1
|
Yan X, Li Y, Zhang X. Semiconductor nanowire heterodimensional structures toward advanced optoelectronic devices. NANOSCALE HORIZONS 2024. [PMID: 39451075 DOI: 10.1039/d4nh00385c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Semiconductor nanowires are considered as one of the most promising candidates for next-generation devices due to their unique quasi-one-dimensional structures and novel physical properties. In recent years, advanced heterostructures have been developed by combining nanowires with low-dimensional structures such as quantum wells, quantum dots, and two-dimensional materials. Those heterodimensional structures overcome the limitations of homogeneous nanowires and show great potential in high-performance nano-optoelectronic devices. In this review, we summarize and discuss recent advances in fabrication, properties and applications of nanowire heterodimensional structures. Major heterodimensional structures including nanowire/quantum well, nanowire/quantum dot, and nanowire/2D-material are studied. Representative optoelectronic devices including lasers, single photon sources, light emitting diodes, photodetectors, and solar cells are introduced in detail. Related prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Xin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yao Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Xia Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
2
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
3
|
Erofeev I, Saidov K, Baraissov Z, Yan H, Maurice JL, Panciera F, Mirsaidov U. 3D Shape Reconstruction of Ge Nanowires during Vapor-Liquid-Solid Growth under Modulating Electric Field. ACS NANO 2024; 18:22855-22863. [PMID: 39133557 DOI: 10.1021/acsnano.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Bottom-up growth offers precise control over the structure and geometry of semiconductor nanowires (NWs), enabling a wide range of possible shapes and seamless heterostructures for applications in nanophotonics and electronics. The most common vapor-liquid-solid (VLS) growth method features a complex interaction between the liquid metal catalyst droplet and the anisotropic structure of the crystalline NW, and the growth is mainly orchestrated by the triple-phase line (TPL). Despite the intrinsic mismatch between the droplet and the NW symmetries, its discussion has been largely avoided because of its complexity, which has led to the situation when multiple observed phenomena such as NW axial asymmetry or the oscillating truncation at the TPL still lack detailed explanation. The introduction of an electric field control of the droplet has opened even more questions, which cannot be answered without properly addressing three-dimensional (3D) structure and morphology of the NW and the droplet. This work describes the details of electric-field-controlled VLS growth of germanium (Ge) NWs using environmental transmission electron microscopy (ETEM). We perform TEM tomography of the droplet-NW system during an unperturbed growth, then track its evolution while modulating the bias potential. Using 3D finite element method (FEM) modeling and crystallographic considerations, we provide a detailed and consistent mechanism for VLS growth, which naturally explains the observed asymmetries and features of a growing NW based on its crystal structure. Our findings provide a solid framework for the fabrication of complex 3D semiconductor nanostructures with ultimate control over their morphology.
Collapse
Affiliation(s)
- Ivan Erofeev
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Khakimjon Saidov
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Zhaslan Baraissov
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Hongwei Yan
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Jean-Luc Maurice
- Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Federico Panciera
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, Avenue de la Vauve, 91120 Palaiseau, France
| | - Utkur Mirsaidov
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
4
|
Zendrini M, Dubrovskii V, Rudra A, Dede D, Fontcuberta i Morral A, Piazza V. Nucleation-Limited Kinetics of GaAs Nanostructures Grown by Selective Area Epitaxy: Implications for Shape Engineering in Optoelectronics Devices. ACS APPLIED NANO MATERIALS 2024; 7:19065-19074. [PMID: 39206349 PMCID: PMC11348316 DOI: 10.1021/acsanm.4c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The growth kinetics of vertical III-V nanowires (NWs) were clarified long ago. The increasing aspect ratio of NWs results in an increase in the surface area, which, in turn, enhances the material collection. The group III adatom diffusion from the NW sidewalls to the top sustains a superlinear growth regime. In this work, we report on the growth of different GaAs nanostructures by selective area MOVPE on GaAs (111)B substrates. We show that the opening dimensions and geometry qualitatively alter the morphology and height evolution of the structures. We compare the time evolution of vertical GaAs NWs stemming from circular holes and horizontal GaAs nanomembranes (NMs) growing from one-dimensional (1D) rectangular slits on the same substrate. While NW heights grow exponentially with time, NMs surprisingly exhibit sublinear kinetics. The absence of visible atomic steps on the top facets of both NWs and NMs suggests layer-by-layer growth in the mononuclear mode. We interpret these observations within a self-consistent growth model, which links the diffusion flux of Ga adatoms to the position- and shape-dependent nucleation rate on top of NWs and NMs. Specifically, the island nucleation rate is lower on top of the NMs than that on the NWs, resulting in the total diffusion flux being directed from the top facet to the sidewalls. This gives a sublinear height evolution for the NMs. These results open innovative perspectives for shape engineering of III-V nanostructures and new avenues for the design of optoelectronics and photonic devices.
Collapse
Affiliation(s)
- Michele Zendrini
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Vladimir Dubrovskii
- Faculty
of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, St. Petersburg 199034, Russia
| | - Alok Rudra
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Didem Dede
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Anna Fontcuberta i Morral
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Institute
of Physics, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne CH-1015, Switzerland
| | - Valerio Piazza
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
5
|
Katsumi Y, Gamo H, Motohisa J, Tomioka K. InP Crystal Phase Heterojunction Transistor with a Vertical Gate-All-Around Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30471-30477. [PMID: 38819142 PMCID: PMC11182027 DOI: 10.1021/acsami.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Crystal phase transitions can form a new type of heterojunction with different atomic arrangements in the same material: crystal phase heterojunction (CPHJ). The CPHJ has an inherently strong impact on band engineering without concerns over critical thicknesses with misfit dislocations and a semiconductor-metal transition. In-plane CPHJ was recently demonstrated in two-dimensional (2D) transition-metal dichalcogenide (TMD) materials and utilized for conventional planar field-effect transistor applications. However, scalability such as gate electrostatic control, miniaturization, and multigate structure have been limited because of the geometrical issue. Here, we demonstrated a transistor using the CPHJ with a vertical gate-all-around structure by forming a CPHJ in conventional III-V semiconductors. The CPHJ, composed of wurtzite InP nanowires with zincblende InP substrates, showed an atomically flat heterojunction without dislocations and indicated a Type-II band discontinuity across the junction. The CPHJ transistor had moderate to good gate electrostatic controllability with high on-state currents and transconductance. The CPHJ offer will provide a new switching mechanism and add a new junction and device design choice to the long history of transistors.
Collapse
Affiliation(s)
- Yu Katsumi
- Graduate
School of Information Science and Technology, Hokkaido University, North 14 West 9, Sapporo 060-0814, Japan
- Research
Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, North 13 West 8, Sapporo 060-0813, Japan
| | - Hironori Gamo
- Graduate
School of Information Science and Technology, Hokkaido University, North 14 West 9, Sapporo 060-0814, Japan
- Research
Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, North 13 West 8, Sapporo 060-0813, Japan
| | - Junichi Motohisa
- Graduate
School of Information Science and Technology, Hokkaido University, North 14 West 9, Sapporo 060-0814, Japan
- Research
Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, North 13 West 8, Sapporo 060-0813, Japan
| | - Katsuhiro Tomioka
- Graduate
School of Information Science and Technology, Hokkaido University, North 14 West 9, Sapporo 060-0814, Japan
- Research
Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, North 13 West 8, Sapporo 060-0813, Japan
| |
Collapse
|
6
|
Zeng L, Olsson E. Unveiling Variations in Electronic and Atomic Structures Due to Nanoscale Wurtzite and Zinc Blende Phase Separation in GaAs Nanowires. NANO LETTERS 2024; 24:6644-6650. [PMID: 38767455 PMCID: PMC11157649 DOI: 10.1021/acs.nanolett.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Phase separation is an intriguing phenomenon often found in III-V nanostructures, but its effect on the atomic and electronic structures of III-V nanomaterials is still not fully understood. Here we study the variations in atomic arrangement and band structure due to the coexistence of wurtzite (WZ) and zinc blende (ZB) phases in single GaAs nanowires by using scanning transmission electron microscopy and monochromated electron energy loss spectroscopy. The WZ lattice distances are found to be larger (by ∼1%), along both the nanowire length direction and the perpendicular direction, than the ZB lattice. The band gap of the WZ phase is ∼20 meV smaller than that of the ZB phase. A shift of ∼70 meV in the conduction band edge between the two phases is also found. The direct and local measurements in single GaAs nanowires reveal important effects of phase separation on the properties of individual III-V nanostructures.
Collapse
Affiliation(s)
- Lunjie Zeng
- Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
7
|
Modi G, Meng AC, Rajagopalan S, Thiruvengadam R, Davies PK, Stach EA, Agarwal R. Controlled Self-Assembly of Nanoscale Superstructures in Phase-Change Ge-Sb-Te Nanowires. NANO LETTERS 2024; 24:5799-5807. [PMID: 38701332 DOI: 10.1021/acs.nanolett.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Controlled growth of semiconductor nanowires with atomic precision offers the potential to tune the material properties for integration into scalable functional devices. Despite significant progress in understanding the nanowire growth mechanism, definitive control over atomic positions of its constituents, structure, and morphology via self-assembly remains challenging. Here, we demonstrate an exquisite control over synthesis of cation-ordered nanoscale superstructures in Ge-Sb-Te nanowires with the ability to deterministically vary the nanowire growth direction, crystal facets, and periodicity of cation ordering by tuning the relative precursor flux during synthesis. Furthermore, the role of anisotropy on material properties in cation-ordered nanowire superstructures is illustrated by fabricating phase-change memory (PCM) devices, which show significantly different growth direction dependent amorphization current density. This level of control in synthesizing chemically ordered nanoscale superstructures holds potential to precisely modulate fundamental material properties such as the electronic and thermal transport, which may have implications for PCM, thermoelectrics, and other nanoelectronic devices.
Collapse
Affiliation(s)
- Gaurav Modi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Srinivasan Rajagopalan
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rangarajan Thiruvengadam
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Peter K Davies
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ritesh Agarwal
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Zeng Z, Wang D, Cao J, He W, Zhang B, Zhao C, Liu D, Liu S, Pan J, Chen T, Jiao S, Fang X, Zhao L, Wang J. Self-Assembled BiGaSeAs Composite Superlattice-Structured Nanowire for Broad-Band Photodetection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16678-16686. [PMID: 38503721 DOI: 10.1021/acsami.3c18673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Photodetectors with a broad-band response range are widely used in many fields and are regarded as pivotal components of the modern miniaturized electronics industry. However, commercial broad-band photodetectors composed of traditional bulk semiconductor materials are still limited by complex preparation techniques, high costs, and a lack of mechanical strength and flexibility, which are difficult to satisfy the increasing demand for flexible and wearable optoelectronics. Therefore, researchers have been devoted to finding new strategies to obtain flexible, stable, and high-performance broad-band photodetectors. In this work, a novel self-assembled BiGaSeAs composite superlattice-structured nanowire was developed with a simple chemical vapor deposition method for easy fabrication. After the device assembling, the photodetector showed outstanding performance in terms of obvious Ion/Ioff (13.9), broad-band photoresponse (365-940 nm), excellent responsivity (1007.67 A/W), high detectivity (9.38 × 109 Jones), and rapid response (21 and 23 ms). The formation of microheterojunctions among various materials inside the nanowires also contributed to their extended broad-spectrum response and outstanding detection ability. These results indicate that the BiGaSeAs nanowires have potential applications in the field of flexible and wearable electronics.
Collapse
Affiliation(s)
- Zhi Zeng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dongbo Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiamu Cao
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Wen He
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bingke Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chenchen Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Donghao Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Sihang Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jingwen Pan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tianyuan Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shujie Jiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuan Fang
- School of Science, State Key Laboratory High Power Semicond Lasers, Changchun University Science and Technology, Changchun 130022, China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Badawy G, Bakkers EPAM. Electronic Transport and Quantum Phenomena in Nanowires. Chem Rev 2024; 124:2419-2440. [PMID: 38394689 PMCID: PMC10941195 DOI: 10.1021/acs.chemrev.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Nanowires are natural one-dimensional channels and offer new opportunities for advanced electronic quantum transport experiments. We review recent progress on the synthesis of nanowires and methods for the fabrication of hybrid semiconductor/superconductor systems. We discuss methods to characterize their electronic properties in the context of possible future applications such as topological and spin qubits. We focus on group III-V (InAs and InSb) and group IV (Ge/Si) semiconductors, since these are the most developed, and give an outlook on other potential materials.
Collapse
Affiliation(s)
- Ghada Badawy
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Erik P. A. M. Bakkers
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
10
|
Mediavilla I, Anaya J, Galiana B, Hrachowina L, Borgström MT, Jimenez J. A cathodoluminescence study of InP/InGaP axially heterostructured NWs for tandem solar cells. NANOTECHNOLOGY 2024; 35:195703. [PMID: 38316051 DOI: 10.1088/1361-6528/ad263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Axially heterostructured nanowires (NWs) constitute a promising platform for advanced electronic and optoelectronic nanodevices. The presence of different materials in these NWs introduces a mismatch resulting in complex strain distributions susceptible of changing the band gap and carrier mobility. The growth of these NWs presents challenges related to the reservoir effect in the catalysts droplet that affect to the junction abruptness, and the occurrence of undesired lateral growth creating core-shell heterostructures that introduce additional strain. We present herein a cathodoluminescence (CL) analysis on axially heterostructured InP/InGaP NWs with tandem solar cell structure. The CL is complemented with micro Raman, micro photoluminescence (PL), and high resolution transmission electron microscopy measurements. The results reveal the zinc blende structure of the NWs, the presence of a thin InGaP shell around the InP bottom cell, along with its associated strain, and the doping distribution.
Collapse
Affiliation(s)
- I Mediavilla
- GdS Optronlab, Ed. LUCIA, Paseo de Belen 19, Universidad de Valladolid, E-47011, Valladolid, Spain
| | - J Anaya
- GdS Optronlab, Ed. LUCIA, Paseo de Belen 19, Universidad de Valladolid, E-47011, Valladolid, Spain
| | - B Galiana
- Universidad Carlos III de Madrid, Physics Department, Av. Universidad 40, Leganes, E-28911, Spain
| | - L Hrachowina
- Nano Lund and Division of Solid State Physics, Lund University, Box 118, SE-22100 Lund, Sweden
| | - M T Borgström
- Nano Lund and Division of Solid State Physics, Lund University, Box 118, SE-22100 Lund, Sweden
| | - J Jimenez
- GdS Optronlab, Ed. LUCIA, Paseo de Belen 19, Universidad de Valladolid, E-47011, Valladolid, Spain
| |
Collapse
|
11
|
Chereau E, Grégoire G, Avit G, Taliercio T, Staudinger P, Schmid H, Bougerol C, Trassoudaine A, Gil E, LaPierre RR, André Y. Long indium-rich InGaAs nanowires by SAG-HVPE. NANOTECHNOLOGY 2024; 35:195601. [PMID: 38316054 DOI: 10.1088/1361-6528/ad263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We demonstrate the selective area growth of InGaAs nanowires (NWs) on GaAs (111)B substrates using hydride vapor phase epitaxy (HVPE). A high growth rate of more than 50μm h-1and high aspect ratio NWs were obtained. Composition along the NWs was investigated by energy dispersive x-ray spectroscopy giving an average indium composition of 84%. This is consistent with the composition of 78% estimated from the photoluminescence spectrum of the NWs. Crystal structure analysis of the NWs by transmission electron microscopy indicated random stacking faults related to zinc-blende/wurtzite polytypism. This work demonstrates the ability of HVPE for growing high aspect ratio InGaAs NW arrays.
Collapse
Affiliation(s)
- Emmanuel Chereau
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Gabin Grégoire
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Geoffrey Avit
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | | | - Philipp Staudinger
- IBM Research Europe-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Heinz Schmid
- IBM Research Europe-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Catherine Bougerol
- Université Grenoble Alpes, CNRS, Institut Neel, F-38000 Grenoble, France
| | - Agnès Trassoudaine
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Evelyne Gil
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Ray R LaPierre
- Department of Engineering Physics, McMaster University, Hamilton, L8S4L7, Ontario, Canada
| | - Yamina André
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Gu J, Duan F, Liu S, Cha W, Lu J. Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chem Rev 2024; 124:1247-1287. [PMID: 38259248 DOI: 10.1021/acs.chemrev.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Metallic materials are usually composed of single phase or multiple phases, which refers to homogeneous regions with distinct types of the atom arrangement. The recent studies on nanostructured metallic materials provide a variety of promising approaches to engineer the phases at the nanoscale. Tailoring phase size, phase distribution, and introducing new structures via phase transformation contribute to the precise modification in deformation behaviors and electronic structures of nanostructural metallic materials. Therefore, phase engineering of nanostructured metallic materials is expected to pave an innovative way to develop materials with advanced mechanical and functional properties. In this review, we present a comprehensive overview of the engineering of heterogeneous nanophases and the fundamental understanding of nanophase formation for nanostructured metallic materials, including supra-nano-dual-phase materials, nanoprecipitation- and nanotwin-strengthened materials. We first review the thermodynamics and kinetics principles for the formation of the supra-nano-dual-phase structure, followed by a discussion on the deformation mechanism for structural metallic materials as well as the optimization in the electronic structure for electrocatalysis. Then, we demonstrate the origin, classification, and mechanical and functional properties of the metallic materials with the structural characteristics of dense nanoprecipitations or nanotwins. Finally, we summarize some potential research challenges in this field and provide a short perspective on the scientific implications of phase engineering for the design of next-generation advanced metallic materials.
Collapse
Affiliation(s)
- Jialun Gu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Fenghui Duan
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Sida Liu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenhao Cha
- Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52056, Germany
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Futian District, Shenzhen 518000, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518000, China
| |
Collapse
|
13
|
Xu R, Xu K, Sun Y, Wen Y, Cheng L, Shen FC, Qian Y. Surface band bending caused by native oxides on solution-processed twinned InSb nanowires with p-type conductivity. NANOSCALE 2023; 15:18473-18480. [PMID: 37941430 DOI: 10.1039/d3nr03924b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Indium antimonide nanowires (InSb NWs) are attractive building-block candidates for bottom-up construction of high-efficiency electronics and optoelectronics due to their narrow direct band gap, fast room temperature carrier mobilities and small exciton binding energy. However, InSb NWs synthesized by the vapor-liquid-solution (VLS) mechanism generally suffer from an increased carrier and phonon scattering rate, which is thought to be caused by randomly distributed crystal defects along the NW growth direction. In this study, by utilizing the recently developed low-temperature, solution-processed technique, these crystal defects were successfully suppressed by periodically distributed twin planes to form twinned InSb nanowires. Importantly, measurements of the electrical transport properties of field effect transistors (FETs) reveal that the InSb NWs exhibit a hole-dominated conductivity with room temperature mobilities of up to 50.71 cm2 V-1 s-1, which is distinctly contrary to the intrinsic n-type InSb NWs. This observation of n-p switching behavior is probably attributed to the surface band bending effect with regard to the Fermi energy level, which is caused by surface oxide trap states arising from the native-oxide layer at the surface of the InSb NWs. All these results illustrate that the as-prepared colloidal InSb NWs can potentially be used as p-type materials for integration with next-generation nanoscale electronics and optoelectronics via surface engineering.
Collapse
Affiliation(s)
- Rui Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.
| | - Kaijia Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.
| | - Yingzhi Sun
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.
| | - Yan Wen
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.
| | - Lanjun Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Feng-Cui Shen
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.
| | - Yinyin Qian
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.
| |
Collapse
|
14
|
K. Sivan A, Abad B, Albrigi T, Arif O, Trautvetter J, Ruiz Caridad A, Arya C, Zannier V, Sorba L, Rurali R, Zardo I. GaAs/GaP Superlattice Nanowires for Tailoring Phononic Properties at the Nanoscale: Implications for Thermal Engineering. ACS APPLIED NANO MATERIALS 2023; 6:18602-18613. [PMID: 37854853 PMCID: PMC10580287 DOI: 10.1021/acsanm.3c04245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
The possibility to tune the functional properties of nanomaterials is key to their technological applications. Superlattices, i.e., periodic repetitions of two or more materials in one or more dimensions, are being explored for their potential as materials with tailor-made properties. Meanwhile, nanowires offer a myriad of possibilities to engineer systems at the nanoscale, as well as to combine materials that cannot be put together in conventional heterostructures due to the lattice mismatch. In this work, we investigate GaAs/GaP superlattices embedded in GaP nanowires and demonstrate the tunability of their phononic and optoelectronic properties by inelastic light scattering experiments corroborated by ab initio calculations. We observe clear modifications in the dispersion relation for both acoustic and optical phonons in the superlattices nanowires. We find that by controlling the superlattice periodicity, we can achieve tunability of the phonon frequencies. We also performed wavelength-dependent Raman microscopy on GaAs/GaP superlattice nanowires, and our results indicate a reduction in the electronic bandgap in the superlattice compared to the bulk counterpart. All of our experimental results are rationalized with the help of ab initio density functional perturbation theory (DFPT) calculations. This work sheds fresh insights into how material engineering at the nanoscale can tailor phonon dispersion and open pathways for thermal engineering.
Collapse
Affiliation(s)
- Aswathi K. Sivan
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | - Begoña Abad
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | - Tommaso Albrigi
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Omer Arif
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127 Pisa, Italy
| | | | | | - Chaitanya Arya
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
| | - Valentina Zannier
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127 Pisa, Italy
| | - Lucia Sorba
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127 Pisa, Italy
| | - Riccardo Rurali
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ilaria Zardo
- Department
of Physics, University of Basel, 4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Leshchenko ED, Dubrovskii VG. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101659. [PMID: 37242075 DOI: 10.3390/nano13101659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.
Collapse
Affiliation(s)
- Egor D Leshchenko
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
16
|
Seifner MS, Hu T, Snellman M, Jacobsson D, Deppert K, Messing ME, Dick KA. Insights into the Synthesis Mechanisms of Ag-Cu 3P-GaP Multicomponent Nanoparticles. ACS NANO 2023; 17:7674-7684. [PMID: 37017472 PMCID: PMC10134500 DOI: 10.1021/acsnano.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Metal-semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets' orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal-organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.
Collapse
Affiliation(s)
- Michael S. Seifner
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Tianyi Hu
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Markus Snellman
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- National
Center for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Knut Deppert
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Maria E. Messing
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| |
Collapse
|
17
|
Lozano MS, Gómez VJ. Epitaxial growth of crystal phase quantum dots in III-V semiconductor nanowires. NANOSCALE ADVANCES 2023; 5:1890-1909. [PMID: 36998660 PMCID: PMC10044505 DOI: 10.1039/d2na00956k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Crystal phase quantum dots (QDs) are formed during the axial growth of III-V semiconductor nanowires (NWs) by stacking different crystal phases of the same material. In III-V semiconductor NWs, both zinc blende (ZB) and wurtzite (WZ) crystal phases can coexist. The band structure difference between both crystal phases can lead to quantum confinement. Thanks to the precise control in III-V semiconductor NW growth conditions and the deep knowledge on the epitaxial growth mechanisms, it is nowadays possible to control, down to the atomic level, the switching between crystal phases in NWs forming the so-called crystal phase NW-based QDs (NWQDs). The shape and size of the NW bridge the gap between QDs and the macroscopic world. This review is focused on crystal phase NWQDs based on III-V NWs obtained by the bottom-up vapor-liquid-solid (VLS) method and their optical and electronic properties. Crystal phase switching can be achieved in the axial direction. In contrast, in the core/shell growth, the difference in surface energies between different polytypes can enable selective shell growth. One reason for the very intense research in this field is motivated by their excellent optical and electronic properties both appealing for applications in nanophotonics and quantum technologies.
Collapse
Affiliation(s)
- Miguel Sinusia Lozano
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 2a Floor 46022 Valencia Spain
| | - Víctor J Gómez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 2a Floor 46022 Valencia Spain
| |
Collapse
|
18
|
Liu L, Pan D, Wen L, Zhuo R, Zhao J. High-quality vertically aligned InAs nanowires grown by molecular-beam epitaxy using Ag-In alloy segregation. NANOTECHNOLOGY 2023; 34:225701. [PMID: 36827703 DOI: 10.1088/1361-6528/acbeb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
InAs nanowires show important potential applications in novel nanoelectronic devices, infrared optoelectronic devices and quantum devices, and all these applications require controllable growth of the InAs nanowires. However, the growth direction of metal-assisted InAs nanowires on Si substrates is often random. Here, we develop a new approach to grow vertically aligned InAs nanowires on Si (111) substrates by molecular-beam epitaxy using Ag as catalysts. The vertically aligned one-dimensional InAs nanowires are grown on the parasitic two-dimensional InAs film on the Si substrates by using the Ag nanoparticles segregated from Ag-In alloy catalysts. The diameters of the vertically aligned InAs nanowires obtained by this method are mainly distributed between 20 and 50 nm. Detailed transmission electron microscope data show that the nanowires with thinner diameters tend to have less stacking faults and twin defects and high crystal quality pure wurtzite nanowires can be obtained. Using these vertically aligned InAs nanowires as the channel material of field effect transistors, we have obtained a field-effect mobility of ∼2800 cm2V-1s-1and anIon/Ioffratio of ∼104at room temperature. Our work provides a new method for the controlled growth of high-quality vertically aligned InAs nanowires on Si substrates.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dong Pan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lianjun Wen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China
| | - Ran Zhuo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Liu X, Xue M, Chen J. Broadband plasmonic indium arsenide photonic antennas. NANOSCALE 2023; 15:3135-3141. [PMID: 36723044 DOI: 10.1039/d2nr06590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An on-chip integrated mid-infrared Fabry-Perot (F-P) polariton resonator exhibits excellent biosensing, thermal emission, and quantum laser utility potential. However, the narrow optical response range and absence of optoelectronic tunability have hindered the development of a F-P phonon polariton resonator. The discovery of surface plasmons in semiconductor nanowires provides a novel route to F-P polariton resonator devices with a broadband optical response and multi-field tunability. Due to their high electron mobility and crystalline quality, InAs twinning superlattice (TSL) nanowires have become a promising candidate in plasmonic electronics. We systemically studied the F-P plasmonic resonance of individual InAs TSL nanowires with a scattering-type near-field optical microscope. Using a metallic AFM tip to excite surface plasmons, we can observe odd-order and even-order modes of F-P polariton resonance, breaking the symmetric selection rules. Through nano Fourier transform infrared spectroscopy, we found that InAs nanowires' F-P polariton resonances appear in a broadband frequency range (650-1100 cm-1) and calculated that the corresponding Q factor is 5-10. This semiconductor F-P polariton resonator with inherent electrical tunability will be essential in integrated nanophotonic circuits.
Collapse
Affiliation(s)
- Xinghui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
20
|
Yan X, Liu Y, Zha C, Zhang X, Zhang Y, Ren X. Non-〈111〉-oriented semiconductor nanowires: growth, properties, and applications. NANOSCALE 2023; 15:3032-3050. [PMID: 36722935 DOI: 10.1039/d2nr06421a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, non-〈111〉-oriented semiconductor nanowires have attracted increasing interest in terms of fundamental research and promising applications due to their outstanding crystal quality and distinctive physical properties. Here, a comprehensive overview of recent advances in the study of non-〈111〉-oriented semiconductor nanowires is presented. We start by introducing various growth techniques for obtaining nanowires with certain orientations, for which the growth energetics and kinetics are discussed. Attention is then given to the physical properties of non-〈111〉 nanowires, as predicted by theoretical calculations or demonstrated experimentally. After that, we review the advantages and challenges of non-〈111〉 nanowires as building blocks for electronic and optoelectronic devices. Finally, we discuss the possible challenges and opportunities in the research field of non-〈111〉 semiconductor nanowires.
Collapse
Affiliation(s)
- Xin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yuqing Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Chaofei Zha
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China.
| | - Xia Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yunyan Zhang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China.
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
21
|
Hill MO, Schmiedeke P, Huang C, Maddali S, Hu X, Hruszkewycz SO, Finley JJ, Koblmüller G, Lauhon LJ. 3D Bragg Coherent Diffraction Imaging of Extended Nanowires: Defect Formation in Highly Strained InGaAs Quantum Wells. ACS NANO 2022; 16:20281-20293. [PMID: 36378999 DOI: 10.1021/acsnano.2c06071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
InGaAs quantum wells embedded in GaAs nanowires can serve as compact near-infrared emitters for direct integration onto Si complementary metal oxide semiconductor technology. While the core-shell geometry in principle allows for a greater tuning of composition and emission, especially farther into the infrared, the practical limits of elastic strain accommodation in quantum wells on multifaceted nanowires have not been established. One barrier to progress is the difficulty of directly comparing the emission characteristics and the precise microstructure of a single nanowire. Here we report an approach to correlating quantum well morphology, strain, defects, and emission to understand the limits of elastic strain accommodation in nanowire quantum wells specific to their geometry. We realize full 3D Bragg coherent diffraction imaging (BCDI) of intact quantum wells on vertically oriented epitaxial nanowires, which enables direct correlation with single-nanowire photoluminescence. By growing In0.2Ga0.8As quantum wells of distinct thicknesses on different facets of the same nanowire, we identified the critical thickness at which defects are nucleated. A correlation with a traditional transmission electron microscopy analysis confirms that BCDI can image the extended structure of defects. Finite element simulations of electron and hole states explain the emission characteristics arising from strained and partially relaxed regions. This approach, imaging the 3D strain and microstructure of intact nanowire core-shell structures with application-relevant dimensions, can aid the development of predictive models that enable the design of new compact infrared emitters.
Collapse
Affiliation(s)
- Megan O Hill
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Paul Schmiedeke
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching85748, Germany
| | - Chunyi Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Siddharth Maddali
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois60208, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Jonathan J Finley
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching85748, Germany
| | - Gregor Koblmüller
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching85748, Germany
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
22
|
López-Güell K, Forrer N, Cartoixà X, Zardo I, Rurali R. Phonon Transport in GaAs and InAs Twinning Superlattices. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:16851-16858. [PMID: 36237275 PMCID: PMC9549520 DOI: 10.1021/acs.jpcc.2c04859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Crystal phase engineering gives access to new types of periodic nanostructures, such as the so-called twinning superlattices, where the motif of the superlattice is determined by a periodic rotation of the crystal. Here, by means of atomistic nonequilibrium molecular dynamics calculations, we study to what extent these periodic systems can be used to alter phonon transport in a controlled way, similar to what has been predicted and observed in conventional superlattices based on heterointerfaces. We focus on twinning superlattices in GaAs and InAs and highlight the existence of two different transport regimes: in one, each interface behaves like an independent scatterer; in the other, a segment with a sufficiently large number of closely spaced interfaces is seen by propagating phonons as a metamaterial with its own thermal properties. In this second scenario, we distinguish the case where the phonon mean free path is smaller or larger than the superlattice segment, pointing out a different dependence of the thermal resistance with the number of interfaces.
Collapse
Affiliation(s)
- Kim López-Güell
- Institut
de Ciència de Materials de Barcelona, ICMAB−CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Nicolas Forrer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Xavier Cartoixà
- Departament
d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ilaria Zardo
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Riccardo Rurali
- Institut
de Ciència de Materials de Barcelona, ICMAB−CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
23
|
Wu L, Wang Q, Zhuang TT, Zhang GZ, Li Y, Li HH, Fan FJ, Yu SH. A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion. Nat Commun 2022; 13:5414. [PMID: 36109517 PMCID: PMC9477825 DOI: 10.1038/s41467-022-33065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Designing polytypic homojunction is an efficient way to regulate photogenerated electrons and holes, thereafter bringing desired physical and chemical properties and being attractive photocatalysts for solar-to-hydrogen conversion. However, the high-yield and controllable synthesis of well-defined polytypes especially for multinary chalcogenide - the fundamental factor favoring highly efficient solar-to-hydrogen conversion - has yet to be achieved. Here, we report a general colloidal method to construct a library of polytypic copper-based quaternary sulfide nanocrystals, including Cu2ZnSnS4, Cu2CdSnS4, Cu2CoSnS4, Cu2MnSnS4, Cu2FeSnS4, Cu3InSnS5 and Cu3GaSnS5, which can be synthesized by selective epitaxial growth of kesterite phase on wurtzite structure. Besides, this colloidal method allows the precise controlling of the homojunction number corresponding to the photocatalytic performance. The single-homojunction and double-homojunction polytypic Cu2ZnSnS4 nanocrystal photocatalysts show 2.8-fold and 3.9-fold improvement in photocatalytic hydrogen evolution rates relative to the kesterite nanocrystals, respectively. This homojunction existed in the polytypic structure opens another way to engineer photocatalysts. While polytypic semiconductors are promising for solar-to-fuel applications, preparing homojunction nanomaterials has proven challenging. Here, authors obtain a library of polytypic copper-based quaternary sulfide nanocrystals by selective epitaxial growth of kesterite phase on wurtzite structure.
Collapse
|
24
|
Dhungana DS, Mallet N, Fazzini PF, Larrieu G, Cristiano F, Plissard SR. Self-catalyzed InAs nanowires grown on Si: the key role of kinetics on their morphology. NANOTECHNOLOGY 2022; 33:485601. [PMID: 35998566 DOI: 10.1088/1361-6528/ac8bdb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Integrating self-catalyzed InAs nanowires on Si(111) is an important step toward building vertical gate-all-around transistors. The complementary metal oxide semiconductor (CMOS) compatibility and the nanowire aspect ratio are two crucial parameters to consider. In this work, we optimize the InAs nanowire morphology by changing the growth mode from Vapor-Solid to Vapor-Liquid-Solid in a CMOS compatible process. We study the key role of the Hydrogen surface preparation on nanowire growths and bound it to a change of the chemical potential and adatoms diffusion length on the substrate. We transfer the optimized process to patterned wafers and adapt both the surface preparation and the growth conditions. Once group III and V fluxes are balances, aspect ratio can be improved by increasing the system kinetics. Overall, we propose a method for large scale integration of CMOS compatible InAs nanowire on silicon and highlight the major role of kinetics on the growth mechanism.
Collapse
Affiliation(s)
- Daya S Dhungana
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | - Nicolas Mallet
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | | | - Guilhem Larrieu
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | - Fuccio Cristiano
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | | |
Collapse
|
25
|
Shafi AM, Ahmed F, Fernandez HA, Uddin MG, Cui X, Das S, Dai Y, Khayrudinov V, Yoon HH, Du L, Sun Z, Lipsanen H. Inducing Strong Light-Matter Coupling and Optical Anisotropy in Monolayer MoS 2 with High Refractive Index Nanowire. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31140-31147. [PMID: 35763802 PMCID: PMC9284513 DOI: 10.1021/acsami.2c07705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mixed-dimensional heterostructures combine the merits of materials of different dimensions; therefore, they represent an advantageous scenario for numerous technological advances. Such an approach can be exploited to tune the physical properties of two-dimensional (2D) layered materials to create unprecedented possibilities for anisotropic and high-performance photonic and optoelectronic devices. Here, we report a new strategy to engineer the light-matter interaction and symmetry of monolayer MoS2 by integrating it with one-dimensional (1D) AlGaAs nanowire (NW). Our results show that the photoluminescence (PL) intensity of MoS2 increases strongly in the mixed-dimensional structure because of electromagnetic field confinement in the 1D high refractive index semiconducting NW. Interestingly, the 1D NW breaks the 3-fold rotational symmetry of MoS2, which leads to a strong optical anisotropy of up to ∼60%. Our mixed-dimensional heterostructure-based phototransistors benefit from this and exhibit an improved optoelectronic device performance with marked anisotropic photoresponse behavior. Compared with bare MoS2 devices, our MoS2/NW devices show ∼5 times enhanced detectivity and ∼3 times higher photoresponsivity. Our results of engineering light-matter interaction and symmetry breaking provide a simple route to induce enhanced and anisotropic functionalities in 2D materials.
Collapse
Affiliation(s)
- Abde Mayeen Shafi
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Faisal Ahmed
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Henry A. Fernandez
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
- QTF
Centre of Excellence, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Md Gius Uddin
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Xiaoqi Cui
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Susobhan Das
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Yunyun Dai
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Vladislav Khayrudinov
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Hoon Hahn Yoon
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Luojun Du
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
- QTF
Centre of Excellence, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Harri Lipsanen
- Department
of Electronics and Nanoengineering, Aalto
University, Tietotie 3, Espoo FI-02150, Finland
| |
Collapse
|
26
|
Kumar S, Fossard F, Amiri G, Chauveau JM, Sallet V. MOCVD Growth and Structural Properties of ZnS Nanowires: A Case Study of Polytypism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2323. [PMID: 35889548 PMCID: PMC9317335 DOI: 10.3390/nano12142323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
Controlling the morphology, orientation, and crystal phase of semiconductor nanowires is crucial for their future applications in nanodevices. In this work, zinc sulfide (ZnS) nanowires have been grown by metalorganic chemical vapor deposition (MOCVD), using gold or gold-gallium alloys as catalyst. At first, basic studies on MOCVD growth regimes (mass-transport, zinc- or sulfur- rich conditions) have been carried out for ZnS thin films. Subsequently, the growth of ZnS nanowires was investigated, as a function of key parameters such as substrate temperature, S/Zn ratio, physical state and composition of the catalyst droplet, and supersaturation. A detailed analysis of the structural properties by transmission electron microscopy (TEM) is given. Depending on the growth conditions, a variety of polytypes is observed: zinc-blende (3C), wurtzite (2H) as well as an uncommon 15R crystal phase. It is demonstrated that twinning superlattices, i.e., 3C structures with periodic twin defects, can be achieved by increasing the Ga concentration of the catalyst. These experimental results are discussed in the light of growth mechanisms reported for semiconductor nanowires. Hence, in this work, the control of ZnS nanowire structural properties appears as a case study for the better understanding of polytypism in semiconductor 1D nanostructures.
Collapse
Affiliation(s)
- Sumit Kumar
- Groupe d’Étude de la Matière Condensée (GEMAC), Centre National de la Recherche Scientifique, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles, France; (S.K.); (G.A.); (J.-M.C.)
| | - Frédéric Fossard
- Laboratoire d’Étude des Microstructures (LEM), Centre National de la Recherche Scientifique, Office National d’Etudes et de Recherches Aérospatiales, Université Paris-Saclay, 29 Avenue Division Leclerc, 92322 Chatillon, France;
| | - Gaelle Amiri
- Groupe d’Étude de la Matière Condensée (GEMAC), Centre National de la Recherche Scientifique, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles, France; (S.K.); (G.A.); (J.-M.C.)
| | - Jean-Michel Chauveau
- Groupe d’Étude de la Matière Condensée (GEMAC), Centre National de la Recherche Scientifique, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles, France; (S.K.); (G.A.); (J.-M.C.)
| | - Vincent Sallet
- Groupe d’Étude de la Matière Condensée (GEMAC), Centre National de la Recherche Scientifique, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles, France; (S.K.); (G.A.); (J.-M.C.)
| |
Collapse
|
27
|
Ramadhan ZR, Poerwoprajitno AR, Cheong S, Webster RF, Kumar PV, Cychy S, Gloag L, Benedetti TM, Marjo CE, Muhler M, Wang DW, Gooding JJ, Schuhmann W, Tilley RD. Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. J Am Chem Soc 2022; 144:11094-11098. [PMID: 35713612 DOI: 10.1021/jacs.2c04911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Creating high surface area nanocatalysts that contain stacking faults is a promising strategy to improve catalytic activity. Stacking faults can tune the reactivity of the active sites, leading to improved catalytic performance. The formation of branched metal nanoparticles with control of the stacking fault density is synthetically challenging. In this work, we demonstrate that varying the branch width by altering the size of the seed that the branch grows off is an effective method to precisely tune the stacking fault density in branched Ni nanoparticles. A high density of stacking faults across the Ni branches was found to lower the energy barrier for Ni2+/Ni3+ oxidation and result in enhanced activity for electrocatalytic oxidation of 5-hydroxylmethylfurfural. These results show the ability to synthetically control the stacking fault density in branched nanoparticles as a basis for enhanced catalytic activity.
Collapse
Affiliation(s)
- Zeno R Ramadhan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard F Webster
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Steffen Cychy
- Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tania M Benedetti
- School of Environment and Science and Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4222, Australia
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Martin Muhler
- Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Escobar Steinvall S, Stutz EZ, Paul R, Zamani M, Leran JB, Dimitrievska M, Fontcuberta i Morral A. Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphide. ACS APPLIED ENERGY MATERIALS 2022; 5:5298-5306. [PMID: 35647493 PMCID: PMC9131307 DOI: 10.1021/acsaem.1c02484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 05/15/2023]
Abstract
Growth approaches that limit the interface area between layers to nanoscale regions are emerging as a promising pathway to limit the interface defect formation due to mismatching lattice parameters or thermal expansion coefficient. Interfacial defect mitigation is of great interest in photovoltaics as it opens up more material combinations for use in devices. Herein, an overview of the vapor-liquid-solid and selective area epitaxy growth approaches applied to zinc phosphide (Zn3P2), an earth-abundant absorber material, is presented. First, we show how different morphologies, including nanowires, nanopyramids, and thin films, can be achieved by tuning the growth conditions and growth mechanisms. The growth conditions are also shown to greatly impact the defect structure and composition of the grown material, which can vary considerably from the ideal stoichiometry (Zn3P2). Finally, the functional properties are characterized. The direct band gap could accurately be determined at 1.50 ± 0.1 eV, and through complementary density functional theory calculations, we can identify a range of higher-order band gap transitions observed through valence electron energy loss spectroscopy and cathodoluminescence. Furthermore, we outline the formation of rotated domains inside of the material, which are a potential origin of defect transitions that have been long observed in zinc phosphide but not yet explained. The basic understanding provided reinvigorates the potential use of earth-abundant II-V semiconductors in photovoltaic technology. Moreover, the transferrable nanoscale growth approaches have the potential to be applied to other material systems, as they mitigate the constraints of substrate-material combinations causing interface defects.
Collapse
Affiliation(s)
- Simon Escobar Steinvall
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Center
for Analysis and Synthesis and NanoLund, Lund University, Box 124, 221 00 Lund, Sweden
| | - Elias Z. Stutz
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Rajrupa Paul
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mahdi Zamani
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Baptiste Leran
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mirjana Dimitrievska
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna Fontcuberta i Morral
- Laboratory
of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Ghukasyan A, LaPierre R. Thermal transport in twinning superlattice and mixed-phase GaAs nanowires. NANOSCALE 2022; 14:6480-6487. [PMID: 35416826 DOI: 10.1039/d2nr00720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With continuing advances in semiconductor nanowire (NW) growth technologies, synthesis of tailored crystal structures is gradually becoming a reality. Mixtures of the bulk zinc blende (ZB) and wurtzite (WZ) phase can be achieved in III-V NWs under various growth conditions. Among the possible crystal structures, the twinning superlattice (TSL) has attracted particular interest for tuning photonic and electronic properties. In this work, we investigated the mechanisms underlying thermal transport in pristine, TSL, and disordered polytypic GaAs NWs, using non-equilibrium molecular dynamics and transmission spectra obtained from the atomistic Green's function method. We found that a TSL period of 50 Å minimizes the thermal conductivity and determine a phonon coherence length of about 20 to 50 nm, depending on the NW diameter. Our findings indicate strong dependence of the thermal conductivity on the NW surface and internal structure at a given diameter, critical for thermoelectric optimization.
Collapse
Affiliation(s)
- Ara Ghukasyan
- Department of Engineering Physics, McMaster University 1280 Main Street W., Hamilton, ON, L8S 4L7, Canada.
| | - Ray LaPierre
- Department of Engineering Physics, McMaster University 1280 Main Street W., Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|
30
|
Ghukasyan A, Oliveira P, Goktas NI, LaPierre R. Thermal Conductivity of GaAs Nanowire Arrays Measured by the 3ω Method. NANOMATERIALS 2022; 12:nano12081288. [PMID: 35457996 PMCID: PMC9026786 DOI: 10.3390/nano12081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Vertical nanowire (NW) arrays are the basis for a variety of nanoscale devices. Understanding heat transport in these devices is an important concern, especially for prospective thermoelectric applications. To facilitate thermal conductivity measurements on as-grown NW arrays, a common NW-composite device architecture was adapted for use with the 3ω method. We describe the application of this technique to obtain thermal conductivity measurements on two GaAs NW arrays featuring ~130 nm diameter NWs with a twinning superlattice (TSL) and a polytypic (zincblende/wurtzite) crystal structure, respectively. Our results indicate NW thermal conductivities of 5.2 ± 1.0 W/m-K and 8.4 ± 1.6 W/m-K in the two samples, respectively, showing a significant reduction in the former, which is the first such measurements on TSL NWs. Nearly an order of magnitude difference from the bulk thermal conductivity (~50 W/m-K) is observed for the TSL NW sample, one of the lowest values measured to date for GaAs NWs.
Collapse
|
31
|
Zhou P, Liu Y, Zhu GZ. Sawtooth Faceting in Rutile Nanowires. ACS OMEGA 2022; 7:10406-10412. [PMID: 35382305 PMCID: PMC8973107 DOI: 10.1021/acsomega.1c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Sawtooth faceting, with a diameter-dependent period, is pervasively observed in many Si, III-V, and II-VI nanowires during vapor-phase growth. This can be linked to an oscillation in surface energies, which are influenced by many factors such as crystal anisotropy, surface decoration, and twinning. Without the presence of surface decoration and planar defects, TiO2 rutile nanowires, axially oriented along a low-symmetry axis of ⟨110⟩, are promising to decouple the effect of crystal anisotropy from other factors. In this work, we synthesized ⟨110⟩ rutile nanowires, which exhibit complex periodic faceting consisting of {101} and {11̅0} facets. In addition to the expected linear width dependence, rutile nanowires, with the same width but different outward-inclined shapes, maintain the same period of their sawtooth faceting, as measured from TEM micrographs. In spite of different surface energy oscillations caused by different shapes, identical nucleation sites, which become energetically favorable during sawtooth growth, are predicted using thermodynamic models for nanowires with different shapes. This finding provides new insights into the morphological control of nanowires.
Collapse
Affiliation(s)
- Ping Zhou
- Department
of Mechanical Engineering and Manitoba Institute of Materials, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5 V6, Canada
- Institute
of Materials, China Academy of Engineering
Physics, Jiangyou 621908, China
| | - Yushun Liu
- Department
of Mechanical Engineering and Manitoba Institute of Materials, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5 V6, Canada
| | - Guo-zhen Zhu
- Department
of Mechanical Engineering and Manitoba Institute of Materials, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5 V6, Canada
| |
Collapse
|
32
|
Zhang L, Li X, Cheng S, Shan C. Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III-V Nanostructures. MATERIALS 2022; 15:ma15051917. [PMID: 35269147 PMCID: PMC8911728 DOI: 10.3390/ma15051917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022]
Abstract
III–V group nanomaterials with a narrow bandgap have been demonstrated to be promising building blocks in future electronic and optoelectronic devices. Thus, revealing the underlying structural evolutions under various external stimuli is quite necessary. To present a clear view about the structure–property relationship of III–V nanowires (NWs), this review mainly focuses on key procedures involved in the synthesis, fabrication, and application of III–V materials-based devices. We summarized the influence of synthesis methods on the nanostructures (NWs, nanodots and nanosheets) and presented the role of catalyst/droplet on their synthesis process through in situ techniques. To provide valuable guidance for device design, we further summarize the influence of structural parameters (phase, defects and orientation) on their electrical, optical, mechanical and electromechanical properties. Moreover, the dissolution and contact formation processes under heat, electric field and ionic water environments are further demonstrated at the atomic level for the evaluation of structural stability of III–V NWs. Finally, the promising applications of III–V materials in the energy-storage field are introduced.
Collapse
Affiliation(s)
| | - Xing Li
- Correspondence: (X.L.); (C.S.)
| | | | | |
Collapse
|
33
|
Ghukasyan A, Goktas NI, Dubrovskii VG, LaPierre RR. Phase Diagram for Twinning Superlattice Te-Doped GaAs Nanowires. NANO LETTERS 2022; 22:1345-1349. [PMID: 35089042 DOI: 10.1021/acs.nanolett.1c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Twinning superlattices (TSLs) are a growing class of semiconductor structures proposed as a means of phonon and optical engineering in nanowires (NWs). In this work, we examine TSL formation in Te-doped GaAs NWs grown by a self-assisted vapor-liquid-solid mechanism (with a Ga droplet as the seed particle), using selective-area molecular beam epitaxy. In these NWs, the TSL structure is comprised of alternating zincblende twins, whose formation is promoted by the introduction of Te dopants. Using transmission electron microscopy, we investigated the crystal structure of NWs across various growth conditions (V/III flux ratio, temperature), finding periodic TSLs only at the low V/III flux ratio of 0.5 and intermediate growth temperatures of 492 to 537 °C. These results are explained by a kinetic growth model based on the diffusion flux feeding the Ga droplet.
Collapse
Affiliation(s)
- Ara Ghukasyan
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7
| | - Nebile Isik Goktas
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7
| | - Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Ray R LaPierre
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7
| |
Collapse
|
34
|
Güniat L, Ghisalberti L, Wang L, Dais C, Morgan N, Dede D, Kim W, Balgarkashi A, Leran JB, Minamisawa R, Solak H, Carter C, Fontcuberta I Morral A. GaAs nanowires on Si nanopillars: towards large scale, phase-engineered arrays. NANOSCALE HORIZONS 2022; 7:211-219. [PMID: 35040457 PMCID: PMC8802830 DOI: 10.1039/d1nh00553g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Large-scale patterning for vapor-liquid-solid growth of III-V nanowires is a challenge given the required feature size for patterning (45 to 60 nm holes). In fact, arrays are traditionally manufactured using electron-beam lithography,for which processing times increase greatly when expanding the exposure area. In order to bring nanowire arrays one step closer to the wafer-scale we take a different approach and replace patterned nanoscale holes with Si nanopillar arrays. The method is compatible with photolithography methods such as phase-shift lithography or deep ultraviolet (DUV) stepper lithography. We provide clear evidence on the advantage of using nanopillars as opposed to nanoscale holes both for the control on the growth mechanisms and for the scalability. We identify the engineering of the contact angle as the key parameter to optimize the yield. In particular, we demonstrate how nanopillar oxidation is key to stabilize the Ga catalyst droplet and engineer the contact angle. We demonstrate how the position of the triple phase line at the SiO2/Si as opposed to the SiO2/vacuum interface is central for a successful growth. We compare our experiments with simulations performed in surface evolver™ and observe a strong correlation. Large-scale arrays using phase-shift lithography result in a maximum local vertical yield of 67% and a global chip-scale yield of 40%. We believe that, through a greater control over key processing steps typically achieved in a semiconductor fab it is possible to push this yield to 90+% and open perspectives for deterministic nanowire phase engineering at the wafer-scale.
Collapse
Affiliation(s)
- Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lea Ghisalberti
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Li Wang
- EULITHA, Studacherstrasse 7B, 5416 Kirchdorf, Switzerland
| | - Christian Dais
- EULITHA, Studacherstrasse 7B, 5416 Kirchdorf, Switzerland
| | - Nicholas Morgan
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Didem Dede
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wonjong Kim
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Akshay Balgarkashi
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Baptiste Leran
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Renato Minamisawa
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering, Switzerland
| | - Harun Solak
- EULITHA, Studacherstrasse 7B, 5416 Kirchdorf, Switzerland
| | - Craig Carter
- Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique, Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
35
|
Leshchenko ED, Johansson J. Interfacial profile of axial nanowire heterostructures in the nucleation limited regime. CrystEngComm 2022. [DOI: 10.1039/d2ce01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report thermodynamic modeling of the formation of axial III–V nanowire heterostructures grown by the self-catalyzed and Au-catalyzed vapor–liquid–solid methods.
Collapse
Affiliation(s)
- E. D. Leshchenko
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| | - J. Johansson
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
36
|
Maliakkal CB, Jacobsson D, Tornberg M, Dick KA. Post-nucleation evolution of the liquid-solid interface in nanowire growth. NANOTECHNOLOGY 2021; 33:105607. [PMID: 34847548 DOI: 10.1088/1361-6528/ac3e8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
We study usingin situtransmission electron microscopy the birth of GaAs nanowires from liquid Au-Ga catalysts on amorphous substrates. Lattice-resolved observations of the starting stages of growth are reported here for the first time. It reveals how the initial nanostructure evolves into a nanowire growing in a zincblende 〈111〉 or the equivalent wurtzite〈0001〉 direction. This growth direction(s) is what is typically observed in most III-V and II-VI nanowires. However, the reason for this preferential nanowire growth along this direction is still a dilemma. Based on the videos recorded shortly after the nucleation of nanowires, we argue that the lower catalyst droplet-nanowire interface energy of the {111} facet when zincblende (or the equivalent {0001} facet in wurtzite) is the reason for this direction selectivity in nanowires.
Collapse
Affiliation(s)
- Carina B Maliakkal
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100, Lund, Sweden
- Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden
- NanoLund, Lund University, Box 118, 22100, Lund, Sweden
| | - Daniel Jacobsson
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100, Lund, Sweden
- NanoLund, Lund University, Box 118, 22100, Lund, Sweden
- National Center for High Resolution Electron Microscopy, Lund University, Box 124, 22100, Lund, Sweden
| | - Marcus Tornberg
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100, Lund, Sweden
- NanoLund, Lund University, Box 118, 22100, Lund, Sweden
| | - Kimberly A Dick
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100, Lund, Sweden
- NanoLund, Lund University, Box 118, 22100, Lund, Sweden
| |
Collapse
|
37
|
Li Y, Shao ZC, Zhang C, Yu SH. Catalyzed Growth for Atomic-Precision Colloidal Chalcogenide Nanowires and Heterostructures: Progress and Perspective. J Phys Chem Lett 2021; 12:10695-10705. [PMID: 34709833 DOI: 10.1021/acs.jpclett.1c02358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One-dimensional colloidal semiconductor nanowires are of wide interest in nanoscale electronics and photonics. As compared to the zero-dimensional counterparts, their geometrical anisotropy offers an additional degree of freedom to tailor the electronic and optical properties and enables customized heterostructures with increased complexity. The colloidal synthetic chemistry developed over past decades has fueled the emergence of diverse one-dimensional nanocrystals and heterostructures, whereas the synthetic pursuit for compositionally and structurally defining them at the atomic-level precision remains yet a giant challenge. Catalyzed growth, wherein nanowires grow at the catalyst-nanowire interfaces in a layer-by-layer manner, offers a promising path toward such an ultimate goal. In this Perspective, we will take a close look at how catalyzed growth would enable the on-demand, atomic-precision control of colloidal nanowires and their heterostructures. We then further highlight their potentials for constructing higher-order heteroarchitectures with new and/or enhanced performances. Finally, we conclude with a forward-looking perspective on future challenges.
Collapse
Affiliation(s)
- Yi Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Chao Shao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chong Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Fang Y, Yang X, Lin Y, Shi J, Prominski A, Clayton C, Ostroff E, Tian B. Dissecting Biological and Synthetic Soft-Hard Interfaces for Tissue-Like Systems. Chem Rev 2021; 122:5233-5276. [PMID: 34677943 DOI: 10.1021/acs.chemrev.1c00365] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft and hard materials at interfaces exhibit mismatched behaviors, such as mismatched chemical or biochemical reactivity, mechanical response, and environmental adaptability. Leveraging or mitigating these differences can yield interfacial processes difficult to achieve, or inapplicable, in pure soft or pure hard phases. Exploration of interfacial mismatches and their associated (bio)chemical, mechanical, or other physical processes may yield numerous opportunities in both fundamental studies and applications, in a manner similar to that of semiconductor heterojunctions and their contribution to solid-state physics and the semiconductor industry over the past few decades. In this review, we explore the fundamental chemical roles and principles involved in designing these interfaces, such as the (bio)chemical evolution of adaptive or buffer zones. We discuss the spectroscopic, microscopic, (bio)chemical, and computational tools required to uncover the chemical processes in these confined or hidden soft-hard interfaces. We propose a soft-hard interaction framework and use it to discuss soft-hard interfacial processes in multiple systems and across several spatiotemporal scales, focusing on tissue-like materials and devices. We end this review by proposing several new scientific and engineering approaches to leveraging the soft-hard interfacial processes involved in biointerfacing composites and exploring new applications for these composites.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiuyun Shi
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Clementene Clayton
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ellie Ostroff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
39
|
Sonner MM, Gnedel M, Berlin JC, Rudolph D, Koblmüller G, Krenner HJ. Sub-nanosecond acousto-electric carrier redistribution dynamics and transport in polytypic GaAs nanowires. NANOTECHNOLOGY 2021; 32:505209. [PMID: 34584026 DOI: 10.1088/1361-6528/ac2ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The authors report on a combined structural, optical and acousto-electric study of polytypic GaAs nanowires. Two types of nanowires with different zincblende and wurtzite crystal phase mixing are identified by transmission electron microscopy and photoluminescence spectroscopy. The nanowires exhibit characteristic recombination channels which are assigned to different types of spatially direct recombination (electron and hole within the same crystal phase segment) and spatially indirect recombination (electron and holes localized in different segments). Contact-free acousto-optoelectric spectroscopy is employed to resolve spatiotemporal charge carrier dynamics between different recombination channels induced by a piezoelectric surface acoustic wave. The observed suppression of the emission and its dynamic temporal modulation shows unambiguous fingerprints of the local bandedge variations induced by the crystal phase mixing. A nanowire, which exhibits a variation from a near-pristine zinc blende crystal structure to a highly mixed crystal phase, shows a clear dependence on the propagation direction of the acoustic wave. In contrast, no pronounced directionality is found for a nanowire with an extended near-pristine zincblende segment. The experimental findings are corroborated by solving the drift and diffusion equations of electrons and holes induced by the surface acoustic wave. The key characteristics observed in our experimental data are well reproduced in the numerical simulations by assuming two general bandedge modulations and realistic parameters for the bandedge discontinuities and transport mobilities of electrons and holes. This evidences that even all relevant physical processes are accounted for in the model.
Collapse
Affiliation(s)
- Maximilian M Sonner
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Maximilian Gnedel
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Johannes C Berlin
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Daniel Rudolph
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, D-85748 Garching, Germany
| | - Gregor Koblmüller
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, D-85748 Garching, Germany
| | - Hubert J Krenner
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
| |
Collapse
|
40
|
da Silva C, Nisioka K, Moura-Moreira M, Macedo R, Del Nero J. Tunneling rules for electronic transport in 1-D systems. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1976427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C.A.B. da Silva
- Faculdade de Física, Universidade Federal do Pará, Ananindeua, Brazil
| | - K.R. Nisioka
- Faculdade de Engenharia de Materiais, Universidade Federal do Pará, Ananindeua, Brazil
| | - M. Moura-Moreira
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Pará, Belém, Brazil
| | - R.F. Macedo
- Faculdade de Geologia, Universidade Federal do Pará, Belém, Brazil
| | - J. Del Nero
- Facudade de Física, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
41
|
Miller RC, Geiss RH, Prieto AL. Olivine Crystal Structure-Directed Twinning in Iron Germanium Sulfide (Fe 2GeS 4) Nanoparticles. ACS NANO 2021; 15:11981-11991. [PMID: 34157224 DOI: 10.1021/acsnano.1c03237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the microstructure of complex crystal structures is critical for controlling material properties in next-generation devices. Synthetic reports of twinning in bulk and nanostructured crystals with detailed crystallographic characterization are integral for advancing systematic studies of twinning phenomena. Herein, we report a synthetic route to controllably twinned olivine nanoparticles. Microstructural characterization of Fe2GeS4 nanoparticles via electron microscopy (imaging, diffraction, and crystallographic analysis) demonstrates the formation of triplets of twins, or trillings. We establish synthetic control over the particle crystallinity and crystal growth. We describe the geometrical basis for twin formation, hexagonal pseudosymmetry of the orthorhombic lattice, and rank all of the reported olivine compounds according to this favorability to form twins. The work in this study highlights an area ripe for future exploration with respect to the advancement of solution-phase synthetic approaches that can control microstructure in compositionally complex, technologically relevant structures. Finally, we discuss the potential implications for olivine properties and performance in various applications.
Collapse
Affiliation(s)
- Rebecca C Miller
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Roy H Geiss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amy L Prieto
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
42
|
Azimi Z, Gagrani N, Qu J, Lem OLC, Mokkapati S, Cairney JM, Zheng R, Tan HH, Jagadish C, Wong-Leung J. Understanding the role of facets and twin defects in the optical performance of GaAs nanowires for laser applications. NANOSCALE HORIZONS 2021; 6:559-567. [PMID: 33999985 DOI: 10.1039/d1nh00079a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
GaAs nanowires are regarded as promising building blocks of future optoelectronic devices. Despite progress, the growth of high optical quality GaAs nanowires is a standing challenge. Understanding the role of twin defects and nanowire facets on the optical emission and minority carrier lifetime of GaAs nanowires is key for the engineering of their optoelectronic properties. Here, we present new insights into the microstructural parameters controlling the optical properties of GaAs nanowires, grown via selective-area metal-organic vapor-phase epitaxy. We observe that these GaAs nanowires have a twinned zinc blende crystal structure with taper-free {110} side facets that result in an ultra-low surface recombination velocity of 3.5 × 104 cm s-1. This is an order of magnitude lower than that reported for defect-free GaAs nanowires grown by the vapor-liquid-solid technique. Using time-resolved photoluminescence and cathodoluminescence measurements, we untangle the local correlation between structural and optical properties demonstrating the superior role of the side facets in determining recombination rates over that played by twin defects. The low surface recombination velocity of these taper-free {110} side facets enable us to demonstrate, for the first time, low-temperature lasing from bare (unpassivated) GaAs nanowires, and also efficient room-temperature lasing after passivation with an AlGaAs shell.
Collapse
Affiliation(s)
- Zahra Azimi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Qian Y, Xu K, Cheng L, Li C, Wang X. Rapid, facile synthesis of InSb twinning superlattice nanowires with a high-frequency photoconductivity response. RSC Adv 2021; 11:19426-19432. [PMID: 35479246 PMCID: PMC9033618 DOI: 10.1039/d1ra01903a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
We present a self-seeded (with indium droplets) solution-liquid-solid (SLS) synthesis route for InSb nanowires (NWs) using commercially available precursors at a relatively low temperature of about 175 °C, which takes only 1 min upon the injection of reductant. Structural characterization reveals that the InSb nanowires are high quality and have twinning superlattice structures with periodically spaced twin planes along the growth direction of 〈111〉. Notably, we have measured an ultrafast conductivity lifetime in the NWs of just 9.1 ps utilizing time-resolved optical pump-terahertz probe (OPTP) spectroscopy, which may facilitate the development of high-frequency nanoscale integrated optoelectronic systems related to twinning superlattice structures.
Collapse
Affiliation(s)
- Yinyin Qian
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Kaijia Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Lanjun Cheng
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Cunxin Li
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Xingchen Wang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
44
|
Luo Z, Ma C, Lin Y, Jiang Q, Liu B, Yang X, Yi X, Qu J, Zhu X, Wang X, Zhou J, Wang X, Chen WM, Buyanova IA, Chen S, Pan A. An Efficient Deep-Subwavelength Second Harmonic Nanoantenna Based on Surface Plasmon-Coupled Dilute Nitride GaNP Nanowires. NANO LETTERS 2021; 21:3426-3434. [PMID: 33872022 DOI: 10.1021/acs.nanolett.0c05115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-index semiconductor nanoantennae represent a powerful platform for nonlinear photon generation. Devices with reduced footprints are pivotal for higher integration capacity and energy efficiency in photonic integrated circuitry (PIC). Here, we report on a deep subwavelength nonlinear antenna based on dilute nitride GaNP nanowires (NWs), whose second harmonic generation (SHG) shows a 5-fold increase by incorporating ∼0.45% of nitrogen (N), in comparison with GaP counterpart. Further integrating with a gold (Au) thin film-based hybrid cavity achieves a significantly boosted SHG output by a factor of ∼380, with a nonlinear conversion efficiency up to 9.4 × 10-6 W-1. In addition, high-density zinc blende (ZB) twin phases were found to tailor the nonlinear radiation profile via dipolar interference, resulting in a highly symmetric polarimetric pattern well-suited for coupling with polarization nano-optics. Our results manifest dilute nitride nanoantenna as promising building blocks for future chip-based nonlinear photonic technology.
Collapse
Affiliation(s)
- Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Chao Ma
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qi Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Binjie Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiaoli Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xingjun Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Weimin M Chen
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Irina A Buyanova
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
45
|
Seidl J, Gluschke JG, Yuan X, Tan HH, Jagadish C, Caroff P, Micolich AP. Postgrowth Shaping and Transport Anisotropy in Two-Dimensional InAs Nanofins. ACS NANO 2021; 15:7226-7236. [PMID: 33825436 DOI: 10.1021/acsnano.1c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on the postgrowth shaping of free-standing two-dimensional (2D) InAs nanofins that are grown by selective-area epitaxy and mechanically transferred to a separate substrate for device fabrication. We use a citric acid-based wet etch that enables complex shapes, for example, van der Pauw cloverleaf structures, with patterning resolution down to 150 nm as well as partial thinning of the nanofin to improve local gate response. We exploit the high sensitivity of the cloverleaf structures to transport anisotropy to address the fundamental question of whether there is a measurable transport anisotropy arising from wurtzite/zincblende polytypism in 2D InAs nanostructures. We demonstrate a mobility anisotropy of order 2-4 at room temperature arising from polytypic stacking faults in our nanofins. Our work highlights a key materials consideration for devices featuring self-assembled 2D III-V nanostructures using advanced epitaxy methods.
Collapse
Affiliation(s)
- Jakob Seidl
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jan G Gluschke
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiaoming Yuan
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - H Hoe Tan
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chennupati Jagadish
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Philippe Caroff
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Adam P Micolich
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
46
|
Wang H, Wang T, Huang Z, Liu Y, Leng D, Wang J. Growth of MSe semiconductor nanowires on metal substrates through an Ag 2Se-catalyzed solution–solid–solid mechanism (M = Zn, Cd and Mn). CrystEngComm 2021. [DOI: 10.1039/d1ce00915j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-phase growth of MSe nanowires on their respective metal foil or flakes (M = Zn, Cd and Mn) has been realized by a recently developed solution–solid–solid mechanism initiated by preexisting Ag2Se seeds.
Collapse
Affiliation(s)
- Huimin Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Tingting Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zibin Huang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yizhuo Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Dehui Leng
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junli Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
47
|
Zeng H, Yu X, Fonseka HA, Boras G, Jurczak P, Wang T, Sanchez AM, Liu H. Preferred growth direction of III-V nanowires on differently oriented Si substrates. NANOTECHNOLOGY 2020; 31:475708. [PMID: 32885789 DOI: 10.1088/1361-6528/abafd7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the nanowire (NW) characteristics is its preferred elongation direction. Here, we investigated the impact of Si substrate crystal orientation on the growth direction of GaAs NWs. We first studied the self-catalyzed GaAs NW growth on Si (111) and Si (001) substrates. SEM observations show GaAs NWs on Si (001) are grown along four <111> directions without preference on one or some of them. This non-preferential NW growth on Si (001) is morphologically in contrast to the extensively reported vertical <111> preferred GaAs NW growth on Si (111) substrates. We propose a model based on the initial condition of an ideal Ga droplet formation on Si substrates and the surface free energy calculation which takes into account the dangling bond surface density for different facets. This model provides further understanding of the different preferences in the growth of GaAs NWs along selected <111> directions depending on the Si substrate orientation. To verify the prevalence of the model, NWs were grown on Si (311) substrates. The results are in good agreement with the three-dimensional mapping of surface free energy by our model. This general model can also be applied to predictions of NW preferred growth directions by the vapor-liquid-solid growth mode on other group IV and III-V substrates.
Collapse
Affiliation(s)
- Haotian Zeng
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Escobar Steinvall S, Ghisalberti L, Zamani RR, Tappy N, Hage FS, Stutz EZ, Zamani M, Paul R, Leran JB, Ramasse QM, Craig Carter W, Fontcuberta I Morral A. Heterotwin Zn 3P 2 superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. NANOSCALE 2020; 12:22534-22540. [PMID: 33090166 DOI: 10.1039/d0nr05852a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Zinc phosphide (Zn3P2) nanowires constitute prospective building blocks for next generation solar cells due to the combination of suitable optoelectronic properties and an abundance of the constituting elements in the Earth's crust. The generation of periodic superstructures along the nanowire axis could provide an additional mechanism to tune their functional properties. Here we present the vapour-liquid-solid growth of zinc phosphide superlattices driven by periodic heterotwins. This uncommon planar defect involves the exchange of Zn by In at the twinning boundary. We find that the zigzag superlattice formation is driven by reduction of the total surface energy of the liquid droplet. The chemical variation across the heterotwin does not affect the homogeneity of the optical properties, as measured by cathodoluminescence. The basic understanding provided here brings new propsects on the use of II-V semiconductors in nanowire technology.
Collapse
Affiliation(s)
- Simon Escobar Steinvall
- Laboratory of Semiconductor Materials, Institute of Materials École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lu S, Liang J, Long H, Li H, Zhou X, He Z, Chen Y, Sun H, Fan Z, Zhang H. Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis. Acc Chem Res 2020; 53:2106-2118. [PMID: 32972128 DOI: 10.1021/acs.accounts.0c00487] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gold (Au), a transition metal with an atomic number of 79 in the periodic table of elements, was discovered in approximately 3000 B.C. Due to the ultrahigh chemical stability and brilliant golden color, Au had long been thought to be a most inert material and was widely utilized in art, jewelry, and finance. However, it has been found that Au becomes exceptionally active as a catalyst when its size shrinks to the nanometer scale. With continuous efforts toward the exploration of catalytic applications over the past decades, Au nanomaterials show critical importance in many catalytic processes. Besides catalysis, Au nanomaterials also possess other promising applications in plasmonics, sensing, biology and medicine, due to their unique localized surface plasmon resonance, intriguing biocompatibility, and superior stability. Unfortunately, the practical applications of Au nanomaterials could be limited because of the scarce reserves and high price of Au. Therefore, it is quite essential to further explore novel physicochemical properties and functions of Au nanomaterials so as to enhance their performance in different types of applications.Recently, phase engineering of nanomaterials (PEN), which involves the rearrangement of atoms in the unit cell, has emerged as a fantastic and effective strategy to adjust the intrinsic physicochemical properties of nanomaterials. In this Account, we give an overview of the recent progress on crystal phase control of Au nanomaterials using wet-chemical synthesis. Starting from a brief introduction of the research background, we first describe the development history of wet-chemical synthesis of Au nanomaterials and especially emphasize the key research findings. Subsequently, we introduce the typical Au nanomaterials with untraditional crystal phases and heterophases that have been observed, such as 2H, 4H, body-centered phases, and crystal-phase heterostructures. Importantly, crystal phase control of Au nanomaterials by wet-chemical synthesis is systematically described. After that, we highlight the importance of crystal phase control in Au nanomaterials by demonstrating the remarkable effect of crystal phases on their physicochemical properties (e.g., electronic and optical properties) and potential applications (e.g., catalysis). Finally, after a concise summary of recent advances in this emerging research field, some personal perspectives are provided on the challenges, opportunities, and research directions in the future.
Collapse
Affiliation(s)
- Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Huiwu Long
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Xue M, Li M, Huang Y, Chen R, Li Y, Wang J, Xing Y, Chen J, Yan H, Xu H, Chen J. Observation and Ultrafast Dynamics of Inter-Sub-Band Transition in InAs Twinning Superlattice Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004120. [PMID: 32876964 DOI: 10.1002/adma.202004120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Indexed: 06/11/2023]
Abstract
A variety of infrared applications rely on semiconductor superlattices, including, notably, the realization of high-power, compact quantum cascade lasers. Requirements for atomically smooth interface and limited lattice matching options set high technical standards for fabricating applicable heterostructure devices. The semiconductor twinning superlattice (TSL) forms in a single compound with periodically spaced twin boundaries and sharp interface junctions and can be grown with convenient synthesis methods. Therefore, employing semiconductor TSL may facilitate the development of optoelectronic applications related to superlattice structures. Here, it is shown that InAs TSL nanowires generate inter-sub-band transition channels due to the band projection and the Bragg-like electron reflection. The findings reveal the physical mechanisms of inter-sub-band transitions in TSL structure and suggest that TSL structures are promising candidates for mid-infrared optoelectronic applications.
Collapse
Affiliation(s)
- Mengfei Xue
- Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, P.O. Box 603, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Yisheng Huang
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Runkun Chen
- Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, P.O. Box 603, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunliang Li
- Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, P.O. Box 603, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyun Wang
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Yingjie Xing
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
| | - Jianjun Chen
- State Key Laboratory for Mesoscopic Physics, Department of Physics, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics and Department of Physics and Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Hongqi Xu
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Jianing Chen
- Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, P.O. Box 603, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|