1
|
Li Y, Jiang H, Zhang Y, Liu L, Wen H, Zheng Y, Zhu W. Linear Interplay Between Raman Shift and Laser Irradiation in Photothermal-Strained Monoclinic Vanadium Dioxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407777. [PMID: 39618011 DOI: 10.1002/smll.202407777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Indexed: 02/26/2025]
Abstract
Vanadium dioxide as a strongly correlated electron material undergoes metal-insulator phase transitions and ferroelastic domain switching which highly couple to local strain distribution. Understanding the mechanisms and achieving the modulations require precise and high-resolution characterization of strain in vanadium dioxide. Micro-Raman spectroscopy is widely used to nondestructively characterize the strain on the surface of materials. However, vanadium dioxide is sensitive to multi-fields and with multiple physical properties correlated. It is vital and challenging to uncouple the multiple responses of vanadium dioxide to micro-Raman spectroscopy and achieve precise characterization of strain distribution. Herein, a linear relation between Raman shift and laser irradiation is revealed, which is originated from photothermal strain in monoclinic vanadium dioxide. By linear fitting and extrapolation, the strain-dependent coefficient is obtained for drifting of Raman shift and the intrinsic Raman shift without strain or laser irradiation, which enables to precisely characterize the strain distribution in vanadium dioxide.
Collapse
Affiliation(s)
- Yingbo Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - He Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanqing Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linjie Liu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haohua Wen
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenpeng Zhu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Gavdush AA, Zhelnov VA, Dolganov KB, Bogutskii AA, Garnov SV, Burdanova MG, Ponomarev DS, Shi Q, Zaytsev KI, Komandin GA. Insulator-metal transition in VO 2 film on sapphire studied by broadband dielectric spectroscopy. Sci Rep 2025; 15:3500. [PMID: 39875446 PMCID: PMC11775290 DOI: 10.1038/s41598-025-87573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature. This hampers the design and implementation of the [Formula: see text]-based devices. In this paper, we combine the Fourier-transform infrared (FTIR) spectroscopy, THz pulsed spectroscopy (TPS), and four-contact probe method to study the [Formula: see text] films prepared by magnetron sputtering on a c-cut sapphire substrate. Considering different temperatures of a substrate and pressures of atmosphere, we reconstruct complex dielectric permittivity of [Formula: see text] film in the frequency range of 0.2-150 THz, along with its static conductivity. The dielectric response is modeled using Lorentz and Drude kernels, which make possible splitting contributions from vibrational modes and free charge carriers to the total dynamic conductivity. By studying [Formula: see text] at different substrate temperatures and atmosphere pressures, we show that IMT appears to be pressure-dependent, which we attribute to the different thermostatic conditions of a sample. Finally, we estimate somewhat optimal thickness and temperature of the [Formula: see text] film in metallic phase for the THz optoelectronic applications. Our finding should be useful for further developments of the [Formula: see text]-based devices and technologies.
Collapse
Affiliation(s)
- Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Vladislav A Zhelnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kirill B Dolganov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Bogutskii
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergey V Garnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maria G Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Dmitry S Ponomarev
- Institute of Ultra-High Frequency Semiconductor Electronics of the Russian Academy of Sciences, Moscow, 117105, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gennadii A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
3
|
Yu X, Peng Z, Xu L, Shi W, Li Z, Meng X, He X, Wang Z, Duan S, Tong L, Huang X, Miao X, Hu W, Ye L. Manipulating 2D Materials through Strain Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402561. [PMID: 38818684 DOI: 10.1002/smll.202402561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
This review explores the growing interest in 2D layered materials, such as graphene, h-BN, transition metal dichalcogenides (TMDs), and black phosphorus (BP), with a specific focus on recent advances in strain engineering. Both experimental and theoretical results are delved into, highlighting the potential of strain to modulate physical properties, thereby enhancing device performance. Various strain engineering methods are summarized, and the impact of strain on the electrical, optical, magnetic, thermal, and valleytronic properties of 2D materials is thoroughly examined. Finally, the review concludes by addressing potential applications and challenges in utilizing strain engineering for functional devices, offering valuable insights for further research and applications in optoelectronics, thermionics, and spintronics.
Collapse
Affiliation(s)
- Xiangxiang Yu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- School of Physic and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Zhuiri Peng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Langlang Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenhao Shi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaohan Meng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiao He
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Shikun Duan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Tong
- Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xinyu Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| |
Collapse
|
4
|
Yang R, Li J, Cai Y, Blankenship BW, Wu J, Grigoropoulos CP. Near-Field Nanoimaging of Phases and Carrier Dynamics in Vanadium Dioxide Nanobeams. ACS PHOTONICS 2024; 11:3359-3364. [PMID: 39184182 PMCID: PMC11342413 DOI: 10.1021/acsphotonics.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024]
Abstract
The stable coexistence of insulating and metallic phases in strained vanadium dioxide (VO2) has garnered significant research interest due to the intriguing phase transition phenomena. However, the temporal behavior of charge carriers in different phases of VO2 remains elusive. Herein, we employ near-field optical nanoscopy to capture nanoscale alternating phase domains in bent VO2 nanobeams. By conducting transient measurements across the different phases, we observed a prolonged carrier recombination lifetime in the metallic phase of VO2, accompanied by an accelerated diffusion process. Our findings reveal nanoscale carrier dynamics in VO2 nanobeams, offering insights that can facilitate further investigations into phase-change materials and their potential applications in sensing and microelectromechanical devices.
Collapse
Affiliation(s)
- Rundi Yang
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Jingang Li
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Yuhang Cai
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Brian W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Junqiao Wu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Yoon J, Kim KS, Hong WK. Thermochromic Vanadium Dioxide Nanostructures for Smart Windows and Radiative Cooling. Chemistry 2024; 30:e202400826. [PMID: 38818667 DOI: 10.1002/chem.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The pursuit of energy-saving materials and technologies has garnered significant attention for their pivotal role in mitigating both energy consumption and carbon emissions. In particular, thermochromic windows in buildings offer energy-saving potential by adjusting the transmittance of solar irradiation in response to temperature changes. Radiative cooling (RC), radiating thermal heat from an object surface to the cold outer space, also offers a potential way for cooling without energy consumption. Accordingly, smart window and RC technologies based on thermochromic materials can play a crucial role in improving energy efficiency and reducing energy consumption in buildings in response to the surrounding temperature. Vanadium dioxide (VO2) is a promising thermochromic material for energy-saving smart windows and RC due to its reversible metal-to-insulator transition, accompanying large changes in its optical properties. This review provides a brief summary of synthesis methods of VO2 nanostructures based on nanoparticles and thin films. Moreover, this review emphasizes and summarizes modulation strategies focusing on doping, thermal processing, and structure manipulation to improve and regulate the thermochromic and emissivity performance of VO2 for smart window and RC applications. In last, the challenges and recent advances of VO2-based smart window and RC applications are briefly presented.
Collapse
Affiliation(s)
- Jongwon Yoon
- Energy & Environment Materials Research Division, Korea Institute of Materials Science, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Kwang-Seok Kim
- Carbon & Light Materials Application Group, Korea Institute of Industrial Technology, 222Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Woong-Ki Hong
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| |
Collapse
|
6
|
Cai Y, Wang Z, Wan J, Li J, Guo R, Ager JW, Javey A, Zheng H, Jiang J, Wu J. Ion diffusion retarded by diverging chemical susceptibility. Nat Commun 2024; 15:5814. [PMID: 38987527 PMCID: PMC11237041 DOI: 10.1038/s41467-024-50213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
For first-order phase transitions, the second derivatives of Gibbs free energy (specific heat and compressibility) diverge at the transition point, resulting in an effect known as super-elasticity along the pressure axis, or super-thermicity along the temperature axis. Here we report a chemical analogy of these singularity effects along the atomic doping axis, where the second derivative of Gibbs free energy (chemical susceptibility) diverges at the transition point, leading to an anomalously high energy barrier for dopant diffusion in co-existing phases, an effect we coin as super-susceptibility. The effect is realized in hydrogen diffusion in vanadium dioxide (VO2) with a metal-insulator transition (MIT). We show that hydrogen faces three times higher energy barrier and over one order of magnitude lower diffusivity when it diffuses across a metal-insulator domain wall in VO2. The additional energy barrier is attributed to a volumetric energy penalty that the diffusers need to pay for the reduction of latent heat. The super-susceptibility and resultant retarded atomic diffusion are expected to exist universally in all phase transformations where the transformation temperature is coupled to chemical composition, and inspires new ways to engineer dopant diffusion in phase-coexisting material systems.
Collapse
Affiliation(s)
- Yuhang Cai
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zhaowu Wang
- School of Science, Hebei University of Technology, Tianjin, 300401, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jiawei Wan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jiachen Li
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ruihan Guo
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ali Javey
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Haimei Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Darwish M, Zhabura Y, Pohl L. Recent Advances of VO 2 in Sensors and Actuators. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:582. [PMID: 38607118 PMCID: PMC11154574 DOI: 10.3390/nano14070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Vanadium dioxide (VO2) stands out for its versatility in numerous applications, thanks to its unique reversible insulator-to-metal phase transition. This transition can be initiated by various stimuli, leading to significant alterations in the material's characteristics, including its resistivity and optical properties. As the interest in the material is growing year by year, the purpose of this review is to explore the trends and current state of progress on some of the applications proposed for VO2 in the field of sensors and actuators using literature review methods. Some key applications identified are resistive sensors such as strain, temperature, light, gas concentration, and thermal fluid flow sensors for microfluidics and mechanical microactuators. Several critical challenges have been recognized in the field, including the expanded investigation of VO2-based applications across multiple domains, exploring various methods to enhance device performance such as modifying the phase transition temperature, advancing the fabrication techniques for VO2 structures, and developing innovative modelling approaches. Current research in the field shows a variety of different sensors, actuators, and material combinations, leading to different sensor and actuator performance input ranges and output sensitivities.
Collapse
Affiliation(s)
- Mahmoud Darwish
- Department of Electron Devices, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Yana Zhabura
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland;
| | - László Pohl
- Department of Electron Devices, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| |
Collapse
|
8
|
Li B, Hu J, Chen C, Hu H, Zhong Y, Song R, Cao B, Peng Y, Xia X, Chen K, Xia Z. Theoretical study of a highly fault-tolerant and scalable adaptive radiative cooler. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:725-736. [PMID: 39635094 PMCID: PMC11501479 DOI: 10.1515/nanoph-2023-0739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/24/2024] [Indexed: 12/07/2024]
Abstract
Conventional static radiative coolers have an unadjustable cooling capacity, which often results in overcooling in low temperature environment. Therefore, there is a great need for an adaptive dynamic radiative cooler. However, such adaptive coolers usually require complex preparation processes. This paper proposes an adaptive radiative cooler based on a Fabry-Perot resonant cavity. By optimizing the structural parameters of the radiative cooler, this adaptive radiative cooler achieves a modulation rate of 0.909 in the atmospheric window band. The net radiative cooling performance difference between low and high temperatures is nearly eight times. Meanwhile, the device is easily prepared, has a high tolerance, and can effectively prevent W-VO2 oxidation. This study provides new insights into adaptive radiative cooling with potential for large-scale applications.
Collapse
Affiliation(s)
- Bin Li
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Jiaqi Hu
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Changhao Chen
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Hengren Hu
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Yetao Zhong
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Ruichen Song
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Boyu Cao
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Yunqi Peng
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Xusheng Xia
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| | - Kai Chen
- Wuhan Zhongyuan Huadian Science and Technology Co., Ltd., Wuhan, China
| | - Zhilin Xia
- Wuhan University of Technology, State Key Laboratory of Silicate Materials for Architectures, Wuhan, China
| |
Collapse
|
9
|
Choi YC, Yang S, Murray CB, Kagan CR. Thermally Reconfigurable, 3D Chiral Optical Metamaterials: Building with Colloidal Nanoparticle Assemblies. ACS NANO 2023; 17:22611-22619. [PMID: 37955251 DOI: 10.1021/acsnano.3c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The three-dimensional, geometric handedness of chiral optical metamaterials allows for the rotation of linearly polarized light and creates a differential interaction with right and left circularly polarized light, known as circular dichroism. These three-dimensional metamaterials enable polarization control of optical and spin excitation and detection, and their stimuli-responsive, dynamic switching widens applications in chiral molecular sensing and imaging and spintronics; however, there are few reconfigurable solid-state implementations. Here, we report all-solid-state, thermally reconfigurable chiroptical metamaterials composed of arrays of three-dimensional nanoparticle/metal bilayer heterostructures fabricated from coassemblies of phase change VO2 and metallic Au colloidal nanoparticles and thin films of Ni. These metamaterials show dynamic switching in the mid-infrared as VO2 is thermally cycled through an insulator-metal phase transition. The spectral range of operation is tailored in breadth by controlling the periodicity of the arrays and thus the hybridization of optical modes and in position through the mixing of VO2 and Au nanoparticles.
Collapse
|
10
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
11
|
Li Z, Zhang Z, Zhou X. Chemical Modulation of Metal-Insulator Transition toward Multifunctional Applications in Vanadium Dioxide Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305234. [PMID: 37394705 DOI: 10.1002/smll.202305234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The metal-insulator transition (MIT) of vanadium dioxide (VO2 ) has been of great interest in materials science for both fundamental understanding of strongly correlated physics and a wide range of applications in optics, thermotics, spintronics, and electronics. Due to the merits of chemical interaction with accessibility, versatility, and tunability, chemical modification provides a new perspective to regulate the MIT of VO2 , endowing VO2 with exciting properties and improved functionalities. In the past few years, plenty of efforts have been devoted to exploring innovative chemical approaches for the synthesis and MIT modulation of VO2 nanostructures, greatly contributing to the understanding of electronic correlations and development of MIT-driven functionalities. Here, this comprehensive review summarizes the recent achievements in chemical synthesis of VO2 and its MIT modulation involving hydrogen incorporation, composition engineering, surface modification, and electrochemical gating. The newly appearing phenomena, mechanism of electronic correlation, and structural instability are discussed. Furthermore, progresses related to MIT-driven applications are presented, such as the smart window, optoelectronic detector, thermal microactuator, thermal radiation coating, spintronic device, memristive, and neuromorphic device. Finally, the challenges and prospects in future research of chemical modulation and functional applications of VO2 MIT are also provided.
Collapse
Affiliation(s)
- Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Zhi Zhang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
| | - Xiaoli Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
12
|
Wu B, Zhang Z, Chen B, Zheng Z, You C, Liu C, Li X, Wang J, Wang Y, Song E, Cui J, An Z, Huang G, Mei Y. One-step rolling fabrication of VO 2 tubular bolometers with polarization-sensitive and omnidirectional detection. SCIENCE ADVANCES 2023; 9:eadi7805. [PMID: 37851806 PMCID: PMC10584336 DOI: 10.1126/sciadv.adi7805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Uncooled infrared detection based on vanadium dioxide (VO2) radiometer is highly demanded in temperature monitoring and security protection. The key to its breakthrough is to fabricate bolometer arrays with great absorbance and excellent thermal insulation using a straightforward procedure. Here, we show a tubular bolometer by one-step rolling VO2 nanomembranes with enhanced infrared detection. The tubular geometry enhances the thermal insulation, light absorption, and temperature sensitivity of freestanding VO2 nanomembranes. This tubular VO2 bolometer exhibits a detectivity of ~2 × 108 cm Hz1/2 W-1 in the ultrabroad infrared spectrum, a response time of ~2.0 ms, and a calculated noise-equivalent temperature difference of 64.5 mK. Furthermore, our device presents a workable structural paradigm for polarization-sensitive and omnidirectional light coupling bolometers. The demonstrated overall characteristics suggest that tubular bolometers have the potential to narrow performance and cost gap between photon detectors and thermal detectors with low cost and broad applications.
Collapse
Affiliation(s)
- Binmin Wu
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Bingxin Chen
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200438, People’s Republic of China
| | - Zhi Zheng
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Xing Li
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Jinlong Wang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Yunqi Wang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Enming Song
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Zhenghua An
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai 200438, People’s Republic of China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200438, People’s Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, People’s Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
13
|
Blankenship BW, Li R, Guo R, Zhao N, Shin J, Yang R, Ko SH, Wu J, Rho Y, Grigoropoulos C. Photothermally Activated Artificial Neuromorphic Synapses. NANO LETTERS 2023; 23:9020-9025. [PMID: 37724920 DOI: 10.1021/acs.nanolett.3c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Biological nervous systems rely on the coordination of billions of neurons with complex, dynamic connectivity to enable the ability to process information and form memories. In turn, artificial intelligence and neuromorphic computing platforms have sought to mimic biological cognition through software-based neural networks and hardware demonstrations utilizing memristive circuitry with fixed dynamics. To incorporate the advantages of tunable dynamic software implementations of neural networks into hardware, we develop a proof-of-concept artificial synapse with adaptable resistivity. This synapse leverages the photothermally induced local phase transition of VO2 thin films by temporally modulated laser pulses. Such a process quickly modifies the conductivity of the film site-selectively by a factor of 500 to "activate" these neurons and store "memory" by applying varying bias voltages to induce self-sustained Joule heating between electrodes after activation with a laser. These synapses are demonstrated to undergo a complete heating and cooling cycle in less than 120 ns.
Collapse
Affiliation(s)
- Brian W Blankenship
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Runxuan Li
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Ruihan Guo
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Naichen Zhao
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Jaeho Shin
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Rundi Yang
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Yoonsoo Rho
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
- Physical & Life Sciences and NIF & Photon Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Costas Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Schofield P, Bradicich A, Gurrola RM, Zhang Y, Brown TD, Pharr M, Shamberger PJ, Banerjee S. Harnessing the Metal-Insulator Transition of VO 2 in Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205294. [PMID: 36036767 DOI: 10.1002/adma.202205294] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Future-generation neuromorphic computing seeks to overcome the limitations of von Neumann architectures by colocating logic and memory functions, thereby emulating the function of neurons and synapses in the human brain. Despite remarkable demonstrations of high-fidelity neuronal emulation, the predictive design of neuromorphic circuits starting from knowledge of material transformations remains challenging. VO2 is an attractive candidate since it manifests a near-room-temperature, discontinuous, and hysteretic metal-insulator transition. The transition provides a nonlinear dynamical response to input signals, as needed to construct neuronal circuit elements. Strategies for tuning the transformation characteristics of VO2 based on modification of material properties, interfacial structure, and field couplings, are discussed. Dynamical modulation of transformation characteristics through in situ processing is discussed as a means of imbuing synaptic function. Mechanistic understanding of site-selective modification; external, epitaxial, and chemical strain; defect dynamics; and interfacial field coupling in modifying local atomistic structure, the implications therein for electronic structure, and ultimately, the tuning of transformation characteristics, is emphasized. Opportunities are highlighted for inverse design and for using design principles related to thermodynamics and kinetics of electronic transitions learned from VO2 to inform the design of new Mott materials, as well as to go beyond energy-efficient computation to manifest intelligence.
Collapse
Affiliation(s)
- Parker Schofield
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Adelaide Bradicich
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Rebeca M Gurrola
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuwei Zhang
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Patrick J Shamberger
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
15
|
Yoon J, Hong WK, Kim Y, Park SY. Nanostructured Vanadium Dioxide Materials for Optical Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:6715. [PMID: 37571499 PMCID: PMC10422301 DOI: 10.3390/s23156715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Vanadium dioxide (VO2) is one of the strongly correlated materials exhibiting a reversible insulator-metal phase transition accompanied by a structural transition from a low-temperature monoclinic phase to high-temperature rutile phase near room temperature. Due to the dramatic change in electrical resistance and optical transmittance of VO2, it has attracted considerable attention towards the electronic and optical device applications, such as switching devices, memory devices, memristors, smart windows, sensors, actuators, etc. The present review provides an overview of several methods for the synthesis of nanostructured VO2, such as solution-based chemical approaches (sol-gel process and hydrothermal synthesis) and gas or vapor phase synthesis techniques (pulsed laser deposition, sputtering method, and chemical vapor deposition). This review also presents stoichiometry, strain, and doping engineering as modulation strategies of physical properties for nanostructured VO2. In particular, this review describes ultraviolet-visible-near infrared photodetectors, optical switches, and color modulators as optical sensing applications associated with nanostructured VO2 materials. Finally, current research trends and perspectives are also discussed.
Collapse
Affiliation(s)
- Jongwon Yoon
- Department of Energy & Electronic Materials, Surface & Nano Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea;
| | - Woong-Ki Hong
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| | - Yonghun Kim
- Department of Energy & Electronic Materials, Surface & Nano Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea;
| | - Seung-Young Park
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| |
Collapse
|
16
|
Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y. Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chem Rev 2023. [PMID: 37053573 DOI: 10.1021/acs.chemrev.2c00762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Thermochromic energy efficient windows represent an important protocol technology for advanced architectural windows with energy-saving capabilities through the intelligent regulation of indoor solar irradiation and the modulation of window optical properties in response to real-time temperature stimuli. In this review, recent progress in some promising thermochromic systems is summarized from the aspects of structures, the micro-/mesoscale regulation of thermochromic properties, and integration with other emerging energy techniques. Furthermore, the challenges and opportunities in thermochromic energy-efficient windows are outlined to promote future scientific investigations and practical applications in building energy conservation.
Collapse
Affiliation(s)
- Zongtao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Liangmiao Zhang
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yang Zhou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yinping Liu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jin Li
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| |
Collapse
|
17
|
Chang X, Li J, Mu J, Ma CH, Huang W, Zhu HF, Liu Q, Du LH, Zhong SC, Zhai ZH, Das S, Huang YL, Zhu GB, Zhu LG, Shi Q. Impact of the uniaxial strain on terahertz modulation characteristics in flexible epitaxial VO 2 film across the phase transition. OPTICS EXPRESS 2023; 31:13243-13254. [PMID: 37157465 DOI: 10.1364/oe.488947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Exploring flexible electronics is on the verge of innovative breakthroughs in terahertz (THz) communication technology. Vanadium dioxide (VO2) with insulator-metal transition (IMT) has excellent application potential in various THz smart devices, but the associated THz modulation properties in the flexible state have rarely been reported. Herein, we deposited an epitaxial VO2 film on a flexible mica substrate via pulsed-laser deposition and investigated its THz modulation properties under different uniaxial strains across the phase transition. It was observed that the THz modulation depth increases under compressive strain and decreases under tensile strain. Moreover, the phase-transition threshold depends on the uniaxial strain. Particularly, the rate of the phase transition temperature depends on the uniaxial strain and reaches approximately 6 °C/% in the temperature-induced phase transition. The optical trigger threshold in laser-induced phase transition decreased by 38.9% under compressive strain but increased by 36.7% under tensile strain, compared to the initial state without uniaxial strain. These findings demonstrate the uniaxial strain-induced low-power triggered THz modulation and provide new insights for applying phase transition oxide films in THz flexible electronics.
Collapse
|
18
|
Hong WK, Jang HS, Yoon J, Choi WJ. Modulation of Switching Characteristics in a Single VO 2 Nanobeam with Interfacial Strain via the Interconnection of Multiple Nanoscale Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11296-11303. [PMID: 36787543 DOI: 10.1021/acsami.2c21367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO2 nanobeam with a coexisting metal-insulator (M-I) domain configuration during phase transition. The Raman scattering characteristics of the synthesized VO2 nanobeams provide evidence that substrate-induced interfacial strain can be inhomogeneously distributed along the length of the nanobeam. Interestingly, the nanoscale VO2 devices with the same channel length and width exhibit distinct differences in hysteric current-voltage characteristics, which are explained by theoretical calculations of resistance change combined with Joule heating simulations of the nanoscale VO2 channels. The observed results can be attributed to the difference in the spatial distribution and fraction ratios of M-I domains due to interfacial strain in the nanoscale VO2 channels during the metal-insulator transition process. Moreover, we demonstrate the electrically activated resistive switching characteristics based on the hysteresis behaviors of the interconnected nanoscale channels, implying the possibility of manipulating multiple resistive states. Our results may offer insights into the nanoscale engineering of correlated phases in VO2 as the key materials of neuromorphic computing for which nonlinear conductance is essential.
Collapse
Affiliation(s)
- Woong-Ki Hong
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Hun Soo Jang
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jongwon Yoon
- Department of Energy & Electronic Materials, Surface & Nano Materials Division, Korea Institute of Materials Science, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
19
|
Coughlin AL, Pan Z, Hong J, Zhang T, Zhan X, Wu W, Xie D, Tong T, Ruch T, Heremans JJ, Bao J, Fertig HA, Wang J, Kim J, Zhu H, Li D, Zhang S. Enhanced Electron Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal Nanowires by Chemical Doping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204424. [PMID: 36437041 PMCID: PMC9839858 DOI: 10.1002/advs.202204424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2 ), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual T $\sqrt T $ dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon-impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon-phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions.
Collapse
Affiliation(s)
| | - Zhiliang Pan
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jeonghoon Hong
- Department of PhysicsIncheon National UniversityIncheon22012Korea
| | - Tongxie Zhang
- Department of PhysicsIndiana UniversityBloomingtonIN47405USA
| | - Xun Zhan
- Electron Microscopy CenterIndiana UniversityBloomingtonIN47405USA
| | - Wenqian Wu
- Department of Mechanical and Materials EngineeringUniversity of NebraskaLincolnNE68588USA
| | - Dongyue Xie
- Department of Mechanical and Materials EngineeringUniversity of NebraskaLincolnNE68588USA
- Center for Integrated Nanotechnologies, MPA DivisionLos Alamos National LaboratoryLos Alamos87545United States
| | - Tian Tong
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH)University of HoustonHoustonTX77204USA
| | - Thomas Ruch
- Department of PhysicsIndiana UniversityBloomingtonIN47405USA
| | | | - Jiming Bao
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH)University of HoustonHoustonTX77204USA
| | | | - Jian Wang
- Department of Mechanical and Materials EngineeringUniversity of NebraskaLincolnNE68588USA
| | - Jeongwoo Kim
- Department of PhysicsIncheon National UniversityIncheon22012Korea
| | - Hanyu Zhu
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
| | - Deyu Li
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Shixiong Zhang
- Department of PhysicsIndiana UniversityBloomingtonIN47405USA
| |
Collapse
|
20
|
Birkhölzer YA, Sotthewes K, Gauquelin N, Riekehr L, Jannis D, van der Minne E, Bu Y, Verbeeck J, Zandvliet HJW, Koster G, Rijnders G. High-Strain-Induced Local Modification of the Electronic Properties of VO 2 Thin Films. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:6020-6028. [PMID: 36588623 PMCID: PMC9798830 DOI: 10.1021/acsaelm.2c01176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
Collapse
Affiliation(s)
- Yorick A. Birkhölzer
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Kai Sotthewes
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Lars Riekehr
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Daen Jannis
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Emma van der Minne
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Yibin Bu
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Johan Verbeeck
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Harold J. W. Zandvliet
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Gertjan Koster
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| | - Guus Rijnders
- MESA+
Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500AEEnschede, The Netherlands
| |
Collapse
|
21
|
Wang Z, Ji X, Dong N, Chen C, Yan Z, Cao X, Wang J. Femtosecond laser-induced phase transition in VO 2 films. OPTICS EXPRESS 2022; 30:47421-47429. [PMID: 36558670 DOI: 10.1364/oe.477910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
VO2 is a very promising material due to its semiconductor-metal phase transition, however, the research on fs laser-induced phase transition is still very controversial, which greatly limits its development in ultrafast optics. In this work, the fs laser-induced changes in the optical properties of VO2 films were studied with a variable-temperature Z-scan. At room temperature, VO2 consistently maintained nonlinear absorption properties at laser repetition frequencies below 10 kHz while laser-induced phase transition properties appeared at higher repetition frequencies. It was found by temperature variation experiments at 100 kHz that the modulation depth of the laser-induced VO2 phase transition was consistent with that of the ambient temperature-induced phase transition, which was increased linearly with thickness, further confirming that the phase transition was caused by the accumulation of thermal effects of a high-repetition-frequency laser. The phase transition process is reversible and causes substantial changes in optical properties of the film, which holds significant promise for all-optical switches and related applications.
Collapse
|
22
|
Do VH, Lee JM. Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS NANO 2022; 16:17847-17890. [PMID: 36314471 DOI: 10.1021/acsnano.2c08919] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past few decades, development of electrocatalysts for energy applications has extensively transitioned from trial-and-error methodologies to more rational and directed designs at the atomic levels via either nanogeometric optimization or modulating electronic properties of active sites. Regarding the modulation of electronic properties, nonprecious transition metal-based materials have been attracting large interest due to the capability of versatile tuning d-electron configurations expressed through the flexible orbital occupancy and various possible degrees of spin polarization. Herein, recent advances in tailoring electronic properties of the transition-metal atoms for intrinsically enhanced electrocatalytic performances are reviewed. We start with discussions on how orbital occupancy and spin polarization can govern the essential atomic level processes, including the transport of electron charge and spin in bulk, reactive species adsorption on the catalytic surface, and the electron transfer between catalytic centers and adsorbed species as well as reaction mechanisms. Subsequently, different techniques currently adopted in tuning electronic structures are discussed with particular emphasis on theoretical rationale and recent practical achievements. We also highlight the promises of the recently established computational design approaches in developing electrocatalysts for energy applications. Lastly, the discussion is concluded with perspectives on current challenges and future opportunities. We hope this review will present the beauty of the structure-activity relationships in catalysis sciences and contribute to advance the rational development of electrocatalysts for energy conversion applications.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
23
|
Arata Y, Nishinaka H, Takeda M, Kanegae K, Yoshimoto M. Strain-Induced Modulation of Resistive Switching Temperature in Epitaxial VO 2 Thin Films on Flexible Synthetic Mica. ACS OMEGA 2022; 7:41768-41774. [PMID: 36406563 PMCID: PMC9670360 DOI: 10.1021/acsomega.2c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The resistive switching temperature associated with the metal-insulator transition (MIT) of epitaxial VO2 thin films grown on flexible synthetic mica was modulated by bending stress. The resistive switching temperature of polycrystalline VO2 and V2O5 thin films, initially grown on synthetic mica without a buffer layer, was observed not to shift with bending stress. By inserting a SnO2 buffer layer, epitaxial growth of the VO2 (010) thin film was achieved, and the MIT temperature was found to vary with the bending stress. Thus, it was revealed that the bending response of the VO2 thin film depends on the presence or absence of the SnO2 buffer layer. The bending stress applied a maximum in-plane tensile strain of 0.077%, resulting in a high-temperature shift of 2.3 °C during heating and 1.8 °C during cooling. After 104 bending cycles at a radius of curvature R = 10 mm, it was demonstrated that the epitaxial VO2 thin film exhibits resistive switching temperature associated with MIT.
Collapse
Affiliation(s)
- Yuta Arata
- Department
of Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan
| | - Hiroyuki Nishinaka
- Faculty
of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto606-8585, Japan
| | - Minoru Takeda
- Faculty
of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto606-8585, Japan
| | - Kazutaka Kanegae
- Faculty
of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto606-8585, Japan
| | - Masahiro Yoshimoto
- Faculty
of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto606-8585, Japan
| |
Collapse
|
24
|
Mutilin SV, Yakovkina LV, Seleznev VA, Prinz VY. Kinetics of Catalyst-Free and Position-Controlled Low-Pressure Chemical Vapor Deposition Growth of VO 2 Nanowire Arrays on Nanoimprinted Si Substrates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217863. [PMID: 36363453 PMCID: PMC9656171 DOI: 10.3390/ma15217863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 05/27/2023]
Abstract
In the present article, the position-controlled and catalytic-free synthesis of vanadium dioxide (VO2) nanowires (NWs) grown by the chemical vapor deposition (CVD) on nanoimprinted silicon substrates in the form of nanopillar arrays was analyzed. The NW growth on silicon nanopillars with different cross-sectional areas was studied, and it has been shown that the NWs' height decreases with an increase in their cross-sectional area. The X-ray diffraction technique, scanning electron microscopy, and X-ray photoelectron spectroscopy showed the high quality of the grown VO2 NWs. A qualitative description of the growth rate of vertical NWs based on the material balance equation is given. The dependence of the growth rate of vertical and horizontal NWs on the precursor concentration in the gas phase and on the growth time was investigated. It was found that the height of vertical VO2 NWs along the [100] direction exhibited a linear dependence on time and increased with an increase in the precursor concentration. For horizontal VO2 NWs, the height along the direction [011] varied little with the growth time and precursor concentration. These results suggest that the high-aspect ratio vertical VO2 NWs formed due to different growth modes of their crystal faces forming the top of the growing VO2 crystals and their lateral crystal faces related to the difference between the free energies of these crystal faces and implemented experimental conditions. The results obtained permit a better insight into the growth of high-aspect ratio VO2 NWs and into the formation of large VO2 NW arrays with a controlled composition and properties.
Collapse
Affiliation(s)
- Sergey V. Mutilin
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Aven., 630090 Novosibirsk, Russia
| | - Lyubov V. Yakovkina
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Aven., 630090 Novosibirsk, Russia
| | - Vladimir A. Seleznev
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Aven., 630090 Novosibirsk, Russia
| | - Victor Ya. Prinz
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Aven., 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Huang Z, Lu N, Wang Z, Xu S, Guan J, Hu Y. Large-Scale Ultrafast Strain Engineering of CVD-Grown Two-Dimensional Materials on Strain Self-Limited Deformable Nanostructures toward Enhanced Field-Effect Transistors. NANO LETTERS 2022; 22:7734-7741. [PMID: 35951414 DOI: 10.1021/acs.nanolett.2c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain engineering of 2D materials is capable of tuning the electrical and optical properties of the materials without introducing additional atoms. Here, a method for large-scale ultrafast strain engineering of CVD-grown 2D materials is proposed. Locally nonuniform strains are introduced through the cooperative deformation of materials and metal@metal oxide nanoparticles through cold laser shock. The tensile strain of MoS2 changes and the band gap decreases after laser shock. The mechanism of the ultrafast straining is investigated by MD simulations. MoS2 FETs were fabricated, and the field-effect mobility of devices could be increased from 1.9 to 44.5 cm2 V-1 s-1 by adjusting the strain level of MoS2. This is currently the maximum value of MoS2 FETs grown by CVD with SiO2 as the dielectric. As a large-scale and ultrafast manufacturing method, laser shock provides a universal strategy for large-scale adjustment of 2D material strain, which will help to promote the manufacturing of 2D nanoelectronic devices.
Collapse
Affiliation(s)
- Zheng Huang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Nan Lu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zifeng Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Shuoheng Xu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jie Guan
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yaowu Hu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
26
|
Mei H, Koch A, Wan C, Rensberg J, Zhang Z, Salman J, Hafermann M, Schaal M, Xiao Y, Wambold R, Ramanathan S, Ronning C, Kats MA. Tuning carrier density and phase transitions in oxide semiconductors using focused ion beams. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3923-3932. [PMID: 39635167 PMCID: PMC11501530 DOI: 10.1515/nanoph-2022-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/03/2022] [Indexed: 12/07/2024]
Abstract
We demonstrate spatial modification of the optical properties of thin-film metal oxides, zinc oxide (ZnO) and vanadium dioxide (VO2) as representatives, using a commercial focused ion beam (FIB) system. Using a Ga+ FIB and thermal annealing, we demonstrated variable doping of a wide-bandgap semiconductor, ZnO, achieving carrier concentrations from 1018 cm-3 to 1020 cm-3. Using the same FIB without subsequent thermal annealing, we defect-engineered a correlated semiconductor, VO2, locally modifying its insulator-to-metal transition (IMT) temperature by up to ∼25 °C. Such area-selective modification of metal oxides by direct writing using a FIB provides a simple, mask-less route to the fabrication of optical structures, especially when multiple or continuous levels of doping or defect density are required.
Collapse
Affiliation(s)
- Hongyan Mei
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Alexander Koch
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Chenghao Wan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Jura Rensberg
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Zhen Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Jad Salman
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Martin Hafermann
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Maximilian Schaal
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Yuzhe Xiao
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Raymond Wambold
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Carsten Ronning
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Mikhail A. Kats
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| |
Collapse
|
27
|
Wilson CE, Gibson AE, Cuillier PM, Li CH, Crosby PHN, Trigg EB, Najmr S, Murray CB, Jinschek JR, Doan-Nguyen V. Local structure elucidation of tungsten-substituted vanadium dioxide (V[Formula: see text]W[Formula: see text]O[Formula: see text]). Sci Rep 2022; 12:14767. [PMID: 36042264 PMCID: PMC9428210 DOI: 10.1038/s41598-022-18575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Initially, vanadium dioxide seems to be an ideal first-order phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metal-insulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungsten-substitution series is utilized to tease out the nuances of this first-order phase transition. A comparison of the average structure to the local structure using synchrotron x-ray diffraction and total scattering pair-distribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperature-series as the local structure characterization. Extended x-ray absorption fine structure fitting of thin film data across the substitution-series is also presented and compared to bulk. Machine learning technique, non-negative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature ([Formula: see text]) is less than the average [Formula: see text] supporting the Peierls-Mott MIT mechanism, and demonstrate that in bulk powder and thin-films, increasing tungsten-substitution instigates local V-oxidation through the phase pathway VO[Formula: see text] V[Formula: see text]O[Formula: see text] V[Formula: see text]O[Formula: see text].
Collapse
Affiliation(s)
- Catrina E. Wilson
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Amanda E. Gibson
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Paul M. Cuillier
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Cheng-Han Li
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Patrice H. N. Crosby
- Chemistry, Ohio State University, Columbus, OH 43212 USA
- Present Address: Human Centered Design, Cornell University, Ithaca, NY 14853 USA
| | - Edward B. Trigg
- Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 USA
- Present Address: Battelle Memorial Institute, Columbus, OH 43201 USA
| | - Stan Najmr
- Chemistry, University of Pennsylvania, Philadelphia, PA 19143 USA
| | - Christopher B. Murray
- Present Address: Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19143 USA
| | - Joerg R. Jinschek
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
- Present Address: DTU Nanolab, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vicky Doan-Nguyen
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| |
Collapse
|
28
|
Xue Y, Yin S. Element doping: a marvelous strategy for pioneering the smart applications of VO 2. NANOSCALE 2022; 14:11054-11097. [PMID: 35900045 DOI: 10.1039/d2nr01864k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart materials are leading the future of materials by virtue of their autonomous response behavior to external stimuli; it is widely believed their development and application will bring a new revolution. Among them, vanadium dioxide (VO2) is a special one showing a unique multi-stimulus responsive metal-insulator transition (MIT) accompanied by a structural phase transition (SPT) with striking changes of physical properties including optical, electrical and thermal properties, etc., making it ideal for smart windows, micro-bolometers, actuators, etc. Since the attractive performances of VO2 are rooted in MIT behavior (coupled with SPT), element doping becomes a powerful tool in tailoring VO2 performance. Oriented on the practical requirements, element-doped VO2 is more promising and competitive in terms of performance, prospect, and cost. Here we focus specifically on element-doped VO2, the recent progress and potential challenges of which are discussed. We devote attention to the crucial roles of element doping in modulating the properties and driving the practicality of VO2, aiming to inspire current research to pioneer new applications of VO2.
Collapse
Affiliation(s)
- Yibei Xue
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
29
|
Zhan Q, Pang H, Liao J, Luo W, Wang G, Ren X, Wang J, Duan Z, Huang Z, Ding L. Design of compact dual-mode photoelectric modulator with high process tolerance based on vanadium dioxide. APPLIED OPTICS 2022; 61:6761-6769. [PMID: 36255755 DOI: 10.1364/ao.466054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Opto-electro modulators with nanometer-scale footprint are indispensable in integrated photonic electronic circuits. Due to weak light-matter interactions and limits of micro-nano fabrication technology, it is challenging to shrink a modulator to subwavelength size. In recent years, hybrid modulators based on surface plasmons have been proposed to solve this problem. Although the introduced high lossy surface plasmons provide large modulation depth, the polarization selectivity limits its application. Toward this end, in this paper, we present a design of an ultra-compact vanadium oxide (VO2)-based plasmonic waveguide modulator for both transverse electric (TE) and transverse magnetic (TM) modes. The device consists of two silicon tapers and a silicon waveguide embedded with a VO2 wedge. When electrical signals put on the device change the phase of VO2 from a metal to an insulator, the output optical signals along the waveguide are significantly modulated. For a 1.5 µm length modulator operating at 1.55 µm wavelength, the extinction ratio is 11.62 dB for the TE mode and 8.86 dB for the TM mode, while the insertion loss is 4.31 dB for the TE mode and 4.12 dB for the TM mode. Furthermore, the proposed design has excellent tolerance for fabrication process error, which greatly increases the yield rate of products and indicates a promotable application prospect.
Collapse
|
30
|
Zheng C, Simpson RE, Tang K, Ke Y, Nemati A, Zhang Q, Hu G, Lee C, Teng J, Yang JKW, Wu J, Qiu CW. Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chem Rev 2022; 122:15450-15500. [PMID: 35894820 DOI: 10.1021/acs.chemrev.2c00171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.
Collapse
Affiliation(s)
- Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.,NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Robert E Simpson
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Kechao Tang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yujie Ke
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Arash Nemati
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, and Lawrence Berkeley National Laboratory, California 94720, United States
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
31
|
Zhang H, He X, Zhang D, Zhang H. Multitasking device with switchable and tailored functions of ultra-broadband absorption and polarization conversion. OPTICS EXPRESS 2022; 30:23341-23358. [PMID: 36225017 DOI: 10.1364/oe.465083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/16/2023]
Abstract
We present a multitasking tailored device (MTD) based on phase change material vanadium dioxide (VO2) and photoconductive semiconductor (PS) in the terahertz (THz) regime, thereby manipulating the interaction between electromagnetic waves and matter. By altering the control multitasking device, its room temperature, or pump illumination, we switch the function of absorption or polarization conversion (PC) on and off, and realize the tuning of absorptivity and polarization conversion rate (PCR). Meanwhile, the construction of cylindrical air columns (CACs) in the dielectric provides an effective channel to broaden the absorption bandwidth. For the MTD to behave as a polarization converter with VO2 pattern in the insulating phase (IP), exciting the PS integrated to the proposed device via an optical pump beam, the PCR at 0.82-1.6 THz can be modulated continuously from over 90% to perfectly near zero. When the PS conductivity is fixed at 3×104 S/m and VO2 is in the metal phase (MP) simultaneously, the MTD switched to an absorber exhibits ultra-broadband absorption with the absorptivity over 90% at 0.68-1.6 THz. By varying the optical pump power and thermally controlling the conductivity of VO2, at 0.68-1.6 THz, the absorbance of such a MTD can be successively tuned from higher than 90% to near null. Additionally, the influences of the polarization angle and incident angle on the proposed MTD are discussed. The designed MTD can effectively promote the electromagnetic reconfigurable functionalities of the present multitasking devices, which may find attractive applications for THz modulators, stealth technology, communication system, and so on.
Collapse
|
32
|
Chen L, Huang J, Li N, Zhu H, Hu J, Miao L, Zhao C. Broadband nonlinear optical modulator enabled by VO 2/V 2O 5 core-shell heterostructures. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2931-2938. [PMID: 39634087 PMCID: PMC11501873 DOI: 10.1515/nanoph-2022-0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2024]
Abstract
Broadband pulsed lasers have become an indispensable part in optical communications, biomedical engineering, materials processing, and national defense. Inspired by the broadband and ultrafast optical components, great efforts from the laser and material community have been paid to explore the emerging nonlinear optical materials. Here, we found that the VO2/V2O5 core-shell heterostructures with type-II staggered band alignment exhibit broadband nonlinear optical response towards mid-infrared spectral range. The nonlinear optical characterizations verify that the heterostructures show the modulation depth and saturation intensity of 27% and 42 GW/cm2 at 1064 nm, 23% and 78 GW/cm2 at 1550 nm, and 16.5% and 63.9 GW/cm2 at 2800 nm, respectively. With the nonlinear optical modulator, stable mode-locked Yb-doped and Er-doped fiber lasers have been realized with pulse output as short as 310 ps and 633 fs, respectively. In addition, the stable Q-switched Er-doped fluoride fiber laser has been demonstrated with a pulse repetition rate of 89 kHz and the shortest pulse width of 680 ns, respectively. The experimental results indicate that VO2/V2O5 core-shell heterostructures can be broadband nonlinear optical modulators from the near-infrared to the mid-infrared spectral range, offering opportunities to develop high-performance photonic devices.
Collapse
Affiliation(s)
- Longlong Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Jing Huang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Ning Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Hao Zhu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Jianbang Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Lili Miao
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Chujun Zhao
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| |
Collapse
|
33
|
Ran M, Zhao C, Xu X, Kong X, Lee Y, Cui W, Hu ZY, Roxas A, Luo Z, Li H, Ding F, Gan L, Zhai T. Boosting in-plane anisotropy by periodic phase engineering in two-dimensional VO 2 single crystals. FUNDAMENTAL RESEARCH 2022; 2:456-461. [PMID: 38933399 PMCID: PMC11197522 DOI: 10.1016/j.fmre.2021.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
In-plane anisotropy (IPA) due to asymmetry in lattice structures provides an additional parameter for the precise tuning of characteristic polarization-dependent properties in two-dimensional (2D) materials, but the narrow range within which such method can modulate properties hinders significant development of related devices. Herein we present a novel periodic phase engineering strategy that can remarkably enhance the intrinsic IPA obtainable from minor variations in asymmetric structures. By introducing alternant monoclinic and rutile phases in 2D VO2 single crystals through the regulation of interfacial thermal strain, the IPA in electrical conductivity can be reversibly modulated in a range spanning two orders of magnitude, reaching an unprecedented IPA of 113. Such an intriguing local phase engineering in 2D materials can be well depicted and predicted by a theoretical model consisting of phase transformation, thermal expansion, and friction force at the interface, creating a framework applicable to other 2D materials. Ultimately, the considerable adjustability and reversibility of the presented strategy provide opportunities for future polarization-dependent photoelectric and optoelectronic devices.
Collapse
Affiliation(s)
- Meng Ran
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Zhao
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiao Kong
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Younghee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
| | - Wenjun Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430074, China
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430074, China
| | - Alexander Roxas
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Lin Gan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
34
|
Kommanaboina NM, Pantano MF, Bagolini A. Optimization of an amplification mechanism enabling large displacements in MEMS-based nanomaterial testing devices. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Najafi L, Oropesa-Nuñez R, Bellani S, Martín-García B, Pasquale L, Serri M, Drago F, Luxa J, Sofer Z, Sedmidubský D, Brescia R, Lauciello S, Zappia MI, Shinde DV, Manna L, Bonaccorso F. Topochemical Transformation of Two-Dimensional VSe 2 into Metallic Nonlayered VO 2 for Water Splitting Reactions in Acidic and Alkaline Media. ACS NANO 2022; 16:351-367. [PMID: 34939404 DOI: 10.1021/acsnano.1c06662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The as-produced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The as-synthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g-1 at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm-2 = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g-1 at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm-2 = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.
Collapse
Affiliation(s)
- Leyla Najafi
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden
| | - Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Lea Pasquale
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Filippo Drago
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - David Sedmidubský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Simone Lauciello
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marilena I Zappia
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Dipak V Shinde
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
36
|
Huang T, Zhang R, Zhang L, Xu P, Shao Y, Yang W, Chen Z, Chen X, Dai N. Energy-adaptive resistive switching with controllable thresholds in insulator–metal transition. RSC Adv 2022; 12:35579-35586. [DOI: 10.1039/d2ra06866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Adaptive energy-scaling resistive switching with active response and self-regulation via controllable insulator–metal transition shows promise in energy-efficient devices.
Collapse
Affiliation(s)
- Tiantian Huang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lepeng Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Peiran Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunkai Shao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wanli Yang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhimin Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Dai
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Guo X, Tan Y, Hu Y, Zafar Z, Liu X, Feng L, Zou J. Effect of microplate size on the semiconductor–metal transition in VO 2 thin films. NEW J CHEM 2022. [DOI: 10.1039/d2nj01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The degree of changes in resistivity (Δρ) becomes more prominent as the VO2 film microplate size grows, which is primarily attributed to a reduced probability of electron scattering with decreasing grain boundary density.
Collapse
Affiliation(s)
- Xitao Guo
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| | - Yonghao Tan
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| | - Yupei Hu
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| | - Zainab Zafar
- National Centre for Physics, Islamabad, 44000, Pakistan
| | - Xin Liu
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| | - Lin Feng
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| | - Jijun Zou
- School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
38
|
Ma H, Xiao X, Wang Y, Sun Y, Wang B, Gao X, Wang E, Jiang K, Liu K, Zhang X. Wafer-scale freestanding vanadium dioxide film. SCIENCE ADVANCES 2021; 7:eabk3438. [PMID: 34878834 PMCID: PMC8654297 DOI: 10.1126/sciadv.abk3438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Vanadium dioxide (VO2), with well-known metal-to-insulator phase transition, has been used to realize intriguing smart functions in photodetectors, modulators, and actuators. Wafer-scale freestanding VO2 (f-VO2) films are desirable for integrating VO2 with other materials into multifunctional devices. Unfortunately, their preparation has yet to be achieved because the wafer-scale etching needs ultralong time and damages amphoteric VO2 whether in acid or alkaline etchants. Here, we achieved wafer-scale f-VO2 films by a nano-pinhole permeation-etching strategy in 6 min, far less than that by side etching (thousands of minutes). The f-VO2 films retain their pristine metal-to-insulator transition and intrinsic mechanical properties and can be conformably transferred to arbitrary substrates. Integration of f-VO2 films into diverse large-scale smart devices, including terahertz modulators, camouflageable photoactuators, and temperature-indicating strips, shows advantages in low insertion loss, fast response, and low triggering power. These f-VO2 films find more intriguing applications by heterogeneous integration with other functional materials.
Collapse
Affiliation(s)
- He Ma
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiao Xiao
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yu Wang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyu Gao
- State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P. R. China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaili Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
- Corresponding author. (K.L.); (X.Z.)
| | - Xinping Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
- Corresponding author. (K.L.); (X.Z.)
| |
Collapse
|
39
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
40
|
Dawood NYM, Younis BM, Areed NFF, Hameed MFO, Obayya SSA. Mid-infrared optical modulator based on silicon D-shaped photonic crystal fiber with VO 2 material. APPLIED OPTICS 2021; 60:9488-9496. [PMID: 34807090 DOI: 10.1364/ao.440371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Recently, photonic crystal fibers (PCFs) have become of significant interest due to their various applications, especially in the mid-infrared (mid-IR) regime. In this work, an optical mid-IR modulator based on silicon D-shaped PCF (Si-D-PCF) with vanadium dioxide (VO2) as a phase changing material (PCM) is presented and analyzed. Thanks to the phase transition of the VO2 material between insulating (ON) and conducting (OFF) states, the modulation process can be attained. The well-known full vectorial finite element method is utilized to numerically analyze the proposed design. Further, the propagation of light through the suggested structure is studied using the 3D finite difference time domain method. The optical losses of the fundamental TM mode supported by the Si-D-PCF structure in both ON and OFF states are investigated. The obtained results reveal that the extinction ratio (ER) of the reported modulator approaches 236 dB, while the insertion loss (IL) is less than 1.3 dB over the studied wavelength range 3-7 µm at a device length (LD) of 0.5 mm. Additionally, the ER of the proposed modulator is higher than 56 dB through the whole studied wavelength range. Therefore, the proposed modulator could be utilized in photonic integrated circuits that require high ER, low IL, and large bandwidth. To the best of the authors' knowledge, this is the first time an infrared optical modulator based on Si-D-PCF with VO2 material has been presented.
Collapse
|
41
|
Roshan Entezar S. Bistable absorption in a 1D photonic crystal with a nanocomposite defect layer. APPLIED OPTICS 2021; 60:8445-8452. [PMID: 34612944 DOI: 10.1364/ao.436170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
We investigate the nonlinear absorption properties of a defective one-dimensional photonic crystal at the near-infrared range using the nonlinear transfer matrix method. The defect is a nanocomposite layer containing vanadium dioxide nanoparticles sandwiched between two nonlinear dielectric layers. The linear absorption spectrum of the designed structure has three resonant absorption lines at the bandgap region of the photonic crystal. We can reconfigure the structure in the linear regime from nearly transparent to absorbent or vice versa in multiple resonant wavelengths by adjusting the temperature. Moreover, the system shows absorptive bistability by adjusting the intensity and incident angle of the input light. We discuss the tunability of the nonlinear absorption in detail. In the nonlinear regime, we show that, besides the temperature, the structure can be reconfigured from absorbent to transparent and vice versa by adjusting the incident optical power and the incident angle. We validate the results by examining the electric field distribution throughout the structure.
Collapse
|
42
|
Li D, Wang Q, Xu X. Thermal Conductivity of VO 2 Nanowires at Metal-Insulator Transition Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2428. [PMID: 34578742 PMCID: PMC8472604 DOI: 10.3390/nano11092428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Vanadium dioxide (VO2) nanowires endowed with a dramatic metal-insulator transition have attracted enormous attention. Here, the thermal conductance of VO2 nanowires with different sizes, measured using the thermal bridge method, is reported. A size-dependent thermal conductivity was observed where the thicker nanowire showed a higher thermal conductivity. Meanwhile, the thermal conductivity jump at metal-insulator transition temperature was measured to be much higher in the thicker samples. The dominant heat carriers were phonons both at the metallic and the insulating regimes in the measured samples, which may result from the coexistence of metal and insulator phases at high temperature. Our results provide a window into exploring the mechanism of the metal-insulator transition of VO2 nanowires.
Collapse
Affiliation(s)
| | | | - Xiangfan Xu
- Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (D.L.); (Q.W.)
| |
Collapse
|
43
|
Shi R, Chen Y, Cai X, Lian Q, Zhang Z, Shen N, Amini A, Wang N, Cheng C. Phase management in single-crystalline vanadium dioxide beams. Nat Commun 2021; 12:4214. [PMID: 34244501 PMCID: PMC8270972 DOI: 10.1038/s41467-021-24527-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
A systematic study of various metal-insulator transition (MIT) associated phases of VO2, including metallic R phase and insulating phases (T, M1, M2), is required to uncover the physics of MIT and trigger their promising applications. Here, through an oxide inhibitor-assisted stoichiometry engineering, we show that all the insulating phases can be selectively stabilized in single-crystalline VO2 beams at room temperature. The stoichiometry engineering strategy also provides precise spatial control of the phase configurations in as-grown VO2 beams at the submicron-scale, introducing a fresh concept of phase transition route devices. For instance, the combination of different phase transition routes at the two sides of VO2 beams gives birth to a family of single-crystalline VO2 actuators with highly improved performance and functional diversity. This work provides a substantial understanding of the stoichiometry-temperature phase diagram and a stoichiometry engineering strategy for the effective phase management of VO2. Control of the phases associated with the metal-insulator transition in VO2 underpins its applications as a phase change material. Here, the authors report phase management by means of oxide inhibitor-assisted growth and present high-performance VO2 actuators based on asymmetric phase transition routes.
Collapse
Affiliation(s)
- Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China.,Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yong Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China.,Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xiangbin Cai
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Qing Lian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Zhuoqiong Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Nan Shen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Kingswood, NSW, Australia
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China.
| |
Collapse
|
44
|
Wang X, Qi H, Hu X, Yu Z, Ding S, Du Z, Gong Q. Advances in Photonic Devices Based on Optical Phase-Change Materials. Molecules 2021; 26:2813. [PMID: 34068710 PMCID: PMC8126227 DOI: 10.3390/molecules26092813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Phase-change materials (PCMs) are important photonic materials that have the advantages of a rapid and reversible phase change, a great difference in the optical properties between the crystalline and amorphous states, scalability, and nonvolatility. With the constant development in the PCM platform and integration of multiple material platforms, more and more reconfigurable photonic devices and their dynamic regulation have been theoretically proposed and experimentally demonstrated, showing the great potential of PCMs in integrated photonic chips. Here, we review the recent developments in PCMs and discuss their potential for photonic devices. A universal overview of the mechanism of the phase transition and models of PCMs is presented. PCMs have injected new life into on-chip photonic integrated circuits, which generally contain an optical switch, an optical logical gate, and an optical modulator. Photonic neural networks based on PCMs are another interesting application of PCMs. Finally, the future development prospects and problems that need to be solved are discussed. PCMs are likely to have wide applications in future intelligent photonic systems.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
| | - Huixin Qi
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
| | - Xiaoyong Hu
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zixuan Yu
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
| | - Shaoqi Ding
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
| | - Zhuochen Du
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
| | - Qihuang Gong
- Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; (X.W.); (H.Q.); (Z.Y.); (S.D.); (Z.D.); (Q.G.)
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
45
|
Zheng Y, Chen Z, Lu H, Cheng Y, Chen X, He Y, Zhang Z. The formation of TiO 2/VO 2 multilayer structure via directional cationic diffusion. NANOSCALE 2021; 13:7783-7791. [PMID: 33871530 DOI: 10.1039/d1nr00290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The alternative VO2/TiO2 nanostructure is a potential candidate for application in optical or electrical devices. A promising and straightforward route to form tunable alternative VO2/TiO2 nanostructure is in high demand. Herein, we demonstrate that the VO2/TiO2 nanostructure could be self-assembled from the VO2 film/TiO2 substrate via directional cationic migration, characterizing Ti-rich nano-lamellas with nanoscale spacing along the c-axis. Through aberration-corrected high-resolution transmission electron microscopy, it has been shown that the realization of directional cationic migration is assisted by the interstitial position inside the VO2 lattice. Non-equilibrium cationic diffusion could even retain these interstitial atoms in the form of incoherent strain lines, which affect the local electronic structure as validated by theoretical calculation. Due to Ti-rich nano-lamellas and incoherent strain lines, the phase transition temperature decreased (∼10 °C). The idea of tailoring the elemental distribution by directional cationic diffusion significantly broadens the functional application of VO2 films.
Collapse
Affiliation(s)
- Yonghui Zheng
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria.
| | - Zhuo Chen
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria.
| | - Hao Lu
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Cheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China. and State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xin Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yunbin He
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Lab of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zaoli Zhang
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria.
| |
Collapse
|
46
|
Chen HW, Li CI, Ma CH, Chu YH, Liu HL. Strain engineering of optical properties in transparent VO 2/muscovite heterostructures. Phys Chem Chem Phys 2021; 23:8908-8915. [PMID: 33876050 DOI: 10.1039/d1cp00642h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transparent VO2/muscovite heterostructures have attracted considerable attention because of their unique chemical and physical properties and potential practical applications. In this paper, we investigated the influence of uniaxial mechanical strain on the optical properties of VO2/muscovite heterostructures through Raman scattering and optical transmittance measurements. Under applied strain, linear shifts in peak positions of Raman-active phonon modes at approximately 340, 309, and 391 cm-1 were observed. The extracted Grüneisen parameter values were approximately between 0.44 and 0.57. Furthermore, a pronounced strain-induced change in the metal-insulator transition (MIT) temperature was observed, which decreased under compressive strain and increased under tensile strain. The rates of MIT temperature variation reached 4.5 °C per % and 7.1 °C per % at a wavelength of 1200 nm during heating and cooling processes, respectively. These results demonstrate that the modulation of the optical properties of VO2/muscovite heterostructures is controllable and reversible through strain engineering, opening up new opportunities for applications in flexible and tunable photonic devices.
Collapse
Affiliation(s)
- Hsaio-Wen Chen
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan.
| | | | | | | | | |
Collapse
|
47
|
Sandiumenge F, Rodríguez L, Pruneda M, Magén C, Santiso J, Catalan G. Metallic Diluted Dimerization in VO 2 Tweeds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004374. [PMID: 33501746 DOI: 10.1002/adma.202004374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/03/2021] [Indexed: 06/12/2023]
Abstract
The observation of electronic phase separation textures in vanadium dioxide, a prototypical electron-correlated oxide, has recently added new perspectives on the long standing debate about its metal-insulator transition and its applications. Yet, the lack of atomically resolved information on phases accompanying such complex patterns still hinders a comprehensive understanding of the transition and its implementation in practical devices. In this work, atomic resolution imaging and spectroscopy unveils the existence of ferroelastic tweed structures on ≈5 nm length scales, well below the resolution limit of currently used spectroscopic imaging techniques. Moreover, density functional theory calculations show that this pretransitional fine-scale tweed, which on average looks and behaves like the standard metallic rutile phase, is in fact weaved by semi-dimerized chains of vanadium in a new monoclinic phase that represents a structural bridge to the monoclinic insulating ground state. These observations provide a multiscale perspective for the interpretation of existing data, whereby phase coexistence and structural intermixing can occur all the way down to the atomic scale.
Collapse
Affiliation(s)
- Felip Sandiumenge
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Catalonia, 08193, Spain
| | - Laura Rodríguez
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
| | - Miguel Pruneda
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
| | - César Magén
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza - CSIC, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain
- Laboratorio de Microscopías Avanzadas (LMA) - Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - José Santiso
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
| | - Gustau Catalan
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, 08010, Spain
| |
Collapse
|
48
|
Chen Y, Yang J, Zhang X, Feng Y, Zeng H, Wang L, Feng W. Light-driven bimorph soft actuators: design, fabrication, and properties. MATERIALS HORIZONS 2021; 8:728-757. [PMID: 34821314 DOI: 10.1039/d0mh01406k] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soft robots that can move like living organisms and adapt to their surroundings are currently in the limelight from fundamental studies to technological applications, due to their advances in material flexibility, human-friendly interaction, and biological adaptation that surpass conventional rigid machines. Light-fueled smart actuators based on responsive soft materials are considered to be one of the most promising candidates to promote the field of untethered soft robotics, thereby attracting considerable attention amongst materials scientists and microroboticists to investigate photomechanics, photoswitch, bioinspired design, and actuation realization. In this review, we discuss the recent state-of-the-art advances in light-driven bimorph soft actuators, with the focus on bilayer strategy, i.e., integration between photoactive and passive layers within a single material system. Bilayer structures can endow soft actuators with unprecedented features such as ultrasensitivity, programmability, superior compatibility, robustness, and sophistication in controllability. We begin with an explanation about the working principle of bimorph soft actuators and introduction of a synthesis pathway toward light-responsive materials for soft robotics. Then, photothermal and photochemical bimorph soft actuators are sequentially introduced, with an emphasis on the design strategy, actuation performance, underlying mechanism, and emerging applications. Finally, this review is concluded with a perspective on the existing challenges and future opportunities in this nascent research Frontier.
Collapse
Affiliation(s)
- Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hwang IH, Park CI, Yeo S, Sun CJ, Han SW. Decoupling the metal insulator transition and crystal field effects of VO 2. Sci Rep 2021; 11:3135. [PMID: 33542342 PMCID: PMC7862372 DOI: 10.1038/s41598-021-82588-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
VO2 is a highly correlated electron system which has a metal-to-insulator transition (MIT) with a dramatic change of conductivity accompanied by a first-order structural phase transition (SPT) near room temperature. The origin of the MIT is still controversial and there is ongoing debate over whether an SPT induces the MIT and whether the Tc can be engineered using artificial parameters. We examined the electrical and local structural properties of Cr- and Co-ion implanted VO2 (Cr-VO2 and Co-VO2) films using temperature-dependent resistance and X-ray absorption fine structure (XAFS) measurements at the V K edge. The temperature-dependent electrical resistance measurements of both Cr-VO2 and Co-VO2 films showed sharp MIT features. The Tc values of the Cr-VO2 and Co-VO2 films first decreased and then increased relative to that of pristine VO2 as the ion flux was increased. The pre-edge peak of the V K edge from the Cr-VO2 films with a Cr ion flux ≥ 1013 ions/cm2 showed no temperature-dependent behavior, implying no changes in the local density of states of V 3d t2g and eg orbitals during MIT. Extended XAFS (EXAFS) revealed that implanted Cr and Co ions and their tracks caused a substantial amount of structural disorder and distortion at both vanadium and oxygen sites. The resistance and XAFS measurements revealed that VO2 experiences a sharp MIT when the distance of V-V pairs undergoes an SPT without any transitions in either the VO6 octahedrons or the V 3d t2g and eg states. This indicates that the MIT of VO2 occurs with no changes of the crystal fields.
Collapse
Affiliation(s)
- In-Hui Hwang
- Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chang-In Park
- Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea
| | - Sunmog Yeo
- Korea Atomic Energy Research Institute, KOMAC, Miraero 181, Gyoungju, 38180, Korea
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Sang-Wook Han
- Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea.
| |
Collapse
|
50
|
Li Z, Wu Q, Wu C. Surface/Interface Chemistry Engineering of Correlated-Electron Materials: From Conducting Solids, Phase Transitions to External-Field Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002807. [PMID: 33643796 PMCID: PMC7887576 DOI: 10.1002/advs.202002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Correlated electronic materials (CEMs) with strong electron-electron interactions are often associated with exotic properties, such as metal-insulator transition (MIT), charge density wave (CDW), superconductivity, and magnetoresistance (MR), which are fundamental to next generation condensed matter research and electronic devices. When the dimension of CEMs decreases, exposing extremely high specific surface area and enhancing electronic correlation, the surface states are equally important to the bulk phase. Therefore, surface/interface chemical interactions provide an alternative route to regulate the intrinsic properties of low-dimensional CEMs. Here, recent achievements in surface/interface chemistry engineering of low-dimensional CEMs are reviewed, using surface modification, molecule-solid interaction, and interface electronic coupling, toward modulation of conducting solids, phase transitions including MIT, CDW, superconductivity, and magnetism transition, as well as external-field response. Surface/interface chemistry engineering provides a promising strategy for exploring novel properties and functional applications in low-dimensional CEMs. Finally, the current challenge and outlook of the surface/interface engineering are also pointed out for future research development.
Collapse
Affiliation(s)
- Zejun Li
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS center for Excellence in Nanoscienceand CAS Key Laboratory of Mechanical Behavior and Design of MaterialsUniversity of Science and Technology of ChinaHefeiAnhui230026PR China
| | - Qiran Wu
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS center for Excellence in Nanoscienceand CAS Key Laboratory of Mechanical Behavior and Design of MaterialsUniversity of Science and Technology of ChinaHefeiAnhui230026PR China
| | - Changzheng Wu
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS center for Excellence in Nanoscienceand CAS Key Laboratory of Mechanical Behavior and Design of MaterialsUniversity of Science and Technology of ChinaHefeiAnhui230026PR China
| |
Collapse
|