1
|
Gu Y, Lu Y, Dai P, Cao X, Zhou Y, Tang Y, Fang Z, Wu P. Self-assembled high-entropy Prussian blue analogue nanosheets enabling efficient sodium storage. J Colloid Interface Sci 2025; 677:307-313. [PMID: 39094491 DOI: 10.1016/j.jcis.2024.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
High entropy material (HEM) has emerged as an appealing material platform for various applications, and specifically, the electrochemical performances of HEM could be further improved through self-assembled structure design. However, it remains a big challenge to construct such high-entropy self-assemblies primarily due to the compositional complexity. Herein, we propose a bottom-up directional freezing route to self-assemble high-entropy hydrosols into porous nanosheets. Taking Prussian blue analogue (PBA) as an example, the simultaneous coordination-substitution reactions yield stable high-entropy PBA hydrosols. During subsequent directional freezing process, the anisotropic growth of ice crystals could guide the two-dimensional confined assembly of colloidal nanoparticles, resulting in high-entropy PBA nanosheets (HE-PBA NSs). Thanks to the high-entropy and self-assembled structure design, the HE-PBA NSs manifests markedly enhanced sodium storage kinetics and performances in comparison with medium/low entropy nanosheets and high entropy nanoparticles.
Collapse
Affiliation(s)
- Yunjiang Gu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yonglin Lu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Dai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin Cao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yiming Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhiwei Fang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States.
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Khan SK, Dutta J, Ahmad I, Rather MA. Nanotechnology in aquaculture: Transforming the future of food security. Food Chem X 2024; 24:101974. [PMID: 39582638 PMCID: PMC11585796 DOI: 10.1016/j.fochx.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| |
Collapse
|
3
|
Pendashteh A, Mikhalchan A, Blanco Varela T, Vilatela JJ. Opportunities for nanomaterials in more sustainable aviation. DISCOVER NANO 2024; 19:208. [PMID: 39690347 DOI: 10.1186/s11671-024-04087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/21/2024] [Indexed: 12/19/2024]
Abstract
New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications. We introduce a helpful classification based on three main macroscopic formats (fillers in a matrix, random sheets or aligned fibres) of high-aspect ratio nanoparticles, and the corresponding range of bulk properties from the commodity polymer to the high-performance fibre range. We review progress over two decades on macroscopic solids of nanomaterials (CNTs, graphene, nanowires, etc.), providing a framework to rationalise the transfer of their molecular-scale properties to the scale of engineering components and discussing strategies that overcome the envelope of current aerospace materials. Macroscopic materials in the form of organised networks of high aspect ratio nanomaterials have higher energy density than regular electrodes, superior mechanical properties to the best carbon fibres, and electrical and thermal conductivity above metals. Discussion on extended electrical properties focuses on nanocarbon-based materials (e.g., doped or metal-hybridised) as power or protective conductors and on conductive nanoinks for integrated conductors. Nanocomposite electrodes are enablers of hybrid/electric propulsion by eliminating electrical transport limitations, stabilising emerging high energy density battery electrodes, through high-power pseudocapacitive nanostructured networks, or downsizing Pt-free catalysts in flying fuel cells. Thermal management required in electrified aircraft calls for nanofluids and loop heat pipes of nanoporous conductors. Semi-industrial interlaminar reinforcement using nanomaterials addresses present structural components. Estimated improvements for mid-range aircraft include > 1 tonne weight reduction, eliminating hundreds of CO2 tonnes released per year and supporting hybrid/electric propulsion by 2035.
Collapse
Affiliation(s)
- Afshin Pendashteh
- IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain
| | | | | | - Juan J Vilatela
- IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.
| |
Collapse
|
4
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Jiang Y, Liu W, Wang T, Wu Y, Mei T, Wang L, Xu G, Wang Y, Liu N, Xiao K. A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag. Nat Commun 2024; 15:8582. [PMID: 39362886 PMCID: PMC11449912 DOI: 10.1038/s41467-024-52892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm-2 is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications.
Collapse
Affiliation(s)
- Yisha Jiang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, P.R. China
| | - Wenchao Liu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Tao Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China.
| | - Yitian Wu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Li Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Guoheng Xu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming, P.R. China.
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, P.R. China.
| | - Kai Xiao
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China.
| |
Collapse
|
6
|
Zhou J, Xu Z, Cui K, Yin JA, Chen HC, Wang Y, Liu F, Wang T, Hao F, Xiong Y, Wang C, Ma Y, Lu P, Yin J, Guo L, Meng X, Ye C, Ming Chen H, Zhu Y, Lu J, Fan Z. Theory-Guided Design of Unconventional Phase Metal Heteronanostructures for Higher-Rate Stable Li-CO 2 and Li-Air Batteries. Angew Chem Int Ed Engl 2024:e202416947. [PMID: 39343739 DOI: 10.1002/anie.202416947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/01/2024]
Abstract
Lithium-carbon dioxide (Li-CO2) and Li-air batteries hold great potential in achieving carbon neutral given their ultrahigh theoretical energy density and eco-friendly features. However, these Li-gas batteries still suffer from low discharging-charging rate and poor cycling life due to sluggish decomposition kinetics of discharge products especially Li2CO3. Here we report the theory-guided design and preparation of unconventional phase metal heteronanostructures as cathode catalysts for high-performance Li-CO2/air batteries. The assembled Li-CO2 cells with unconventional phase 4H/face-centered cubic (fcc) ruthenium-nickel heteronanostructures deliver a narrow discharge-charge gap of 0.65 V, excellent rate capability and long-term cycling stability over 200 cycles at 250 mA g-1. The constructed Li-air batteries can steadily run for above 150 cycles in ambient air. Electrochemical mechanism studies reveal that 4H/fcc Ru-Ni with high-electroactivity facets can boost redox reaction kinetics and tune discharge reactions towards Li2C2O4 path, alleviating electrolyte/catalyst failures induced by the aggressive singlet oxygen from solo decomposition of Li2CO3.
Collapse
Affiliation(s)
- Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Kai Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Jian-An Yin
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Tianshuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Cheng Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Jian Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
7
|
Weber CJ, Strom NE, Simoska O. Electrochemical deposition of gold nanoparticles on carbon ultramicroelectrode arrays. NANOSCALE 2024; 16:16204-16217. [PMID: 39140335 DOI: 10.1039/d4nr02326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Electrode surfaces functionalized with gold nanoparticles (AuNP) are widely used in electroanalysis, electrocatalysis, and electrochemical biosensing due to their increased surface area and conductivity. Electrochemical deposition of AuNPs offers advantages over chemical synthesis, including better control over AuNP size, dispersion, and morphology. This study examines the electrodeposition of AuNPs on carbon ultramicroelectrode arrays (CUAs) focusing on electrodeposition parameters, such as deposition potential, deposition time, and gold ion concentration. Detailed analysis based on scanning electron microscopy revealed that higher reductive potentials and shorter deposition times result in smaller AuNP particle sizes and greater particle counts. Unlike previous studies using planar, macro-sized electrodes and millimolar concentrations of gold ion, as well as longer deposition times (e.g., 100-300 s), this research employed micromolar concentration ranges (25-50 μM) of gold ion solution and shorter deposition times (5-60 s) for successful electrodeposition of AuNPs on the array-based CUAs. This is attributed to the physical properties of the ultramicroelectrodes in the array geometry and the distinct material composition of the CUAs. The gold amounts deposited on the CUA electrodes were determined (88.73 ± 0.06 nmol cm-2), which were in correlation with the electrocatalytic responses for the hydrogen evolution reaction (HER) measured on AuNP-modified CUAs. Overall, the array-based geometry, nanometer-scale electrode sizes, and unique material composition of the CUAs significantly influence AuNP electrodeposition. This study underscores the importance of systematically characterizing the electrodeposition parameters on novel electrode surfaces.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| | - Natalie E Strom
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
8
|
Anil Kumar Y, Roy N, Ramachandran T, Assiri MA, Srinivasa Rao S, Moniruzzaman M, Joo SW. Revolutionizing energy storage: exploring the nanoscale frontier of all-solid-state batteries. Dalton Trans 2024; 53:12410-12433. [PMID: 38952249 DOI: 10.1039/d4dt01133c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Due to their distinctive security characteristics, all-solid-state batteries are seen as a potential technology for the upcoming era of energy storage. The flexibility of nanomaterials shows enormous potential for the advancement of all-solid-state batteries' exceptional power and energy storage capacities. These batteries might be applied in many areas such as large-scale energy storage for power grids, as well as in the creation of foldable and flexible electronics, and portable gadgets. The most difficult aspect of creating a comprehensive nanoscale all-solid-state battery assembly is the task of decreasing the particle size of the solid electrolyte while maintaining its excellent ionic conductivity. Materials possessing nanoscale structural features and a substantial electrochemically active surface area have the potential to significantly enhance power characteristics and the cycle life. This might bring about substantial changes to existing energy storage models. The primary objective of this research is to summarize the latest advancements in utilizing nanomaterials for energy harvesting in various all-solid-state battery assemblies. This study examines the most complex solid-solid interfaces of all-solid-state batteries, as well as feasible methods for implementing nanomaterials in such interfaces. Currently, there is significant attention on the necessity to develop electrode-solid electrolyte interfaces that exhibit nanoscale particle articulation and other characteristics related to the behavior of lithium ions.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Nipa Roy
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, India
| | - Mohammed A Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sunkara Srinivasa Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, 500 043, Telangana, India
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-1342, Republic of Korea.
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
Han D, Kim S, Nam S, Lee G, Bae H, Kim JH, Choi N, Song G, Park S. Facile Lithium Densification Kinetics by Hyperporous/Hybrid Conductor for High-Energy-Density Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402156. [PMID: 38647410 PMCID: PMC11220661 DOI: 10.1002/advs.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Lithium metal anode (LMA) emerges as a promising candidate for lithium (Li)-based battery chemistries with high-energy-density. However, inhomogeneous charge distribution from the unbalanced ion/electron transport causes dendritic Li deposition, leading to "dead Li" and parasitic reactions, particularly at high Li utilization ratios (low negative/positive ratios in full cells). Herein, an innovative LMA structural model deploying a hyperporous/hybrid conductive architecture is proposed on single-walled carbon nanotube film (HCA/C), fabricated through a nonsolvent induced phase separation process. This design integrates ionic polymers with conductive carbon, offering a substantial improvement over traditional metal current collectors by reducing the weight of LMA and enabling high-energy-density batteries. The HCA/C promotes uniform lithium deposition even under rapid charging (up to 5 mA cm-2) owing to its efficient mixed ion/electron conduction pathways. Thus, the HCA/C demonstrates stable cycling for 200 cycles with a low negative/positive ratio of 1.0 when paired with a LiNi0.8Co0.1Mn0.1O2 cathode (areal capacity of 5.0 mAh cm-2). Furthermore, a stacked pouch-type full cell using HCA/C realizes a high energy density of 344 Wh kg-1 cell/951 Wh L-1 cell based on the total mass of the cell, exceeding previously reported pouch-type full cells. This work paves the way for LMA development in high-energy-density Li metal batteries.
Collapse
Affiliation(s)
- Dong‐Yeob Han
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Saehun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Seoha Nam
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Gayoung Lee
- Graduate Institute of Ferrous & Eco Materials TechnologyPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Hongyeul Bae
- Battery Materials R&D LaboratoryPOSCO Holdings, 67 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
| | - Jin Hong Kim
- Battery Materials R&D LaboratoryPOSCO Holdings, 67 Cheongam‐ro, Nam‐guPohang37673Republic of Korea
| | - Nam‐Soon Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Gyujin Song
- Ulsan Advanced Energy Technology R&D CenterKorea Institute of Energy Research (KIER)Ulsan44776Republic of Korea
| | - Soojin Park
- Department of ChemistryPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐guPohangGyeongbuk37673Republic of Korea
- Graduate Institute of Ferrous & Eco Materials TechnologyPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
10
|
Yu H, Li Y, Liu F, Wang L, Song Y. Yolk shell structured YS-Si@N-doped carbon derived from covalent organic frameworks for enhanced lithium storage. J Colloid Interface Sci 2024; 662:313-321. [PMID: 38354558 DOI: 10.1016/j.jcis.2024.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Silicon (Si) has ultra-high theoretical capacity (4200 mAh g-1) and accordingly is widely studied as anode materials for lithium-ion batteries (LIBs). However, its huge volume expansion during charging/discharging is a fatal challenge. The preparation of Si-based composite materials with yolk shell structure is the key to solving the Si volume expansion. Here, N-doped carbon-coated Si nanoparticles (SiNPs) nanocomposites (YS-Si@NC-60) with yolk shell structure derived from covalent organic frameworks (COFs) was prepared. N-doped carbon shells derived from COFs not only maintain the well-ordered nanosized pores of COFs, which facilitates the transport of Li+ to contact with internal SiNPs, but also provide more extra active sites for Li+ storage. Most importantly, the internal void can effectively alleviate the damage effect of SiNPs volume expansion. The obtained YS-Si@NC-60 as a LIBs anode show high cyclic stability and Li+ storage performances. At 0.1 A g-1, the capacity is 1446 mAh g-1 after 110 cycles, and initial coulomb efficiency is as high as 82.2 %. The excellent performance can be attributed to the unique yolk shell structure. This simple and template-free strategy provides a new idea for preparing Si-C nanocomposites with yolk shell structure.
Collapse
Affiliation(s)
- Hao Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yuan Li
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Fang Liu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Yonghai Song
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
11
|
Seenivasan M, Yang CC, Wu SH, Chang JK, Jose R. Systematic study of Co-free LiNi 0.9Mn 0.07Al 0.03O 2 Ni-rich cathode materials to realize high-energy density Li-ion batteries. J Colloid Interface Sci 2024; 661:1070-1081. [PMID: 38368230 DOI: 10.1016/j.jcis.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
The growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNi0.9Co0.1Al0.0O2 (NCA-0), LiNi0.9Mn0.1Al0.0O2 (NMA-0), LiNi0.9Mn0.07Al0.03O2 (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance. Among the synthesized samples, we discovered that the NMA-3 sample, modified with 3 mol% of Al, exhibited superior battery performance, demonstrating the effectiveness of aluminum in promoting cathode stability. Furthermore, the Al-modified cathode showed promising cycle life under normal and high-temperature conditions. Our NMA-3 demonstrated remarkable capacity retention of ∼ 88 % at 25 °C and ∼ 81 % at 45 °C after 200 cycles at 1C, within a voltage range of 2.8-4.3 V, closely matching the performances of conventional NCM and NCA cathodes. Without cobalt, the cathodes exhibited increased cation disorder leading to inferior rate capabilities at high C-rates. In-situ transmission XRD analysis revealed that the introduction of Al has reduced the phase change and provided much-needed stability to the overall structure of the Co-free NMA-3. Altogether, the findings suggest that our aluminum-modified NMA-3 sample offers a promising approach to developing Co-free, Ni-rich cathodes, effectively paving the way toward sustainable, high-energy-density LIBs.
Collapse
Affiliation(s)
- Manojkumar Seenivasan
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical and Materials Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan City 333, Taiwan.
| | - She-Huang Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Graduate Institute of Science and Technology, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, ROC
| | - Jeng-Kuei Chang
- Department of Materials Science and Engineering, National Yang-Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan, ROC
| | - Rajan Jose
- Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, 26300 Kuantan, Malaysia
| |
Collapse
|
12
|
Mor J, Sharma SK. Decoupling of ion-transport from polymer segmental relaxation and higher ionic-conductivity in poly(ethylene oxide)/succinonitrile composite-based electrolytes having low lithium salt doping. Phys Chem Chem Phys 2024; 26:13306-13315. [PMID: 38639464 DOI: 10.1039/d4cp00735b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Only limited enhancement in room-temperature ionic-conductivity for poly(ethylene oxide), PEO, based electrolytes is possible due to coupling between ionic-conductivity and segmental relaxation. In the present study, we have achieved ionic-conductivity of 1.07 × 10-3 and 6.20 × 10-4 S cm-1 at 313 and 298 K, respectively, by adding 45 wt% of succinonitrile (SN) in PEO having low LiTFSI loading (Li : EO = 1 : 20). This enhancement in the ionic-conductivity is attributed to faster ion transport (diffusion coefficient, D = 3.63 × 10-5 cm2 s-1) occurring through the ion-transport channels as confirmed by positron annihilation lifetime spectroscopy. The ionic-transport through these channels is observed to be highly decoupled from the segmental relaxations as confirmed using broadband dielectric spectroscopy through Ratner's approach. The observed decoupling of ionic-conductivity from PEO segmental relaxation in PEO-SN composite-based electrolytes would be useful to design rather inexpensive all solid-state polymer electrolytes for Li ion batteries.
Collapse
Affiliation(s)
- J Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - S K Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
13
|
Mu Y, Liu G, Su D, Yang Z, Zhang G. Adsorption of Zn atoms by monolayer WS 2 doped with different atoms X (X = O, Se, N, P, F, Cl): first principles study. J Mol Model 2024; 30:146. [PMID: 38656409 DOI: 10.1007/s00894-024-05949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
CONTEXT The effect of X (X = O, Se, N, P, F, Cl) doping on the adsorption of Zn atoms by WS2 was investigated based on first principles. The electronic structure and optical properties of the adsorbed system after atomic doping were calculated. It is found that the Zn atom adsorbed on the W top (Tw) site has the most stable structure. When an S atom is replaced with an X atom based on the adsorption system, where the adsorption energy decreases after doping of O, P, F, and Cl atoms compared to the undoped system, it means that each system is more stable after doping of these atoms; charge transfer shows that the adsorption system after P-atom doping the system around the Zn atom loses electrons while S-atom gains electrons, which indicates that P-atom doping is favorable for the adsorption of Zn by WS2, N, P-atom is introduced as p-type doping and F, Cl-atom is introduced undoped by n-type doping, and the band gap of the doped system is less than that of the undoped one. With the introduction of different dopant atoms, certain impurity energy levels are introduced into the adsorption system. The prohibited bandwidth around the Fermi energy level reduces the density of states, causing the doped system's density of states to shift to lower energies, among which the shifts of N, P, F, and Cl are more pronounced. The P-doped adsorption system shows a new peak near the energy of - 11 eV. In addition, the study of optical properties showed that the peak reflections of both doped and non-doped systems adsorbing Zn atoms appeared in the ultraviolet region; the absorbance coefficient of the doped system is moved in the lower energy direction and red-shifted after atom doping; in addition, the absorption coefficients and reflectance of the P, Se doped systems are enhanced in the wavelength range of 200-300 nm compared with that before doping, the dielectric function and CBM and VBM positions were also calculated further indicating the potential of Se-doped systems in improving photocatalytic efficiency. METHODS In this paper, the structure optimization of X (X = O, Se, N, P, F, Cl) doping on WS2 adsorbed Zn atom model is performed based on the CASTEP module in Materials-Studio software under the first principles using GGA and PBE generalized function. The corresponding binding energies, bond lengths, bond angles, charge densities, energy band structures, densities of states, and optical properties were also analyzed. The Monkhorst-Pack particular K-point sampling method is used in the calculations; the K-point grid is 6 × 6 × 1, and the cutoff energy for the plane wave expansion is 500 eV. After geometric optimization, the iterative accuracy converges to a value of less than 1 × 10-5 eV/atom for the total energy of each atom and less than 0.03 eV/Å for all atomic forces. The thickness of the vacuum layer was set to 20 Å to avoid the effect of interlayer interaction forces. In this paper, 27 atoms were used to form a 3 × 3 × 1 supercellular tungsten disulfide system consisting of 18 S atoms and 9 W atoms.
Collapse
Affiliation(s)
- Yansong Mu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guili Liu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China.
| | - Dan Su
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Zhonghua Yang
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guoying Zhang
- School of Physics, Shenyang Normal University, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Liu C, Jiang Y, Meng C, Song H, Li B, Xia S. Controllable synthesis of crystalline germanium nanorods as anode for lithium-ion batteries with high cycling stability. J Colloid Interface Sci 2024; 660:87-96. [PMID: 38241874 DOI: 10.1016/j.jcis.2023.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024]
Abstract
Germanium (Ge) nanomaterials have emerged as promising anode materials for lithium-ion batteries (LIBs) due to their higher capacity compared to commercial graphite. However, their practical application has been limited by the high cost associated with harsh preparation conditions and the poor electrode cycling stability in charging and diacharging. In this study, we successfully synthesized crystalline Ge nanorods through the reaction of intermetallic compound CaGe and ZnCl2. Ge nanorods with different morphologies and crystallinity can be obtained through precisely controlling the reaction temperature. When employed as electrodes for LIBs, the Ge nanorods demonstrate exceptional long-term cyclic stability. Even after 1000 cycles at a high rate of 2C (1C = 1600 mA g-1), it exhibits a remarkable reversible capacity of around 1000 mAh/g. Furthermore, such Ge electrode displays excellent cycling performance across a wide temperature range. And it could achieve reversible capacities of 1267, 832, and 690 mAh/g, with the rate of 1C, at temperatures of 20, 0, and -20 °C, respectively. Above all, our study offers a cost-effective approach for the synthesis of crystalline Ge nanorods, addressing the concerns associated with high production costs. And the application of Ge nanorods as anode materials in LIBs over a wide temperature range opens up new possibilities for the development of advanced energy storage systems.
Collapse
Affiliation(s)
- Chao Liu
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Yiming Jiang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Chao Meng
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Haohang Song
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Bo Li
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, PR China.
| | - Shengqing Xia
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
15
|
Hong S, Di Vincenzo M, Tiraferri A, Bertozzi E, Górecki R, Davaasuren B, Li X, Nunes SP. Precision ion separation via self-assembled channels. Nat Commun 2024; 15:3160. [PMID: 38605042 PMCID: PMC11009339 DOI: 10.1038/s41467-024-47083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Selective nanofiltration membranes with accurate molecular sieving offer a solution to recover rare metals and other valuable elements from brines. However, the development of membranes with precise sub-nanometer pores is challenging. Here, we report a scalable approach for membrane fabrication in which functionalized macrocycles are seamlessly oriented via supramolecular interactions during the interfacial polycondensation on a polyacrylonitrile support layer. The rational incorporation of macrocycles enables the formation of nanofilms with self-assembled channels holding precise molecular sieving capabilities and a threshold of 6.6 ångström, which corresponds to the macrocycle cavity size. The resulting membranes provide a 100-fold increase in selectivity for Li+/Mg2+ separation, outperforming commercially available and state-of-the-art nanocomposite membranes for lithium recovery. Their performance is further assessed in high-recovery tests under realistic nanofiltration conditions using simulated brines or concentrated seawater with various Li+ levels and demonstrates their remarkable potential in ion separation and Li+ recovery applications.
Collapse
Affiliation(s)
- Shanshan Hong
- Chemistry Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria Di Vincenzo
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
| | - Erica Bertozzi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
| | - Radosław Górecki
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bambar Davaasuren
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xiang Li
- Chemistry Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Suzana P Nunes
- Chemistry Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
16
|
Liu X, Yuan M, Shi W, Fei A, Tian Y, Hu ZY, Chen L, Li Y, Su BL. Synergistic Protecting-Etching Synthesis of Carbon Nanoboxes@Silicon for High-Capacity Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17870-17880. [PMID: 38537160 DOI: 10.1021/acsami.3c19114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Silicon (Si) is considered as the most likely choice for the high-capacity lithium-ion batteries owing to its ultrahigh theoretical capacity (4200 mA h g-1) being over 10 times than that of traditional graphite anode materials (372 mA h g-1). However, its widespread application is limited by problems such as a large volume expansion and low electrical conductivity. Herein, we design a hollow nitrogen-doped carbon-coated silicon (Si@Co-HNC) composite in a water-based system via a synergistic protecting-etching strategy of tannic acid. The prepared Si@Co-HNC composite can effectively mitigate the volume change of silicon and improve the electrical conductivity. Moreover, the abundant voids inside the carbon layer and the porous carbon layer accelerate the transport of electrons and lithium ions, resulting in excellent electrochemical performance. The reversible discharge capacity of 1205 mA h g-1 can be retained after 120 cycles at a current density of 0.5 A g-1. In particular, the discharge capacity can be maintained at 1066 mA h g-1 after 300 cycles at a high current density of 1 A g-1. This study provides a new strategy for the design of Si-based anode materials with excellent electrical conductivity and structural stability.
Collapse
Affiliation(s)
- Xiaofang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Manman Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
| | - Wenhua Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Anmin Fei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yawen Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| |
Collapse
|
17
|
Wang L, Zhong Y, Wang H, Malyi OI, Wang F, Zhang Y, Hong G, Tang Y. New Emerging Fast Charging Microscale Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307027. [PMID: 38018336 DOI: 10.1002/smll.202307027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
Fast charging lithium (Li)-ion batteries are intensively pursued for next-generation energy storage devices, whose electrochemical performance is largely determined by their constituent electrode materials. While nanosizing of electrode materials enhances high-rate capability in academic research, it presents practical limitations like volumetric packing density and high synthetic cost. As an alternative to nanosizing, microscale electrode materials cannot only effectively overcome the limitations of the nanosizing strategy but also satisfy the requirement of fast-charging batteries. Therefore, this review summarizes the new emerging microscale electrode materials for fast charging from the commercialization perspective. First, the fundamental theory of electronic/ionic motion in both individual active particles and the whole electrode is proposed. Then, based on these theories, the corresponding optimization strategies are summarized toward fast-charging microscale electrode materials. In addition, advanced functional design to tackle the mechanical degradation problems related to next generation high capacity alloy- and conversion-type electrode materials (Li, S, Si et al.) for achieving fast charging and stable cycling batteries. Finally, general conclusions and the future perspective on the potential research directions of microscale electrode materials are proposed. It is anticipated that this review will provide the basic guidelines for both fundamental research and practical applications of fast-charging batteries.
Collapse
Affiliation(s)
- Litong Wang
- School of Science, Qingdao University of Technology, Qingdao, 266520, P. R. China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems & Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Huibo Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Oleksandr I Malyi
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
| | - Feng Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuxin Tang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
18
|
Zeng C, Fan F, Zheng R, Wang X, Tian G, Liu S, Liu P, Wang C, Wang S, Shu C. Structure and Charge Regulation Strategy Enabling Superior Cycling Stability of Ni-Rich Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11377-11388. [PMID: 38388356 DOI: 10.1021/acsami.3c15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ni-rich layered oxides LiNixCoyMn1-x-yO2 (NCMs, x > 0.8) are the most promising cathode candidates for Li-ion batteries because of their superior specific capacity and cost affordability. Unfortunately, NCMs suffer from a series of formidable challenges such as structural instability and incompatibility with commonly used electrolytes, which seriously hamper their practical applications on a large scale. Herein, the Al/Ta codoping modification strategy is proposed to improve the performance of the LiNi0.83Co0.1Mn0.07O2 cathode, and the as-prepared Al/Ta-modified LiNi0.83Co0.1Mn0.07O2 delivers exceptional cycling stability with a capacity retention of 97.4% after 150 cycles at 1C and an excellent rate performance with a high capacity of 143.2 mAh g-1 even at 3C. Based on the experimental study, it is found that the structural stability of NCM is strengthened due to the regulated coordination of oxygen by introducing a robust Ta-O covalent bond, which prevents the layered structure from collapsing. Moreover, the reconstructed rock-salt-like surface is capable of effectively inhibiting interfacial side reactions as well as the overgrowth of the cathode-electrolyte interface. Theoretically, the energy of Li/Ni mixing is significantly increased with the introduction of Al and Ta elements in Al/Ta codoped NCM, leading to inhibited adverse phase transition during cycling. A feasible pathway for designing and developing advanced Ni-rich cathode materials for Li-ion batteries is provided in this work.
Collapse
Affiliation(s)
- Chenrui Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Ruixin Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Sheng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chuan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Shuhan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
19
|
Şentürk DG, Yu CP, De Backer A, Van Aert S. Atom counting from a combination of two ADF STEM images. Ultramicroscopy 2024; 255:113859. [PMID: 37778104 DOI: 10.1016/j.ultramic.2023.113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
To understand the structure-property relationship of nanostructures, reliably quantifying parameters, such as the number of atoms along the projection direction, is important. Advanced statistical methodologies have made it possible to count the number of atoms for monotype crystalline nanoparticles from a single ADF STEM image. Recent developments enable one to simultaneously acquire multiple ADF STEM images. Here, we present an extended statistics-based method for atom counting from a combination of multiple statistically independent ADF STEM images reconstructed from non-overlapping annular detector collection regions which improves the accuracy and allows one to retrieve precise atom-counts, especially for images acquired with low electron doses and multiple element structures.
Collapse
Affiliation(s)
- D G Şentürk
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - C P Yu
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - A De Backer
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - S Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
20
|
Xu T, Xu Z, Yao T, Zhang M, Chen D, Zhang X, Shen L. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide. Nat Commun 2023; 14:8360. [PMID: 38102111 PMCID: PMC10724264 DOI: 10.1038/s41467-023-43603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Ionic and electronic transport in electrodes is crucial for electrochemical energy storage technology. To optimize the transport pathway of ions and electrons, electrode materials are minimized to nanometer-sized dimensions, leading to problems of volumetric performance, stability, cost, and pollution. Here we find that a bulk hexagonal molybdenum oxide with unconventional ion channels can store large amounts of protons at a high rate even if its particle size is tens of micrometers. The diffusion-free proton transport kinetics based on hydrogen bonding topochemistry is demonstrated in hexagonal molybdenum oxide whose proton conductivity is several orders of magnitude higher than traditional orthorhombic molybdenum oxide. In situ X-ray diffraction and theoretical calculation reveal that the structural self-optimization in the first discharge effectively promotes the reversible intercalation/de-intercalation of subsequent protons. The open crystal structure, suitable proton channels, and negligible volume strain enable rapid and stable proton transport and storage, resulting in extremely high volumetric capacitance (~1750 F cm-3), excellent rate performance, and ultralong cycle life (>10,000 cycles). The discovery of unconventional materials and mechanisms that enable proton storage of micrometer-sized particles in seconds boosts the development of fast-charging energy storage systems and high-power practical applications.
Collapse
Affiliation(s)
- Tiezhu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Zhenming Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Tengyu Yao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Miaoran Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Duo Chen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Laifa Shen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| |
Collapse
|
21
|
Luo T, Liu B, Han W, Zhu G, Liang J, Wang L, Yang J, Wang L, Liu S. Enhanced ion-electron mixing interface for high energy solid-state lithium metal batteries. J Colloid Interface Sci 2023; 652:1085-1091. [PMID: 37651924 DOI: 10.1016/j.jcis.2023.08.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Solid-state Li metal batteries (SSLMBs) are famous for superior security and excellent energy density. Nevertheless, the poor interfacial contact between solid lithium and electrode is one key problem in the development of SSLMBs, resulting in high impedance and growth of lithium dendrites along the grain boundaries. Herein, an innovative and accessible approach has been applied to SSLMBs, which introduces an ion-electron mixing (IEM) interface on the surface of Li1.3Al0.3Ti1.7(PO4)3 (LATP). The IEM interlayer generates LixSn/LiI of fast lithium-ion conductor through an in-situ reaction. The existence of LiI would promote the quick transmission of Li+ at the interface and inhibit the electronic conduction, thus restraining the growth of lithium dendrites. The batteries with IEM@LATP electrolyte could stably cycle more than 1000 h at high current density of 0.1 mA cm-2. Even increasing the current density to 3.0 mA cm-2, the batteries still could work normally. This novel and viable approach offers a robust basis for the practical application of SSLMBs and has some general applicability to other solid-state batteries.
Collapse
Affiliation(s)
- Tingting Luo
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Bing Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Weibo Han
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Guohua Zhu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Jinglong Liang
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China.
| | - Linzhe Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Jie Yang
- Zhejiang Huayou Cobal Company Limited, Tongxiang 314500, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China.
| | - Shan Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China.
| |
Collapse
|
22
|
Yu L, Jia R, Liu G, Liu X, Hu J, Li H, Xu B. Engineering a hierarchical reduced graphene oxide and lignosulfonate derived carbon framework supported tin dioxide nanocomposite for lithium-ion storage. J Colloid Interface Sci 2023; 651:514-524. [PMID: 37556908 DOI: 10.1016/j.jcis.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Tin dioxide (SnO2) is widely recognized as a high-performance anode material for lithium-ion batteries. To simultaneously achieve satisfactory electrochemical performances and lower manufacturing costs, engineering nano-sized SnO2 and further immobilizing SnO2 with supportive carbon frameworks via eco-friendly and cost-effective approaches are challenging tasks. In this work, biomass sodium lignosulfonate (LS-Na), stannous chloride (SnCl2) and a small amount of few-layered graphene oxide (GO) are employed as raw materials to engineer a hierarchical carbon framework supported SnO2 nanocomposite. The spontaneous chelation reaction between LS-Na and SnCl2 under mild hydrothermal condition generates the corresponding SnCl2@LS sample with a uniform distribution of Sn2+ in the LS domains, and the SnCl2@LS sample is further dispersed by GO sheets via a redox coprecipitation reaction. After a thermal treatment, the SnCl2@LS@GO sample is converted to the final SnO2/LSC/RGO sample with an improved microstructure. The SnO2/LSC/RGO nanocomposite exhibits excellent lithium-ion storage performances with a high specific capacity of 938.3 mAh/g after 600 cycles at 1000 mA g-1 in half-cells and 517.1 mAh/g after 50 cycles at 200 mA g-1 in full-cells. This work provides a potential strategy of engineering biomass derived high-performance electrode materials for rechargeable batteries.
Collapse
Affiliation(s)
- Longbiao Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruixin Jia
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Gonggang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jinbo Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
23
|
Han S, Wen P, Wang H, Zhou Y, Gu Y, Zhang L, Shao-Horn Y, Lin X, Chen M. Sequencing polymers to enable solid-state lithium batteries. NATURE MATERIALS 2023:10.1038/s41563-023-01693-z. [PMID: 37845320 DOI: 10.1038/s41563-023-01693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Rational designs of solid polymer electrolytes with high ion conduction are critical in enabling the creation of advanced lithium batteries. However, known polymer electrolytes have much lower ionic conductivity than liquid/ceramics at room temperature, which limits their practical use in batteries. Here we show that precise positioning of designed repeating units in alternating polymer sequences lays the foundation for homogenized Li+ distribution, non-aggregated Li+-anion solvation and sequence-assisted site-to-site ion migration, facilitating the tuning of Li+ conductivity by up to three orders of magnitude. The assembled all-solid-state batteries facilitate reversible and dendrite-mitigated cycling against Li metal from ambient to elevated temperatures. This work demonstrates a powerful molecular engineering means to access highly ion-conductive solid-state materials for next-generation energy devices.
Collapse
Affiliation(s)
- Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Peng Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Huaijiao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Research Laboratory of Electronics, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xinrong Lin
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China.
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Azzaroni O, Piccinini E, Fenoy G, Marmisollé W, Ariga K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. NANOTECHNOLOGY 2023; 34:472001. [PMID: 37567153 DOI: 10.1088/1361-6528/acef26] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Gonzalo Fenoy
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0825, Japan
| |
Collapse
|
25
|
Sung J, Kim SY, Harutyunyan A, Amirmaleki M, Lee Y, Son Y, Li J. Ultra-Thin Lithium Silicide Interlayer for Solid-State Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210835. [PMID: 36934743 DOI: 10.1002/adma.202210835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Indexed: 06/02/2023]
Abstract
All-solid-state batteries with metallic lithium (LiBCC ) anode and solid electrolyte (SE) are under active development. However, an unstable SE/LiBCC interface due to electrochemical and mechanical instabilities hinders their operation. Herein, an ultra-thin nanoporous mixed ionic and electronic conductor (MIEC) interlayer (≈3.25 µm), which regulates LiBCC deposition and stripping, serving as a 3D scaffold for Li0 ad-atom formation, LiBCC nucleation, and long-range transport of ions and electrons at SE/LiBCC interface is demonstrated. Consisting of lithium silicide and carbon nanotubes, the MIEC interlayer is thermodynamically stable against LiBCC and highly lithiophilic. Moreover, its nanopores (<100 nm) confine the deposited LiBCC to the size regime where LiBCC exhibits "smaller is much softer" size-dependent plasticity governed by diffusive deformation mechanisms. The LiBCC thus remains soft enough not to mechanically penetrate SE in contact. Upon further plating, LiBCC grows in between the current collector and the MIEC interlayer, not directly contacting the SE. As a result, a full-cell having Li3.75 Si-CNT/LiBCC foil as an anode and LiNi0.8 Co0.1 Mn0.1 O2 as a cathode displays a high specific capacity of 207.8 mAh g-1 , 92.0% initial Coulombic efficiency, 88.9% capacity retention after 200 cycles (Coulombic efficiency reaches 99.9% after tens of cycles), and excellent rate capability (76% at 5 C).
Collapse
Affiliation(s)
- Jaekyung Sung
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - So Yeon Kim
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Maedeh Amirmaleki
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoonkwang Lee
- Advanced Battery Development Team, Hyundai Motor Company, Hwaseong, 18280, Republic of Korea
| | - Yeonguk Son
- Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Ma Y, Ma X, Bai J, Xu W, Zhong H, Liu Z, Xiong S, Yang L, Chen H. Electrochemically Dealloyed 3D Porous Copper Nanostructure as Anode Current Collector of Li-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301731. [PMID: 37173815 DOI: 10.1002/smll.202301731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The commercialization of high-energy Li-metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two-step electrochemical process, where Cu-Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm-2 and under a high current density of 10 mA cm-2 . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X-ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.
Collapse
Affiliation(s)
- Yifan Ma
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xuetian Ma
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianming Bai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hui Zhong
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Zhantao Liu
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shan Xiong
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lufeng Yang
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hailong Chen
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
27
|
Nuwayhid RB, Kozen AC, Long DM, Ahuja K, Rubloff GW, Gregorczyk KE. Dynamic Electrode-Electrolyte Intermixing in Solid-State Sodium Nano-Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24271-24283. [PMID: 37167022 DOI: 10.1021/acsami.2c23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanostructured solid-state batteries (SSBs) are poised to meet the demands of next-generation energy storage technologies by realizing performance competitive to their liquid-based counterparts while simultaneously offering improved safety and expanded form factors. Atomic layer deposition (ALD) is among the tools essential to fabricate nanostructured devices with challenging aspect ratios. Here, we report the fabrication and electrochemical testing of the first nanoscale sodium all-solid-state battery (SSB) using ALD to deposit both the V2O5 cathode and NaPON solid electrolyte followed by evaporation of a thin-film Na metal anode. NaPON exhibits remarkable stability against evaporated Na metal, showing no electrolyte breakdown or significant interphase formation in the voltage range of 0.05-6.0 V vs Na/Na+. Electrochemical analysis of the SSB suggests intermixing of the NaPON/V2O5 layers during fabrication, which we investigate in three ways: in situ spectroscopic ellipsometry, time-resolved X-ray photoelectron spectroscopy (XPS) depth profiling, and cross-sectional cryo-scanning transmission electron microscopy (cryo-STEM) coupled with electron energy loss spectroscopy (EELS). We characterize the interfacial reaction during the ALD NaPON deposition on V2O5 to be twofold: (1) reduction of V2O5 to VO2 and (2) Na+ insertion into VO2 to form NaxVO2. Despite the intermixing of NaPON-V2O5, we demonstrate that NaPON-coated V2O5 electrodes display enhanced electrochemical cycling stability in liquid-electrolyte coin cells through the formation of a stable electrolyte interphase. In all-SSBs, the Na metal evaporation process is found to intensify the intermixing reaction, resulting in the irreversible formation of mixed interphases between discrete battery layers. Despite this graded composition, the SSB can operate for over 100 charge-discharge cycles at room temperature and represents the first demonstration of a functional thin-film solid-state sodium-ion battery.
Collapse
Affiliation(s)
- R Blake Nuwayhid
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander C Kozen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel M Long
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- UES Inc., Beavercreek, Ohio 45432, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Kunal Ahuja
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gary W Rubloff
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Keith E Gregorczyk
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Senthilkumar SH, Ramasubramanian B, Rao RP, Chellappan V, Ramakrishna S. Advances in Electrospun Materials and Methods for Li-Ion Batteries. Polymers (Basel) 2023; 15:polym15071622. [PMID: 37050236 PMCID: PMC10096578 DOI: 10.3390/polym15071622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Electronic devices commonly use rechargeable Li-ion batteries due to their potency, manufacturing effectiveness, and affordability. Electrospinning technology offers nanofibers with improved mechanical strength, quick ion transport, and ease of production, which makes it an attractive alternative to traditional methods. This review covers recent morphology-varied nanofibers and examines emerging nanofiber manufacturing methods and materials for battery tech advancement. The electrospinning technique can be used to generate nanofibers for battery separators, the electrodes with the advent of flame-resistant core-shell nanofibers. This review also identifies potential applications for recycled waste and biomass materials to increase the sustainability of the electrospinning process. Overall, this review provides insights into current developments in electrospinning for batteries and highlights the commercialization potential of the field.
Collapse
Affiliation(s)
- Sri Harini Senthilkumar
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Brindha Ramasubramanian
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Rayavarapu Prasada Rao
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
30
|
Lu SQ, Zhang Q, Meng F, Liu YN, Mao J, Guo S, Qi MY, Xu YS, Qiao Y, Zhang SD, Jiang K, Gu L, Xia Y, Chen S, Chen G, Cao AM, Wan LJ. Surface Lattice Modulation through Chemical Delithiation toward a Stable Nickel-Rich Layered Oxide Cathode. J Am Chem Soc 2023; 145:7397-7407. [PMID: 36961942 DOI: 10.1021/jacs.2c13787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Nickel-rich layered oxides (NLOs) are considered as one of the most promising cathode materials for next-generation high-energy lithium-ion batteries (LIBs), yet their practical applications are currently challenged by the unsatisfactory cyclability and reliability owing to their inherent interfacial and structural instability. Herein, we demonstrate an approach to reverse the unstable nature of NLOs through surface solid reaction, by which the reconstructed surface lattice turns stable and robust against both side reactions and chemophysical breakdown, resulting in improved cycling performance. Specifically, conformal La(OH)3 nanoshells are built with their thicknesses controlled at nanometer accuracy, which act as a Li+ capturer and induce controlled reaction with the NLO surface lattices, thereby transforming the particle crust into an epitaxial layer with localized Ni/Li disordering, where lithium deficiency and nickel stabilization are both achieved by transforming oxidative Ni3+ into stable Ni2+. An optimized balance between surface stabilization and charge transfer is demonstrated by a representative NLO material, namely, LiNi0.83Co0.07Mn0.1O2, whose surface engineering leads to a highly improved capacity retention and excellent rate capability with a strong capability to inhibit the crack of NLO particles. Our study highlights the importance of surface chemistry in determining chemical and structural behaviors and paves a research avenue in controlling the surface lattice for the stabilization of NLOs toward reliable high-energy LIBs.
Collapse
Affiliation(s)
- Si-Qi Lu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Fanqi Meng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Ya-Ning Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianjun Mao
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, P. R. China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - Sijie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Mu-Yao Qi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Song Xu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- Department of Chemistry, College of Science, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan 430070, P. R. China
| | - Yan Qiao
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Si-Dong Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kecheng Jiang
- Dongguan TAFEL New Energy Technology Company, Limited, Dongguan 523000, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuguang Chen
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, P. R. China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong 999077, P. R. China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Mery A, Chenavier Y, Marcucci C, Benayad A, Alper JP, Dubois L, Haon C, Boime NH, Sadki S, Duclairoir F. Toward the Improvement of Silicon-Based Composite Electrodes via an In-Situ Si@C-Graphene Composite Synthesis for Li-Ion Battery Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2451. [PMID: 36984331 PMCID: PMC10051277 DOI: 10.3390/ma16062451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Using Si as anode materials for Li-ion batteries remain challenging due to its morphological evolution and SEI modification upon cycling. The present work aims at developing a composite consisting of carbon-coated Si nanoparticles (Si@C NPs) intimately embedded in a three-dimensional (3D) graphene hydrogel (GHG) architecture to stabilize Si inside LiB electrodes. Instead of simply mixing both components, the novelty of the synthesis procedure lies in the in situ hydrothermal process, which was shown to successfully yield graphene oxide reduction, 3D graphene assembly production, and homogeneous distribution of Si@C NPs in the GHG matrix. Electrochemical characterizations in half-cells, on electrodes not containing additional conductive additive, revealed the importance of the protective C shell to achieve high specific capacity (up to 2200 mAh.g-1), along with good stability (200 cycles with an average Ceff > 99%). These performances are far superior to that of electrodes made with non-C-coated Si NPs or prepared by mixing both components. These observations highlight the synergetic effects of C shell on Si NPs, and of the single-step in situ preparation that enables the yield of a Si@C-GHG hybrid composite with physicochemical, structural, and morphological properties promoting sample conductivity and Li-ion diffusion pathways.
Collapse
Affiliation(s)
- Adrien Mery
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Yves Chenavier
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Coralie Marcucci
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Anass Benayad
- Université Grenoble Alpes, CEA, LITEN, DTNM, F-38054 Grenoble, France
| | - John P. Alper
- Université Paris Saclay, IRAMIS, UMR NIMBE, CEA Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | - Lionel Dubois
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | - Cédric Haon
- Université Grenoble Alpes, CEA, LITEN, DEHT, F-38054 Grenoble, France
| | - Nathalie Herlin Boime
- Université Paris Saclay, IRAMIS, UMR NIMBE, CEA Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | - Saïd Sadki
- Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000 Grenoble, France
| | | |
Collapse
|
32
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
33
|
Zhang Y, Yu L, Zhang XD, Wang YH, Yang C, Liu X, Wang WP, Zhang Y, Li XT, Li G, Xin S, Guo YG, Bai C. A smart risk-responding polymer membrane for safer batteries. SCIENCE ADVANCES 2023; 9:eade5802. [PMID: 36724274 PMCID: PMC9891686 DOI: 10.1126/sciadv.ade5802] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Safety concerns related to the abuse operation and thermal runaway are impeding the large-scale employment of high-energy-density rechargeable lithium batteries. Here, we report that by incorporating phosphorus-contained functional groups into a hydrocarbon-based polymer, a smart risk-responding polymer is prepared for effective mitigation of battery thermal runaway. At room temperature, the polymer is (electro)chemically compatible with electrodes, ensuring the stable battery operation. Upon thermal accumulation, the phosphorus-containing radicals spontaneously dissociate from the polymer skeleton and scavenge hydrogen and hydroxyl radicals to terminate the exothermic chain reaction, suppressing thermal generation at an early stage. With the smart risk-responding strategy, we demonstrate extending the time before thermal runaway for a 1.8-Ah Li-ion pouch cell by 100% (~9 hours) compared with common cells, creating a critical time window for safety management. The temperature-triggered automatic safety-responding strategy will improve high-energy-density battery tolerance against thermal abuse risk and pave the way to safer rechargeable batteries.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Xu-Dong Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Ya-Hui Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Chunpeng Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaolong Liu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Wen-Peng Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Yu Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Xue-Ting Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Ge Li
- Beijing IAmetal New Energy Technology Co. Ltd., Beijing 100190, P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunli Bai
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Su Z, Li S, Ma L, Liu T, Li M, Wu T, Zhang Q, Dong C, Lai C, Gu L, Lu J, Pan F, Zhang S. Quenching-Induced Defects Liberate the Latent Reversible Capacity of Lithium Titanate Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208573. [PMID: 36460018 DOI: 10.1002/adma.202208573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Interest in defect engineering for lithium-ion battery (LIB) materials is sparked by its ability to tailor electrical conductivity and introduce extra active sites for electrochemical reactions. However, harvesting excessive intrinsic defects in the bulk of the electrodes rather than near their surface remains a long-standing challenge. Here, a versatile strategy of quenching is demonstrated, which is exercised in lithium titanate (Li4 Ti5 O12 , LTO), a renowned anode for LIBs, to achieve off-stoichiometry in the interior region. In situ synchrotron analysis and atomic-resolution microscopy reveal the enriched oxygen vacancies and cation redistribution after ice-water quenching, which can facilitate the native unextractable Li ions to participate in reversible cycling. The fabricated LTO anode delivers a sustained capacity of 202 mAh g-1 in the 1.0-2.5 V range with excellent rate capability and overcomes the poor cycling stability seen in conventional defective electrodes. The feasibility of tuning the degree of structural defectiveness via quenching agents is also proven, which can open up an intriguing avenue of research to harness the intrinsic defects for improving the energy density of rechargeable batteries.
Collapse
Affiliation(s)
- Zhong Su
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lu Ma
- X-Ray Science Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Advanced Photon Sources, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Meng Li
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Cheng Dong
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chao Lai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| |
Collapse
|
35
|
Jeong M, Kim MJ, Na S, Han S, Jo E, Yu SH, Yim T, Oh SH. Investigation of reduced lithium titanate spinel as insertion host for rechargeable batteries. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Luo T, Wang L, Dai L, Luo J, Liu S. A solid-state lithium metal battery with extended cycling and rate performance using a low-melting alloy interface. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02127g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The anode with a low-melting alloy interlayer shows dendrite-free behavior, alleviating side reactions on the interface. Liquid metal alloy achieves close contact between lithium and solid-state electrolytes at room temperature.
Collapse
Affiliation(s)
- Tingting Luo
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jiayan Luo
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| |
Collapse
|
37
|
Surface positive-charged modification of inorganic fillers to optimize lithium ion conductive pathways in composite polymer electrolytes for lithium-metal batteries. J Colloid Interface Sci 2023; 630:634-644. [DOI: 10.1016/j.jcis.2022.10.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
38
|
Zhao Y, Qin Y, Da X, Weng X, Gao Y, Gao G, Su Y, Ding S. High Lithium Salt Content PVDF-Based Solid-State Composite Polymer Electrolyte Enhanced by h-BN Nanosheets. CHEMSUSCHEM 2022; 15:e202201554. [PMID: 36178074 DOI: 10.1002/cssc.202201554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Due to the unique safety qualities, solid composite polymer electrolyte (SCPE) has achieved considerable attentions to fabricate high-energy-density lithium metal batteries, but its overall performance still has to be improved. Herein, a high lithium salt content poly(vinylidene fluoride) (PVDF)-based SCPE was developed, enhanced by hexagonal boron nitride (h-BN) nanosheets, presenting perfect electrochemical performance, fast ion transport, and efficient inhibition of lithium dendrite growth. The optimized SCPE (PVDF-L70-B5) could deliver high ionic conductivity (2.98×10-4 S cm-1 ), ultra-high Li+ ion transfer number (0.62), wide electrochemical stability window (5.24 V), and strong mechanical strength (3.45 MPa) at room temperature. Density functional theory calculation further confirmed that the presence of h-BN could promote the dissociation of bis(trifluoromethanesulfonyl)imide lithium (LiTFSI) and the rapid transfer of Li+ ions. As a result, the assembled symmetric Li/Li battery and asymmetric Li/LiFePO4 battery using PVDF-L70-B5 SCPEs both exhibited high reversible capacity, long-term cycle stability, and high-rate performance when cycled at 60 or 30 °C. The designed SCPEs will open up a new route to synthesize solid-state lithium batteries with high energy density and high safety.
Collapse
Affiliation(s)
- Yuanjun Zhao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Yanyang Qin
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Xinyu Da
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Xianjun Weng
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Yiyang Gao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Guoxin Gao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Yaqiong Su
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shujiang Ding
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
39
|
Ma B, Agrawal S, Gopal R, Bai P. Operando Microscopy Diagnosis of the Onset of Lithium Plating in Transparent Lithium-Ion Full Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54708-54715. [PMID: 36455256 DOI: 10.1021/acsami.2c16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fast-charging capability is critical for the wide adoption of electric vehicles (EVs), which, however, can result in lithium (Li) plating on the graphite anode and thus aggravate cell degradation and increase the safety risk. Li plating is also prone to occur during charging at low temperatures. In this work, we fabricate Li-ion full cells in transparent glass capillaries to probe the real-time dynamic evolution of the lithiated phases throughout the graphite anode toward the onset of lithium plating during fast charging and under low temperatures. We observed that Li plating can occur well before 70% state of charge (SOC), even at a low C-rate and at room temperature. Our operando experiments provide the direct proof that subtle features in the electrochemical responses are caused by the Li plating, which can be utilized to improve battery management strategy. Mathematical simulations confirm that the local overpotential due to the strong concentration polarization is the root cause of the axial reaction heterogeneity in the graphite anode and the Li plating on the fully lithiated particles.
Collapse
Affiliation(s)
- Bingyuan Ma
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri63130, United States
| | - Shubham Agrawal
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri63130, United States
| | - Rajeev Gopal
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri63130, United States
| | - Peng Bai
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri63130, United States
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri63130, United States
| |
Collapse
|
40
|
Zhu Z, Jiang T, Ali M, Meng Y, Jin Y, Cui Y, Chen W. Rechargeable Batteries for Grid Scale Energy Storage. Chem Rev 2022; 122:16610-16751. [PMID: 36150378 DOI: 10.1021/acs.chemrev.2c00289] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ever-increasing global energy consumption has driven the development of renewable energy technologies to reduce greenhouse gas emissions and air pollution. Battery energy storage systems (BESS) with high electrochemical performance are critical for enabling renewable yet intermittent sources of energy such as solar and wind. In recent years, numerous new battery technologies have been achieved and showed great potential for grid scale energy storage (GSES) applications. However, their practical applications have been greatly impeded due to the gap between the breakthroughs achieved in research laboratories and the industrial applications. In addition, various complex applications call for different battery performances. Matching of diverse batteries to various applications is required to promote practical energy storage research achievement. This review provides in-depth discussion and comprehensive consideration in the battery research field for GSES. The overall requirements of battery technologies for practical applications with key parameters are systematically analyzed by generating standards and measures for GSES. We also discuss recent progress and existing challenges for some representative battery technologies with great promise for GSES, including metal-ion batteries, lead-acid batteries, molten-salt batteries, alkaline batteries, redox-flow batteries, metal-air batteries, and hydrogen-gas batteries. Moreover, we emphasize the importance of bringing emerging battery technologies from academia to industry. Our perspectives on the future development of batteries for GSES applications are provided.
Collapse
Affiliation(s)
- Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
41
|
Ju Z, Zhang X, Wu J, King ST, Chang CC, Yan S, Xue Y, Takeuchi KJ, Marschilok AC, Wang L, Takeuchi ES, Yu G. Tortuosity Engineering for Improved Charge Storage Kinetics in High-Areal-Capacity Battery Electrodes. NANO LETTERS 2022; 22:6700-6708. [PMID: 35921591 DOI: 10.1021/acs.nanolett.2c02100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The increasing demands of electronic devices and electric transportation necessitate lithium-ion batteries with simultaneous high energy and power capabilities. However, rate capabilities are often limited in high-loading electrodes due to the lengthy and tortuous ion transport paths with their electrochemical behaviors governed by complicated electrode architectures still elusive. Here, we report the electrode-level tortuosity engineering design enabling improved charge storage kinetics in high-energy electrodes. Both high areal capacity and high-rate capability can be achieved beyond the practical level of mass loadings in electrodes with vertically oriented architectures. The electrochemical properties in electrodes with various architectures were quantitatively investigated through correlating the characteristic time with tortuosity. The lithium-ion transport kinetics regulated by electrode architectures was further studied via combining the three-dimensional electrode architecture visualization and simulation. The tortuosity-controlled charge storage kinetics revealed in this study can be extended to general electrode systems and provide useful design consideration for next-generation high-energy/power batteries.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiao Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingyi Wu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Steven T King
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chung-Chueh Chang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- ThINC Facility at the Advanced Energy Research and Technology Center at Stony Brook University, Stony Brook, New York 11794, United States
| | - Shan Yan
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuan Xue
- ThINC Facility at the Advanced Energy Research and Technology Center at Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Zhou Z, Chu D, Gao B, Momma T, Tateyama Y, Cazorla C. Tuning the Electronic, Ion Transport, and Stability Properties of Li-rich Manganese-based Oxide Materials with Oxide Perovskite Coatings: A First-Principles Computational Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37009-37018. [PMID: 35930401 PMCID: PMC9389528 DOI: 10.1021/acsami.2c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Lithium-rich manganese-based oxides (LRMO) are regarded as promising cathode materials for powering electric applications due to their high capacity (250 mAh g-1) and energy density (∼900 Wh kg-1). However, poor cycle stability and capacity fading have impeded the commercialization of this family of materials as battery components. Surface modification based on coating has proven successful in mitigating some of these problems, but a microscopic understanding of how such improvements are attained is still lacking, thus impeding systematic and rational design of LRMO-based cathodes. In this work, first-principles density functional theory (DFT) calculations are carried out to fill out such a knowledge gap and to propose a promising LRMO-coating material. It is found that SrTiO3 (STO), an archetypal and highly stable oxide perovskite, represents an excellent coating material for Li1.2Ni0.2Mn0.6O2 (LNMO), a prototypical member of the LRMO family. An accomplished atomistic model is constructed to theoretically estimate the structural, electronic, oxygen vacancy formation energy, and lithium-transport properties of the LNMO/STO interface system, thus providing insightful comparisons with the two integrating bulk materials. It is found that (i) electronic transport in the LNMO cathode is enhanced due to partial closure of the LNMO band gap (∼0.4 eV) and (ii) the lithium ions can easily diffuse near the LNMO/STO interface and within STO due to the small size of the involved ion-hopping energy barriers. Furthermore, the formation energy of oxygen vacancies notably increases close to the LNMO/STO interface, thus indicating a reduction in oxygen loss at the cathode surface and a potential inhibition of undesirable structural phase transitions. This theoretical work therefore opens up new routes for the practical improvement of cost-affordable lithium-rich cathode materials based on highly stable oxide perovskite coatings.
Collapse
Affiliation(s)
- Zizhen Zhou
- School
of Materials Science and Engineering, UNSW
Australia, Sydney, NSW 2052, Australia
- Graduate
School of Advanced Science and Engineering, Waseda University, 3-4-1,
Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dewei Chu
- School
of Materials Science and Engineering, UNSW
Australia, Sydney, NSW 2052, Australia
| | - Bo Gao
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Toshiyuki Momma
- Graduate
School of Advanced Science and Engineering, Waseda University, 3-4-1,
Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshitaka Tateyama
- Graduate
School of Advanced Science and Engineering, Waseda University, 3-4-1,
Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Claudio Cazorla
- Departament
de Física, Universitat Politècnica
de Catalunya, Campus
Nord B4-B5, E-08034 Barcelona, Spain
| |
Collapse
|
43
|
Zheng J, Archer LA. Crystallographically Textured Electrodes for Rechargeable Batteries: Symmetry, Fabrication, and Characterization. Chem Rev 2022; 122:14440-14470. [PMID: 35950898 DOI: 10.1021/acs.chemrev.2c00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast of majority of battery electrode materials of contemporary interest are of a crystalline nature. Crystals are, by definition, anisotropic from an atomic-structure perspective. The inherent structural anisotropy may give rise to favored mesoscale orientations and anisotropic properties whether the material is in a rest state or subjected to an external stimulus. The overall perspective of this review is that intentional manipulation of crystallographic anisotropy of electrochemically active materials constitute an untapped parameter space in energy storage systems and thus provide new opportunities for materials innovations and design. To that end, we contend that crystallographically textured electrodes, as opposed to their textureless poly crystalline or single-crystalline analogs, are promising candidates for next-generation storage of electrical energy in rechargeable batteries relevant to commercial practice. This perspective is underpinned first by the fundamental─to a first approximation─uniaxial, rotation-invariant symmetry of electrochemical cells. On this basis, we show that a crystallographically textured electrode with the preferred orientation aligned out-of-plane toward the counter electrode represents an optimal strategy for utilization of the crystals' anisotropic properties. Detailed analyses of anisotropy of different types lead to a simple, but potentially useful general principle that "Pec//Pc" textures are optimal for metal anodes, and "Pec//Sc" textures are optimal for insertion-type electrodes.
Collapse
Affiliation(s)
- Jingxu Zheng
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lynden A Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
44
|
Cheng H, Zhang S, Li S, Gao C, Zhao S, Lu Y, Wang M. Engineering Fe and V Coordinated Bimetallic Oxide Nanocatalyst Enables Enhanced Polysulfides Mediation for High Energy Density Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202557. [PMID: 35718880 DOI: 10.1002/smll.202202557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Lithium sulfur (Li-S) batteries are expected to become the next-generation rechargeable energy storage devices owing to their high theoretical energy density, environmental benignity, and economic benefits. However, the undesirable lithium polysulfides (LiPSs) shuttling and sluggish redox kinetics of sulfur electrochemistry severely degenerate the wide-ranging electrochemical performances, hindering the commercialization process of Li-S batteries. Herein, a Fe and V coordinated bimetallic oxide FeVO4 (denote FVO) nanocatalyst with three-dimensional (3D) ordered structure is thoughtfully tailored and cooperated with the commercialized carbon nanotubes (CNT) to modify polypropylene (PP) separator for achieving high efficiencies of restraining the LiPSs shuttling and boosting the redox conversion of sulfur species. The Fe and V coordinated bimetallic oxide demonstrates enhanced anchoring and catalyzing activities toward sulfur species than single metal oxides of Fe and V with homometallic valence states due to the reconfiguration of the 3d-band. Impressively, the Li-S pouch cell with the FVO/CNT@PP separator achieves an energy density up to 341 Wh kg-1 . The bimetallic oxide nanocatalyst used in this work enlightens a new designing route toward the separator modification for the development of high energy density Li-S batteries.
Collapse
Affiliation(s)
- Hao Cheng
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Shichao Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Siyuan Li
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Cheng Gao
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Sihan Zhao
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
45
|
Martinez AC, Dachraoui W, Murugesan R, Baudrin E, Demortière A, Becuwe M. Surface modification of LiFePO4 nanoparticles through an organic/inorganic hybrid approach and its impact on electrochemical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
47
|
Shi H, Zhang Y, Liu Y, Yuan C. Metallic Sodium Anodes for Advanced Sodium Metal Batteries: Progress, Challenges and Perspective. CHEM REC 2022; 22:e202200112. [PMID: 35675943 DOI: 10.1002/tcr.202200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/22/2022] [Indexed: 11/11/2022]
Abstract
Sodium (Na)-based batteries, as the ideal choice of large-scale and low-cost energy storage, have attracted much attention. Na metal anodes with high theoretical specific capacity and low potential are considered to be one of the most promising anodes for next-generation Na-based batteries. However, the high reactivity of Na metal anodes makes the electrode/electrolyte phase unstable, resulting in formation of Na dendrites, short cycle life and safety problems. Herein, the contribution outlines the latest development of Na metal anodes for Na metal batteries. The design strategies for high efficiency utilization of Na metal anodes are elucidated, including sophisticated electrode construction, liquid electrolyte optimization, electrode/electrolyte interface stabilization, and solid electrolyte adaptation. Finally, the future research direction and existing problems are proposed.
Collapse
Affiliation(s)
- Huan Shi
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yamin Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
48
|
Water-Soluble Conductive Composite Binder for High-Performance Silicon Anode in Lithium-Ion Batteries. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8060054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of novel and high-performance binder systems is an efficient strategy to resolve the issues caused by huge volume changes of high-capacity anodes. Herein, we develop a novel water-soluble bifunctional binder composed of a conductive polythiophene polymer (PED) and high-adhesive polyacrylic acid (PAA) with abundant polar groups. Compared with conventional conductive additives, the flexible conductive polymer can solve the insufficient electrical contact between active materials and the conductive agent, thus providing the integral conductive network, which is extremely important for stable electrochemical performance. Additionally, the polar groups of this composite binder can form double H-bond interactions with the hydroxyl groups of SiO2 layers onto the silicon surface, keeping an integral electrode structure, which can decrease the continuous formation of SEI films during the repeated cycles. Benefiting from these bifunctional advantages, the Si electrodes with the composite binder delivered a high reversible capacity of 2341 mAh g−1 at 1260 mA g−1, good cycle stability with 88.8% retention of the initial reversible capacity over 100 cycles, and high-rate capacity (1150 mAh g−1 at 4200 mA g−1). This work opens up a new venture to develop multifunctional binders to enable the stable operation of high-capacity anodes for high-energy batteries.
Collapse
|
49
|
Hu Y, Zhang Z, Wang H. Fast‐Charging Electrolyte: A Multiple Additives Strategy with 1,3,2‐Dioxathiolane 2,2‐Dioxide and Lithium Difluorophosphate for Commercial Graphite/LiFePO
4
Pouch Battery. ChemistrySelect 2022. [DOI: 10.1002/slct.202200740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Hu
- College of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha 410114 Hunan China
| | - Zhenghua Zhang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 Hunan China
| | - Hongmei Wang
- College of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha 410114 Hunan China
| |
Collapse
|
50
|
Kim JH, Kim JM, Cho SK, Kim NY, Lee SY. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat Commun 2022; 13:2541. [PMID: 35534482 PMCID: PMC9085813 DOI: 10.1038/s41467-022-30112-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractLithium metal batteries have higher theoretical energy than their Li-ion counterparts, where graphite is used at the anode. However, one of the main stumbling blocks in developing practical Li metal batteries is the lack of cathodes with high-mass-loading capable of delivering highly reversible redox reactions. To overcome this issue, here we report an electrode structure that incorporates a UV-cured non-aqueous gel electrolyte and a cathode where the LiNi0.8Co0.1Mn0.1O2 active material is contained in an electron-conductive matrix produced via simultaneous electrospinning and electrospraying. This peculiar structure prevents the solvent-drying-triggered non-uniform distribution of electrode components and shortens the time for cell aging while improving the overall redox homogeneity. Moreover, the electron-conductive matrix eliminates the use of the metal current collector. When a cathode with a mass loading of 60 mg cm−2 is coupled with a 100 µm thick Li metal electrode using additional non-aqueous fluorinated electrolyte solution in lab-scale pouch cell configuration, a specific energy and energy density of 321 Wh kg−1 and 772 Wh L−1 (based on the total mass of the cell), respectively, can be delivered in the initial cycle at 0.1 C (i.e., 1.2 mA cm−2) and 25 °C.
Collapse
|