1
|
Longuinhos R, Late DJ, Viana BC, Alencar RS, Terrones M, Souza Filho AG, Jorio A, Ribeiro-Soares J. Thickness dependence of wavenumbers and optical-activity selection rule of zone-center phonons in two-dimensional gallium sulfide metal monochalcogenide. Phys Chem Chem Phys 2024; 26:27260-27269. [PMID: 39355900 DOI: 10.1039/d4cp02695k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Gallium sulfide (GaS) stands out as a versatile nonlinear optical material for green-blue optoelectronic and photocatalytic nano-devices. In addition, the in-plane breaking strain and mechanical strength of layered GaS make it a promising candidate for next-generation flexible nanodevices. The fast and reliable assessment of the number of layers, without sample loss, is key for these applications. Here we unveil the influence of dimensionality in the structural, mechanical, and vibrational properties of GaS by applying density-functional theory-based quantum-simulations and group-theory analysis. We find its intralayer structure and interlayer distances are essentially independent of the number of layers, in agreement with the van der Waals forces as dominant interlayer interactions. The translational symmetry breaking along the stacking direction results in different structural symmetries for monolayers, N-odd layers, N-even layers, and bulk geometries. Its force constants against rigid-layer shear, KLSM = 1.35 × 1019 N m-3, and breathing, KLBM = 5.00 × 1019 N m-3, displacements remain the same from bulk to bilayer structures. The related stiffness coefficients in bulk are C44 = 10.2 GPa and C33 = 37.7 GPa, respectively. This insight into GaS interlayer interactions and elastic coefficients reveals it as a promising lubricant for nano-mechanic applications and it is easy to cleave for thickness engineering, even in comparison with layered graphite, MoS2 and other transition metal dichalcogenides and group-IIIA metal monochalcogenides. We present the GaS Raman and infrared spectra dependence on the layer number as strategies for sample thickness characterization and derive formulas for distinguishing the number of layers in both high and low-frequency regimes. In addition, our analysis of their optical-activity selection rules and polarization dependencies is applicable to isostructural group-IIIA metal monochalcogenides with 2H-layer stacking, such as gallium/indium sulphide/selenide. These results contribute to rapid and non-destructive characterization of the material's structure, which is of paramount importance for the manufacturing of devices and the utilization of its diverse properties.
Collapse
Affiliation(s)
- R Longuinhos
- Departamento de Física, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil.
| | - Dattatray J Late
- Departamento de Física, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil.
| | - B C Viana
- Departamento de Física, Universidade Federal do Piauí, Teresina, Piauí, 64049-550, Brazil
| | - R S Alencar
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-900, Brazil
| | - M Terrones
- Department of Physics, Chemistry, Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, 104 Davey Lab., University Park, Pennsylvania 16802, USA
| | - A G Souza Filho
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-900, Brazil
| | - A Jorio
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - J Ribeiro-Soares
- Departamento de Física, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil.
| |
Collapse
|
2
|
Martinez A, Gothe PK, Liou YD, Bhayde OT, Gish JT, Sangwan VK, Rabel MP, Rumende T, Gonzalez GG, Jiang J, Cao Y, Darancet P, Meletis E, Hersam MC, Koh SJ. Sub-1K Cold-Electron Quantum Well Switching at Room Temperature. NANO LETTERS 2024; 24:13981-13990. [PMID: 39467161 DOI: 10.1021/acs.nanolett.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Quantum states can provide means to systematically manipulate the transport of electrons. Here we present electron transport across quasi-bound states of two heterogeneous quantum wells (QWs), where the transport of thermally excited electrons is blocked or enabled depending on the relative positions of the two quasi-bound states, with an abrupt current onset occurring when the two QW states align. The QW switch comprises a source (Cr), QW1 (Cr2O3), QW2 (SnOx, x < 2), a tunneling barrier (SiO2), and a drain (Si), where the effective electron mass of QW1 (m*QW1) is selected to be larger than QW2 (m*QW2). The current-voltage (I-V) measurements of the fabricated devices show abrupt current onsets, with the current transition occurring within 0.25 mV, corresponding to an effective electron temperature of 0.8 K at room temperature. Since transistor power consumption is fundamentally tied to effective electron temperature, this sub-1K cold-electron QW switching holds promise for highly energy-efficient computing.
Collapse
Affiliation(s)
- Anthony Martinez
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pushkar K Gothe
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi-De Liou
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ojas T Bhayde
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - J Tyler Gish
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael P Rabel
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Thévenin Rumende
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Gumaro G Gonzalez
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiechao Jiang
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ye Cao
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pierre Darancet
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Efstathios Meletis
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Seong Jin Koh
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
3
|
Denninger P, Schweizer P, Spiecker E. Characterization of extended defects in 2D materials using aperture-based dark-field STEM in SEM. Micron 2024; 186:103703. [PMID: 39163748 DOI: 10.1016/j.micron.2024.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Quantitative diffraction contrast analysis with defined diffraction vectors is a well-established method in TEM for studying defects in crystalline materials. A comparable transmission technique is however not available in the more widely used SEM platforms. In this work, we transfer the aperture-based dark-field imaging method from the TEM to the SEM, thus enabling quantitative diffraction contrast studies at lower voltages in SEM. This is achieved in STEM mode by inserting a custom-made aperture between the sample and the STEM detector and centering the hole on a desired reflection. To select individual reflections for dark-field imaging, we use our Low Energy Nanodiffraction (LEND) setup [Schweizer et al., Ultramicroscopy 213, 112956 (2020)], which captures transmission diffraction patterns from a fluorescent screen positioned below the sample. The aperture-based dark-field STEM method is particularly useful for studying extended defects in 2D materials, where (i) stronger diffraction at the lower voltages used in SEM is advantageous, but (ii) two-beam conditions cannot be established, making quantitative diffraction contrast analysis with standard bright-field and annular dark-field detectors impossible. We demonstrate the method by studying basal plane dislocations in bilayer graphene, which have attracted considerable research interest due to their exceptional structural and electronic properties. Direct comparison of results obtained on identical dislocations by the established TEM method and by the new aperture-based dark-field STEM method in SEM shows that a reliable Burgers vector analysis is possible by applying the well-known g·b=0 invisibility criterion. We further use the LEND setup to acquire 4D-STEM data and show that the virtual dark-field images match well with those in aperture-based dark-field STEM images for reliable Burgers vector analysis.
Collapse
Affiliation(s)
- Peter Denninger
- Institute of Micro, and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, Erlangen 91058, Germany
| | - Peter Schweizer
- Institute of Micro, and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, Erlangen 91058, Germany
| | - Erdmann Spiecker
- Institute of Micro, and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, Erlangen 91058, Germany.
| |
Collapse
|
4
|
Zha J, Dong D, Huang H, Xia Y, Tong J, Liu H, Chan HP, Ho JC, Zhao C, Chai Y, Tan C. Electronics and Optoelectronics Based on Tellurium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408969. [PMID: 39279605 DOI: 10.1002/adma.202408969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
As a true 1D system, group-VIA tellurium (Te) is composed of van der Waals bonded molecular chains within a triangular crystal lattice. This unique crystal structure endows Te with many intriguing properties, including electronic, optoelectronic, thermoelectric, piezoelectric, chirality, and topological properties. In addition, the bandgap of Te exhibits thickness dependence, ranging from 0.31 eV in bulk to 1.04 eV in the monolayer limit. These diverse properties make Te suitable for a wide range of applications, addressing both established and emerging challenges. This review begins with an elaboration of the crystal structures and fundamental properties of Te, followed by a detailed discussion of its various synthesis methods, which primarily include solution phase, and chemical and physical vapor deposition technologies. These methods form the foundation for designing Te-centered devices. Then the device applications enabled by Te nanostructures are introduced, with an emphasis on electronics, optoelectronics, sensors, and large-scale circuits. Additionally, performance optimization strategies are discussed for Te-based field-effect transistors. Finally, insights into future research directions and the challenges that lie ahead in this field are shared.
Collapse
Affiliation(s)
- Jiajia Zha
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Dechen Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jingyi Tong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Handa Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Chunsong Zhao
- Huawei Technologies CO., LTD, Shenzhen, 518000, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, 999077, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, 999077, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
5
|
Ren W, Wang H, Jiang Y, Dong J, He D, An Q. CoS 2/carbon network flexible film with Co-N bond/π-π interaction enables superior mechanical properties and high-rate sodium ion storage. J Colloid Interface Sci 2024; 673:104-112. [PMID: 38875782 DOI: 10.1016/j.jcis.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Flexible electrodes based on conversion-type materials have potential applications in low-cost and high-performance flexible sodium-ion batteries (FSIBs), owing to their high theoretical capacity and appropriate sodiation potential. However, they suffer from flexible electrodes with poor mechanical properties and sluggish reaction kinetics. In this study, freestanding CoS2 nanoparticles coupled with graphene oxides and carbon nanotubes (CoS2/GO/CNTs) flexible films with robust and interconnected architectures were successfully synthesized. CoS2/GO/CNTs flexible film displays high electronic conductivity and superior mechanical properties (average tensile strength of 21.27 MPa and average toughness of 393.18 KJ m-3) owing to the defect bridge for electron transfer and the formation of the π-π interactions between CNTs and GO. In addition, the close contact between the CoS2 nanoparticles and carbon networks enabled by the Co-N chemical bond prevents the self-aggregation of the CoS2 nanoparticles. As a result, the CoS2/GO/CNTs flexible film delivered superior rate capability (213.5 mAh g-1 at 6 A g-1, better than most reported flexible anode) and long-term cycling stability. Moreover, the conversion reaction that occurred in the CoS2/GO/CNTs flexible film exhibited pseudocapacitive behavior. This study provides meaningful insights into the development of flexible electrodes with superior mechanical properties and electrochemical performance for energy storage.
Collapse
Affiliation(s)
- Wen Ren
- School of Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| | - Jun Dong
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, PR China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Ding S, Liu Y, Shang Q, Gao B, Yao F, Wang B, Ma X, Zhang Z, Jin C. Morphological Evolution of Atomic Layer Deposited Hafnium Oxide on Aligned Carbon Nanotube Arrays. NANO LETTERS 2024; 24:13631-13637. [PMID: 39347618 DOI: 10.1021/acs.nanolett.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microscopic study of the nucleation and growth of atomic layer deposition (ALD) dielectrics onto carbon nanotubes (CNTs) is an essential while challenging task toward high-performance devices. Here, we capture the morphological evolution and growth behaviors of ALD-HfO2 onto SiO2/Si-supported aligned CNT arrays (A-CNTs) under three ALD recipes via cross-sectional high-resolution scanning transmission electron microscopy. The HfO2 in ALD I (200 °C) preferentially nucleates on the SiO2 substrate in heterogeneous growth mode, resulting in films with considerable pinholes, while ALD II (90 °C) and III (90 °C and extra H2O presoak) exhibit homogeneous growth with nucleation on both SiO2 and CNTs, yielding uniform films. Arrangement defects in A-CNTs exacerbate nonuniformity of HfO2 and tube-tube separation plays deterministic roles affecting the HfO2-CNT interfacial morphology. Electrical measurements from A-CNTs metaloxide-semiconductor devices validate these findings. Our investigation contributes valuable insights for optimizing ALD processes for enhanced dielectric integration on A-CNTs in next-generation electronics.
Collapse
Affiliation(s)
- Sujuan Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yifan Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Qian Shang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Bing Gao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fenfa Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bo Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaoming Ma
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
7
|
Tamersit K. WS 2 Nanosheet-Based Ultrascaled Field-Effect Transistor for Hydrogen Gas Sensing: Addressing the Sensitivity-Downscaling Trade-Off. SENSORS (BASEL, SWITZERLAND) 2024; 24:6730. [PMID: 39460208 PMCID: PMC11511327 DOI: 10.3390/s24206730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
In this paper, we propose an ultrascaled WS2 field-effect transistor equipped with a Pd/Pt sensitive gate for high-performance and low-power hydrogen gas sensing applications. The proposed nanosensor is simulated by self-consistently solving a quantum transport equation with electrostatics at the ballistic limit. The gas sensing principle is based on the gas-induced change in the metal gate work function. The hydrogen gas nanosensor leverages the high sensitivity of two-dimensional WS2 to its sur-rounding electrostatic environment. The computational investigation encompasses the nanosensor's behavior in terms of potential profile, charge density, current spectrum, local density of states (LDOS), transfer characteristics, and sensitivity. Additionally, the downscaling-sensitivity trade-off is analyzed by considering the impact of drain-to-source voltage and the electrostatics parameters on subthreshold performance. The simulation results indicate that the downscaling-sensitivity trade-off can be optimized through enhancements in electrostatics, such as utilizing high-k dielectrics and reducing oxide thickness, as well as applying a low drain-to-source voltage, which also contributes to improved energy efficiency. The proposed nanodevice meets the prerequisites for cutting-edge gas nanosensors, offering high sensing performance, improved scaling capability, low power consumption, and complementary metal-oxide-semiconductor compatibility, making it a compelling candidate for the next generation of ultrascaled FET-based gas nanosensors.
Collapse
Affiliation(s)
- Khalil Tamersit
- National School of Nanoscience and Nanotechnology, Abdelhafid Ihaddaden Science and Technology Hub, Sidi Abdellah, Algiers 16000, Algeria; or
- Laboratory of Inverse Problems, Modeling, Information and Systems (PIMIS), Université 8 Mai 1945 Guelma, Guelma 24000, Algeria
| |
Collapse
|
8
|
Huang J, Meng J, Yang H, Jiang J, Xia Z, Zhang S, Zeng L, Yin Z, Zhang X. Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride. SMALL METHODS 2024:e2401296. [PMID: 39420859 DOI: 10.1002/smtd.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe2 on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe2 layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe2 and h-BN/sapphire is determined to HfSe2 (0001)[12 ¯ ${\mathrm{\bar{2}}}$ 10]//h-BN (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]//sapphire (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe2 layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe2 epilayers and the weak interfacial scattering of HfSe2/h-BN, the photodetector fabricated from the vdW epitaxial HfSe2 on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 104 and a responsivity up to 43 mA W-1. Furthermore, the vdW epitaxy of other TMDs such as HfS2, ZrS2, and ZrSe2 is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.
Collapse
Affiliation(s)
- Jidong Huang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Meng
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huabo Yang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyu Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Libin Zeng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Elahi E, Rabeel M, Ahmed B, Aziz J, Suleman M, Khan MA, Rehman S, Rehmat A, Asim M, Rehman MA, Ifseisi AA, Assal ME, Khan MF, Kim S. Revealing Bipolar Photoresponse in Multiheterostructured WTe 2-GaTe/ReSe 2-WTe 2 P-N Diode by Hybrid 2D Contact Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54367-54376. [PMID: 39330931 DOI: 10.1021/acsami.4c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been thoroughly investigated with regard to practical applications. Recent studies on 2D materials have reignited attraction in the p-n junction, with promising potential for applications in both electronics and optoelectronics. 2D materials provide exceptional band structural diversity in p-n junction devices, which is rare in regular bulk semiconductors. In this article, we demonstrate a p-n diode based on multiheterostructure configuration, WTe2-GaTe-ReSe2-WTe2, where WTe2 acts as heterocontact with GaTe/ReSe2 junction. Our devices with heterocontacts of WTe2 showed excellent performance in electronic and optoelectronic characteristics as compared to contacts with basic metal electrodes. However, the highest rectification ratio was achieved up to ∼2.09 × 106 with the lowest ideality factor of ∼1.23. Moreover, the maximum change in photocurrent (Iph) is measured around 312 nA at Vds = 0.5 V. The device showed a high responsivity (R) of 4.7 × 104 m·AW-1, maximum external quantum efficiency (EQE) of 2.49 × 104 (%), and detectivity (D*) of 2.1 × 1011 Jones at wavelength λ = 220 nm. Further, we revealed the bipolar photoresponse mechanisms in WTe2-GaTe-ReSe2-WTe2 devices due to band alignment at the interface, which can be modified by applying different gate voltages. Hence, our promising results render heterocontact engineering of the GaTe-ReSe2 heterostructured diode as an excellent candidate for next-generation optoelectronic logic and neuromorphic computing.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, Prague 616628, Czech Republic
| | - Muhammad Rabeel
- Department of Electrical Engineering, Sejong University, Seoul 05006, South Korea
| | - Bilal Ahmed
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea
| | - Jamal Aziz
- Chair of Smart Sensor Systems, University of Wuppertal, Wuppertal 42119, Germany
| | - Muhammad Suleman
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea
| | - Muhammad Asghar Khan
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
| | - Shania Rehman
- Department of Semiconductor System Engineering, Sejong University Seoul, 05006, South Korea
| | - Arslan Rehmat
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
| | - Muhammad Asim
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
| | - Malik Abdul Rehman
- Department of Chemical Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
| | - Ahmad A Ifseisi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul 05006, South Korea
| | - Sungho Kim
- Division of Electronic & Semiconductor Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Cao L, Wang Z, Hu D, Dong H, Qu C, Zheng Y, Yang C, Zhang R, Xing C, Li Z, Xin Z, Chen D, Song Z, He Z. Pressure-constrained sonication activation of flexible printed metal circuit. Nat Commun 2024; 15:8324. [PMID: 39333109 PMCID: PMC11436825 DOI: 10.1038/s41467-024-52873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Metal micro/nanoparticle ink-based printed circuits have shown promise for promoting the scalable application of flexible electronics due to enabling superhigh metallic conductivity with cost-effective mass production. However, it is challenging to activate printed metal-particle patterns to approach the intrinsic conductivity without damaging the flexible substrate, especially for high melting-point metals. Here, we report a pressure-constrained sonication activation (PCSA) method of the printed flexible circuits for more than dozens of metal (covering melting points from room temperature to 3422 °C) and even nonmetallic inks, which is integrated with the large-scale roll-to-roll process. The PCSA-induced synergistic heat-softening and vibration-bonding effect of particles can enable multilayer circuit interconnection and join electronic components onto printed circuits without solder within 1 s at room temperature. We demonstrate PCSA-based applications of 3D flexible origami electronics, erasable and foldable double-sided electroluminescent displays, and custom-designed and large-area electronic textiles, thus indicating its potential for universality in flexible electronics.
Collapse
Affiliation(s)
- Lingxiao Cao
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhonghao Wang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Daiwei Hu
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoxuan Dong
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunchun Qu
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Zheng
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Yang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Zhang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunxiao Xing
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhen Li
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhe Xin
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Du Chen
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhenghe Song
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhizhu He
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
11
|
Rodrigues-Fontenele G, Fontenele G, Valentim MR, Freitas LVC, Rodrigues-Junior G, Magalhães-Paniago R, Malachias A. Structural and Electronic Response of Multigap N-Doped In 2Se 3: A Prototypical Material for Broad Spectral Optical Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49902-49912. [PMID: 39241187 PMCID: PMC11420874 DOI: 10.1021/acsami.4c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The production of controlled doping in two-dimensional semiconductor materials is a challenging issue when introducing these systems into current and future technology. In some compounds, the coexistence of distinct crystallographic phases for a fixed composition introduces an additional degree of complexity for synthesis, chemical stability, and potential applications. In this work, we demonstrate that a multiphase In2Se3 layered semiconductor system, synthesized with three distinct structures─rhombohedral α and β-In2Se3 and trigonal δ-In2Se3─exhibits chemical stability and well-behaved n-type doping. Scanning tunneling spectroscopy measurements reveal variations in the local electronic density of states among the In2Se3 structures, resulting in a compound system with electronic bandgaps that range from infrared to visible light. These characteristics make the layered In2Se3 system a promising candidate for multigap or broad spectral optical devices, such as detectors and solar cells. The ability to tune the electronic properties of In2Se3 through structural phase manipulation makes it ideal for integration into flexible electronics and the development of heterostructures with other materials.
Collapse
Affiliation(s)
| | - Gabriel Fontenele
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Mirela R Valentim
- Institute of Physics, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-859, Brazil
| | - Luisa V C Freitas
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| | | | - Rogério Magalhães-Paniago
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Angelo Malachias
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30123-970, Brazil
| |
Collapse
|
12
|
Tamayo A, Danowski W, Han B, Jeong Y, Samorì P. Light-Modulated Humidity Sensing in Spiropyran Functionalized MoS 2 Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404633. [PMID: 39263764 DOI: 10.1002/smll.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.
Collapse
Affiliation(s)
- Adrián Tamayo
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Wojciech Danowski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Yeonsu Jeong
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
13
|
Ramteke SM, Walczak M, De Stefano M, Ruggiero A, Rosenkranz A, Marian M. 2D materials for Tribo-corrosion and -oxidation protection: A review. Adv Colloid Interface Sci 2024; 331:103243. [PMID: 38924802 DOI: 10.1016/j.cis.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.
Collapse
Affiliation(s)
- Sangharatna M Ramteke
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Magdalena Walczak
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program, Millennium Institute for Green Ammonia (MIGA), Santiago, Chile.
| | - Marco De Stefano
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy.
| | - Alessandro Ruggiero
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy.
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile.
| | - Max Marian
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Machine Design and Tribology (IMKT), Leibniz University Hannover, Garbsen, Germany.
| |
Collapse
|
14
|
Si K, Zhao Y, Zhang P, Wang X, He Q, Wei J, Li B, Wang Y, Cao A, Hu Z, Tang P, Ding F, Gong Y. Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In 2Se 3 on fluor-phlogopite. Nat Commun 2024; 15:7471. [PMID: 39209812 PMCID: PMC11362549 DOI: 10.1038/s41467-024-51322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Epitaxial growth of two-dimensional (2D) materials with uniform orientation has been previously realized by introducing a small binding energy difference between the two locally most stable orientations. However, this small energy difference can be easily disturbed by uncontrollable dynamics during the growth process, limiting its practical applications. Herein, we propose a quasi-equilibrium growth (QEG) strategy to synthesize inch-scale monolayer α-In2Se3 single crystals, a semiconductor with ferroelectric properties, on fluor-phlogopite substrates. The QEG facilitates the discrimination of small differences in binding energy between the two locally most stable orientations, realizing robust single-orientation epitaxy within a broad growth window. Thus, single-crystal α-In2Se3 film can be epitaxially grown on fluor-phlogopite, the cleavage surface atomic layer of which has the same 3-fold rotational symmetry with α-In2Se3. The resulting crystalline quality enables high electron mobility up to 117.2 cm2 V-1 s-1 in α-In2Se3 ferroelectric field-effect transistors, exhibiting reliable nonvolatile memory performance with long retention time and robust cycling endurance. In brief, the developed QEG method provides a route for preparing larger-area single-crystal 2D materials and a promising opportunity for applications of 2D ferroelectric devices and nanoelectronics.
Collapse
Affiliation(s)
- Kunpeng Si
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Yifan Zhao
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Materials Science and Energy Engineer, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
- The Analysis & Testing Center, Beihang University, Beijing, P. R. China
| | - Juntian Wei
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Bixuan Li
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Yongxi Wang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Aiping Cao
- Technical Center for Multifunctional Magneto Optical Spectroscopy (Shanghai), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, P. R. China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto Optical Spectroscopy (Shanghai), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, P. R. China
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
- Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Materials Science and Energy Engineer, Shenzhen University of Advanced Technology, Shenzhen, China.
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, P. R. China.
- Center for Micro-Nano Innovation of Beihang University, Beijing, P. R. China.
| |
Collapse
|
15
|
Zhang S, Wang M, Wang X, Song J, Yang X. Electrocatalysis in MOF Films for Flexible Electrochemical Sensing: A Comprehensive Review. BIOSENSORS 2024; 14:420. [PMID: 39329795 PMCID: PMC11430114 DOI: 10.3390/bios14090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface's dynamics. Among various materials that have been explored for flexible electronics, metal-organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications. We systematically categorize the design and fabrication techniques used in preparing MOF films, including in situ growth, layer-by-layer assembly, and polymer-assisted strategies. The implications of MOF-based flexible electrochemical sensors are examined in the context of wearable devices, environmental monitoring, and healthcare diagnostics. Future research is anticipated to shift from traditional microcrystalline powder synthesis to MOF thin-film deposition, which is expected to not only enhance the performance of MOFs in flexible electronics but also improve sensing efficiency and reliability, paving the way for more robust and versatile sensor technologies.
Collapse
Affiliation(s)
- Suyuan Zhang
- Sinopec (Shanghai) Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201210, China
| | - Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Dosenovic D, Dechamps S, Sharma K, Rouviere JL, Lu Y, den Hertog MI, Genovese L, Dubois SMM, Charlier JC, Jamet M, Marty A, Okuno H. Imaging Negative Charge around Single Vanadium Dopant Atoms in Monolayer Tungsten Diselenide Using 4D Scanning Transmission Electron Microscopy. ACS NANO 2024; 18:23354-23364. [PMID: 39145421 DOI: 10.1021/acsnano.4c06561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
There has been extensive activity exploring the doping of semiconducting two-dimensional (2D) transition metal dichalcogenides in order to tune their electronic and magnetic properties. The outcome of doping depends on various factors, including the intrinsic properties of the host material, the nature of the dopants used, their spatial distribution, as well as their interactions with other types of defects. A thorough atomic-level analysis is essential to fully understand these mechanisms. In this work, the vanadium-doped WSe2 monolayer grown by molecular beam epitaxy is investigated using four-dimensional scanning transmission electron microscopy (4D-STEM). Through center-of-mass-based reconstruction, atomic-scale maps are produced, allowing the visualization of both the electric field and the electrostatic potential around individual V atoms. To provide quantitative insights, these results are successfully compared to multislice image simulations based on ab initio calculations, accounting for lens aberrations. Finally, a negative charge around the V dopants is detected as a drop in the electrostatic potential, unambiguously demonstrating that 4D-STEM can be used to detect and to accurately analyze single-dopant charge states in semiconducting 2D materials.
Collapse
Affiliation(s)
| | - Samuel Dechamps
- Univ. Grenoble Alpes, CEA, IRIG-MEM, 38000 Grenoble, France
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Kshipra Sharma
- Univ. Grenoble Alpes, CEA, IRIG-MEM, 38000 Grenoble, France
| | | | - Yiran Lu
- Univ. Grenoble Alpes, CNRS-Institut Néel, F-38000 Grenoble, France
| | | | - Luigi Genovese
- Univ. Grenoble Alpes, CEA, IRIG-MEM, 38000 Grenoble, France
| | - Simon Mutien-Marie Dubois
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Matthieu Jamet
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Alain Marty
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Hanako Okuno
- Univ. Grenoble Alpes, CEA, IRIG-MEM, 38000 Grenoble, France
| |
Collapse
|
17
|
Liu X, Erbas B, Conde-Rubio A, Rivano N, Wang Z, Jiang J, Bienz S, Kumar N, Sohier T, Penedo M, Banerjee M, Fantner G, Zenobi R, Marzari N, Kis A, Boero G, Brugger J. Deterministic grayscale nanotopography to engineer mobilities in strained MoS 2 FETs. Nat Commun 2024; 15:6934. [PMID: 39138213 PMCID: PMC11322165 DOI: 10.1038/s41467-024-51165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Field-effect transistors (FETs) based on two-dimensional materials (2DMs) with atomically thin channels have emerged as a promising platform for beyond-silicon electronics. However, low carrier mobility in 2DM transistors driven by phonon scattering remains a critical challenge. To address this issue, we propose the controlled introduction of localized tensile strain as an effective means to inhibit electron-phonon scattering in 2DM. Strain is achieved by conformally adhering the 2DM via van der Waals forces to a dielectric layer previously nanoengineered with a gray-tone topography. Our results show that monolayer MoS2 FETs under tensile strain achieve an 8-fold increase in on-state current, reaching mobilities of 185 cm²/Vs at room temperature, in good agreement with theoretical calculations. The present work on nanotopographic grayscale surface engineering and the use of high-quality dielectric materials has the potential to find application in the nanofabrication of photonic and nanoelectronic devices.
Collapse
Affiliation(s)
- Xia Liu
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China.
| | - Berke Erbas
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ana Conde-Rubio
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Materials Science of Barcelona ICMAB-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Norma Rivano
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Zhenyu Wang
- Laboratory of Nanoscale Electronics and Structures, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jin Jiang
- Laboratory of Quantum Physics, Topology and Correlations, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Siiri Bienz
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Thibault Sohier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Marcos Penedo
- Laboratory for Bio- and Nano- Instrumentation, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mitali Banerjee
- Laboratory of Quantum Physics, Topology and Correlations, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Georg Fantner
- Laboratory for Bio- and Nano- Instrumentation, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Laboratory for Materials Simulations, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Andras Kis
- Laboratory of Nanoscale Electronics and Structures, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Giovanni Boero
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Juergen Brugger
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
18
|
Chen J, Sun MY, Wang ZH, Zhang Z, Zhang K, Wang S, Zhang Y, Wu X, Ren TL, Liu H, Han L. Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor. NANO-MICRO LETTERS 2024; 16:264. [PMID: 39120835 PMCID: PMC11315877 DOI: 10.1007/s40820-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- BNRist, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ming-Yuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zhen-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Kai Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China
| | - Xiaoming Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, People's Republic of China.
| |
Collapse
|
19
|
Vinh NV, Nguyen ST, Pham KD. Computational investigations of the metal/semiconductor NbS 2/boron phosphide van der Waals heterostructure: effects of an electric field. Dalton Trans 2024; 53:13022-13029. [PMID: 39028262 DOI: 10.1039/d4dt01454e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this work, we design computationally the metal-semiconductor NbS2/BP heterostructure and investigate its atomic structure, electronic properties and contact barrier using first-principles prediction. Our results show that the M-S NbS2/BP heterostructure is energetically stable and is characterized by weak vdW interactions. Interestingly, we find that the combination of the metallic NbS2 and semiconducting BP layers leads to the formation of a M-S contact. The M-S NbS2/BP heterostructure exhibits a p-type Schottky contact and a low tunneling-specific resistivity of 3.98 × 10-10 Ω cm2, indicating that the metallic NbS2 can be considered as an efficient 2D electrical contact to the semiconducting BP layer to design NbS2/BP heterostructure-based electronic devices with high charge injection efficiency. The contact barrier and contact type in the M-S NbS2/BP heterostructure can be adjusted by applying an external electric field. The conversion from p-type ShC to n-type ShC can be achieved by applying a negative electric field, while the transformation from ShC to OhC type can be achieved under the application of a positive electric field. The conversion between p-type and n-type ShC and ShC to OhC type in the NbS2/BP heterostructure demonstrates that it can be considered as a promising material for next-generation electronic devices.
Collapse
Affiliation(s)
- Nguyen V Vinh
- Faculty of Information Technology, Ho Chi Minh City University of Economics and Finance, Ho Chi Minh City, Vietnam.
| | - Son-Tung Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam.
| | - Khang D Pham
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
20
|
Wang S, Han Y, Sun S, Wang S, An C, Chen C, Zhang L, Zhou Y, Zhou J, Yang Z. Pressure Induced Nonmonotonic Evolution of Superconductivity in 6R-TaS_{2} with a Natural Bulk Van der Waals Heterostructure. PHYSICAL REVIEW LETTERS 2024; 133:056001. [PMID: 39159112 DOI: 10.1103/physrevlett.133.056001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
The natural bulk Van der Waals heterostructure compound 6R-TaS_{2} consists of alternate stacking 1T- and 1H-TaS_{2} monolayers, creating a unique system that incorporates charge-density-wave (CDW) order and superconductivity (SC) in distinct monolayers. Here, after confirming that the 2D nature of the lattice is preserved up to 8 GPa in 6R-TaS_{2}, we documented an unusual evolution of CDW and SC by conducting high-pressure electronic transport measurements. Upon compression, we observe a gradual suppression of CDW within the 1T layers, while the SC exhibits a dome-shaped behavior that terminates at a critical pressure P_{c} around 2.9 GPa. By taking account of the fact that the substantial suppression of SC is concomitant with the complete collapse of CDW order at P_{c}, we argue that the 6R-TaS_{2} behaves like a stack of Josephson junctions and thus the suppressed superconductivity can be attributed to the weakening of Josephson coupling associated with the presence of CDW fluctuations in the 1T layers. Furthermore, the SC reversely enhances above P_{c}, implying the development of emergent superconductivity in the 1T layers after the melting of T-layer CDW orders. These results show that the 6R-TaS_{2} not only provides a promising platform to explore emergent phenomena but also serves as a model system to study the complex interactions between competing electronic states.
Collapse
Affiliation(s)
| | | | - Sutao Sun
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | - Jian Zhou
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zhaorong Yang
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
21
|
Wang N, Zhang G, Wang G, Feng Z, Li Q, Zhang H, Li Y, Liu C. Pressure-Induced Enhancement and Retainability of Optoelectronic Properties in Layered Zirconium Disulfide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400216. [PMID: 38676348 DOI: 10.1002/smll.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Transition metal dichalcogenides (TMDs) exhibit excellent electronic and photoelectric properties under pressure, prompting researchers to investigate their structural phase transitions, electrical transport, and photoelectric response upon compression. Herein, the structural and photoelectric properties of layered ZrS2 under pressure using in situ high-pressure photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, absorption spectroscopy, and theoretical calculations are studied. The experimental results show that the photocurrent of ZrS2 continuously increases with increasing pressure. At 24.6 GPa, the photocurrent of high-pressure phase P21/m is three orders of magnitude greater than that of the initial phaseP 3 ¯ m 1 $P\bar{3}m1$ at ambient pressure. The minimum synthesis pressure for pure high-pressure phase P21/m of ZrS2 is 18.8 GPa, which exhibits a photocurrent that is two orders of magnitude higher than that of the initial phaseP 3 ¯ m 1 $P\bar{3}m1$ and displays excellent stability. Additionally, it is discovered that the crystal structure, electrical transport properties and bandgap of layered ZrS2 can also be regulated by pressure. This work offers researchers a new direction for synthesizing high-performance TMDs photoelectric materials using high pressure, which is crucial for enhancing the performance of photoelectric devices in the future.
Collapse
Affiliation(s)
- Na Wang
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Guozhao Zhang
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Guangyu Wang
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Zhenbao Feng
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Qian Li
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Haiwa Zhang
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and Application of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cailong Liu
- School of Physical Science & Information Technology, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
22
|
Shi H, Yang S, Wang H, Ding D, Hu Y, Qu H, Chen C, Hu X, Zhang S. Simulations of Anisotropic Monolayer GaSCl for p-Type Sub-10 nm High-Performance and Low-Power FETs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39592-39599. [PMID: 39013074 DOI: 10.1021/acsami.4c06320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Two-dimensional materials have been extensively studied in field-effect transistors (FETs). However, the performance of p-type FETs has lagged behind that of n-type, which limits the development of complementary logical circuits. Here, we investigate the electronic properties and transport performance of anisotropic monolayer GaSCl for p-type FETs through first-principles calculations. The anisotropic electronic properties of monolayer GaSCl result in excellent device performance. The p-type GaSCl FETs with 10 nm channel length have an on-state current of 2351 μA/μm for high-performance (HP) devices along the y direction and an on-state current of 992 μA/μm with an on/off ratio exceeding 107 for low-power (LP) applications along the x direction. In addition, the delay-time (τ) and power dissipation product of GaSCl FETs can fully meet the International Technology Roadmap for Semiconductors standards for HP and LP applications. Our work illustrates that monolayer GaSCl is a competitive p-type channel for next-generation devices.
Collapse
Affiliation(s)
- Hao Shi
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Siyu Yang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huipu Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dupeng Ding
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Hu
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hengze Qu
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuyao Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuemin Hu
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
23
|
Hu J, Li H, Chen A, Zhang Y, Wang H, Fu Y, Zhou X, Loh KP, Kang Y, Chai J, Wang C, Zhou J, Miao J, Zhao Y, Zhong S, Zhao R, Liu K, Xu Y, Yu B. All-2D-Materials Subthreshold-Free Field-Effect Transistor with Near-Ideal Switching Slope. ACS NANO 2024. [PMID: 39073870 DOI: 10.1021/acsnano.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The Boltzmann Tyranny, set by thermionic statistics, dictates the lower limit of switching slope (SS) of a MOSFET to be 60 mV/dec, the fundamental barrier for low-dissipative electronics. The large SS leads to nonscalable voltage, significant leakage, and power consumption, particularly at short channels, making transistor scaling an intimidating challenge. In recent decades, an array of steep-slope transistors has been proposed; none is close to an ideal switch with ultimately abrupt switching (SS ∼ 0 mV/dec) between the binary logic states. We demonstrated an all-2D-materials van-der-Waals-heterostructure (vdW)-based FET that exhibits ultrasteep switching (0.33 mV/dec), a large on/off current ratio (∼107), and an ultralow off current (∼0.1 pA). The "Subthreshold-Free" operation achieved by the collective behavior of functional materials enables FET switching directly from the OFF-state to the ON-state with entirely eliminated subthreshold region, behaving as the ideal logic switch. Two-inch wafer-scale device fabrication is demonstrated. Boosted by device innovation and emerging materials, the research presents an advancement in achieving the "beyond-Boltzmann" transistors, overcoming one of the CMOS electronics' most infamous technology barriers that have plagued the research community for decades.
Collapse
Affiliation(s)
- Jiayang Hu
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Hanxi Li
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Anzhe Chen
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Hailiang Wang
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yu Fu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xin Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yu Kang
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Jian Chai
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Chenhao Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jiachao Zhou
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Jialei Miao
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yuda Zhao
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Shuai Zhong
- Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yang Xu
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
24
|
Sharma R, Nameirakpam H, Belinchón DM, Sharma P, Noumbe U, Belotcerkovtceva D, Berggren E, Vretenár V, Vanco L, Matko M, Biroju RK, Satapathi S, Edvinsson T, Lindblad A, Kamalakar MV. Large-Scale Direct Growth of Monolayer MoS 2 on Patterned Graphene for van der Waals Ultrafast Photoactive Circuits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38711-38722. [PMID: 38995218 DOI: 10.1021/acsami.4c07028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Two-dimensional (2D) van der Waals heterostructures combine the distinct properties of individual 2D materials, resulting in metamaterials, ideal for emergent electronic, optoelectronic, and spintronic phenomena. A significant challenge in harnessing these properties for future hybrid circuits is their large-scale realization and integration into graphene interconnects. In this work, we demonstrate the direct growth of molybdenum disulfide (MoS2) crystals on patterned graphene channels. By enhancing control over vapor transport through a confined space chemical vapor deposition growth technique, we achieve the preferential deposition of monolayer MoS2 crystals on monolayer graphene. Atomic resolution scanning transmission electron microscopy reveals the high structural integrity of the heterostructures. Through in-depth spectroscopic characterization, we unveil charge transfer in Graphene/MoS2, with MoS2 introducing p-type doping to graphene, as confirmed by our electrical measurements. Photoconductivity characterization shows that photoactive regions can be locally created in graphene channels covered by MoS2 layers. Time-resolved ultrafast transient absorption (TA) spectroscopy reveals accelerated charge decay kinetics in Graphene/MoS2 heterostructures compared to standalone MoS2 and upconversion for below band gap excitation conditions. Our proof-of-concept results pave the way for the direct growth of van der Waals heterostructure circuits with significant implications for ultrafast photoactive nanoelectronics and optospintronic applications.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Henry Nameirakpam
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | | | - Prince Sharma
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ulrich Noumbe
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Daria Belotcerkovtceva
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Elin Berggren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Viliam Vretenár
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 812 43, Slovakia
| | - Lubomir Vanco
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 812 43, Slovakia
| | - Matus Matko
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 812 43, Slovakia
| | - Ravi K Biroju
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 812 43, Slovakia
- School of Advanced Sciences-Division of Physics, Vellore Institute of Technology, Vandalur-Kelambakkam Road Chennai, Chennai, Tamil Nadu 600127, India
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Tomas Edvinsson
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala SE-751 03, Sweden
| | - Andreas Lindblad
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - M Venkata Kamalakar
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| |
Collapse
|
25
|
Lin YT, Hsu CH, Chou AS, Fong ZY, Chuu CP, Chang SJ, Hsu YW, Chou SA, Liew SL, Chiu TY, Hou FR, Ni IC, Hou DHV, Cheng CC, Radu IP, Wu CI. Antimony-Platinum Modulated Contact Enabling Majority Carrier Polarity Selection on a Monolayer Tungsten Diselenide Channel. NANO LETTERS 2024; 24:8880-8886. [PMID: 38981026 PMCID: PMC11273612 DOI: 10.1021/acs.nanolett.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
We develop a novel metal contact approach using an antimony (Sb)-platinum (Pt) bilayer to mitigate Fermi-level pinning in 2D transition metal dichalcogenide channels. This strategy allows for control over the transport polarity in monolayer WSe2 devices. By adjustment of the Sb interfacial layer thickness from 10 to 30 nm, the effective work function of the contact/WSe2 interface can be tuned from 4.42 eV (p-type) to 4.19 eV (n-type), enabling selectable n-/p-FET operation in enhancement mode. The shift in effective work function is linked to Sb-Se bond formation and an emerging n-doping effect. This work demonstrates high-performance n- and p-FETs with a single WSe2 channel through Sb-Pt contact modulation. After oxide encapsulation, the maximum current density at |VD| = 1 V reaches 170 μA/μm for p-FET and 165 μA/μm for n-FET. This approach shows promise for cost-effective CMOS transistor applications using a single channel material and metal contact scheme.
Collapse
Affiliation(s)
- Yu-Tung Lin
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Ching-Hao Hsu
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Ang-Sheng Chou
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Zi-Yun Fong
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Piao Chuu
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Shu-Jui Chang
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Yu-Wei Hsu
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
| | - Sui-An Chou
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - San Lin Liew
- Quality
& Reliability, Taiwan Semiconductor
Manufacturing Company, Hsinchu 30091, Taiwan
| | - Ting-Ying Chiu
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
| | - Fa-Rong Hou
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
| | - I-Chih Ni
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
| | - Duen-Huei Vincent Hou
- Quality
& Reliability, Taiwan Semiconductor
Manufacturing Company, Hsinchu 30091, Taiwan
| | - Chao-Ching Cheng
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Iuliana P. Radu
- Corporate
Research, Taiwan Semiconductor Manufacturing
Company, Hsinchu 30091, Taiwan
| | - Chih-I Wu
- Graduate
Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
26
|
Driouech M, Mitra A, Cocchi C, Ramzan MS. Strain-free MoS 2/ZrGe 2N 4 van der Waals Heterostructure: Tunable Electronic Properties with Type-II Band Alignment. ACS OMEGA 2024; 9:30717-30724. [PMID: 39035918 PMCID: PMC11256293 DOI: 10.1021/acsomega.4c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Vertically stacked van der Waals heterostructures (vdW-HS) amplify the scope of 2D materials for emerging technological applications, such as nanodevices and solar cells. Here, we present a first-principles study on the formation energy and electronic properties of the heterobilayer (HBL) MoS2/ZrGe2N4, which forms a strain-free vdW-HS thanks to the identical lattice parameters of its constituents. This system has an indirect band gap with type-II band alignment, with the highest occupied and lowest unoccupied states localized on MoS2 and ZrGe2N4, respectively. Biaxial strain, which generally reduces the band gap regardless of compression or expansion, is applied to tune the electronic properties of the HBL. A small amount of tensile strain (>1%) leads to an indirect-to-direct transition, thereby shifting the band edges at the center of the Brillouin zone and leading to optical absorption in the visible region. These results suggest the potential application of HBL MoS2/ZrGe2N4 in optoelectronic devices.
Collapse
Affiliation(s)
- Mustapha Driouech
- Institut
für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amrita Mitra
- Institut
für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Institut
für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CeNaD), Carl von
Ossietzky Universität, 26129 Oldenburg, Germany
| | | |
Collapse
|
27
|
Zhang J, Luan Y, Ma Q, Hu Y, Ou R, Szydzik C, Yang Y, Trinh V, Ha N, Zhang Z, Ren G, Jia HJ, Zhang BY, Ou JZ. Large-area grown ultrathin molybdenum oxides for label-free sensitive biomarker detection. NANOSCALE 2024; 16:13061-13070. [PMID: 38887082 DOI: 10.1039/d4nr01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.
Collapse
Affiliation(s)
- Jiaru Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yange Luan
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Qijie Ma
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yihong Hu
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Rui Ou
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yunyi Yang
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Vien Trinh
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Zhenyue Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Hu Jun Jia
- College of Microelectronics, Xidian University, Xi'an, Shaanxi, 710000, China
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800 Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| |
Collapse
|
28
|
Zhu G, Li W, Zhang Y. Implementation of excellent spin-filtering effect in half-metallic electrode-based single-molecule optoelectronic devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:405301. [PMID: 38941993 DOI: 10.1088/1361-648x/ad5d37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
The application of half-metallic materials in single-molecule optoelectronic devices opens a promising way in advancing device performance and functionality, thus addressing a research question of significance. Here we propose a series of single-molecule devices with half-metallic FeN4-doped armchair graphene nanoribbon as electrodes and metalloporphyrin (MPr) molecules as photoresponsive materials for photon harvesting, which are driven by photogalvanic effects (PGEs). Through the quantum transport simulations, we systematically investigated the spin-polarized photocurrents under the linearly polarized light illumination in these devices. Since the exclusive opening only exists in the spin-up channel of the half-metallic nanoribbons, these devices can generate a large photocurrent in the spin-up direction whereas suppressing the spin-down photocurrent. Consequently, they exhibit an effective spin-filtering effect at numerous photon energies. Our study unveils the excellent spin-filtering effect achieved in single-molecule optoelectronic devices with half-metallic electrodes, showing instructive significance for the future design of new optoelectronic devices.
Collapse
Affiliation(s)
- Guojia Zhu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, the Ministry of Education, UESTC, Chengdu 611731, People's Republic of China
| | - Weili Li
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, the Ministry of Education, UESTC, Chengdu 611731, People's Republic of China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, the Ministry of Education, UESTC, Chengdu 611731, People's Republic of China
| |
Collapse
|
29
|
Gao H, Wang Z, Cao J, Lin YC, Ling X. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials. ACS NANO 2024; 18:16343-16358. [PMID: 38899467 DOI: 10.1021/acsnano.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.
Collapse
Affiliation(s)
- Hongze Gao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Zifan Wang
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jun Cao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuxuan Cosmi Lin
- Department of Materials Science and Engineering, Texas A&M University 575 Ross Street, College Station, Texas 77843, United States
| | - Xi Ling
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University 15 St Mary's Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
31
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
32
|
Zhang B, Gong W. Controllable Sign Reversal of the Seebeck Coefficient and Thermoelectric Performance of the Janus MoSH Monolayer. J Phys Chem Lett 2024; 15:6512-6519. [PMID: 38872244 DOI: 10.1021/acs.jpclett.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The Janus MoSH monolayer has attracted extensive attention from researchers; however, to our knowledge, there is no work yet to investigate the thermoelectric properties governed by electron-phonon (e-ph) interactions of the Janus MoSH monolayer in detail, either experimentally or theoretically. In this work, we carry out first-principles calculations on the thermoelectric performance of the MoSH monolayer in the presence of e-ph scattering by solving the Boltzmann transport equation iteratively. We find that by adjusting the Fermi level to the nearby band edge which corresponds to the van Hove singularity (VHS), the sign of the Seebeck coefficient of MoSH can be inverted and the ZT value (figure of merit) increases about 13 times (from 0.0011 to 0.0145). This sizable enhancement of ZT value requires not only the existence of the VHS at Fermi level, but also a constant Fermi surface. Such a case is expected to occur often in realistic materials, not limited only to the MoSH monolayer. In view of the nature of two-dimensional (2D) materials, the Fermi level of the Janus MoSH monolayer can be readily controlled by applying a gate voltage instead of chemical carrier doping. As such, our study proposes a feasible way to control the thermoelectric performance in a 2D structure.
Collapse
Affiliation(s)
- Binyuan Zhang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Weijiang Gong
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
33
|
Sannikov DA, Baranikov AV, Putintsev AD, Misko M, Zasedatelev AV, Scherf U, Lagoudakis PG. Room temperature, cascadable, all-optical polariton universal gates. Nat Commun 2024; 15:5362. [PMID: 38918407 PMCID: PMC11199649 DOI: 10.1038/s41467-024-49690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Today, almost all information processing is performed using electronic logic circuits operating at several gigahertz frequency. All-optical logic holds the promise to allow for up to three orders of magnitude higher speed. Whereas essential all-optical transistor functionalities were demonstrated across a range of platforms, utilising them to implement a complete Boolean logic gate set and in particular negation, i.e. switching off an optical signal with another, weaker, optical signal, poses a major challenge. Here, we realize a cascadable NOT gate by introducing the concept of non-ground-state polariton amplification in organic semiconductor microcavities under non-resonant optical excitation. We unravel the importance of vibron-mediated stimulated scattering in room temperature operation of the inverter. Moreover, we extend the concept to a multi-input universal NOR logic gate, where in the presence of any of the input signals non-ground-state amplification supersedes spontaneous ground-state condensation, resulting in a NOR gate with ~1 ps switching time. The realisation of an ultrafast universal logic gate constitutes an essential step for more complex optical circuitry that could boost information processing applications.
Collapse
Affiliation(s)
- Denis A Sannikov
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205, Moscow, Russia
| | - Anton V Baranikov
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205, Moscow, Russia
| | - Anton D Putintsev
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205, Moscow, Russia
| | - Mikhail Misko
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205, Moscow, Russia
| | - Anton V Zasedatelev
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205, Moscow, Russia
| | - Ullrich Scherf
- Macromolecular Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gauss-Strasse 20, 42119, Wuppertal, Germany
| | - Pavlos G Lagoudakis
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205, Moscow, Russia.
| |
Collapse
|
34
|
Chung CH, Lin CY, Liu HY, Nian SE, Chen YT, Tsai CE. Impact of Rh, Ru, and Pd Leads and Contact Topologies on Performance of WSe 2 FETs: A First Comparative Ab Initio Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2665. [PMID: 38893929 PMCID: PMC11173614 DOI: 10.3390/ma17112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
2D field-effect transistors (FETs) fabricated with transition metal dichalcogenide (TMD) materials are a potential replacement for the silicon-based CMOS. However, the lack of advancement in p-type contact is also a key factor hindering TMD-based CMOS applications. The less investigated path towards improving electrical characteristics based on contact geometries with low contact resistance (RC) has also been established. Moreover, finding contact metals to reduce the RC is indeed one of the significant challenges in achieving the above goal. Our research provides the first comparative analysis of the three contact configurations for a WSe2 monolayer with different noble metals (Rh, Ru, and Pd) by employing ab initio density functional theory (DFT) and non-equilibrium Green's function (NEGF) methods. From the perspective of the contact topologies, the RC and minimum subthreshold slope (SSMIN) of all the conventional edge contacts are outperformed by the novel non-van der Waals (vdW) sandwich contacts. These non-vdW sandwich contacts reveal that their RC values are below 50 Ω∙μm, attributed to the narrow Schottky barrier widths (SBWs) and low Schottky barrier heights (SBHs). Not only are the RC values dramatically reduced by such novel contacts, but the SSMIN values are lower than 68 mV/dec. The new proposal offers the lowest RC and SSMIN, irrespective of the contact metals. Further considering the metal leads, the WSe2/Rh FETs based on the non-vdW sandwich contacts show a meager RC value of 33 Ω∙μm and an exceptional SSMIN of 63 mV/dec. The two calculated results present the smallest-ever values reported in our study, indicating that the non-vdW sandwich contacts with Rh leads can attain the best-case scenario. In contrast, the symmetric convex edge contacts with Pd leads cause the worst-case degradation, yielding an RC value of 213 Ω∙μm and an SSMIN value of 95 mV/dec. While all the WSe2/Ru FETs exhibit medium performances, the minimal shift in the transfer curves is interestingly advantageous to the circuit operation. Conclusively, the low-RC performances and the desirable SSMIN values are a combination of the contact geometries and metal leads. This innovation, achieved through noble metal leads in conjunction with the novel contact configurations, paves the way for a TMD-based CMOS with ultra-low RC and rapid switching speeds.
Collapse
Affiliation(s)
| | - Chiung-Yuan Lin
- Department of Electronics and Electrical Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (C.-H.C.); (H.-Y.L.); (S.-E.N.); (Y.-T.C.); (C.-E.T.)
| | | | | | | | | |
Collapse
|
35
|
Yang S, Shi H, Hu Y, Si J, Chen C, Yang J, Qu H, Hu X, Zhang F, Zhang S. High-Performance Sub-10 nm Two-Dimensional SbSeBr Transistors through Transport Orientation. J Phys Chem Lett 2024; 15:5721-5727. [PMID: 38770896 DOI: 10.1021/acs.jpclett.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Exploring two-dimensional (2D) materials with a small carrier effective mass and suitable band gap is crucial for the design of metal oxide semiconductor field effect transistors (MOSFETs). Here, the quantum transport properties of stable 2D SbSeBr are simulated on the basis of first-principles calculations. Monolayer SbSeBr proves to be a competitive channel material, offering a suitable band gap of 1.18 eV and a small electron effective mass (me*) of 0.22m0. The 2D SbSeBr field effect transistor (FET) with 8 nm channel length exhibits a high on-state current of 1869 μA/μm, low power consumption of 0.080 fJ/μm, and small delay time of 0.062 ps, which can satisfy the requirements of the International Technology Roadmap for Semiconductors for high-performance devices. Moreover, despite the monolayer SbSeBr having an isotropic me*, the asymmetrical band trends enable SbSeBr FETs to display transport orientation, which emphasizes the importance of band trends and provides valuable insights for selecting channel materials.
Collapse
Affiliation(s)
- Siyu Yang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Hao Shi
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Yang Hu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Jingwen Si
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Chuyao Chen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Jialin Yang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Hengze Qu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Xuemin Hu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
- School of Material Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 211169, People's Republic of China
| | - Fengjun Zhang
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
| | - Shengli Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| |
Collapse
|
36
|
Trung PD, Tong HD. A first-principles prediction of the structural, electronic, transport and photocatalytic properties of GaGeX 3 (X = S, Se, Te) monolayers. RSC Adv 2024; 14:15979-15986. [PMID: 38765476 PMCID: PMC11099986 DOI: 10.1039/d4ra00949e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 05/22/2024] Open
Abstract
The discovery of new 2D materials with superior properties motivates scientists to make breakthroughs in various applications. In this study, using calculations based on density functional theory (DFT), we have comprehensively investigated the geometrical characteristics and stability of GaGeX3 monolayers (X = S, Se, or Te), determining their electronic and transport properties, and some essential optical and photocatalytic properties. AIMD simulations show that these materials are highly structurally and thermodynamically stable. Notably, the GaGeSe3 monolayer is a semiconductor with a band gap of 1.9 eV and has a high photon absorption coefficient of up to 1.1 × 105 cm-1 in the visible region. The calculated solar-to-hydrogen conversion efficiency of the GaGeSe3 monolayer is 11.33%, which is relatively high compared to some published 2D materials. Furthermore, the electronic conductivity of the GaGeSe3 monolayer is 790.65 cm2 V-1 s-1. Our findings suggest that the GaGeSe3 monolayer is a new promising catalyst for the solar water-splitting reaction to give hydrogen and a potential new 2D material for electrical devices with high electron mobility.
Collapse
Affiliation(s)
- Pham D Trung
- Yersin University 27 Ton That Tung, Ward 8 Dalat City Lam Dong Province Vietnam
| | - Hien D Tong
- Faculty of Engineering, Vietnamese-German University Binh Duong Vietnam
| |
Collapse
|
37
|
Zhu X, Sun J, Feng S, Guo H. Moiré band renormalization due to lattice mismatch in bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:315502. [PMID: 38663420 DOI: 10.1088/1361-648x/ad43a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
We investigated the band renormalization caused by the compressive-strain-induced lattice mismatch in parallel AA stacked bilayer graphene using two complementary methods: the tight-binding approach and the low-energy continuum theory. While a large mismatch does not alter the low-energy bands, a small one reduces the bandwidth of the low-energy bands along with a decrease in the Fermi velocity. In the tiny-mismatch regime, the low-energy continuum theory reveals that the long-period moiré pattern extensively renormalizes the low-energy bands, resulting in a significant reduction of bandwidth. Meanwhile, the Fermi velocity exhibits an oscillatory behavior and approaches zero at specific mismatches. However, the resulting low-energy bands are not perfectly isolated flat, as seen in twisted bilayer graphene at magic angles. These findings provide a deeper understanding of moiré physics and offer valuable guidance for related experimental studies in creating moiré superlattices using two-dimensional van der Waals heterostructures.
Collapse
Affiliation(s)
- Xingchuan Zhu
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu 214443, People's Republic of China
| | - Junsong Sun
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| | - Shiping Feng
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Huaiming Guo
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
38
|
Zhang K, Zhang T, You J, Zheng X, Zhao M, Zhang L, Kong J, Luo Z, Huang S. Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307587. [PMID: 38084456 DOI: 10.1002/smll.202307587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Indexed: 05/12/2024]
Abstract
2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
39
|
Cong Y, Tao B, Lu X, Liu X, Wang Y, Yin H. Effect of point defects on the band alignment and transport properties of 1T-MoS 2/2H-MoS 2/1T-MoS 2 heterojunctions. Phys Chem Chem Phys 2024; 26:13230-13238. [PMID: 38634402 DOI: 10.1039/d4cp00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Defects, which are an unavoidable component of the material preparation process, can have a significant impact on the properties of two-dimensional devices. In this work, we investigated theoretically the effects of different types and positions of point defects on band alignment and transport properties of metallic 1T-phase MoS2/semiconducting 2H-phase MoS2 junctions. We found that the Schottky barriers of junctions depend on the type of defects and their locations while showing anisotropic characteristics along the zigzag and armchair directions of 2H-phase MoS2. Moreover, defects in the central scattering region can generate local impurity states and introduce new transmission peaks, while defects at the interface do not generate impurity-state-related transmission peaks. Together, these defect-related peaks and Schottky barriers jointly affect the transport properties of the junctions. Understanding the complex behaviors of defects in devices can make the process of material preparation more efficient by avoiding harm.
Collapse
Affiliation(s)
- Yifei Cong
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Bairui Tao
- College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Xinzhu Lu
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Xiaojie Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yin Wang
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China.
| | - Haitao Yin
- Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
40
|
Yu SE, Lee HJ, Kim MG, Im S, Lee YT. J-MISFET Hybrid Dual-Gate Switching Device for Multifunctional Optoelectronic Logic Gate Applications. ACS NANO 2024; 18:11404-11415. [PMID: 38629449 DOI: 10.1021/acsnano.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
High-performance and low operating voltage are becoming increasingly significant device parameters to meet the needs of future integrated circuit (IC) processors and ensure their energy-efficient use in upcoming mobile devices. In this study, we suggest a hybrid dual-gate switching device consisting of the vertically stacked junction and metal-insulator-semiconductor (MIS) gate structure, named J-MISFET. It shows excellent device performances of low operating voltage (<0.5 V), drain current ON/OFF ratio (∼4.7 × 105), negligible hysteresis window (<0.5 mV), and near-ideal subthreshold slope (SS) (60 mV/dec), making it suitable for low-power switching operation. Furthermore, we investigated the switchable NAND/NOR logic gate operations and the photoresponse characteristics of the J-MISFET under the small supply voltage (0.5 V). To advance the applications further, we successfully demonstrated an integrated optoelectronic security logic system comprising 2-electric inputs (for encrypted data) and 1-photonic input signal (for password key) as a hardware security device for data protection. Thus, we believe that our J-MISFET, with its heterogeneous hybrid gate structures, will illuminate the path toward future device configurations for next-generation low-power electronics and multifunctional security logic systems in a data-driven society.
Collapse
Affiliation(s)
- Si Eun Yu
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Han Joo Lee
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Gu Kim
- Department of Medical Engineering, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongil Im
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Tack Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
41
|
Nath U, Sarma M. Realization of efficient and selective NO and NO 2 detection via surface functionalized h-B 2S 2 monolayer. Phys Chem Chem Phys 2024; 26:12386-12396. [PMID: 38623866 DOI: 10.1039/d4cp00332b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In the ever-growing field of two-dimensional (2D) materials, the boron-sulfide (B2S2) monolayer is a promising new addition to MoS2-like 2D materials, with the boron (a lighter element) pair (B2 pair) having similar valence electrons to Mo. Herein, we have functionalized the h-phase boron sulfide monolayer by introducing oxygen atoms (Oh-B2S2) to widen its application scope as a gas sensor. The charge carrier mobilities of this system were found to be 790 × 102 cm2 V-1 s-1 and 32 × 102 cm2 V-1 s-1 for electrons and holes, respectively, which are much higher than the mobilities of the MoS2 monolayer. The potential application of the 2D Oh-B2S2 monolayer in the realm of gas sensing was evaluated using a combination of density functional theory (DFT), ab initio molecular dynamics (AIMD), and non-equilibrium Green's function (NEGF) based simulations. Our results imply that the Oh-B2S2 monolayer outperforms graphene and MoS2 in NO and NO2 selective sensing with higher adsorption energies (-0.56 and -0.16 eV) and charge transfer values (0.34 and 0.13e). Furthermore, the current-voltage characteristics show that the Oh-B2S2 monolayer may selectively detect NO and NO2 gases after bias 1.4 V, providing a greater possibility for the development of boron-based gas-sensing devices for future nanoelectronics.
Collapse
Affiliation(s)
- Upasana Nath
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
42
|
Jalil A, Zhao T, Firdous A, Kanwal A, Ali Raza SR, Rafiq A. Computational Insights into Schottky Barrier Heights: Graphene and Borophene Interfaces with H- and H́-XSi 2N 4 (X = Mo, W) Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8463-8473. [PMID: 38591916 DOI: 10.1021/acs.langmuir.3c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The two-dimensional (2D) semiconducting family of XSi2N4 (X = Mo and W), an emergent class of air-stable monolayers, has recently gained attention due to its distinctive structural, mechanical, transport, and optical properties. However, the electrical contact between XSi2N4 and metals remains a mystery. In this study, we inspect the electronic and transport properties, specifically the Schottky barrier height (SBH) and tunneling probability, of XSi2N4-based van der Waals contacts by means of first-principles calculations. Our findings reveal that the electrical contacts of XSi2N4 with metals can serve as the foundation for nanoelectronic devices with ultralow SBHs. We further analyzed the tunneling probability of different metal contacts with XSi2N4. We found that the H-phase XSi2N4/metal contact shows superior tunneling probability compared to that of H́-based metal contacts. Our results suggest that heterostructures at interfaces can potentially enable efficient tunneling barrier modulation in metal contacts, particularly in the case of MoSi2N4/borophene compared to MoSi2N4/graphene and WSi2N4/graphene in transport-efficient electronic devices. Among the studied heterostructures, tunneling efficiency is highest at the H and H́-MoSi2N4/borophene interfaces, with barrier heights of 2.1 and 1.52 eV, respectively, and barrier widths of 1.04 and 0.8 Å. Furthermore, the tunneling probability for these interfaces was identified to be 21.3 and 36.4%, indicating a good efficiency of carrier injection. Thus, our study highlights the potential of MoSi2N4/borophene contact in designing power-efficient Ohmic devices.
Collapse
Affiliation(s)
- Abdul Jalil
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingkai Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ammara Firdous
- Department of Physics, Allama Iqbal Open University, Sector H-8, Islamabad 44000, Pakistan
| | - Arooba Kanwal
- Department of Physics, Allama Iqbal Open University, Sector H-8, Islamabad 44000, Pakistan
| | - Syed Raza Ali Raza
- Department of Physics, Allama Iqbal Open University, Sector H-8, Islamabad 44000, Pakistan
| | - Aftab Rafiq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Lehtrar Road, Islamabad 44000, Pakistan
| |
Collapse
|
43
|
Svigelj R, Toniolo R, Bertoni C, Fraleoni-Morgera A. Synergistic Applications of Graphene-Based Materials and Deep Eutectic Solvents in Sustainable Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2403. [PMID: 38676019 PMCID: PMC11054382 DOI: 10.3390/s24082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
44
|
Ullberg N, Filoramo A, Campidelli S, Derycke V. In Operando Study of Charge Modulation in MoS 2 Transistors by Excitonic Reflection Microscopy. ACS NANO 2024; 18:9886-9894. [PMID: 38547872 PMCID: PMC11008581 DOI: 10.1021/acsnano.3c09337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
Monolayers of transition metal dichalcogenides (2D TMDs) experience strong modulation of their optical properties when the charge density is varied. Indeed, the transition from carriers composed mostly of excitons at low electron density to a situation in which trions dominate at high density is accompanied by a significant evolution of both the refractive index and the extinction coefficient. Using optical interference reflection microscopy at the excitonic wavelength, this (n, κ)-q relationship can be exploited to directly image the electron density in operating TMD devices. In this work, we show how this technique, which we call XRM (excitonic reflection microscopy), can be used to study charge distribution in MoS2 field-effect transistors with subsecond throughput, in wide-field mode. Complete maps of the charge distribution in the transistor channel at any drain and gate bias polarization point (VDS, VGS) are obtained, at ∼3 orders of magnitude faster than with scanning probe techniques such as KPFM. We notably show how the advantages of XRM enable real-time mapping of bias-dependent charge inhomogeneities, the study of resistive delays in 2D polycrystalline networks, and the evaluation of the VDS vs VGS competition to control the charge distribution in active devices.
Collapse
Affiliation(s)
- Nathan Ullberg
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Arianna Filoramo
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Vincent Derycke
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| |
Collapse
|
45
|
Wang H, Zhang J, Su G, Lu J, Wan Y, Yu X, Yang P. The growth mechanism of PtS2 single crystal. J Chem Phys 2024; 160:134703. [PMID: 38577980 DOI: 10.1063/5.0201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
PtS2, a member of the group 10 transition metal dichalcogenides (TMDs), has received extensive attention because of its excellent electrical properties and air stability. However, there are few reports on the preparation of single-crystal PtS2 in the literature, and the growth mechanism of single crystal PtS2 is not well elucidated. In this work, we proposed a method of preparation that combines magnetron sputtering and chemical vapor transport to obtain monocrystalline PtS2 on a SiO2/Si substrate. By controlling the growth temperature and time, we have synthesized a single crystalline PtS2 of hexagonal shape and size of 1-2 μm on a silicon substrate. Combining the molecular dynamics simulation, the growth mechanism of single crystal PtS2 was investigated both experimentally and theoretically. The synthesis method has a short production cycle and low cost, which opens the door for the fabrication of other TMDs single crystals.
Collapse
Affiliation(s)
- Huachao Wang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials and Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jisheng Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials and Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Guowen Su
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials and Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Jiangwei Lu
- Kunming Institute of Physics, Kunming 650223, People's Republic of China
| | - Yanfen Wan
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials and Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Peng Yang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials and Technology, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
46
|
Zhu Y, Zhang J, Cheng T, Tang J, Duan H, Hu Z, Shao J, Wang S, Wei M, Wu H, Li A, Li S, Balci O, Shinde SM, Ramezani H, Wang L, Lin L, Ferrari AC, Yakobson BI, Peng H, Jia K, Liu Z. Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308802. [PMID: 37878366 DOI: 10.1002/adma.202308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.
Collapse
Affiliation(s)
- Yeshu Zhu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ting Cheng
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Jilin Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hongwei Duan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaxin Shao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Shiwei Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Mingyue Wei
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Sheng Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Osman Balci
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sachin M Shinde
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Hamideh Ramezani
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Luda Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Boris I Yakobson
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
47
|
Yoo MS, Byun KE, Lee H, Lee MH, Kwon J, Kim SW, Jeong U, Seol M. Ultraclean Interface of Metal Chalcogenides with Metal through Confined Interfacial Chalcogenization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310282. [PMID: 38190458 DOI: 10.1002/adma.202310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Acquisition of defect-free transition metal dichalcogenides (TMDs) channels with clean heterojunctions is a critical issue in the production of TMD-based functional electronic devices. Conventional approaches have transferred TMD onto a target substrate, and then apply the typical device fabrication processes. Unfortunately, those processes cause physical and chemical defects in the TMD channels. Here, a novel synthetic process of TMD thin films, named confined interfacial chalcogenization (CIC) is proposed. In the proposed synthesis, a uniform TMDlayer is created at the Au/transition metal (TM) interface by diffusion of chalcogen through the upper Au layer and the reaction of chalcogen with the underlying TM. CIC allows for ultraclean heterojunctions with the metals, synthesis of various homo- and hetero-structured TMDs, and in situ TMD channel formation in the last stage of device fabrication. The mechanism of TMD growth is revealed by the TM-accelerated chalcogen diffusion, epitaxial growth of TMD on Au(111). We demonstrated a wafer-scale TMD-based vertical memristors which exhibit excellent statistical concordance in device performance enabled by the ultraclean heterojunctions and superior uniformity in thickness. CIC proposed in this study represents a breakthrough in in TMD-based electronic device fabrication and marking a substantial step toward practical next-generation integrated electronics.
Collapse
Affiliation(s)
- Min Seok Yoo
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Kyung-Eun Byun
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Hyangsook Lee
- Analytical Science Laboratory, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Min-Hyun Lee
- Thin film Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Junyoung Kwon
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Sang Won Kim
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro Nam-Gu, Pohang, 37673, Republic of Korea
| | - Minsu Seol
- 2D Device Technical Unit, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| |
Collapse
|
48
|
Zhang L, Yang Z, Feng S, Guo Z, Jia Q, Zeng H, Ding Y, Das P, Bi Z, Ma J, Fu Y, Wang S, Mi J, Zheng S, Li M, Sun DM, Kang N, Wu ZS, Cheng HM. Metal telluride nanosheets by scalable solid lithiation and exfoliation. Nature 2024; 628:313-319. [PMID: 38570689 DOI: 10.1038/s41586-024-07209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.
Collapse
Affiliation(s)
- Liangzhu Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology, Shanghai, China
| | - Zixuan Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, China
| | - Shun Feng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Zhuobin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingchao Jia
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology, Shanghai, China
| | - Huidan Zeng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Electronic Chemicals innovation Institute, East China University of science and Technology, Shanghai, China
| | - Yajun Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhihong Bi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunqi Fu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinxing Mi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shuanghao Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dong-Ming Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ning Kang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, China.
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China.
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China.
| |
Collapse
|
49
|
Bussolotti F, Kawai H, Maddumapatabandi TD, Fu W, Khoo KH, Goh KEJ. Role of S-Vacancy Concentration in Air Oxidation of WS 2 Single Crystals. ACS NANO 2024; 18:8706-8717. [PMID: 38465866 DOI: 10.1021/acsnano.3c10389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Semiconducting transition metal dichalcogenides (TMDs) are a class of two-dimensional materials with potential applications in optoelectronics, spintronics, valleytronics, and quantum information processing. Understanding their stability under ambient conditions is critical for determining their in-air processability during device fabrication and for predicting their long-term device performance stability. While the effects of environmental conditions (i.e., oxygen, moisture, and light) on TMD degradation are well-acknowledged, the role of defects in driving their oxidation remains unclear. We conducted a systematic X-ray photoelectron spectroscopy study on WS2 single crystals with different surface S-vacancy concentrations formed via controlled argon sputtering. Oxidation primarily occurred at defect concentrations ≥ 10%, resulting in stoichiometric WO3 formation, while a stable surface was observed at lower concentrations. Theoretical calculations informed us that single S-vacancies do not spontaneously oxidize, while defect pairing at high vacancy concentrations facilitates O2 dissociation and subsequent oxide formation. Our XPS results also point to vacancy-related structural and electrostatic disorder as the main origin for the p-type characteristics that persists even after oxidation. Despite the complex interplay between defects and TMD oxidation processes, our work unveils scientifically informed guidance for working effectively with TMDs.
Collapse
Affiliation(s)
- Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Hiroyo Kawai
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Thathsara D Maddumapatabandi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Khoong Hong Khoo
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
50
|
Nguyen ST, Cuong Q N, N Hieu N, Phuc HV, Nguyen CV. Controllable electronic properties, contact barriers and contact types in a TaSe 2/WSe 2 metal-semiconductor heterostructure. Phys Chem Chem Phys 2024; 26:9657-9664. [PMID: 38469888 DOI: 10.1039/d4cp00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Two-dimensional (2D) metallic TaSe2 and semiconducting WSe2 materials have been successfully fabricated in experiments and are considered as promising contact and channel materials, respectively, for the design of next-generation electronic devices. Herein, we design a metal-semiconductor (M-S) heterostructure combining metallic TaSe2 and semiconducting WSe2 materials and investigate the atomic structure, electronic properties and controllable contact types of the combined TaSe2/WSe2 M-S heterostructure using first-principles calculations. Our results reveal that the TaSe2/WSe2 M-S heterostructure can adopt four different stable stacking configurations, all of which exhibit enhanced elastic constants compared to the constituent monolayers. Furthermore, the TaSe2/WSe2 M-S heterostructure exhibits p-type Schottky contact (SC) with Schottky barriers ranging from 0.36 to 0.49 eV, depending on the stacking configurations. The TaSe2/WSe2 M-S heterostructure can be considered as a promising M-S contact for next-generation electronic Schottky devices owing to its small tunneling resistivity of about 2.14 × 10-9 Ω cm2. More interestingly, the TaSe2/WSe2 M-S heterostructure exhibits tunable contact types and contact barriers under the application of an electric field. A negative electric field induces a transition from Schottky contact type to ohmic contact (OC) type. On the other hand, a positive electric field leads to a transformation from p-type SC to n-type SC. Our findings provide valuable insights into the practical applications of the TaSe2/WSe2 M-S heterostructure towards next-generation electronic devices.
Collapse
Affiliation(s)
- Son T Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam.
| | - Nguyen Cuong Q
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - H V Phuc
- Division of Physics, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam.
| | - Ch V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| |
Collapse
|