1
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping. ACS NANO 2024; 18:22874-22887. [PMID: 39148286 DOI: 10.1021/acsnano.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT6 give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Lyons
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Amanda Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
2
|
Zhang X, Li L, Wang B, Cai Z, Zhang B, Chen F, Xing G, Li K, Qu S. Donor-Acceptor Type Supra-Carbon-Dots with Long Lifetime Photogenerated Radicals Boosting Tumor Photodynamic Therapy. Angew Chem Int Ed Engl 2024:e202410522. [PMID: 39171506 DOI: 10.1002/anie.202410522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Carbon dots (CDs) have gained significant interest because of their potential in biomedical applications. Nevertheless, developing CDs with efficient photoinduced charge separation for tumor photodynamic therapy (PDT) remains a challenge. This study presents a novel class of supra-carbon-dots (supra-CDs) developed by fusing red emissive CDs with 2,3-dicyanohydroquinone (DCHQ) via post-solvothermal treatment. In supra-CDs, the core, acting as electron donors, is formed by assembled CDs with substantial sp2 domains, the fused interface originating from DCHQ with electron-withdrawing groups functions as the electron acceptor. This configuration creates the unique donor-acceptor nanostructure. Upon white light irradiation, the excited electrons from the assembled CDs were transferred to the electron-withdrawing interface, whereas the photogenerated holes were retained within the assembled CDs as radicals, leading to effective photoinduced charge separation. The separated photogenerated electrons then react with oxygen to generate superoxide radicals. Simultaneously, the photogenerated holes undergo oxidation of crucial cellular substrates. This dual action underscores the exceptional cell-killing efficacy of supra-CDs. Moreover, the increased particle sizes (~20 nm) ensure supra-CDs to exhibit a notable capacity for tumor accumulation via the improved permeability and retention effect, thereby achieving satisfactory anti-tumor PDT efficacy in a mouse subcutaneous tumor model.
Collapse
Affiliation(s)
- Xianming Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lingyun Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Zhipeng Cai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, China
- MOE Frontier Science Centre for Precision Oncology Cancer Center, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
3
|
Yang X, Hou R, Fu Q, Li T, Li M, Cui S, Li Q, Liu M. A critical review of biochar as an environmental functional material in soil ecosystems for migration and transformation mechanisms and ecological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121196. [PMID: 38763117 DOI: 10.1016/j.jenvman.2024.121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
At present, biochar has a large application potential in soil amelioration, pollution remediation, carbon sequestration and emission reduction, and research on the effect of biochar on soil ecology and environment has made positive progress. However, under natural and anthropogenic perturbations, biochar may undergo a series of environmental behaviors such as migratory transformation, mineralization and decomposition, and synergistic transport, thus posing certain potential risks. This paper outlines the multi-interfacial migration pathway of biochar in "air-soil-plant-animal-water", and analyzes the migration process and mechanism at different interfaces during the preparation, transportation and application of biochar. The two stages of the biochar mineralization process (mineralization of easily degradable aliphatic carbon components in the early stage and mineralization of relatively stable aromatic carbon components in the later stage) were described, the self-influencing factors and external environmental factors of biochar mineralization were analyzed, and the mineral stabilization mechanism and positive/negative excitation effects of biochar into the soil were elucidated. The proximity between field natural and artificially simulated aging of biochar were analyzed, and the change of its properties showed a trend of biological aging > chemical aging > physical aging > natural aging, and in order to improve the simulation and prediction, the artificially simulated aging party needs to be changed from a qualitative method to a quantitative method. The technical advantages, application scope and potential drawbacks of different biochar modification methods were compared, and biological modification can create new materials with enhanced environmental application. The stability performance of modified biochar was compared, indicating that raw materials, pyrolysis temperature and modification method were the key factors affecting the stability of biochar. The potential risks to the soil environment from different pollutants carried by biochar were summarized, the levels of pollutants released from biochar in the soil environment were highlighted, and a comprehensive selection of ecological risk assessment methods was suggested in terms of evaluation requirements, data acquisition and operation difficulty. Dynamic tracing of migration decomposition behavior, long-term assessment of pollution remediation effects, and directional design of modified composite biochar materials were proposed as scientific issues worthy of focused attention. The results can provide a certain reference basis for the theoretical research and technological development of biochar.
Collapse
Affiliation(s)
- Xuechen Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qinglin Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mingxuan Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
4
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning Assisted Spectral Fingerprinting for Immune Cell Phenotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583608. [PMID: 38496523 PMCID: PMC10942323 DOI: 10.1101/2024.03.05.583608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool, adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Through the use of Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages as compared to M2 and naïve phenotypes. NIR fluorescence data also indicate that distinctive intra-endosomal environments of these cell types give rise to significant differences in many optical features such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of > 95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications such as cell phenotyping or mapping intra-endosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT 6 give rise to more improved model accuracy (> 87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation. TOC Graphic
Collapse
|
5
|
Mitroo D, Das DN, Hamilton PD, Kumfer BM, Ravi N. Combustion conditions influence toxicity of flame-generated soot to ocular (ARPE-19) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123307. [PMID: 38190877 DOI: 10.1016/j.envpol.2024.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Soot is a prevalent aerosol found both indoors and outdoors that has several sources, such as natural (e.g., wildfires), civilian (e.g., cooking), or military (e.g., burn pit operation). Additionally, within the sources, factors that influence the physicochemical properties of the soot include combustion temperature, oxygen availability, and fuel type. Being able to reproduce soot in the laboratory and systematically assess its toxicity is important in the pursuit of elucidating pathologies associated with its exposure. Of the organs of interest, we targeted the eye given the scant attention received. Yet, air pollution constituents such as soot have been linked to diseases such as age-related macular degeneration and proliferative vitreoretinopathy. We developed a bench-scale system to synthesize different types of soot, that is, soot with a systematically varied physical attributes or chemical composition. We used common analytical techniques to probe such properties, and used statistical analyses to correlate them with toxicity in vitro using ARPE-19 cells. Within the range of flame conditions studied, we find that soot toxicity increases with increasing oxygen concentration in fuel-rich premixed flames, and weakly increases with decreasing flame temperature. Additionally, soot particles produced in premixed flames are generally smaller in size, exhibit a lesser fractal structure, and are considerably more toxic to ARPE-19 cells than soot particles produced in non-premixed flames.
Collapse
Affiliation(s)
- Dhruv Mitroo
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Durgesh N Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA
| | - Paul D Hamilton
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Benjamin M Kumfer
- Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nathan Ravi
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA; Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA; Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Jahan I, Matpan Bekler F, Tunç A, Güven K. The Effects of Silver Nanoparticles (AgNPs) on Thermophilic Bacteria: Antibacterial, Morphological, Physiological and Biochemical Investigations. Microorganisms 2024; 12:402. [PMID: 38399806 PMCID: PMC10892981 DOI: 10.3390/microorganisms12020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Since thermophilic microorganisms are valuable sources of thermostable enzymes, it is essential to recognize the potential toxicity of silver nanoparticles used in diverse industrial sectors. Thermophilic bacteria Geobacillus vulcani 2Cx, Bacillus licheniformis 3CA, Paenibacillus macerans 3CA1, Anoxybacillus ayderensis FMB1, and Bacillus paralicheniformis FMB2-1 were selected, and their MIC and MBC values were assessed by treatment with AgNPs in a range of 62.5-1500 μg mL-1. The growth inhibition curves showed that the G. vulcani 2Cx, and B. paralicheniformis FMB2-1 strains were more sensitive to AgNPs, demonstrating a reduction in population by 71.1% and 31.7% at 62.5 μg mL-1 and by 82.9% and 72.8% at 250 μg mL-1, respectively. TEM and FT-IR analysis revealed that AgNPs caused structural damage, cytoplasmic leakage, and disruption of cellular integrity. Furthermore, cell viability showed a significant decrease alongside an increase in superoxide radical (SOR; O2-) production. β-galactosidase biosynthesis decreased to 28.8% level at 500 μg mL-1 AgNPs for G. vulcani 2Cx, 32.2% at 250 μg mL-1 for A. ayderensis FMB1, and 38.8% only at 62.5 μg mL-1, but it was completely inhibited at 500 μg mL-1 for B. licheniformis 3CA. Moreover, B. paralicheniformis FMB2-1 showed a significant decrease to 11.2% at 125 μg mL-1. This study is the first to reveal the toxic effects of AgNPs on thermophilic bacteria.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Health Care Services, Vocational School of Health Services, Mardin Artuklu University, 47100 Mardin, Türkiye;
| | - Fatma Matpan Bekler
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye;
| | - Ahmed Tunç
- Department of Interdisciplinary Nanotechnology, Graduate School of Natural and Applied Sciences, Dicle University, 21280 Diyarbakir, Türkiye;
| | - Kemal Güven
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye;
| |
Collapse
|
7
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Law SSY, Miyamoto T, Numata K. Organelle-targeted gene delivery in plants by nanomaterials. Chem Commun (Camb) 2023. [PMID: 37183975 DOI: 10.1039/d3cc00962a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic engineering of plants has revolutionized agriculture and has had a significant impact on our everyday life. It has allowed for the production of crops with longer shelf lives, enhanced yields and resistance to pests and disease. The application of nanomaterials in plant genetic engineering has further augmented these programs with higher delivery efficiencies, biocompatibility and the potential for plant regeneration. In particular, subcellular targeting using nanomaterials has recently become possible with the cutting-edge developments within nanomaterials, but remains challenging despite the promise in organellar engineering for the introduction of useful traits and the elucidation of subcellular interactions. This feature article provides an overview of nanomaterial delivery within plants and highlights the application of recent progress in nanomaterials for subcellular organelle-targeted delivery.
Collapse
Affiliation(s)
- Simon Sau Yin Law
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Zhang H, Saberi A, Heydari Z, Baltatu MS. Bredigite-CNTs Reinforced Mg-Zn Bio-Composites to Enhance the Mechanical and Biological Properties for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1681. [PMID: 36837310 PMCID: PMC9965178 DOI: 10.3390/ma16041681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg) and its compounds have been investigated as biodegradable metals for bone implants. However, high corrosion rates and low bioactivity that cause loss of mechanical properties are factors that have limited their biomedical applications. The purpose of this work is to remedy the weaknesses of the Mg-Zn (MZ) alloy matrix. For this purpose, we have synthesized Mg-based composites with different concentrations of bredigite (Br; Ca7MgSi4O16)-carbon nanotubes (CNTs) using mechanical alloying and semi-powder metallurgy processes with spark plasma sintering. Then, we studied the effect of the simultaneous addition of Br-CNTs on in vitro degradation, as well as its effect on the composites' mechanical and antibacterial properties. Increases of 57% and 72% respectively were observed in the microhardness and compressive strength of the MZ/Br-CNTs composite in comparison to the MZ alloy. In addition, the rate of degradation of Mg-based composites in simulated body fluids (SBF) was almost 2 times lower. An assessment of antibacterial behavior disclosed that the simultaneous adding of Br-CNTs to Mg can meaningfully prevent the growth and invasion of E. coli and S. aureus. These research findings demonstrate the potential application of MZ/Br-CNTs composites to implants and the treatment of bone infections.
Collapse
Affiliation(s)
- Hongwei Zhang
- School of Mechanical Engineering, Xijing University, Xi’an 710123, China
| | - Abbas Saberi
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Zahra Heydari
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| |
Collapse
|
10
|
The effect of Co-encapsulated GNPs-CNTs nanofillers on mechanical properties, degradation and antibacterial behavior of Mg-based composite. J Mech Behav Biomed Mater 2023; 138:105601. [PMID: 36493612 DOI: 10.1016/j.jmbbm.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Magnesium (Mg)-based composites, as one group of the biodegradable materials, enjoy high biodegradability, biocompatibility, and non-toxicity making them a great option for implant applications. In this paper, by the semi powder metallurgy (SPM) technique, the graphene nano-platelets (GNPs) and carbon nanotubes (CNTs) nanosystems, as reinforcements, are dispersed homogenously in the Mg-Zn (MZ) alloy matrix. Subsequently, the composite is successfully produced employing the spark plasma sintering (SPS) process. Compared to the unreinforced MZ sample, GNPs + CNTs mixture reinforced composite exhibits higher compressive strength (∼75%). Notably, adding only 1 wt % of GNPs + CNTs to the MZ matrix reduces the rate of the degradation in the Mg-based composite by almost 2- fold. Examining the antibacterial activity demonstrate that the incorporation of GNPs + CNTs into the Mg-based matrix is likely to prevent the infiltration and development of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) significantly. While the MTT with 0.5 and 1 wt % GNPs + CNTs does not demonstrate cytotoxicity to the MG63 cells, the excessive GNPs + CNTs results in a certain degree of poisonousness. In general, the findings of the present research attest to the viable application of MZ/GNPs + CNTs composites for implants as well as bone infection treatment.
Collapse
|
11
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
12
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Shalini A, Priya K, Kothai S, Pandian K, Anbalagan G, Jaisankar V. Synthesis and characterisation of graphene oxide decorated gold nano particles and their application towards antibacterial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
15
|
Chan SY, Lee D, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework. ACS OMEGA 2022; 7:18459-18470. [PMID: 35694527 PMCID: PMC9178712 DOI: 10.1021/acsomega.2c00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are of vital significance for healthcare by supporting the management of infectious diseases for preventing pandemics and the diagnosis of life-threatening conditions such as cancer. However, the advancement of the field can be limited by low sensing accuracy. Here, we altered the bioelectrical signatures of the cells using carbon nanotubes (CNTs) via structural loosening effects. Using an alternating current (AC) pulse under light irradiation, we developed a photo-assisted AC pulse sensor based on CNTs to differentiate between healthy breast epithelial cells (MCF-10A) and luminal breast cancer cells (MCF-7) within a heterogeneous cell population. We observed a previously undemonstrated increase in current contrast for MCF-7 cells with CNTs compared to MCF-10A cells with CNTs under light exposure. Moreover, we obtained a detection limit of ∼1.5 × 103 cells below a baseline of ∼1 × 104 cells for existing electrical-based sensors for an adherent, heterogeneous cell population. All-atom molecular dynamics (MD) simulations reveal that interactions between the embedded CNT and cancer cell membranes result in a less rigid lipid bilayer structure, which can facilitate CNT translocation for enhancing current. This as-yet unconsidered cancer cell-specific method based on the unique optoelectrical properties of CNTs represents a strategy for unlocking the detection of a small population of cancer cells and provides a promising route for the early diagnosis, monitoring, and staging of cancer.
Collapse
Affiliation(s)
- Sophia
S. Y. Chan
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Denise Lee
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Maria Prisca Meivita
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Lunna Li
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
- Thomas
Young Centre and Department of Chemical Engineering, University College London, LondonWC1E 6BT, U.K.
| | - Yaw Sing Tan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore138671, Singapore
| | - Natasa Bajalovic
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Desmond K. Loke
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
- Office
of Innovation, Changi General Hospital, Singapore529889, Singapore
| |
Collapse
|
16
|
Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat Commun 2022; 13:2417. [PMID: 35577779 PMCID: PMC9110379 DOI: 10.1038/s41467-022-30185-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/20/2022] [Indexed: 11/15/2022] Open
Abstract
The delivery of genetic material into plants has been historically challenging due to the cell wall barrier, which blocks the passage of many biomolecules. Carbon nanotube-based delivery has emerged as a promising solution to this problem and has been shown to effectively deliver DNA and RNA into intact plants. Mitochondria are important targets due to their influence on agronomic traits, but delivery into this organelle has been limited to low efficiencies, restricting their potential in genetic engineering. This work describes the use of a carbon nanotube-polymer hybrid modified with functional peptides to deliver DNA into intact plant mitochondria with almost 30 times higher efficiency than existing methods. Genetic integration of a folate pathway gene in the mitochondria displays enhanced plant growth rates, suggesting its applications in metabolic engineering and the establishment of stable transformation in mitochondrial genomes. Furthermore, the flexibility of the polymer layer will also allow for the conjugation of other peptides and cargo targeting other organelles for broad applications in plant bioengineering. The delivery of genetic material into plants is challenging due to the cell wall barrier. Here, the authors hybridize polymer-coated carbon nanotubes with functional peptides to deliver plasmid DNA cargo into intact plant mitochondria for transient expression and homologous recombination at high efficiency.
Collapse
|
17
|
Liu X, Ge W. The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Front Med (Lausanne) 2022; 9:814986. [PMID: 35273976 PMCID: PMC8901503 DOI: 10.3389/fmed.2022.814986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been commonly used in a variety of applications in recent years. Nanomedicine has also gotten a lot of attention in the medical and treatment fields. Ultrasonic technology is already being used in research as a powerful tool for manufacturing nonmaterial and in the decoration of catalyst supports for energy applications and material processing. For the development of nanoparticles and the decoration of catalytic assisted powders with nanoparticles, low or high-frequency Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the nanotechnology from the past few years and bring tremendous success in various diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated with desired capabilities and targeted toward different targets. This review first highlights the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next, we explain various nanoparticles with ultrasonic technology for different diagnosing and treatment of various diseases. Finally, we explain the challenges face by current approaches for their translation in clinics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| | - Weidong Ge
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| |
Collapse
|
18
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
19
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Li Y, Li B, Liu Y, Qu Y, Tian J, Li W. A wrinkled nanosurface causes accelerated protein unfolding revealing its critical role in nanotoxicity. RSC Adv 2022; 12:30976-30984. [PMID: 36349047 PMCID: PMC9619238 DOI: 10.1039/d2ra05489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Wrinkles are often found to have a strong influence on the properties of nanomaterials and have attracted extensive research interest. However, the consequences of the use of wrinkled nanomaterials in biological systems remain largely unknown. Here, using molecular dynamics simulations, we studied the interactions of a wrinkled graphene with proteins, using the villin headpiece (HP35) as the representative model. Our results clearly revealed that the wrinkle, especially the wrinkle corner, showed stronger binding affinity to HP35 than the planar surface where HP35 experienced accelerated and more severe unfolding. This is because the transverse translocation of the aromatic residues of the protein is highly confined at the wrinkle corner. The movement of other parts of the protein causes unfolding of the protein secondary structure and releases hydrophobic residues to bind to graphene, causing complete denaturation. Further free energy analyses revealed that this is attributed to the stronger binding affinity of residues to the wrinkle corner than to the planar surface. The present findings provide a deeper understanding of the effect of graphene wrinkles on protein stability. This finding may be generalized to other types of biomolecules and may also guide the design of biomedical nanomaterials through surface structural engineering. Wrinkled nanosurface can cause more severe protein distorsions than planar nanosurface because of stronger interactions.![]()
Collapse
Affiliation(s)
- Yuezheng Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Baoyu Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yang Liu
- School of Physics, Shandong University, Jinan 250100, China
| | - Yuanyuan Qu
- School of Physics, Shandong University, Jinan 250100, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
21
|
Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6707. [PMID: 34772234 PMCID: PMC8588285 DOI: 10.3390/ma14216707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
Current discoveries as well as research findings on various types of carbon nanostructures have inspired research into their utilization in a number of fields. These carbon nanostructures offer uses in pharmacy, medicine and different therapies. One such unique carbon nanostructure includes carbon nanotubes (CNTs), which are one-dimensional allotropes of carbon nanostructure that can have a length-to-diameter ratio greater than 1,000,000. After their discovery, CNTs have drawn extensive research attention due to their excellent material properties. Their physical, chemical and electronic properties are excellent and their composites provide great possibilities for enormous nanometer applications. The current study provides a systematic review based on prior literature review and data gathered from various sources. The various research studies from many research labs and organizations were systematically retrieved, collected, compiled and written. The entire collection and compilation of this review concluded the use of CNT approaches and their efficacy and safety for the treatment of various diseases such as brain tumors or cancer via nanotechnology-based drug delivery, phototherapy, gene therapy, antiviral therapy, antifungal therapy, antibacterial therapy and other biomedical applications. The current review covers diverse applications of CNTs in designing a range of targeted drug delivery systems and application for various therapies. It concludes with a discussion on how CNTs based medicines can expand in the future.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Rohit R. Bhosale
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Institute of Medical Sciences “Deemed To Be University”, Karad 415539, Maharashtra, India;
| | - Riyaz A. M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Kasturi C. Mahima
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Asha P. Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Y. Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Hosahalli V. Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| |
Collapse
|
22
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Gopalan D, Pandey A, Alex AT, Kalthur G, Pandey S, Udupa N, Mutalik S. Nanoconstructs as a versatile tool for detection and diagnosis of Alzheimer biomarkers. NANOTECHNOLOGY 2021; 32:142002. [PMID: 33238254 DOI: 10.1088/1361-6528/abcdcb] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current review focuses towards the advancements made in the past decade in the field of nanotechnology for the early Alzheimer's disease (AD) diagnosis. This review includes the application of nanomaterials and nanosensors for the early detection of the main AD biomarkers (amyloid beta, phosphorylated tau, apolipoprotein E4 allele or APOE4, microRNAs, cholesterol, hydrogen peroxide etc) in biological fluids, to detect the biomarkers at a very low concentration ranging in pico, femto and even atto molar concentrations. The field of drug development has always aimed and is constantly working on developing disease modifying drugs, but these drugs will only succeed when given in the early disease stages. Thus, developing efficient diagnostic tools is of vital importance. Various nanomaterials such as liposomes; dendrimers; polymeric nanoparticles; coordination polymers; inorganic nanoparticles such as silica, manganese oxide, zinc oxide, iron oxide, super paramagnetic iron oxides; quantum dots, silver nanoparticles, gold nanoparticles, and carbon based nanostructures (carbon nanotubes, graphene oxide, nanofibres, nanodiamonds, carbon dots); Up-conversion nanoparticles; 2D nanomaterials; and radioactive nanoprobes have been used in constructing and improving efficiency of nano-sensors for AD biosensing at an early stage of diagnosis.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sureshwar Pandey
- School of Pharmacy, Faculty of Medical Sciences, The university of West Indies, St. Augustine, Trinidad and Tobago, Jamaica
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
24
|
CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. J Mech Behav Biomed Mater 2021; 116:104320. [PMID: 33571842 DOI: 10.1016/j.jmbbm.2021.104320] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Polymethyl methacrylate (PMMA) bone cements (BCs) have some drawbacks, including limited bioactivity and bone formation, as well as inferior mechanical properties, which may result in failure of the BC. To deal with the mentioned issues, novel bioactive polymethyl methacrylate-hardystonite (PMMA-HT) bone cement (BC) reinforced with 0.25 and 0.5 wt% of carbon nanotube (CNT) and reduced graphene oxide (rGO) was synthesized. In this context, the obtained bone cements were evaluated in terms of their mechanical and biological characteristics. The rGO reinforced bone cement exhibited better mechanical properties to the extent that the addition of 0.5 wt% of rGO where its compressive and tensile strength of bioactive PMMA-HT/rGO cement escalated from 92.07 ± 0.72 MPa, and 40.02 ± 0.71 MPa to 187.48 ± 5.79 MPa and 64.92 ± 0.75 MPa, respectively. Besides, the mechanisms of toughening, apatite formation, and cell interaction in CNT and rGO encapsulated PMMA have been studied. Results showed that the existence of CNT and rGO in BCs led to increase of MG63 osteoblast viability, and proliferation. However, rGO reinforced bone cement was more successful in supporting MG63 cell attachment compared to the CNT counterpart due to its wrinkled surface, which made a suitable substrate for cell adhesion. Based on the results, PMMA-HT/rGO can be a proper bone cement for the fixation of load-bearing implants.
Collapse
|
25
|
Jeon SB, Samal M, Govindaraju S, Ragini Das R, Yun K. Cytotoxicity and Bioimaging Study for NHDF and HeLa Cell Lines by Using Graphene Quantum Pins. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2550. [PMID: 33353017 PMCID: PMC7766917 DOI: 10.3390/nano10122550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
Herein, we report the synthesis of an interesting graphene quantum material called "graphene quantum pins (GQPs)". Morphological analysis revealed the interesting pin shape (width: ~10 nm, length: 50-100 nm) and spectral analysis elucidated the surface functional groups, structural features, energy levels, and photoluminescence properties (blue emission under 365 nm). The difference between the GQPs and graphene quantum dos (GQDs) isolated from the same reaction mixture as regards to their morphological, structural, and photoluminescence properties are also discussed along with the suggestion of a growth mechanism. Cytotoxicity and cellular responses including changes in biophysical and biomechanical properties were evaluated for possible biomedical applications of GQPs. The studies demonstrated the biocompatibility of GQPs even at a high concentration of 512 μg/mL. Our results suggest GQPs can be used as a potential bio-imaging agent with desired photoluminescence property and low cytotoxicity.
Collapse
Affiliation(s)
- Seong-Beom Jeon
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
- School of Environmental and Science Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Monica Samal
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
| | - Rupasree Ragini Das
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
| |
Collapse
|
26
|
Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020; 12:E2946. [PMID: 33317211 PMCID: PMC7764097 DOI: 10.3390/polym12122946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Dean Martinez
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| |
Collapse
|
27
|
Pei Gong, Wu M, Zhang J, Li X, Liu J, Wan F. Comprehensive Understanding of Gold Nanoparticles Enhancing Catalytic Efficiency. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Comparetti EJ, Romagnoli GG, Gorgulho CM, Pedrosa VDA, Kaneno R. Anti-PSMA monoclonal antibody increases the toxicity of paclitaxel carried by carbon nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111254. [PMID: 32806261 DOI: 10.1016/j.msec.2020.111254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Multiple-wall carbon nanotubes (CNTs) were functionalized with polyethyleneimine in order to incorporate paclitaxel (PTX), the first line chemotherapeutic agent for prostate cancer. These particles were then covered with antibodies for the prostate-specific membrane antigen (PSMA), to address them to prostate cancer cells. LNCaP prostate cancer cells (PSMA+), HCT-116 and CaCo-2 colon cancer cells (PSMA-), as well as human peripheral monocytes and lymphocytes (PSMA-), were in vitro exposed to fluorescent CNT composites. The interaction/adherence of those composites to target cells was analyzed by fluorescence microscopy and flow cytometry, showing a diffuse interaction of CNTs and CNT-PTX with all cell types. Analysis of cytotoxicity revealed that both prostate (PSMA+) and colorectal cancer cells (PSMA-) were more susceptible to PTX complexed with CNTs than to pure PTX or CNTs alone, while the incorporation of anti-PSMA (CNT-PTX-PSMA) improved the toxicity on LNCaP cells but not on PSMA- targets. No toxicity was observed in human monocytes and lymphocytes but composites induced phenotypical changes in monocytes. Our results demonstrate the feasibility of using anti-PSMA antibody to address drug-loaded CNT to cancer cells as a strategy for improving the effectiveness of antineoplastic agents.
Collapse
Affiliation(s)
- Edson José Comparetti
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil; São Paulo State University - UNESP, School of Medicine of Botucatu - Department of Pathology, Botucatu, SP, Brazil; UNOESTE - Oeste Paulista University, Department of Health Sciences, Jaú, SP, Brazil
| | - Carolina Mendonça Gorgulho
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil; São Paulo State University - UNESP, School of Medicine of Botucatu - Department of Pathology, Botucatu, SP, Brazil
| | - Valber de Albuquerque Pedrosa
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil.
| |
Collapse
|
29
|
Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, Tavakoli M, Razzaghi M, Ismail AF, RamaKrishna S, Berto F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers (Basel) 2020; 12:polym12071469. [PMID: 32629907 PMCID: PMC7407371 DOI: 10.3390/polym12071469] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Every year, millions of people in the world get bone diseases and need orthopedic surgery as one of the most important treatments. Owing to their superior properties, such as acceptable biocompatibility and providing great primary bone fixation with the implant, polymethyl methacrylate (PMMA)-based bone cements (BCs) are among the essential materials as fixation implants in different orthopedic and trauma surgeries. On the other hand, these BCs have some disadvantages, including Lack of bone formation and bioactivity, and low mechanical properties, which can lead to bone cement (BC) failure. Hence, plenty of studies have been concentrating on eliminating BC failures by using different kinds of ceramics and polymers for reinforcement and also by producing composite materials. This review article aims to evaluate mechanical properties, self-setting characteristics, biocompatibility, and bioactivity of the PMMA-based BCs composites containing carbon nanotubes (CNTs), graphene oxide (GO), and carbon-based compounds. In the present study, we compared the effects of CNTs and GO as reinforcement agents in the PMMA-based BCs. Upcoming study on the PMMA-based BCs should concentrate on trialing combinations of these carbon-based reinforcing agents as this might improve beneficial characteristics.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
- Correspondence: or (H.R.B.-R.); (F.B.)
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologes in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahmood Razzaghi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor 81310, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence: or (H.R.B.-R.); (F.B.)
| |
Collapse
|
30
|
Zhang C, Zheng YY, Gong YM, Zhao Z, Guo ZR, Jia YJ, Wang GX, Zhu B. Evaluation of immune response and protection against spring viremia of carp virus induced by a single-walled carbon nanotubes-based immersion DNA vaccine. Virology 2019; 537:216-225. [DOI: 10.1016/j.virol.2019.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
|
31
|
Gomez-Gonzalez MA, Koronfel MA, Goode AE, Al-Ejji M, Voulvoulis N, Parker JE, Quinn PD, Scott TB, Xie F, Yallop ML, Porter AE, Ryan MP. Spatially Resolved Dissolution and Speciation Changes of ZnO Nanorods during Short-Term in Situ Incubation in a Simulated Wastewater Environment. ACS NANO 2019; 13:11049-11061. [PMID: 31525960 DOI: 10.1021/acsnano.9b02866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zinc oxide engineered nanomaterials (ZnO ENMs) are used in a variety of applications worldwide due to their optoelectronic and antibacterial properties with potential contaminant risk to the environment following their disposal. One of the main potential pathways for ZnO nanomaterials to reach the environment is via urban wastewater treatment plants. So far there is no technique that can provide spatiotemporal nanoscale information about the rates and mechanisms by which the individual nanoparticles transform. Fundamental knowledge of how the surface chemistry of individual particles change, and the heterogeneity of transformations within the system, will reveal the critical physicochemical properties determining environmental damage and deactivation. We applied a methodology based on spatially resolved in situ X-ray fluorescence microscopy (XFM), allowing observation of real-time dissolution and morphological and chemical evolution of synthetic template-grown ZnO nanorods (∼725 nm length, ∼140 nm diameter). Core-shell ZnO-ZnS nanostructures were formed rapidly within 1 h, and significant amounts of ZnS species were generated, with a corresponding depletion of ZnO after 3 h. Diffuse nanoparticles of ZnS, Zn3(PO4)2, and Zn adsorbed to Fe-oxyhydroxides were also imaged in some nonsterically impeded regions after 3 h. The formation of diffuse nanoparticles was affected by ongoing ZnO dissolution (quantified by inductively coupled plasma mass spectrometry) and the humic acid content in the simulated sludge. Complementary ex situ X-ray absorption spectroscopy and scanning electron microscopy confirmed a significant decrease in the ZnO contribution over time. Application of time-resolved XFM enables predictions about the rates at which ZnO nanomaterials transform during their first stages of the wastewater treatment process.
Collapse
Affiliation(s)
- Miguel A Gomez-Gonzalez
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Mohamed A Koronfel
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Angela Erin Goode
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Maryam Al-Ejji
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Nikolaos Voulvoulis
- Centre for Environmental Policy , Imperial College London , London SW7 2AZ , United Kingdom
| | - Julia E Parker
- Harwell Science and Innovation Campus , Diamond Light Source, Ltd. , Didcot , Oxfordshire OX11 0DE , United Kingdom
| | - Paul D Quinn
- Harwell Science and Innovation Campus , Diamond Light Source, Ltd. , Didcot , Oxfordshire OX11 0DE , United Kingdom
| | - Thomas Bligh Scott
- Interface Analyses Centre , University of Bristol , Bristol BS2 8BS , United Kingdom
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Marian L Yallop
- School of Biological Sciences , University of Bristol , Bristol BS8 1TQ , United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| | - Mary P Ryan
- Department of Materials and London Centre for Nanotechnology , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
32
|
Carbon Nanotubes Translocation through a Lipid Membrane and Transporting Small Hydrophobic and Hydrophilic Molecules. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) are extensively adopted in the applications of biotechnology and biomedicine. Their interactions with cell membranes are of great importance for understanding the toxicity of CNTs and the application of drug delivery. In this paper, we use atomic molecular dynamics simulations to study the permeation and orientation of pristine and functionalized CNTs in a lipid bilayer. Pristine CNT (PCNT) can readily permeate into the membrane and reside in the hydrophobic region without specific orientation. The insertion of PCNTs into the lipid bilayer is robust and independent on the lengths of PCNTs. Due to the presence of hydroxyl groups on both ends of the functionalized CNT (FCNT), FCNT prefers to stand upright in the lipid bilayer center. Compared with PCNT, FCNT is more suitable to be a bridge connecting the inner and outer lipid membrane. The inserted CNTs have no distinct effects on membrane structure. However, they may block the ion channels. In addition, preliminary explorations on the transport properties of CNTs show that the small hydrophobic molecule carbon dioxide can enter both PCNT and FCNT hollow channels. However, hydrophilic molecule urea is prone to penetrate the PCNT but finds it difficult to enter the FCNT. These results may provide new insights into the internalization of CNT in the lipid membrane and the transport properties of CNTs when embedded therein.
Collapse
|
33
|
Gravely M, Safaee MM, Roxbury D. Biomolecular Functionalization of a Nanomaterial To Control Stability and Retention within Live Cells. NANO LETTERS 2019; 19:6203-6212. [PMID: 31424226 PMCID: PMC7199458 DOI: 10.1021/acs.nanolett.9b02267] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Noncovalent hybrids of single-stranded DNA and single-walled carbon nanotubes (SWCNTs) have demonstrated applications in biomedical imaging and sensing due to their enhanced biocompatibility and photostable, environmentally responsive near-infrared (NIR) fluorescence. The fundamental properties of such DNA-SWCNTs have been studied to determine the correlative relationships between oligonucleotide sequence and length, SWCNT species, and the physical attributes of the resultant hybrids. However, intracellular environments introduce harsh conditions that can change the physical identities of the hybrid nanomaterials, thus altering their intrinsic optical properties. Here, through visible and NIR fluorescence imaging in addition to confocal Raman microscopy, we show that the oligonucleotide length controls the relative uptake, intracellular optical stability, and retention of DNA-SWCNTs in mammalian cells. Although the absolute NIR fluorescence intensity of DNA-SWCNTs in murine macrophages increases with increasing oligonucleotide length (from 12 to 60 nucleotides), we found that shorter oligonucleotide DNA-SWCNTs undergo a greater magnitude of spectral shift and are more rapidly internalized and expelled from the cell after 24 h. Furthermore, by labeling the DNA with a fluorophore that dequenches upon removal from the SWCNT surface, we found that shorter oligonucleotide strands are displaced from the SWCNT within the cell, altering the physical identity and changing the fate of the internalized nanomaterial. Finally, through a pharmacological inhibition study, we identified the mechanism of SWCNT expulsion from the cells as lysosomal exocytosis. These findings provide a fundamental understanding of the interactions between SWCNTs and live cells as well as evidence suggesting the ability to control the biological fate of the nanomaterials merely by varying the type of DNA wrapping.
Collapse
Affiliation(s)
- Mitchell Gravely
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Mohammad Moein Safaee
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Daniel Roxbury
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| |
Collapse
|
34
|
Pasban S, Raissi H, Pakdel M, Farzad F. Enhance the efficiency of 5-fluorouracil targeted delivery by using a prodrug approach as a novel strategy for prolonged circulation time and improved permeation. Int J Pharm 2019; 568:118491. [PMID: 31276765 DOI: 10.1016/j.ijpharm.2019.118491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 11/25/2022]
Abstract
Due to the toxicity and resistance to treatment with anticancer drugs, various methods are used to improve their efficacy in cancer treatment. In this present study, in order to overcome the limitation of 5-Fluorouracil (5-FU), prodrug strategy has been pursued with using density functional theory (DFT) and molecular dynamics simulation (MDs). The main objective of this study is to examine the mechanisms of drug release from its prodrug form by using the intrinsic reaction coordinate (IRC) calculations. The reaction mechanisms of 5-FU prodrug (EMC-5-FU) in the presence of lactic acid (LA) and water molecule were theoretically studied. The IRC calculations were carried out at the M06-2X/6-311G** level in the aqueous phase through the mechanism of ester hydrolysis to obtain energies, the geometry optimization of all stationary points along the potential energy surfaces (PES), and also to determine the harmonic vibrational frequencies. The results herein presented suggest that three reaction pathways and transition states TS1 to TS2 are involved along the calculated potential energy surface. We found that the drug molecule is released in the third step and this occurs by separation CH2O group in the presence of water molecule with the highest energy barrier about 25.9 kcal/mol. Since the carbon nanotubes (CNTs) can act as drug delivery vehicles and deliver anticancer drugs directly to the target cells. Therefore in DFT section, the interaction mechanism of CNTs with 5-FU prodrug is studied by means of DFT method. The atoms in molecules (AIM) and the non-covalent interactions (NCI) between the CNTs and prodrug are used in order to examine the strength and type of interaction between them. The result of negative binding energy values of CNT-prodrug interaction show the stability of these complexes. Our theoretical results show that the more favorable interaction occurs when the prodrug is located inside the carbon nanotube. Furthermore, for design and development of intracellular drug delivery systems, steered molecular dynamics (SMD) simulations was used to investigate the possibility of encapsulated prodrug-CNT penetration through a (1-palmitoyl-2-oleoyl phosphatidylcholine) POPC lipid bilayer. For this purpose, the forces of penetration and the free energies of rupture of POPC bilayer with a Prodrug-CNT were studied. Our simulation results show that encapsulated prodrug-carbon nanotube does not permanently destroy the POPC membrane structure.
Collapse
Affiliation(s)
- Samaneh Pasban
- Chemistry Department, University of Birjand, Birjand, Iran.
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran
| | - Majid Pakdel
- Chemistry Department, University of Birjand, Birjand, Iran
| | | |
Collapse
|
35
|
Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019; 14:2487-2514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is depicted as the most aggressive malignancy and is one the major causes of death worldwide. It originates from immortal tumor-initiating cells called 'cancer stem cells' (CSCs). This devastating subpopulation exhibit potent self-renewal, proliferation and differentiation characteristics. Dynamic DNA repair mechanisms can sustain the immortality phenotype of cancer to evade all treatment strategies. To date, current conventional chemo- and radio-therapeutic strategies adopted against cancer fail in tackling CSCs. However, new advances in nanotechnology have paved the way for creating next-generation nanotheranostics as multifunctional smart 'all-in-one' nanoparticles. These particles integrate diagnostic, therapeutic and targeting agents into one single biocompatible and biodegradable carrier, opening up new avenues for breakthroughs in early detection, diagnosis and treatment of cancer through efficient targeting of CSCs.
Collapse
Affiliation(s)
- Asmaa Reda
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt.,Molecular & Cellular Biology division, Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Salma Hosseiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| |
Collapse
|
36
|
Zhao Z, Zhang C, Jia YJ, Qiu DK, Lin Q, Li NQ, Huang ZB, Fu XZ, Wang GX, Zhu B. Immersion vaccination of Mandarin fish Siniperca chuatsi against infectious spleen and kidney necrosis virus with a SWCNTs-based subunit vaccine. FISH & SHELLFISH IMMUNOLOGY 2019; 92:133-140. [PMID: 31173860 DOI: 10.1016/j.fsi.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 05/19/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) cause a high mortality disease which lead to significant economic loss on mandarin fish in China. There is no effective drug or vaccine against this fatal disease at present. Meanwhile, many drugs and vaccines had no effect in many cases account of several impenetrable barriers (cell, skin and gastrointestinal tract). Here we reported an immersion subunit vaccine system (SWCNTs-MCP) encoding MCP gene of ISKNV based on single-walled carbon nanotubes (SWCNTs). To evaluate its efficacy against ISKNV, we found a stronger and longer duration immune response (serum antibody production, enzyme activities and immune-related genes expression) can be induced in fish vaccinated with SWCNTs-MCP in comparison with those vaccinated with MCP alone. Importantly, SWCNTs can increase the immune protective effect of naked subunit vaccine by ca. 23.8%. Thereby, this study demonstrates that SWCNTs as a promising carrier for subunit vaccine might be used to vaccinate large-scale juvenile mandarin fish by bath administration approach.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Ning-Qiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Zhi-Bin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Xiao-Zhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
37
|
Wang CJ, Wang HZ, Li W. A novel conjunction of folate-targeted carbon nanotubes containing protohemin and oridonin-liposome loaded microbubbles for cancer chemo-sonodynamic therapy. J Drug Target 2019; 27:1076-1083. [PMID: 30836772 DOI: 10.1080/1061186x.2019.1591422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To facilitate targeting drug delivery and combined therapy, we constructed a novel drug carrier, in which oridonin-liposome containing microbubbles (LUMO) are covalently adhered to folic acid-conjugated multiwalled carbon nanotubes loaded with protohemin (FMTP) to form a novel conjugate (FMTP-LUMO). Oridonin (ORI) is used as a chemotherapeutic drug for chemotherapy (CHT), whereas protohemin (Ph) is applied in the field of sonodynamic therapy (SDT) as a sonosensitizer. In vitro release properties, cellular uptake and cytotoxicity in HepG-2 cells as well as in vivo antitumour effects in HepG-2 cell tumour-bearing mice submitted to chemo-sonodynamic therapy, SDT alone and CHT alone were evaluated upon ultrasound exposure. The results showed that the growth inhibition rates on FMTP-LUMO, FMTP, and LUMO were 95.4 ± 5.9%, 63.9 ± 7.4%, and 42.3 ± 2.9% in vitro, respectively. FMTP-LUMO exhibited strong binding to HepG-2 cells than MTP-LUMO. The chemo-sonodynamic therapy demonstrated a cooperative effect, resulting in significantly higher therapeutic efficacy for liver cancer. After treatment for 10 d, the tumour inhibition ratio for FMTP-LUMO exceeded to 90%, clearly higher than that of FMTP (42.8%) and LUMO (32.5%). Thus, FMTP-LUMO could serve as a highly effective drug carrier for chemo-sonodynamic therapy.
Collapse
Affiliation(s)
- Chuan-Jin Wang
- Department of pharmaceutical and fine chemicals, School of Chemical Engineering, Nanjing University of Science and Technology , Nanjing , People's Republic of China
| | - Heng-Zhi Wang
- Nanjing No.1 Middle School , Nanjing , People's Republic of China
| | - Wei Li
- Department of pharmaceutical and fine chemicals, School of Chemical Engineering, Nanjing University of Science and Technology , Nanjing , People's Republic of China
| |
Collapse
|
38
|
Mohajeri M, Behnam B, Barreto GE, Sahebkar A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer's disease? Pharmacol Res 2019; 143:186-203. [DOI: 10.1016/j.phrs.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023]
|
39
|
Shrivastava M, Srivastav A, Gandhi S, Rao S, Roychoudhury A, Kumar A, Singhal R, Jha SK, Singh S. Monitoring of engineered nanoparticles in soil-plant system: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Kalman J, Merino C, Fernández-Cruz ML, Navas JM. Usefulness of fish cell lines for the initial characterization of toxicity and cellular fate of graphene-related materials (carbon nanofibers and graphene oxide). CHEMOSPHERE 2019; 218:347-358. [PMID: 30476766 DOI: 10.1016/j.chemosphere.2018.11.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Graphene-related materials (GRMs) are one of the most attractive materials from an application perspective, consequently their release into aquatic environments is highly likely. In the present work, the potential of fish hepatocytes (topminnow fish hepatoma cell line, PLHC-1) and macrophages (carp leukocyte cell line, CLC) to study the toxicity and intracellular fate of helical-ribbon carbon nanofibers (CNFs) and graphene oxide (GO) used in a variety of intermediate industrial products was evaluated, allowing a first ranking of GRMs according to their cytotoxicity. Cells were exposed to a concentration range of 0-200 μg ml-1 of GRMs for 24 and 72 h and cell viability was assessed by measuring mitochondrial activity (AlamarBlue assay), plasma membrane integrity (5-carboxyfluorescein diacetate-acetoxymethyl ester assay) and lysosomal function (neutral red uptake assay). Results showed that both the cell type and the choice of endpoint determined the toxicity of GRMs. In both cell lines, CNFs appeared to have higher toxicity than GO and the highest degree of graphitization in fibers was associated with lower toxicity. Transmission electron microscopy revealed that CNFs were taken up into membrane-bound compartments of PLHC-1 cells in a size-independent manner, whereas in CLC, longer CNFs were encountered free in the cytoplasm and only the shorter CNFs were localized in membrane-surrounded vesicles. GO sheets were present within vesicles as well as free in the cytoplasm of both cell types. These findings contribute to the understanding of the toxicity and behaviour of these GRMs in living systems, therefore aiding in designing safer materials for the environment.
Collapse
Affiliation(s)
- Judit Kalman
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - César Merino
- Grupo Antolin Ingeniería, SA, Ctra. Madrid-Irún, Km 244.7, E09007 Burgos, Spain
| | - María L Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain
| | - José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
41
|
Munir KS, Wen C, Li Y. Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. ACTA ACUST UNITED AC 2019; 3:e1800212. [PMID: 32627403 DOI: 10.1002/adbi.201800212] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Current challenges in existing metallic biomaterials encourage undertaking research in the development of novel materials for biomedical applications. This paper critically reviews the potential of carbon nanotubes (CNT) and graphene as nanoreinforcements in metallic biomaterials for bone tissue engineering. Unique and remarkable mechanical, electrical, and biological properties of these carbon nanomaterials allow their use as secondary-phase reinforcements in monolithic biomaterials. The nanoscale dimensions and extraordinarily large surface areas of CNT and graphene make them suitable materials for purposeful reaction with living organisms. However, the cytocompatibility of CNT and graphene is still a controversial issue that impedes advances in utilizing these promising materials in clinical orthopedic applications. The interaction of CNT and graphene with biological systems including proteins, nucleic acids, and human cells is critically reviewed to assess their cytocompatibity in vitro and in vivo. It is revealed that composites reinforced with CNT and graphene show enhanced adhesion of osteoblast cells, which subsequently promotes bone tissue formation in vivo. This potential is expected to pave the way for developing ground-breaking technologies in regenerative medicine and bone tissue engineering. In addition, current progress and future research directions are highlighted for the development of CNT and graphene reinforced implants for bone tissue engineering.
Collapse
Affiliation(s)
- Khurram S Munir
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
42
|
Liu F, Wang W, Sang J, Jia L, Lu F. Hydroxylated Single-Walled Carbon Nanotubes Inhibit Aβ 42 Fibrillogenesis, Disaggregate Mature Fibrils, and Protect against Aβ 42-Induced Cytotoxicity. ACS Chem Neurosci 2019; 10:588-598. [PMID: 30335950 DOI: 10.1021/acschemneuro.8b00441] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fibrillogenesis of amyloid-β protein (Aβ) is considered a crucial factor in the pathogenesis of Alzheimer's disease (AD). Hence, inhibiting Aβ fibrillogenesis is regarded as the primary therapeutic strategy for the prevention and treatment of AD. However, the development of effective inhibitors against Aβ fibrillogenesis has faced significant challenges. Previous studies have shown that pristine single-walled carbon nanotubes (SWNTs) can inhibit fibrillogenesis of some amyloid proteins. However, the poor dispersibility of SWNTs in an aqueous environment greatly hinders their inhibitory efficacy. Here, we examined the inhibitory activity of hydroxylated SWNTs (SWNT-OH) on the aggregation and cytotoxicity of Aβ42 using thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), cellular viability assays, and molecular dynamics (MD) simulations. ThT and AFM results showed that SWNT-OH inhibits Aβ42 fibrillogenesis and disaggregates preformed amyloid fibrils in a dose-dependent manner. Furthermore, the ratio of hydroxyl groups in SWNT-OH is crucial for their effect against Aβ42 aggregation. SWNT-OH exerted cytoprotective effects against Aβ42 fibrillation-induced cytotoxicity. The results of free-energy decomposition studies based on MD simulations revealed that nonpolar interactions, and especially van der Waals forces, contributed most of the free energy of binding in the SWNT-OH-Aβ complex. Two regions of the Aβ pentamer were identified to interact with SWNT-OH, spanning H13-Q15 and V36-G38. The findings presented here will contribute to a comprehensive understanding of the inhibitory effect of hydroxylated nanoparticles against Aβ fibrillogenesis, which is critical for the search for more effective agents that can counteract amyloid-mediated pathologies.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry
of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| | - Wenjuan Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Longgang Jia
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry
of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P. R. China
| |
Collapse
|
43
|
Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2019. [DOI: 10.1007/978-981-13-2688-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Guo Y, Werner M, Seemann R, Baulin VA, Fleury JB. Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer. ACS NANO 2018; 12:12042-12049. [PMID: 30452223 DOI: 10.1021/acsnano.8b04657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing awareness of bioeffects and toxicity of nanomaterials interacting with cells puts in focus the mechanisms by which nanomaterials can cross lipid membranes. Apart from well-discussed energy-dependent endocytosis for large objects and passive diffusion through membranes by solute molecules, other translocation mechanisms based on physical principles can exist. We show the importance of membrane tension on the translocation through lipid bilayers of ultrashort carbon nanotubes (USCNTs). By using a combination of a microfluidic setup and single chain mean field (SCMF) theory, we observed that, under membrane tension, USCNT inserted into a lipid bilayer may spontaneously nucleate an unstable local pore, allowing it to escape from the bilayer. We demonstrated that stretching of the membrane is essential for triggering this mechanism of translocation, and no translocation is observed at low membrane tension. For this purpose, a quantitative analysis of the kinetic pathway associated with USCNT translocation induced by tension was performed in a specially designed microfluidic device, simultaneously combining optical fluorescence microscopy and electrophysiological measurements. An important outcome of these findings is the identification of the way to control the nanomaterial translocation through the lipid bilayer by membrane tension that can be useful in many practical applications.
Collapse
Affiliation(s)
- Yachong Guo
- National Laboratory of Solid State Microstructure, Department of Physics , Nanjing University , Nanjing 210093 , China
- Departament d'Enginyeria Quimica , Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans , 43007 Tarragona , Spain
| | - Marco Werner
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6 , 01069 Dresden , Germany
| | - Ralf Seemann
- Universität des Saarlandes , Experimental Physics and Center for Biophysics , 66123 Saarbrücken , Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica , Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans , 43007 Tarragona , Spain
| | - Jean-Baptiste Fleury
- Universität des Saarlandes , Experimental Physics and Center for Biophysics , 66123 Saarbrücken , Germany
| |
Collapse
|
45
|
Foroozandeh P, Aziz AA. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. NANOSCALE RESEARCH LETTERS 2018; 13:339. [PMID: 30361809 PMCID: PMC6202307 DOI: 10.1186/s11671-018-2728-6] [Citation(s) in RCA: 762] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/24/2018] [Indexed: 05/06/2023]
Abstract
Nanoparticle science is rapidly changing the landscape of various scientific fields and defining new technological platforms. This is perhaps even more evident in the field of nanomedicine whereby nanoparticles have been used as a tool for the treatment and diagnosis of many diseases. However, despite the tremendous benefit conferred, common pitfalls of this technology is its potential short and long-term effects on the human body. To understand these issues, many scientific studies have been carried out. This review attempts to shed light on some of these studies and its outcomes. The topics that were examined in this review include the different possible uptake pathways of nanoparticles and intracellular trafficking routes. Additionally, the effect of physicochemical properties of nanoparticle such as size, shape, charge and surface chemistry in determining the mechanism of uptake and biological function of nanoparticles are also addressed.
Collapse
Affiliation(s)
- Parisa Foroozandeh
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| |
Collapse
|
46
|
Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Zhang C, Li LH, Wang J, Zhao Z, Li J, Tu X, Huang AG, Wang GX, Zhu B. Enhanced protective immunity against spring viremia of carp virus infection can be induced by recombinant subunit vaccine conjugated to single-walled carbon nanotubes. Vaccine 2018; 36:6334-6344. [DOI: 10.1016/j.vaccine.2018.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
48
|
Alaraby M, Hernández A, Marcos R. Systematic in vivo study of NiO nanowires and nanospheres: biodegradation, uptake and biological impacts. Nanotoxicology 2018; 12:1027-1044. [DOI: 10.1080/17435390.2018.1513091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
49
|
Pijpers IAB, Abdelmohsen LKEA, Xia Y, Cao S, Williams DS, Meng F, Hest JCM, Zhong Z. Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proof‐of‐Concept Studies. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imke A. B. Pijpers
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | | | - Yifeng Xia
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Shoupeng Cao
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | | | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jan C. M. Hest
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
50
|
Gade HM, Wanjari PP, Velpuri SVV. Water-mediated curvature change in graphene by single-walled carbon nanotubes. Phys Chem Chem Phys 2018; 20:22359-22367. [PMID: 30128465 DOI: 10.1039/c8cp02394h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel nanostructured materials possessing new architectural segments can be synthesized using various combinations of graphene and carbon nanotubes (CNT) that can result in the generation of enhanced physico-chemical properties within the hybrids. Comprehending the various physical processes involved in the creation of these new segments is crucial for designing an optimized nanomaterial for a specific purpose. In this paper we report induced folding in a graphene sheet resulting from the physical interactions between water-mediated graphene and a CNT. Owing to robust binding interactions between the CNT and a compatible graphene sheet, the latter forms a second domed layer around the former culminating in a structure equivalent to a double-walled CNT. The induced curvature change in graphene by CNT was found to have a strong dependence upon their relative physical dimensions. For example, CNT possessing extremely small diameters are unable to induce any significant curvature changes in longer graphene sheets. The potential-of-mean force (PMF) between our reference graphene and CNT in water suggests a favorable binding interaction of -14.5 kcal mol-1. The breakdown of the PMF into direct graphene-nanotube interactions and water-mediated interactions reveals a huge reduction in the strongly attractive binding interactions between graphene and CNT by the water molecules.
Collapse
Affiliation(s)
- Hrushikesh M Gade
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India.
| | | | | |
Collapse
|