly applicable methods for artefact detection based on peak detection combined with temporal constraints with respect to periodicity directly from the EEG data itself; no additional signals are required. We validated the performance of our methods versus the two canonical approaches for detection of GS/CB artefact, respectively, on 26 healthy human EEG-functional MRI resting-state datasets. Utilising various performance metrics, we found our methods to perform as well as - and sometimes better than - the canonical standard approaches. With as little as one EEG channel recording, our methods can be applied to detect GS/CB artefacts in EEG data acquired simultaneously with MRI in the absence of MR volume onsets and/or an ECG recording. The detected artefact onsets can then be fed into the standard artefact correction software.
Collapse
Affiliation(s)
- Rachel Nuttall
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich 81675, Germany
| | - Aya El Mir
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich 81675, Germany
- New York University Abu Dhabi, Engineering Division, Saadiyat Marina District, Abu Dhabi, United Arab Emirates
| | - Cilia Jäger
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich 81675, Germany
| | - Svenja Letz
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich 81675, Germany
| | - Afra Wohlschläger
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich 81675, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich 81675, Germany
| |
Collapse
|
10
|
Larriva-Sahd J, Martínez-Cabrera G, Lozano-Flores C, Concha L, Varela-Echavarría A. The neurovascular unit of capillary blood vessels in the rat nervous system. A rapid-Golgi electron microscopy study. J Comp Neurol 2023; 532:e25559. [PMID: 38009706 DOI: 10.1002/cne.25559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/28/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
We describe a pericapillary organ in the rat forebrain and cerebellar cortex. It consists of a series of tripartite synapses with synaptic extensions enveloped by astrocytic endfeet that are linked to the capillary wall by synaptic extensions. Reciprocal specializations of the pericyte-capillary blood vessel (CBV) with such specialized synapses suggest a mechanoreceptor role. In Golgi-impregnated and 3D reconstructions of the cerebral cortex and thalamus, a series of TSs appear to be sequentially ordered in a common dendrite, paralleled by synaptic outgrowths termed golf club synaptic extensions (GCE) opposed to a longitudinal crest (LC) from the capillary basal lamina (BL). Our results show that, in the cerebellar cortex, afferent fibers and interneurons display microanatomical structures that strongly suggest an interaction with the capillary wall. Afferent mossy fiber (MF) rosettes and ascending granule cell axons and their dendrites define the pericapillary passage interactions that are entangled by endfeet. The presence of mRNA of the mechanosensitive channel Piezo1 in the MF rosettes, together with the surrounding end-feet and the capillary wall form mechanosensory units. The ubiquity of such units to modulate synaptic transmission is also supported by Piezo1 mRNA expressing pyramidal isocortical and thalamic neurons. This scenario suggests that ascending impulses to the cerebellar and cortical targets are presynaptically modulated by the reciprocal interaction with the mechanosensory pericapillary organ that ultimately modulates the vasomotor response.
Collapse
Affiliation(s)
- Jorge Larriva-Sahd
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Gema Martínez-Cabrera
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Lozano-Flores
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Luis Concha
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Alfredo Varela-Echavarría
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
11
|
Harmata GI, Rhone AE, Kovach CK, Kumar S, Mowla MR, Sainju RK, Nagahama Y, Oya H, Gehlbach BK, Ciliberto MA, Mueller RN, Kawasaki H, Pattinson KT, Simonyan K, Davenport PW, Howard MA, Steinschneider M, Chan AC, Richerson GB, Wemmie JA, Dlouhy BJ. Failure to breathe persists without air hunger or alarm following amygdala seizures. JCI Insight 2023; 8:e172423. [PMID: 37788112 PMCID: PMC10721319 DOI: 10.1172/jci.insight.172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Postictal apnea is thought to be a major cause of sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying postictal apnea are unknown. To understand causes of postictal apnea, we used a multimodal approach to study brain mechanisms of breathing control in 20 patients (ranging from pediatric to adult) undergoing intracranial electroencephalography for intractable epilepsy. Our results indicate that amygdala seizures can cause postictal apnea. Moreover, we identified a distinct region within the amygdala where electrical stimulation was sufficient to reproduce prolonged breathing loss persisting well beyond the end of stimulation. The persistent apnea was resistant to rising CO2 levels, and air hunger failed to occur, suggesting impaired CO2 chemosensitivity. Using es-fMRI, a potentially novel approach combining electrical stimulation with functional MRI, we found that amygdala stimulation altered blood oxygen level-dependent (BOLD) activity in the pons/medulla and ventral insula. Together, these findings suggest that seizure activity in a focal subregion of the amygdala is sufficient to suppress breathing and air hunger for prolonged periods of time in the postictal period, likely via brainstem and insula sites involved in chemosensation and interoception. They further provide insights into SUDEP, may help identify those at greatest risk, and may lead to treatments to prevent SUDEP.
Collapse
Affiliation(s)
- Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | | | | | | | | | | | - Hiroyuki Oya
- Department of Neurosurgery
- Iowa Neuroscience Institute
| | | | | | - Rashmi N. Mueller
- Department of Neurosurgery
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, USA
| | | | - Kyle T.S. Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kristina Simonyan
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W. Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | | | | | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Internal Medicine
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|
12
|
Uludağ K. Physiological modeling of the BOLD signal and implications for effective connectivity: A primer. Neuroimage 2023; 277:120249. [PMID: 37356779 DOI: 10.1016/j.neuroimage.2023.120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
In this primer, I provide an overview of the physiological processes that contribute to the observed BOLD signal (i.e., the generative biophysical model), including their time course properties within the framework of the physiologically-informed dynamic causal modeling (P-DCM). The BOLD signal is primarily determined by the change in paramagnetic deoxygenated hemoglobin, which results from combination of changes in oxygen metabolism, and cerebral blood flow and volume. Specifically, the physiological origin of the so-called BOLD signal "transients" will be discussed, including the initial overshoot, steady-state activation and the post-stimulus undershoot. I argue that incorrect physiological assumptions in the generative model of the BOLD signal can lead to incorrect inferences pertaining to both local neuronal activity and effective connectivity between brain regions. In addition, I introduce the recent laminar BOLD signal model, which extends P-DCM to cortical depths-resolved BOLD signals, allowing for laminar neuronal activity to be determined using high-resolution fMRI data.
Collapse
Affiliation(s)
- Kâmil Uludağ
- Krembil Brain Institute, University Health Network Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science & Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Carvalho J, Fernandes FF, Shemesh N. Extensive topographic remapping and functional sharpening in the adult rat visual pathway upon first visual experience. PLoS Biol 2023; 21:e3002229. [PMID: 37590177 PMCID: PMC10434970 DOI: 10.1371/journal.pbio.3002229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
Understanding the dynamics of stability/plasticity balances during adulthood is pivotal for learning, disease, and recovery from injury. However, the brain-wide topography of sensory remapping remains unknown. Here, using a first-of-its-kind setup for delivering patterned visual stimuli in a rodent magnetic resonance imaging (MRI) scanner, coupled with biologically inspired computational models, we noninvasively mapped brain-wide properties-receptive fields (RFs) and spatial frequency (SF) tuning curves-that were insofar only available from invasive electrophysiology or optical imaging. We then tracked the RF dynamics in the chronic visual deprivation model (VDM) of plasticity and found that light exposure progressively promoted a large-scale topographic remapping in adult rats. Upon light exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs (smaller and more spatially selective) and enhanced SF tuning curves. Our findings reveal that visual experience following VDM reshapes both structure and function of the visual system and shifts the stability/plasticity balance in adults.
Collapse
Affiliation(s)
- Joana Carvalho
- Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Francisca F. Fernandes
- Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Noam Shemesh
- Laboratory of Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
14
|
Godbersen GM, Klug S, Wadsak W, Pichler V, Raitanen J, Rieckmann A, Stiernman L, Cocchi L, Breakspear M, Hacker M, Lanzenberger R, Hahn A. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks. eLife 2023; 12:e84683. [PMID: 37226880 PMCID: PMC10229117 DOI: 10.7554/elife.84683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
External tasks evoke characteristic fMRI BOLD signal deactivations in the default mode network (DMN). However, for the corresponding metabolic glucose demands both decreases and increases have been reported. To resolve this discrepancy, functional PET/MRI data from 50 healthy subjects performing Tetris were combined with previously published data sets of working memory, visual and motor stimulation. We show that the glucose metabolism of the posteromedial DMN is dependent on the metabolic demands of the correspondingly engaged task-positive networks. Specifically, the dorsal attention and frontoparietal network shape the glucose metabolism of the posteromedial DMN in opposing directions. While tasks that mainly require an external focus of attention lead to a consistent downregulation of both metabolism and the BOLD signal in the posteromedial DMN, cognitive control during working memory requires a metabolically expensive BOLD suppression. This indicates that two types of BOLD deactivations with different oxygen-to-glucose index may occur in this region. We further speculate that consistent downregulation of the two signals is mediated by decreased glutamate signaling, while divergence may be subject to active GABAergic inhibition. The results demonstrate that the DMN relates to cognitive processing in a flexible manner and does not always act as a cohesive task-negative network in isolation.
Collapse
Affiliation(s)
- Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of ViennaViennaAustria
| | - Julia Raitanen
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of ViennaViennaAustria
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Department of Radiation Sciences, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
- The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social PolicyMunichGermany
| | - Lars Stiernman
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- School of Biomedical Sciences, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| | - Michael Breakspear
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| |
Collapse
|
15
|
Tesler F, Linne ML, Destexhe A. Modeling the relationship between neuronal activity and the BOLD signal: contributions from astrocyte calcium dynamics. Sci Rep 2023; 13:6451. [PMID: 37081004 PMCID: PMC10119111 DOI: 10.1038/s41598-023-32618-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Functional magnetic resonance imaging relies on the coupling between neuronal and vascular activity, but the mechanisms behind this coupling are still under discussion. Recent experimental evidence suggests that calcium signaling may play a significant role in neurovascular coupling. However, it is still controversial where this calcium signal is located (in neurons or elsewhere), how it operates and how relevant is its role. In this paper we introduce a biologically plausible model of the neurovascular coupling and we show that calcium signaling in astrocytes can explain main aspects of the dynamics of the coupling. We find that calcium signaling can explain so-far unrelated features such as the linear and non-linear regimes, the negative vascular response (undershoot) and the emergence of a (calcium-driven) Hemodynamic Response Function. These features are reproduced here for the first time by a single model of the detailed neuronal-astrocyte-vascular pathway. Furthermore, we analyze how information is coded and transmitted from the neuronal to the vascular system and we predict that frequency modulation of astrocytic calcium dynamics plays a key role in this process. Finally, our work provides a framework to link neuronal activity to the BOLD signal, and vice-versa, where neuronal activity can be inferred from the BOLD signal. This opens new ways to link known alterations of astrocytic calcium signaling in neurodegenerative diseases (e.g. Alzheimer's and Parkinson's diseases) with detectable changes in the neurovascular coupling.
Collapse
Affiliation(s)
- Federico Tesler
- CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, 91400, Saclay, France.
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Alain Destexhe
- CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, 91400, Saclay, France
| |
Collapse
|
16
|
Ono H, Sonoda M, Sakakura K, Kitazawa Y, Mitsuhashi T, Firestone E, Jeong JW, Luat AF, Marupudi NI, Sood S, Asano E. Dynamic cortical and tractography atlases of proactive and reactive alpha and high-gamma activities. Brain Commun 2023; 5:fcad111. [PMID: 37228850 PMCID: PMC10204271 DOI: 10.1093/braincomms/fcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/15/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Alpha waves-posterior dominant rhythms at 8-12 Hz reactive to eye opening and closure-are among the most fundamental EEG findings in clinical practice and research since Hans Berger first documented them in the early 20th century. Yet, the exact network dynamics of alpha waves in regard to eye movements remains unknown. High-gamma activity at 70-110 Hz is also reactive to eye movements and a summary measure of local cortical activation supporting sensorimotor or cognitive function. We aimed to build the first-ever brain atlases directly visualizing the network dynamics of eye movement-related alpha and high-gamma modulations, at cortical and white matter levels. We studied 28 patients (age: 5-20 years) who underwent intracranial EEG and electro-oculography recordings. We measured alpha and high-gamma modulations at 2167 electrode sites outside the seizure onset zone, interictal spike-generating areas and MRI-visible structural lesions. Dynamic tractography animated white matter streamlines modulated significantly and simultaneously beyond chance, on a millisecond scale. Before eye-closure onset, significant alpha augmentation occurred at the occipital and frontal cortices. After eye-closure onset, alpha-based functional connectivity was strengthened, while high gamma-based connectivity was weakened extensively in both intra-hemispheric and inter-hemispheric pathways involving the central visual areas. The inferior fronto-occipital fasciculus supported the strengthened alpha co-augmentation-based functional connectivity between occipital and frontal lobe regions, whereas the posterior corpus callosum supported the inter-hemispheric functional connectivity between the occipital lobes. After eye-opening offset, significant high-gamma augmentation and alpha attenuation occurred at occipital, fusiform and inferior parietal cortices. High gamma co-augmentation-based functional connectivity was strengthened, whereas alpha-based connectivity was weakened in the posterior inter-hemispheric and intra-hemispheric white matter pathways involving central and peripheral visual areas. Our results do not support the notion that eye closure-related alpha augmentation uniformly reflects feedforward or feedback rhythms propagating from lower to higher order visual cortex, or vice versa. Rather, proactive and reactive alpha waves involve extensive, distinct white matter networks that include the frontal lobe cortices, along with low- and high-order visual areas. High-gamma co-attenuation coupled to alpha co-augmentation in shared brain circuitry after eye closure supports the notion of an idling role for alpha waves during eye closure. These normative dynamic tractography atlases may improve understanding of the significance of EEG alpha waves in assessing the functional integrity of brain networks in clinical practice; they also may help elucidate the effects of eye movements on task-related brain network measures observed in cognitive neuroscience research.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatric Neurology, National Center of Neurology and Psychiatry, Joint Graduate School of Tohoku University, Tokyo 1878551, Japan
- Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Yu Kitazawa
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023; 7:405-423. [PMID: 33686282 PMCID: PMC8423863 DOI: 10.1038/s41551-021-00683-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Le Cai
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Arya P, Petkova SP, Kulkarni PP, Kolodny NH, Gobes SMH. Tracing development of song memory with fMRI in zebra finches after a second tutoring experience. Commun Biol 2023; 6:345. [PMID: 36997617 PMCID: PMC10063632 DOI: 10.1038/s42003-023-04724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Sensory experiences in early development shape higher cognitive functions such as language acquisition in humans and song learning in birds. Zebra finches (Taeniopygia guttata) sequentially exposed to two different song 'tutors' during the sensitive period in development are able to learn from their second tutor and eventually imitate aspects of his song, but the neural substrate involved in learning a second song is unknown. We used fMRI to examine neural activity associated with learning two songs sequentially. We found that acquisition of a second song changes lateralization of the auditory midbrain. Interestingly, activity in the caudolateral Nidopallium (NCL), a region adjacent to the secondary auditory cortex, was related to the fidelity of second-song imitation. These findings demonstrate that experience with a second tutor can permanently alter neural activity in brain regions involved in auditory perception and song learning.
Collapse
Affiliation(s)
- Payal Arya
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Stela P Petkova
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Praveen P Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, 02115, USA
| | - Nancy H Kolodny
- Chemistry Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
19
|
Aksenov DP, Li L, Serdyukova NA, Gascoigne DA, Doubovikov ED, Drobyshevsky A. Functional Deficiency of Interneurons and Negative BOLD fMRI Response. Cells 2023; 12:cells12050811. [PMID: 36899947 PMCID: PMC10000915 DOI: 10.3390/cells12050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The functional deficiency of the inhibitory system typically appears during development and can progress to psychiatric disorders or epilepsy, depending on its severity, in later years. It is known that interneurons, the major source of GABAergic inhibition in the cerebral cortex, can make direct connections with arterioles and participate in the regulation of vasomotion. The goal of this study was to mimic the functional deficiency of interneurons through the use of localized microinjections of the GABA antagonist, picrotoxin, in such a concentration that it did not elicit epileptiform neuronal activity. First, we recorded the dynamics of resting-state neuronal activity in response to picrotoxin injections in the somatosensory cortex of an awake rabbit; second, we assessed the altered neuronal and hemodynamic responses to whisker stimulation using BOLD fMRI and electrophysiology recordings; third, we evaluated brain tissue oxygen levels before and after picrotoxin injection. Our results showed that neuronal activity typically increased after picrotoxin administration, the BOLD responses to stimulation became negative, and the oxygen response was nearly abolished. Vasoconstriction during the resting baseline was not observed. These results indicate that picrotoxin provoked imbalanced hemodynamics either due to increased neuronal activity, decreased vascular response, or a combination of both.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Correspondence:
| | - Limin Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| |
Collapse
|
20
|
Zhang Q, Cramer SR, Turner KL, Neuberger T, Drew PJ, Zhang N. High-frequency neuronal signal better explains multi-phase BOLD response. Neuroimage 2023; 268:119887. [PMID: 36681134 PMCID: PMC9962576 DOI: 10.1016/j.neuroimage.2023.119887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Visual stimulation-evoked blood-oxygen-level dependent (BOLD) responses can exhibit more complex temporal dynamics than a simple monophasic response. For instance, BOLD responses sometimes include a phase of positive response followed by a phase of post-stimulus undershoot. Whether the BOLD response during these phases reflects the underlying neuronal signal fluctuations or is contributed by non-neuronal physiological factors remains elusive. When presenting blocks of sustained (i.e. DC) light ON-OFF stimulations to unanesthetized rats, we observed that the response following a decrease in illumination (i.e. OFF stimulation-evoked BOLD response) in the visual cortices displayed reproducible multiple phases, including an initial positive BOLD response, followed by an undershoot and then an overshoot before the next ON trial. This multi-phase BOLD response did not result from the entrainment of the periodic stimulation structure. When we measured the neural correlates of these responses, we found that the high-frequency band from the LFP power (300 - 3000 Hz, multi-unit activity (MUA)), but not the power in the gamma band (30 - 100 Hz) exhibited the same multiphasic dynamics as the BOLD signal. This study suggests that the post-stimulus phases of the BOLD response can be better explained by the high-frequency neuronal signal.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Samuel R Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA; Departments of Engineering Science and Mechanics, Neurosurgery, and Biology, The Pennsylvania State University, University Park, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
21
|
Sten S, Podéus H, Sundqvist N, Elinder F, Engström M, Cedersund G. A quantitative model for human neurovascular coupling with translated mechanisms from animals. PLoS Comput Biol 2023; 19:e1010818. [PMID: 36607908 PMCID: PMC9821752 DOI: 10.1371/journal.pcbi.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.
Collapse
Affiliation(s)
- Sebastian Sten
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Henrik Podéus
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
22
|
Sundqvist N, Sten S, Thompson P, Andersson BJ, Engström M, Cedersund G. Mechanistic model for human brain metabolism and its connection to the neurovascular coupling. PLoS Comput Biol 2022; 18:e1010798. [PMID: 36548394 PMCID: PMC9822108 DOI: 10.1371/journal.pcbi.1010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/06/2023] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The neurovascular and neurometabolic couplings (NVC and NMC) connect cerebral activity, blood flow, and metabolism. This interconnection is used in for instance functional imaging, which analyses the blood-oxygen-dependent (BOLD) signal. The mechanisms underlying the NVC are complex, which warrants a model-based analysis of data. We have previously developed a mechanistically detailed model for the NVC, and others have proposed detailed models for cerebral metabolism. However, existing metabolic models are still not fully utilizing available magnetic resonance spectroscopy (MRS) data and are not connected to detailed models for NVC. Therefore, we herein present a new model that integrates mechanistic modelling of both MRS and BOLD data. The metabolic model covers central metabolism, using a minimal set of interactions, and can describe time-series data for glucose, lactate, aspartate, and glutamate, measured after visual stimuli. Statistical tests confirm that the model can describe both estimation data and predict independent validation data, not used for model training. The interconnected NVC model can simultaneously describe BOLD data and can be used to predict expected metabolic responses in experiments where metabolism has not been measured. This model is a step towards a useful and mechanistically detailed model for cerebral blood flow and metabolism, with potential applications in both basic research and clinical applications.
Collapse
Affiliation(s)
- Nicolas Sundqvist
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Sebastian Sten
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Peter Thompson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | | | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
23
|
Sitsen E, Khalili-Mahani N, de Rover M, Dahan A, Niesters M. Effect of spinal anesthesia-induced deafferentation on pain processing in healthy male volunteers: A task-related fMRI study. FRONTIERS IN PAIN RESEARCH 2022; 3:1001148. [PMID: 36530772 PMCID: PMC9748364 DOI: 10.3389/fpain.2022.1001148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Spinal anesthesia causes short-term deafferentation and alters the crosstalk among brain regions involved in pain perception and pain modulation. In the current study, we examined the effect of spinal anesthesia on pain response to noxious thermal stimuli in non-deafferented skin areas using a functional magnetic resonance imaging (fMRI) paradigm. METHODS Twenty-two healthy subjects participated in the study. We performed a task-based fMRI study using a randomized crossover design. Subjects were scanned under two conditions (spinal anesthesia or control) at two-time points: before and after spinal anesthesia. Spinal anesthesia resulted in sensory loss up to dermatome Th6. Calibrated heat-pain stimuli were administered to the right forearm (C8-Th1) using a box-car design (blocks of 10s on/25s off) during MRI scanning. Pain perception was measured using a visual analogue scale (1-100) at the beginning and the end of each session. Generalized estimating equations were used to examine the effect of intervention by time by order on pain scores. Similarly, higher-level effects were tested with appropriate general linear models (accounting for within-subject variations in session and time) to examine: (1) Differences in BOLD response to pain stimulus under spinal anesthesia versus control; and (2) Effects of spinal anesthesia on pain-related modulation of the cerebral activation. RESULTS Complete fMRI data was available for eighteen participants. Spinal anesthesia was associated with moderate pain score increase. Significant differences in brain response to noxious thermal stimuli were present in comparison of spinal versus control condition (post-pre). Spinal condition was associated with higher BOLD signal in the bilateral inferior parietal lobule and lower BOLD signal in bilateral postcentral and precentral gyrus. Within the angular regions, we observed a positive correlation between pain scores and BOLD signal. These observations were independent from order effect (whether the spinal anesthesia was administered in the first or the second visit). However, we did observe order effect on brain regions including medial prefrontal regions, possibly related to anticipation of the experience of spinal anesthesia. CONCLUSIONS The loss of sensory and motor activity caused by spinal anesthesia has a significant impact on brain regions involved in the sensorimotor and cognitive processing of noxious heat pain stimuli. Our results indicate that the anticipation or experience of a strong somatosensory response to the spinal intervention might confound and contribute to increased sensitivity to cognitive pain processing. Future studies must account for individual differences in subjective experience of pain sensation within the experimental context.
Collapse
Affiliation(s)
- Elske Sitsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mischa de Rover
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute of Brain and Cognition, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Himmelberg MM, Gardner JL, Winawer J. What has vision science taught us about functional MRI? Neuroimage 2022; 261:119536. [PMID: 35931310 PMCID: PMC9756767 DOI: 10.1016/j.neuroimage.2022.119536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022] Open
Abstract
In the domain of human neuroimaging, much attention has been paid to the question of whether and how the development of functional magnetic resonance imaging (fMRI) has advanced our scientific knowledge of the human brain. However, the opposite question is also important; how has our knowledge of the brain advanced our understanding of fMRI? Here, we discuss how and why scientific knowledge about the human and animal visual system has been used to answer fundamental questions about fMRI as a brain measurement tool and how these answers have contributed to scientific discoveries beyond vision science.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA.
| | | | - Jonathan Winawer
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA
| |
Collapse
|
25
|
Liu TT, Fu JZ, Chai Y, Japee S, Chen G, Ungerleider LG, Merriam EP. Layer-specific, retinotopically-diffuse modulation in human visual cortex in response to viewing emotionally expressive faces. Nat Commun 2022; 13:6302. [PMID: 36273204 PMCID: PMC9588045 DOI: 10.1038/s41467-022-33580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Viewing faces that are perceived as emotionally expressive evokes enhanced neural responses in multiple brain regions, a phenomenon thought to depend critically on the amygdala. This emotion-related modulation is evident even in primary visual cortex (V1), providing a potential neural substrate by which emotionally salient stimuli can affect perception. How does emotional valence information, computed in the amygdala, reach V1? Here we use high-resolution functional MRI to investigate the layer profile and retinotopic distribution of neural activity specific to emotional facial expressions. Across three experiments, human participants viewed centrally presented face stimuli varying in emotional expression and performed a gender judgment task. We found that facial valence sensitivity was evident only in superficial cortical layers and was not restricted to the retinotopic location of the stimuli, consistent with diffuse feedback-like projections from the amygdala. Together, our results provide a feedback mechanism by which the amygdala directly modulates activity at the earliest stage of visual processing.
Collapse
Affiliation(s)
- Tina T Liu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA.
| | - Jason Z Fu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Yuhui Chai
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Shruti Japee
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
26
|
Choi S, Zeng H, Chen Y, Sobczak F, Qian C, Yu X. Laminar-specific functional connectivity mapping with multi-slice line-scanning fMRI. Cereb Cortex 2022; 32:4492-4501. [PMID: 35107125 PMCID: PMC9574235 DOI: 10.1093/cercor/bhab497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Despite extensive studies detecting laminar functional magnetic resonance imaging (fMRI) signals to illustrate the canonical microcircuit, the spatiotemporal characteristics of laminar-specific information flow across cortical regions remain to be fully investigated in both evoked and resting conditions at different brain states. Here, we developed a multislice line-scanning fMRI (MS-LS) method to detect laminar fMRI signals in adjacent cortical regions with high spatial (50 μm) and temporal resolution (100 ms) in anesthetized rats. Across different trials, we detected either laminar-specific positive or negative blood-oxygen-level-dependent (BOLD) responses in the surrounding cortical region adjacent to the most activated cortex under the evoked condition. Specifically, in contrast to typical Layer (L) 4 correlation across different regions due to the thalamocortical projections for trials with positive BOLD, a strong correlation pattern specific in L2/3 was detected for trials with negative BOLD in adjacent regions, which indicated brain state-dependent laminar-fMRI responses based on corticocortical interaction. Also, in resting-state (rs-) fMRI study, robust lag time differences in L2/3, 4, and 5 across multiple cortices represented the low-frequency rs-fMRI signal propagation from caudal to rostral slices. In summary, our study provided a unique laminar fMRI mapping scheme to better characterize trial-specific intra- and inter-laminar functional connectivity in evoked and resting-state MS-LS.
Collapse
Affiliation(s)
- Sangcheon Choi
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Hang Zeng
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Filip Sobczak
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
27
|
Multi-Echo Investigations of Positive and Negative CBF and Concomitant BOLD Changes: Positive and negative CBF and BOLD changes. Neuroimage 2022; 263:119661. [PMID: 36198353 DOI: 10.1016/j.neuroimage.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate,R2* the coupling ratios, and their dependence on CBF at rest, CBFrest indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.
Collapse
|
28
|
Becker M, Repantis D, Dresler M, Kühn S. Cognitive enhancement: Effects of methylphenidate, modafinil, and caffeine on latent memory and resting state functional connectivity in healthy adults. Hum Brain Mapp 2022; 43:4225-4238. [PMID: 35670369 PMCID: PMC9435011 DOI: 10.1002/hbm.25949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Stimulants like methylphenidate, modafinil, and caffeine have repeatedly shown to enhance cognitive processes such as attention and memory. However, brain-functional mechanisms underlying such cognitive enhancing effects of stimulants are still poorly characterized. Here, we utilized behavioral and resting-state fMRI data from a double-blind randomized placebocontrolled study of methylphenidate, modafinil, and caffeine in 48 healthy male adults. The results show that performance in different memory tasks is enhanced, and functional connectivity (FC) specifically between the frontoparietal network (FPN) and default mode network (DMN) is modulated by the stimulants in comparison to placebo. Decreased negative connectivity between right prefrontal and medial parietal but also between medial temporal lobe and visual brain regions predicted stimulant-induced latent memory enhancement. We discuss dopamine's role in attention and memory as well as its ability to modulate FC between large-scale neural networks (e.g., FPN and DMN) as a potential cognitive enhancement mechanism.
Collapse
Affiliation(s)
- Maxi Becker
- Department of PsychologyHumboldt‐University BerlinBerlinGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dimitris Repantis
- Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and BehaviourRadboud University Medical Center NijmegenNijmegenThe Netherlands
| | - Simone Kühn
- Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| |
Collapse
|
29
|
Wang Y, Li Y, Yang L, Huang W. Altered topological organization of resting-state functional networks in children with infantile spasms. Front Neurosci 2022; 16:952940. [PMID: 36248635 PMCID: PMC9562010 DOI: 10.3389/fnins.2022.952940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Covering neuroimaging evidence has demonstrated that epileptic symptoms are associated with the disrupted topological architecture of the brain network. Infantile spasms (IS) as an age-specific epileptic encephalopathy also showed abnormal structural or functional connectivity in specific brain regions or specific networks. However, little is known about the topological alterations of whole-brain functional networks in patients with IS. To fill this gap, we used the graph theoretical analysis to investigate the topological properties (whole-brain small-world property and modular interaction) in 17 patients with IS and 34 age- and gender-matched healthy controls. The functional networks in both groups showed efficient small-world architecture over the sparsity range from 0.05 to 0.4. While patients with IS showed abnormal global properties characterized by significantly decreased normalized clustering coefficient, normalized path length, small-worldness, local efficiency, and significantly increased global efficiency, implying a shift toward a randomized network. Modular analysis revealed decreased intra-modular connectivity within the default mode network (DMN) and fronto-parietal network but increased inter-modular connectivity between the cingulo-opercular network and occipital network. Moreover, the decreased intra-modular connectivity in DMN was significantly negatively correlated with seizure frequency. The inter-modular connectivity between the cingulo-opercular and occipital network also showed a significant correlation with epilepsy frequency. Together, the current study revealed the disrupted topological organization of the whole-brain functional network, which greatly advances our understanding of neuronal architecture in IS and may contribute to predict the prognosis of IS as disease biomarkers.
Collapse
Affiliation(s)
- Ya Wang
- School of Basic Medical Sciences, Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Yongxin Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li,
| | - Lin Yang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- School of Basic Medical Sciences, Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
- Wenhua Huang,
| |
Collapse
|
30
|
Bakhshaee Babaroud N, Palmar M, Velea AI, Coletti C, Weingärtner S, Vos F, Serdijn WA, Vollebregt S, Giagka V. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces. MICROSYSTEMS & NANOENGINEERING 2022; 8:107. [PMID: 36176270 PMCID: PMC9512798 DOI: 10.1038/s41378-022-00430-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Multimodal platforms combining electrical neural recording and stimulation, optogenetics, optical imaging, and magnetic resonance (MRI) imaging are emerging as a promising platform to enhance the depth of characterization in neuroscientific research. Electrically conductive, optically transparent, and MRI-compatible electrodes can optimally combine all modalities. Graphene as a suitable electrode candidate material can be grown via chemical vapor deposition (CVD) processes and sandwiched between transparent biocompatible polymers. However, due to the high graphene growth temperature (≥ 900 °C) and the presence of polymers, fabrication is commonly based on a manual transfer process of pre-grown graphene sheets, which causes reliability issues. In this paper, we present CVD-based multilayer graphene electrodes fabricated using a wafer-scale transfer-free process for use in optically transparent and MRI-compatible neural interfaces. Our fabricated electrodes feature very low impedances which are comparable to those of noble metal electrodes of the same size and geometry. They also exhibit the highest charge storage capacity (CSC) reported to date among all previously fabricated CVD graphene electrodes. Our graphene electrodes did not reveal any photo-induced artifact during 10-Hz light pulse illumination. Additionally, we show here, for the first time, that CVD graphene electrodes do not cause any image artifact in a 3T MRI scanner. These results demonstrate that multilayer graphene electrodes are excellent candidates for the next generation of neural interfaces and can substitute the standard conventional metal electrodes. Our fabricated graphene electrodes enable multimodal neural recording, electrical and optogenetic stimulation, while allowing for optical imaging, as well as, artifact-free MRI studies.
Collapse
Affiliation(s)
- Nasim Bakhshaee Babaroud
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft, 2628 CD The Netherlands
| | - Merlin Palmar
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft, 2628 CD The Netherlands
| | - Andrada Iulia Velea
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft, 2628 CD The Netherlands
- Technologies for Bioelectronics Group, Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Micro-integration IZM, Gustav-Meyer-Allee 25, Berlin, 13355 Germany
| | - Chiara Coletti
- Department of Imaging Physics, Faculty of Applied Science, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands
| | - Sebastian Weingärtner
- Department of Imaging Physics, Faculty of Applied Science, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands
| | - Frans Vos
- Department of Imaging Physics, Faculty of Applied Science, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands
| | - Wouter A. Serdijn
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft, 2628 CD The Netherlands
- Erasmus University Medical Center (Erasmus MC), dr. Molewaterplein 40, Rotterdam, 3015 GD The Netherlands
| | - Sten Vollebregt
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft, 2628 CD The Netherlands
| | - Vasiliki Giagka
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft, 2628 CD The Netherlands
- Technologies for Bioelectronics Group, Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Micro-integration IZM, Gustav-Meyer-Allee 25, Berlin, 13355 Germany
| |
Collapse
|
31
|
Ashourvan A, Pequito S, Bertolero M, Kim JZ, Bassett DS, Litt B. External drivers of BOLD signal's non-stationarity. PLoS One 2022; 17:e0257580. [PMID: 36121808 PMCID: PMC9484685 DOI: 10.1371/journal.pone.0257580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
A fundamental challenge in neuroscience is to uncover the principles governing how the brain interacts with the external environment. However, assumptions about external stimuli fundamentally constrain current computational models. We show in silico that unknown external stimulation can produce error in the estimated linear time-invariant dynamical system. To address these limitations, we propose an approach to retrieve the external (unknown) input parameters and demonstrate that the estimated system parameters during external input quiescence uncover spatiotemporal profiles of external inputs over external stimulation periods more accurately. Finally, we unveil the expected (and unexpected) sensory and task-related extra-cortical input profiles using functional magnetic resonance imaging data acquired from 96 subjects (Human Connectome Project) during the resting-state and task scans. This dynamical systems model of the brain offers information on the structure and dimensionality of the BOLD signal's external drivers and shines a light on the likely external sources contributing to the BOLD signal's non-stationarity. Our findings show the role of exogenous inputs in the BOLD dynamics and highlight the importance of accounting for external inputs to unravel the brain's time-varying functional dynamics.
Collapse
Affiliation(s)
- Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence, KS, United States of America
| | - Sérgio Pequito
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Maxwell Bertolero
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jason Z. Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
32
|
Taylor AJ, Kim JH, Ress D. Temporal stability of the hemodynamic response function across the majority of human cerebral cortex. Hum Brain Mapp 2022; 43:4924-4942. [PMID: 35965416 PMCID: PMC9582369 DOI: 10.1002/hbm.26047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022] Open
Abstract
The hemodynamic response function (HRF) measured with functional magnetic resonance imaging is generated by vascular and metabolic responses evoked by brief (<4 s) stimuli. It is known that the human HRF varies across cortex, between subjects, with stimulus paradigms, and even between different measurements in the same cortical location. However, our results demonstrate that strong HRFs are remarkably repeatable across sessions separated by time intervals up to 3 months. In this study, a multisensory stimulus was used to activate and measure the HRF across the majority of cortex (>70%, with lesser reliability observed in some areas of prefrontal cortex). HRFs were measured with high spatial resolution (2‐mm voxels) in central gray matter to minimize variations caused by partial‐volume effects. HRF amplitudes and temporal dynamics were highly repeatable across four sessions in 20 subjects. Positive and negative HRFs were consistently observed across sessions and subjects. Negative HRFs were generally weaker and, thus, more variable than positive HRFs. Statistical measurements showed that across‐session variability is highly correlated to the variability across events within a session; these measurements also indicated a normal distribution of variability across cortex. The overall repeatability of the HRFs over long time scales generally supports the long‐term use of event‐related functional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
33
|
He H, Ettehadi N, Shmuel A, Razlighi QR. Evidence suggesting common mechanisms underlie contralateral and ipsilateral negative BOLD responses in human visual cortex. Neuroimage 2022; 262:119440. [PMID: 35842097 PMCID: PMC9523581 DOI: 10.1016/j.neuroimage.2022.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The task-evoked positive BOLD response (PBR) to a unilateral visual hemi-field stimulation is often accompanied by robust and sustained contralateral as well as ipsilateral negative BOLD responses (NBRs) in the visual cortex. The signal characteristics and the neural and/or vascular mechanisms that underlie these two types of NBRs are not completely understood. In this paper, we investigated the properties of these two types of NBRs. We first demonstrated the linearity of both NBRs with respect to stimulus duration. Next, we showed that the hemodynamic response functions (HRFs) of the two NBRs were similar to each other, but significantly different from that of the PBR. Moreover, the subject-wise expressions of the two NBRs were tightly coupled to the degree that the correlation between the two NBRs was significantly higher than the correlation between each NBR and the PBR. However, the activation patterns of the two NBRs did not show a high level of interhemispheric spatial similarity, and the functional connectivity between them was not different than the interhemispheric functional connectivity between the NBRs and PBR. Finally, while attention did modulate both NBRs, the attention-related changes in their HRFs were similar. Our findings suggest that the two NBRs might be generated through common neural and/or vascular mechanisms involving distal/deep brain regions that project to the two hemispheres.
Collapse
Affiliation(s)
- Hengda He
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, USA; Department of Biomedical Engineering, Columbia University, New York, USA
| | - Nabil Ettehadi
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Amir Shmuel
- Montreal Neurological Institute, Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QA, Canada
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
34
|
Harauzov AK, Ivanova LE, Vasiliev PP, Podvigina DN. fMRI Studies of Opponent Interregional Interactions in the Macaca mulatta Brain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Cai Y, Hofstetter S, Harvey BM, Dumoulin SO. Attention drives human numerosity-selective responses. Cell Rep 2022; 39:111005. [PMID: 35767956 DOI: 10.1016/j.celrep.2022.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022] Open
Abstract
Numerosity, the set size of a group of items, helps guide behavior and decisions. Previous studies have shown that neural populations respond selectively to numerosities. How numerosity is extracted from the visual scene is a longstanding debate, often contrasting low-level visual with high-level cognitive processes. Here, we investigate how attention influences numerosity-selective responses. The stimuli consisted of black and white dots within the same display. Participants' attention was focused on either black or white dots, while we systematically changed the numerosity of black, white, and total dots. Using 7 T fMRI, we show that the numerosity-tuned neural populations respond only when attention is focused on their preferred numerosity, irrespective of the unattended or total numerosities. Without attention, responses to preferred numerosity are suppressed. Unlike traditional effects of attention in the visual cortex, where attention enhances already existing responses, these results suggest that attention is required to drive numerosity-selective responses.
Collapse
Affiliation(s)
- Yuxuan Cai
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105BK Amsterdam, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, the Netherlands.
| | - Shir Hofstetter
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105BK Amsterdam, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105BK Amsterdam, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Hogeveen J, Mullins TS, Romero JD, Eversole E, Rogge-Obando K, Mayer AR, Costa VD. The neurocomputational bases of explore-exploit decision-making. Neuron 2022; 110:1869-1879.e5. [PMID: 35390278 PMCID: PMC9167768 DOI: 10.1016/j.neuron.2022.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
Flexible decision-making requires animals to forego immediate rewards (exploitation) and try novel choice options (exploration) to discover if they are preferable to familiar alternatives. Using the same task and a partially observable Markov decision process (POMDP) model to quantify the value of choices, we first determined that the computational basis for managing explore-exploit tradeoffs is conserved across monkeys and humans. We then used fMRI to identify where in the human brain the immediate value of exploitative choices and relative uncertainty about the value of exploratory choices were encoded. Consistent with prior neurophysiological evidence in monkeys, we observed divergent encoding of reward value and uncertainty in prefrontal and parietal regions, including frontopolar cortex, and parallel encoding of these computations in motivational regions including the amygdala, ventral striatum, and orbitofrontal cortex. These results clarify the interplay between prefrontal and motivational circuits that supports adaptive explore-exploit decisions in humans and nonhuman primates.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Teagan S Mullins
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - John D Romero
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Elizabeth Eversole
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kimberly Rogge-Obando
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew R Mayer
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychiatry & Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, NM 87106, USA
| | - Vincent D Costa
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
37
|
Sakakura K, Sonoda M, Mitsuhashi T, Kuroda N, Firestone E, O'Hara N, Iwaki H, Lee MH, Jeong JW, Rothermel R, Luat AF, Asano E. Developmental organization of neural dynamics supporting auditory perception. Neuroimage 2022; 258:119342. [PMID: 35654375 PMCID: PMC9354710 DOI: 10.1016/j.neuroimage.2022.119342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. Methods: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70–110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. Results: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. Conclusions: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech sound perception after birth.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Nolan O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA
| | - Robert Rothermel
- Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, 48201, USA.; Translational Neuroscience Program, Wayne State University, Detroit, Michigan, 48201, USA..
| |
Collapse
|
38
|
Abstract
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Collapse
|
39
|
Mitsuhashi T, Sonoda M, Firestone E, Sakakura K, Jeong JW, Luat AF, Sood S, Asano E. Temporally and functionally distinct large-scale brain network dynamics supporting task switching. Neuroimage 2022; 254:119126. [PMID: 35331870 PMCID: PMC9173207 DOI: 10.1016/j.neuroimage.2022.119126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022] Open
Abstract
Objective: Our daily activities require frequent switches among competing responses at the millisecond time scale. We determined the spatiotemporal characteristics and functional significance of rapid, large-scale brain network dynamics during task switching. Methods: This cross-sectional study investigated patients with drug-resistant focal epilepsy who played a Lumosity cognitive flexibility training game during intracranial electroencephalography (iEEG) recording. According to a given task rule, unpredictably switching across trials, participants had to swipe the screen in the direction the stimulus was pointing or moving. Using this data, we described the spatiotemporal characteristics of iEEG high-gamma augmentation occurring more intensely during switch than repeat trials, unattributable to the effect of task rule (pointing or moving), within-stimulus congruence (the direction of stimulus pointing and moving was same or different in a given trial), or accuracy of an immediately preceding response. Diffusion-weighted imaging (DWI) tractography determined whether distant cortical regions showing enhanced activation during task switch trials were directly connected by white matter tracts. Trial-by-trial iEEG analysis deduced whether the intensity of task switch-related high-gamma augmentation was altered through practice and whether high-gamma amplitude predicted the accuracy of an upcoming response among switch trials. Results: The average number of completed trials during five-minute gameplay was 221.4 per patient (range: 171–285). Task switch trials increased the response times, whereas later trials reduced them. Analysis of iEEG signals sampled from 860 brain sites effectively elucidated the distinct spatiotemporal characteristics of task switch, task rule, and post-error-specific high-gamma modulations. Post-cue, task switch-related high-gamma augmentation was initiated in the right calcarine cortex after 260 ms, right precuneus after 330 ms, right entorhinal after 420 ms, and bilateral anterior middle-frontal gyri after 450 ms. DWI tractography successfully showed the presence of direct white matter tracts connecting the right visual areas to the precuneus and anterior middle-frontal regions but not between the right precuneus and anterior middle-frontal regions. Task-related high-gamma amplitudes in later trials were reduced in the calcarine, entorhinal and anterior middle-frontal regions, but increased in the precuneus. Functionally, enhanced post-cue precuneus high-gamma augmentation improved the accuracy of subsequent responses among switch trials. Conclusions: Our multimodal analysis uncovered two temporally and functionally distinct network dynamics supporting task switching. High-gamma augmentation in the visual-precuneus pathway may reflect the neural process facilitating an attentional shift to a given updated task rule. High-gamma activity in the visual-dorsolateral prefrontal pathway, rapidly reduced through practice, may reflect the cost of executing appropriate stimulus-response translation.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, 2360004, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Pediatrics, Central Michigan University, Mount Pleasant, MI, 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
40
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
41
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Arboit A, Ku SP, Krautwald K, Angenstein F. Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state. Neuroimage 2021; 245:118769. [PMID: 34861394 DOI: 10.1016/j.neuroimage.2021.118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.
Collapse
Affiliation(s)
- Alberto Arboit
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Shih-Pi Ku
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany; Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany; Center for Behavior and Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39118, Germany.
| |
Collapse
|
43
|
Suarez A, Valdes-Hernandez PA, Moshkforoush A, Tsoukias N, Riera J. Arterial blood stealing as a mechanism of negative BOLD response: From the steady-flow with nonlinear phase separation to a windkessel-based model. J Theor Biol 2021; 529:110856. [PMID: 34363836 PMCID: PMC8507599 DOI: 10.1016/j.jtbi.2021.110856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/22/2021] [Accepted: 08/01/2021] [Indexed: 01/07/2023]
Abstract
Blood Oxygen Level Dependent (BOLD) signal indirectly characterizes neuronal activity by measuring hemodynamic and metabolic changes in the nearby microvasculature. A deeper understanding of how localized changes in electrical, metabolic and hemodynamic factors translate into a BOLD signal is crucial for the interpretation of functional brain imaging techniques. While positive BOLD responses (PBR) are widely considered to be linked with neuronal activation, the origins of negative BOLD responses (NBR) have remained largely unknown. As NBRs are sometimes observed in close proximity of regions with PBR, a blood "stealing" effect, i.e., redirection of blood from a passive periphery to the area with high neuronal activity, has been postulated. In this study, we used the Hagen-Poiseuille equation to model hemodynamics in an idealized microvascular network that account for the particulate nature of blood and nonlinearities arising from the red blood cell (RBC) distribution (i.e., the Fåhraeus, Fåhraeus-Lindqvist and the phase separation effects). Using this detailed model, we evaluate determinants driving this "stealing" effect in a microvascular network with geometric parameters within physiological ranges. Model simulations predict that during localized cerebral blood flow (CBF) increases due to neuronal activation-hyperemic response, blood from surrounding vessels is reallocated towards the activated region. This stealing effect depended on the resistance of the microvasculature and the uneven distribution of RBCs at vessel bifurcations. A parsimonious model consisting of two-connected windkessel regions sharing a supplying artery was proposed to simulate the stealing effect with a minimum number of parameters. Comparison with the detailed model showed that the parsimonious model can reproduce the observed response for hematocrit values within the physiological range for different species. Our novel parsimonious model promise to be of use for statistical inference (top-down analysis) from direct blood flow measurements (e.g., arterial spin labeling and laser Doppler/Speckle flowmetry), and when combined with theoretical models for oxygen extraction/diffusion will help account for some types of NBRs.
Collapse
Affiliation(s)
- Alejandro Suarez
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Pedro A Valdes-Hernandez
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States; Department of Community Dentistry and Behavioral Science, University of Florida, United States
| | - Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Nikolaos Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jorge Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.
| |
Collapse
|
44
|
Hong CCH, Fallon JH, Friston KJ. fMRI Evidence for Default Mode Network Deactivation Associated with Rapid Eye Movements in Sleep. Brain Sci 2021; 11:brainsci11111528. [PMID: 34827529 PMCID: PMC8615877 DOI: 10.3390/brainsci11111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
System-specific brain responses—time-locked to rapid eye movements (REMs) in sleep—are characteristically widespread, with robust and clear activation in the primary visual cortex and other structures involved in multisensory integration. This pattern suggests that REMs underwrite hierarchical processing of visual information in a time-locked manner, where REMs index the generation and scanning of virtual-world models, through multisensory integration in dreaming—as in awake states. Default mode network (DMN) activity increases during rest and reduces during various tasks including visual perception. The implicit anticorrelation between the DMN and task-positive network (TPN)—that persists in REM sleep—prompted us to focus on DMN responses to temporally-precise REM events. We timed REMs during sleep from the video recordings and quantified the neural correlates of REMs—using functional MRI (fMRI)—in 24 independent studies of 11 healthy participants. A reanalysis of these data revealed that the cortical areas exempt from widespread REM-locked brain activation were restricted to the DMN. Furthermore, our analysis revealed a modest temporally-precise REM-locked decrease—phasic deactivation—in key DMN nodes, in a subset of independent studies. These results are consistent with hierarchical predictive coding; namely, permissive deactivation of DMN at the top of the hierarchy (leading to the widespread cortical activation at lower levels; especially the primary visual cortex). Additional findings indicate REM-locked cerebral vasodilation and suggest putative mechanisms for dream forgetting.
Collapse
Affiliation(s)
- Charles Chong-Hwa Hong
- Patuxent Institution, Correctional Mental Health Center—Jessup, Jessup, MD 20794, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-410-596-1956
| | - James H. Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Karl J. Friston
- The Well Come Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK;
| |
Collapse
|
45
|
Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, Hepp R, Naudé J, Le Gac B, Egger R, Lambolez B, Li D, Rossier J, Staiger JF, Imamura H, Seino S, Roeper J, Cauli B. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. eLife 2021; 10:e71424. [PMID: 34766906 PMCID: PMC8651295 DOI: 10.7554/elife.71424] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.
Collapse
Affiliation(s)
- Anastassios Karagiannis
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Alexandre Lacroix
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Fabrice Plaisier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Juliette Piquet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Régine Hepp
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jérémie Naudé
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Benjamin Le Gac
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Richard Egger
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bertrand Lambolez
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jean Rossier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August- University GöttingenGoettingenGermany
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of MedicineHyogoJapan
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| |
Collapse
|
46
|
Uchiyama Y, Sakai H, Ando T, Tachibana A, Sadato N. BOLD signal response in primary visual cortex to flickering checkerboard increases with stimulus temporal frequency in older adults. PLoS One 2021; 16:e0259243. [PMID: 34735509 PMCID: PMC8568270 DOI: 10.1371/journal.pone.0259243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many older adults have difficulty seeing brief visual stimuli which younger adults can easily recognize. The primary visual cortex (V1) may induce this difficulty. However, in neuroimaging studies, the V1 response change to the increase of temporal frequency of visual stimulus in older adults was unclear. Here we investigated the association between the temporal frequency of flickering stimuli and the BOLD activity within V1 in older adults, using surface-based fMRI analysis. The fMRI data from 29 healthy older participants stimulated by contrast-reversing checkerboard at temporal flicker frequencies of 2, 4, and 8 Hz were obtained. The participants also performed a useful field of view (UFOV) test. The slope coefficient of BOLD activity regarding the temporal frequency of the visual stimulus averaged within V1 regions of interest was positive and significantly different from zero. Group analysis in the V1 showed significant clusters with positive slope and no significant clusters with a negative slope. The correlation coefficient between the slope coefficient and UFOV performance was not significant. The results indicated that V1 BOLD response to a flickering visual stimulus increases as the stimulus temporal frequency increases from 2 to 8 Hz in older adults.
Collapse
Affiliation(s)
- Yuji Uchiyama
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
- * E-mail:
| | - Hiroyuki Sakai
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
| | - Takafumi Ando
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
| | - Atsumichi Tachibana
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
47
|
Klink PC, Chen X, Vanduffel V, Roelfsema P. Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. eLife 2021; 10:67304. [PMID: 34730515 PMCID: PMC8641953 DOI: 10.7554/elife.67304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023] Open
Abstract
Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.
Collapse
Affiliation(s)
| | - Xing Chen
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Pieter Roelfsema
- Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
48
|
Suarez A, Valdés-Hernández PA, Bernal B, Dunoyer C, Khoo HM, Bosch-Bayard J, Riera JJ. Identification of Negative BOLD Responses in Epilepsy Using Windkessel Models. Front Neurol 2021; 12:659081. [PMID: 34690906 PMCID: PMC8531269 DOI: 10.3389/fneur.2021.659081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Alongside positive blood oxygenation level–dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography–functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O2 to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| | | | - Byron Bernal
- Nicklaus Children Hospital, Miami, FL, United States
| | | | - Hui Ming Khoo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurosurgery, Osaka University, Suita, Japan
| | - Jorge Bosch-Bayard
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| |
Collapse
|
49
|
Hirabayashi T, Nagai Y, Hori Y, Inoue KI, Aoki I, Takada M, Suhara T, Higuchi M, Minamimoto T. Chemogenetic sensory fMRI reveals behaviorally relevant bidirectional changes in primate somatosensory network. Neuron 2021; 109:3312-3322.e5. [PMID: 34672984 DOI: 10.1016/j.neuron.2021.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 01/28/2023]
Abstract
Concurrent genetic neuromodulation and functional magnetic resonance imaging (fMRI) in primates has provided a valuable opportunity to assess the modified brain-wide operation in the resting state. However, its application to link the network operation with behavior still remains challenging. Here, we combined chemogenetic silencing of the primary somatosensory cortex (SI) with tactile fMRI and related behaviors in macaques. Focal chemogenetic silencing of functionally identified SI hand region impaired grasping behavior. The same silencing also attenuated hand stimulation-evoked fMRI signal at both the local silencing site and the anatomically and/or functionally connected downstream grasping network, suggesting altered network operation underlying the induced behavioral impairment. Furthermore, the hand region silencing unexpectedly disinhibited foot representation with accompanying behavioral hypersensitization. These results demonstrate that focal chemogenetic silencing with sensory fMRI in macaques unveils bidirectional network changes to generate multifaceted behavioral impairments, thereby opening a pivotal window toward elucidating the causal network operation underpinning higher brain functions in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan.
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Japan
| |
Collapse
|
50
|
Lin Y, Zhou X, Naya Y, Gardner JL, Sun P. Voxel-Wise Linearity Analysis of Increments and Decrements in BOLD Responses in Human Visual Cortex Using a Contrast Adaptation Paradigm. Front Hum Neurosci 2021; 15:541314. [PMID: 34531731 PMCID: PMC8439421 DOI: 10.3389/fnhum.2021.541314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The linearity of BOLD responses is a fundamental presumption in most analysis procedures for BOLD fMRI studies. Previous studies have examined the linearity of BOLD signal increments, but less is known about the linearity of BOLD signal decrements. The present study assessed the linearity of both BOLD signal increments and decrements in the human primary visual cortex using a contrast adaptation paradigm. Results showed that both BOLD signal increments and decrements kept linearity to long stimuli (e.g., 3 s, 6 s), yet, deviated from linearity to transient stimuli (e.g., 1 s). Furthermore, a voxel-wise analysis showed that the deviation patterns were different for BOLD signal increments and decrements: while the BOLD signal increments demonstrated a consistent overestimation pattern, the patterns for BOLD signal decrements varied from overestimation to underestimation. Our results suggested that corrections to deviations from linearity of transient responses should consider the different effects of BOLD signal increments and decrements.
Collapse
Affiliation(s)
- Yun Lin
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Xi Zhou
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Justin L Gardner
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Pei Sun
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.,Laboratory for Cognitive Brain Mapping, RIKEN Center for Brain Sciences, Wako, Japan
| |
Collapse
|