1
|
Liu M, Wang L, Yu Q, Song J, Zhu L, Jia KH, Qin X. The response of LncRNAs associated with photosynthesis-and pigment synthesis-related genes to green light in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2024; 161:65-78. [PMID: 38108929 DOI: 10.1007/s11120-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The quality of light is an important abiotic factor that affects the growth and development of green plants. Ultraviolet, red, blue, and far-red light all have demonstrated roles in regulating green plant growth and development, as well as light morphogenesis. However, the mechanism underlying photosynthetic organism responses to green light throughout the life of them are not clear. In this study, we exposed the unicellular green alga Chlamydomonas reinhardtii to green light and analyzed the dynamics of transcriptome changes. Based on the whole transcriptome data from C. reinhardtii, a total of 9974 differentially expressed genes (DEGs) were identified under green light. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were mainly related to "carboxylic acid metabolic process," "enzyme activity," "carbon metabolism," and "photosynthesis and other processes." At the same time, 253 differentially expressed long non-coding RNAs (DELs) were characterized as green light responsive. We also made a detailed analysis of the responses of photosynthesis- and pigment synthesis-related genes in C. reinhardtii to green light and found that these genes exhibited obvious dynamic expression. Lastly, we constructed a co-expression regulatory network, comprising 49 long non-coding RNAs (lncRNAs) and 20 photosynthesis and pigment related genes, of which 9 mRNAs were also the predicted trans/cis-targets of 8 lncRNAs, these results suggested that lncRNAs may affect the expression of mRNAs related to photosynthesis and pigment synthesis. Our findings give a preliminary explanation of the response mechanism of C. reinhardtii to green light at the transcriptional level.
Collapse
Affiliation(s)
- Menghua Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Longxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qianqian Yu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jialin Song
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
- Shandong University of Arts, Jinan, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
2
|
Wheeler TA, Tilley TD. Metal-Metal Redox Exchange to Produce Heterometallic Manganese-Cobalt Oxo Cubanes via a "Dangler" Intermediate. J Am Chem Soc 2024; 146:20279-20290. [PMID: 38978206 PMCID: PMC11273651 DOI: 10.1021/jacs.4c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Pendent metals bound to heterocubanes are components of well-known active sites in enzymes that mediate difficult chemical transformations. Investigations into the specific role of these metal ions, sometimes referred to as "danglers", have been hindered by a paucity of rational synthetic routes to appropriate model structures. To generate pendent metal ions bonded to an oxo cubane through a carboxylate bridge, the cubane Co4(μ3-O)4(OAc)4(t-Bupy)4 (OAc = acetate, t-Bupy = 4-tert-butylpyridine) was exposed to various metal acetate complexes. Reaction with Cu(OAc)2 gave the structurally characterized (by X-ray diffraction) dicopper dangler Cu2Co4(μ4-O)2(μ3-O)2(OAc)6(Cl)2(t-Bupy)4. In contrast, the analogous reaction with Mn(OAc)2 produced the MnIV-containing cubane cation [MnCo3(μ3-O)4(OAc)4(t-Bupy)4]+ by way of a metal-metal exchange that gives Co(OAc)2 and [CoIII(μ-OH)(OAc)]n oligomers as byproducts. Additionally, reaction of the formally CoIV cubane complex [Co4(μ3-O)4(OAc)4(t-Bupy)4][PF6] with Mn(OAc)2 gave the corresponding Mn-containing cubane in 80% yield. A mechanistic examination of the related metal-metal exchange reaction between Co4(μ3-O)4(OBz)4(py)4 (OBz = benzoate) and [Mn(acac)2(py)2][PF6] by ultraviolet-visible (UV-vis) spectroscopy provided support for a process involving rate-determining association of the reactants and electron transfer through a μ-oxo bridge in the adduct intermediate. The rates of exchange correlate with the donor strength of the cubane pyridine and benzoate ligand substituents; more electron-donating pyridine ligands accelerate metal-metal exchange, while both electron-donating and -withdrawing benzoate ligands can accelerate exchange. These experiments suggest that the basicity of the cubane oxo ligands promotes metal-metal exchange reactivity. The redox potentials of the Mn and cubane starting materials and isotopic labeling studies suggest an inner-sphere electron-transfer mechanism in a dangler intermediate.
Collapse
Affiliation(s)
- T. Alexander Wheeler
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - T. Don Tilley
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Guo Y, He L, Ding Y, Kloo L, Pantazis DA, Messinger J, Sun L. Closing Kok's cycle of nature's water oxidation catalysis. Nat Commun 2024; 15:5982. [PMID: 39013902 PMCID: PMC11252165 DOI: 10.1038/s41467-024-50210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mn4CaO5(6) cluster in photosystem II catalyzes water splitting through the Si state cycle (i = 0-4). Molecular O2 is formed and the natural catalyst is reset during the final S3 → (S4) → S0 transition. Only recently experimental breakthroughs have emerged for this transition but without explicit information on the S0-state reconstitution, thus the progression after O2 release remains elusive. In this report, our molecular dynamics simulations combined with density functional calculations suggest a likely missing link for closing the cycle, i.e., restoring the first catalytic state. Specifically, the formation of closed-cubane intermediates with all hexa-coordinate Mn is observed, which would undergo proton release, water dissociation, and ligand transfer to produce the open-cubane structure of the S0 state. Thereby, we theoretically identify the previously unknown structural isomerism in the S0 state that acts as the origin of the proposed structural flexibility prevailing in the cycle, which may be functionally important for nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lanlan He
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Johannes Messinger
- Department of Plant Physiology, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
4
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
5
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
6
|
Katsiev K, Idriss H. Study of rutile TiO 2(110) single crystal by transient absorption spectroscopy in the presence of Ce 4+cations in aqueous environment. Implication on water splitting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325002. [PMID: 38701829 DOI: 10.1088/1361-648x/ad4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Ce4+cations are commonly used as electron acceptors during the water oxidation to O2reaction over Ir- and Ru-based catalysts. They can also be reduced to Ce3+cations by excited electrons from the conduction band of an oxide semiconductor with a suitable energy level. In this work, we have studied their interaction with a rutile TiO2(110) single crystal upon band gap excitation by femtosecond transient absorption spectroscopy (TAS) in solution in the 350-900 nm range and up to 3.5 ns. Unlike excitation in the presence of water alone the addition of Ce4+resulted in a clear ground-state bleaching (GSB) signal at the band gap energy of TiO2(ca. 400 nm) with a time constantt= 4-5 ps. This indicated that the Ce4+cations presence has quenched the e-h recombination rate when compared to water alone. In addition to GSB, two positive signals are observed and are attributed to trapped holes (in the visible region, 450-550 nm) and trapped electrons in the IR region (>700 nm). Contrary to expectation, the lifetime of the positive signal between 450 and 550 nm decreased with increasing concentrations of Ce4+. We attribute the decrease in the lifetime of this signal to electrostatic repulsion between Ce4+at the surface of TiO2(110) and positively charged trapped holes. It was also found that at the very short time scale (<2-3 ps) the fast decaying TAS signal of excited electrons in the conduction band is suppressed because of the presence of Ce4+cations. Results point out that the presence of Ce4+cations increases the residence time (mobility) of excited electrons and holes at the conduction band and valence band energy levels (instead of being trapped). This might provide further explanations for the enhanced reaction rate of water oxidation to O2in the presence of Ce4+cations.
Collapse
Affiliation(s)
- K Katsiev
- Surface Science and Advanced Characterization, SABIC-CRD at KAUST, Thuwal 23955, Saudi Arabia
| | - H Idriss
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Chu S, Gao Q. Unveiling the Low-Lying Spin States of [Fe 3S 4] Clusters via the Extended Broken-Symmetry Method. Molecules 2024; 29:2152. [PMID: 38731643 PMCID: PMC11085573 DOI: 10.3390/molecules29092152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Photosynthetic water splitting, when synergized with hydrogen production catalyzed by hydrogenases, emerges as a promising avenue for clean and renewable energy. However, theoretical calculations have faced challenges in elucidating the low-lying spin states of iron-sulfur clusters, which are integral components of hydrogenases. To address this challenge, we employ the Extended Broken-Symmetry method for the computation of the cubane-[Fe3S4] cluster within the [FeNi] hydrogenase enzyme. This approach rectifies the error caused by spin contamination, allowing us to obtain the magnetic exchange coupling constant and the energy level of the low-lying state. We find that the Extended Broken-Symmetry method provides more accurate results for differences in bond length and the magnetic coupling constant. This accuracy assists in reconstructing the low-spin ground state force and determining the geometric structure of the ground state. By utilizing the Extended Broken-Symmetry method, we further highlight the significance of the geometric arrangement of metal centers in the cluster's properties and gain deeper insights into the magnetic properties of transition metal iron-sulfur clusters at the reaction centers of hydrogenases. This research illuminates the untapped potential of hydrogenases and their promising role in the future of photosynthesis and sustainable energy production.
Collapse
Affiliation(s)
- Shibing Chu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
| | | |
Collapse
|
8
|
Morris RH. Reactivity umpolung (reversal) of ligands in transition metal complexes. Chem Soc Rev 2024; 53:2808-2827. [PMID: 38353155 DOI: 10.1039/d3cs00979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The success and power of homogeneous catalysis derives in large part from the wide choice of transition metal ions and their ligands. This tutorial review introduces examples where the reactivity of a ligand is completely reversed (umpolung) from Lewis basic/nucleophilic to acidic/electrophilic or vice versa on changing the metal and co-ligands. Understanding this phenomenon will assist in the rational design of catalysts and the understanding of metalloenzyme mechanisms. Labelling a metal and ligand with Seebach donor and acceptor labels helps to identify whether a reaction involving the intermolecular attack on the ligand is displaying native reactivity or reactivity umpolung. This has been done for complexes of nitriles, carbonyls, isonitriles, dinitrogen, Fischer carbenes, alkenes, alkynes, hydrides, methyls, methylidenes and alkylidenes, silylenes, oxides, imides/nitrenes, alkylidynes, methylidynes, and nitrides. The electronic influence of the metal and co-ligands is discussed in terms of the energy of (HOMO) d electrons. The energy can be related to the pKLACa (LAC is ligand acidity constant) of the theoretical hydride complexes [H-[M]-L]+ formed by the protonation of pair of valence d electrons on the metal in the [M-L] complex. Preliminary findings indicate that a negative pKLACa indicates that nucleophilic attack by a carbanion or amine on the ligand will likely occur while a positive pKLACa indicates that electrophilic attack by strong acids on the ligand will usually occur when the ligand is nitrile, carbonyl, isonitrile, alkene and η6-arene.
Collapse
Affiliation(s)
- Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario, Canada, M5S3H6.
| |
Collapse
|
9
|
de Lichtenberg C, Rapatskiy L, Reus M, Heyno E, Schnegg A, Nowaczyk MM, Lubitz W, Messinger J, Cox N. Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor. Proc Natl Acad Sci U S A 2024; 121:e2319374121. [PMID: 38437550 PMCID: PMC10945779 DOI: 10.1073/pnas.2319374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Michael Reus
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Eiri Heyno
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-Universität Bochum, BochumD-44780, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Johannes Messinger
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
- Research School of Chemistry, Australian National University, Acton ACT2601, Australia
| |
Collapse
|
10
|
Bayraktar S, Üstün C, Kehr NS. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol Biosci 2024; 24:e2300363. [PMID: 38037316 DOI: 10.1002/mabi.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Indexed: 12/02/2023]
Abstract
Oxygen (O2 ) delivery biomaterials have attracted great interest in the treatment of chronic wounds due to their potential applications in local and continuous O2 generation and delivery, improving cell viability until vascularization occurs, promoting structural growth of new blood vessels, simulating collagen synthesis, killing bacteria and reducing hypoxia-induced tissue damage. Therefore, different types of O2 delivery biomaterials including thin polymer films, fibers, hydrogels, or nanocomposite hydrogels have been developed to provide controlled, sufficient and long-lasting O2 to prevent hypoxia and maintain cell viability until the engineered tissue is vascularized by the host system. These biomaterials are made by various approaches, such as encapsulating O2 releasing molecules into hydrogels, polymer microspheres and 3D printed hydrogel scaffolds and adsorbing O2 carrying reagents into polymer films of fibers. In this article, different O2 generating sources such as solid inorganic peroxides, liquid peroxides, and photosynthetic microalgae, and O2 carrying perfluorocarbons and hemoglobin are presented and the applications of O2 delivery biomaterials in promoting wound healing are discussed. Furthermore, challenges encountered and future perspectives are highlighted.
Collapse
Affiliation(s)
- Sema Bayraktar
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Cansu Üstün
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Nermin Seda Kehr
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| |
Collapse
|
11
|
Lionetti D, Suseno S, Shiau AA, de Ruiter G, Agapie T. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS AU 2024; 4:344-368. [PMID: 38425928 PMCID: PMC10900226 DOI: 10.1021/jacsau.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.
Collapse
Affiliation(s)
| | - Sandy Suseno
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Angela A. Shiau
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Ablyasova OS, Zamudio-Bayer V, Flach M, da Silva Santos M, Lau JT, Hirsch K. Direct spectroscopic evidence for the high-spin state of dioxidomanganese(V). Phys Chem Chem Phys 2024; 26:5830-5835. [PMID: 38305255 DOI: 10.1039/d3cp05468c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The spin state of metal centers in many catalytic reactions has been demonstrated to be a rate limiting factor when high-valent metal centers such as manganese are involved. Although numerous manganese(V) complexes, including a few manganese(V) oxo complexes, have been identified, thus far only one of these, [MnVH3 buea(O)], has been directly confirmed to exist in a high spin state. Such a high-spin manganese(V) center may play a crucial role in the dioxygen formation process in the elusive S4 state of the Kok cycle in photosystem II. In this study, we provide direct experimental evidence, using X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS), of gas phase [OMnO]+ as the second known high-spin manganese(V) oxo complex. We conclusively assign the ground state as 3B1 (C2v). Additionally, we provide fingerprint spectra not only for [OMnV O]+, but also for the high-spin hydroxidooxidomanganese(IV) ion [OMnIV OH]+ in its 4A'' (Cs) ground state that is expected to exhibit similar XAS and XMCD spectral signatures to neutral dioxidomanganese(IV).
Collapse
Affiliation(s)
- Olesya S Ablyasova
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany.
| | - Max Flach
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Mayara da Silva Santos
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany.
| |
Collapse
|
13
|
Chen JN, Pan ZH, Qiu QH, Wang C, Long LS, Zheng LS, Kong XJ. Soluble Gd 6Cu 24 clusters: effective molecular electrocatalysts for water oxidation. Chem Sci 2024; 15:511-515. [PMID: 38179510 PMCID: PMC10762933 DOI: 10.1039/d3sc05849b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
The water oxidation half reaction in water splitting for hydrogen production is extremely rate-limiting. This study reports the synthesis of two heterometallic clusters (Gd6Cu24-IM and Gd6Cu24-AC) for application as efficient water oxidation catalysts. Interestingly, the maximum turnover frequency of Gd6Cu24-IM in an NaAc solution of a weak acid (pH 6) was 319 s-1. The trimetallic catalytic site, H2O-GdIIICuII2-H2O, underwent two consecutive two-electron two-proton coupled transfer processes to form high-valent GdIII-O-O-CuIII2 intermediates. Furthermore, the O-O bond was formed via intramolecular interactions between the CuIII and GdIII centers. The results of this study revealed that synergistic catalytic water oxidation between polymetallic sites can be an effective strategy for regulating O-O bond formation.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhong-Hua Pan
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Qi-Hao Qiu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
14
|
Rahman MZ, Raziq F, Zhang H, Gascon J. Key Strategies for Enhancing H 2 Production in Transition Metal Oxide Based Photocatalysts. Angew Chem Int Ed Engl 2023; 62:e202305385. [PMID: 37530435 DOI: 10.1002/anie.202305385] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Transition metal oxides (TMOs) were one of the first photocatalysts used to produce hydrogen from water using solar energy. Despite the emergence of many other genres of photocatalysts over the years, TMO photocatalysts remain dominant due to their easy synthesis and unique physicochemical properties. Various strategies have been developed to enhance the photocatalytic activity of TMOs, but the solar-to-hydrogen (STH) conversion efficiency of TMO photocatalysts is still very low (<2 %), which is far below the targeted STH of 10 % for commercial viability. This article provides a comprehensive analysis of several widely used strategies, including oxygen defects control, doping, establishing interfacial junctions, and phase-facet-morphology engineering, that have been adopted to improve TMO photocatalysts. By critically evaluating these strategies and providing a roadmap for future research directions, this article serves as a valuable resource for researchers, students, and professionals seeking to develop efficient energy materials for green energy solutions.
Collapse
Affiliation(s)
- Mohammad Z Rahman
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Fazal Raziq
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
15
|
Liu S, Wu L, Tang D, Xue J, Dang K, He H, Bai S, Ji H, Chen C, Zhang Y, Zhao J. Transition from Sequential to Concerted Proton-Coupled Electron Transfer of Water Oxidation on Semiconductor Photoanodes. J Am Chem Soc 2023; 145:23849-23858. [PMID: 37861695 DOI: 10.1021/jacs.3c09410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Accelerating proton transfer has been demonstrated as key to boosting water oxidation on semiconductor photoanodes. Herein, we study proton-coupled electron transfer (PCET) of water oxidation on five typical photoanodes [i.e., α-Fe2O3, BiVO4, TiO2, plasmonic Au/TiO2, and nickel-iron oxyhydroxide (Ni1-xFexOOH)-modified silicon (Si)] by combining the rate law analysis of H2O molecules with the H/D kinetic isotope effect (KIE) and operando spectroscopic studies. An unexpected and universal half-order kinetics is observed for the rate law analysis of H2O, referring to a sequential proton-electron transfer pathway, which is the rate-limiting factor that causes the sluggish water oxidation performance. Surface modification of the Ni1-xFexOOH electrocatalyst is observed to break this limitation and exhibits a normal first-order kinetics accompanied by much enhanced H/D KIE values, facilitating the turnover frequency of water oxidation by 1 order of magnitude. It is the first time that Ni1-xFexOOH is found to be a PCET modulator. The rate law analysis illustrates an effective strategy for modulating PCET kinetics of water oxidation on semiconductor surfaces.
Collapse
Affiliation(s)
- Siqin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanbin He
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuming Bai
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Liu J, Gu J, Hu J, Ma H, Tao Y, Li G, Yue L, Li Y, Chen L, Cao F, Wu H, Li Z. Use of Mn 3 O 4 nanozyme to improve cotton salt tolerance. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1935-1937. [PMID: 37614040 PMCID: PMC10502746 DOI: 10.1111/pbi.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Jiahao Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Jiangjiang Gu
- College of Chemistry, Huazhong Agricultural UniversityWuhanChina
| | - Jin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Huixin Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yunpeng Tao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Lin Yue
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yanhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Lu Chen
- College of Chemistry, Huazhong Agricultural UniversityWuhanChina
| | - Feifei Cao
- College of Chemistry, Huazhong Agricultural UniversityWuhanChina
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- College of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Plant NanobiotechnologyCollege of Plant Science & Technology, Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- College of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Li D, Wei R, Sun F, Cheng Z, Yin H, Fan F, Wang X, Li C. Determining the Transformation Kinetics of Water Oxidation Intermediates on Hematite Photoanode. J Phys Chem Lett 2023; 14:8069-8076. [PMID: 37656051 DOI: 10.1021/acs.jpclett.3c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The oxygen evolution reaction (OER) from water is a sequential oxidation reaction process, involved in transformation of multiple reaction intermediates. For photo(electro)catalytic OER, revealing the intermediates transformation kinetics is quite challenging due to its coupling with photogenerated charge dynamics. Herein, we specifically study the transformation kinetics of the OER intermediates in rationally thin hematite photoanodes through increasing the ratio between surface intermediates and photogenerated charges in bulk. We directly identify the formation and consumption kinetics of one-hole OER intermediate (FeIV═O) in photoelectrochemical water oxidation using operando transient absorption (TA) spectroscopy. The microsecond formation kinetics of the FeIV═O species are sensitively changed by the excitation mode of Fe2O3. The subsecond consumption kinetics are closely dependent on surface FeIV═O species density, demonstrating that the cooperation of FeIV═O intermediates is the key to accelerating water oxidation kinetics on the Fe2O3 surface. This work provides insight into understanding and controlling water oxidation reaction kinetics on Fe2O3 surface.
Collapse
Affiliation(s)
- Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fusai Sun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
He M, Zhang K, Guan Y, Sun Y, Han B. Green carbon science: fundamental aspects. Natl Sci Rev 2023; 10:nwad046. [PMID: 37565189 PMCID: PMC10411673 DOI: 10.1093/nsr/nwad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 08/12/2023] Open
Abstract
Carbon energy has contributed to the creation of human civilization, and it can be considered that the configuration of the carbon energy system is one of the important laws that govern the operation of everything in the universe. The core of the carbon energy system is the opposition and unity of two aspects: oxidation and reduction. The operation of oxidation and reduction is based on the ternary elemental system composed of the three elements of carbon, hydrogen and oxygen. Its operation produces numerous reactions and reaction products. Ancient Chinese philosophy helps us to understand in depth the essence of green carbon science, to explore its scientific basis, and to identify the related platforms for technology development.
Collapse
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Research Institute of Petrochem Processing, SINOPEC, Beijing 100083, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Yejun Guan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Low Carbon Technology Innovation Platform, Shanghai 210620, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
19
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
20
|
Kang W, Wei R, Yin H, Li D, Chen Z, Huang Q, Zhang P, Jing H, Wang X, Li C. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co 3O 4 Catalyst for Water Oxidation. J Am Chem Soc 2023; 145:3470-3477. [PMID: 36724407 DOI: 10.1021/jacs.2c11508] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multi-redox mechanism involving multi-sites has great implications to dictate the catalytic water oxidation. Understanding the sequential dynamics of multi-steps in oxygen evolution reaction (OER) cycles on working catalysts is a highly important but challenging issue. Here, using quasi-operando transient absorption (TA) spectroscopy and a typical photosensitization strategy, we succeeded in resolving the sequential oxidation kinetics involving multi-active sites for water oxidation in OER catalytic cycle, with Co3O4 nanoparticles as model catalysts. When OER initiates from fast oxidation of surface Co2+ ions, both surface Co2+ and Co3+ ions are active sites of the multi-cobalt centers for water oxidation. In the sequential kinetics (Co2+ → Co3+ → Co4+), the key characteristic is fast oxidation and slow consumption for all the cobalt species. Due to this characteristic, the Co4+ intermediate distribution plays a determining role in OER activity and results in the slow overall OER kinetics. These insights shed light on the kinetic understanding of water oxidation on heterogeneous catalysts with multi-sites.
Collapse
Affiliation(s)
- Wanchao Kang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Pengfei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Huanwang Jing
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Guo Y, Messinger J, Kloo L, Sun L. Alternative Mechanism for O 2 Formation in Natural Photosynthesis via Nucleophilic Oxo-Oxo Coupling. J Am Chem Soc 2023; 145:4129-4141. [PMID: 36763485 DOI: 10.1021/jacs.2c12174] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
O2 formation in photosystem II (PSII) is a vital event on Earth, but the exact mechanism remains unclear. The presently prevailing theoretical model is "radical coupling" (RC) involving a Mn(IV)-oxyl unit in an "open-cubane" Mn4CaO6 cluster, which is supported experimentally by the S3 state of cyanobacterial PSII featuring an additional Mn-bound oxygenic ligand. However, it was recently proposed that the major structural form of the S3 state of higher plants lacks this extra ligand, and that the resulting S4 state would feature instead a penta-coordinate dangler Mn(V)=oxo, covalently linked to a "closed-cubane" Mn3CaO4 cluster. For this proposal, we explore here a large number of possible pathways of O-O bond formation and demonstrate that the "nucleophilic oxo-oxo coupling" (NOOC) between Mn(V)=oxo and μ3-oxo is the only eligible mechanism in such a system. The reaction is facilitated by a specific conformation of the cluster and concomitant water binding, which is delayed compared to the RC mechanism. An energetically feasible process is described starting from the valid S4 state through the sequential formation of peroxide and superoxide, followed by O2 release and a second water insertion. The newly found mechanism is consistent with available experimental thermodynamic and kinetic data and thus a viable alternative pathway for O2 formation in natural photosynthesis, in particular for higher plants.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), Umeå SE-90187, Sweden
- Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, Uppsala SE-75120, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
22
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
23
|
Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Solar utilization beyond photosynthesis. Nat Rev Chem 2022; 7:91-105. [PMID: 37117911 DOI: 10.1038/s41570-022-00448-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.
Collapse
|
24
|
Olt P, Alejandro-Martinez S, Fermum J, Ramos E, Peiter E, Ludewig U. The vacuolar transporter LaMTP8.1 detoxifies manganese in leaves of Lupinus albus. PHYSIOLOGIA PLANTARUM 2022; 174:e13807. [PMID: 36270730 DOI: 10.1111/ppl.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency. White lupin (Lupinus albus L.) mobilizes P and Mn with outstanding efficiency due to the formation of determinate cluster roots that release carboxylates. The high Mn tolerance of L. albus goes along with shoot Mn accumulation, but the molecular basis of this detoxification mechanism has been unknown. In this study, we identify LaMTP8.1 as the transporter mediating vacuolar sequestration of Mn in the shoot of white lupin. The function of Mn transport was demonstrated by yeast complementation analysis, in which LaMTP8.1 detoxified Mn in pmr1∆ mutant cells upon elevated Mn supply. In addition, LaMTP8.1 also functioned as an iron (Fe) transporter in yeast assays. The expression of LaMTP8.1 was particularly high in old leaves under high Mn stress. However, low P availability per se did not result in transcriptional upregulation of LaMTP8.1. Moreover, LaMTP8.1 expression was strongly upregulated under Fe deficiency, where it was accompanied by Mn accumulation, indicating a role in the interaction of these micronutrients in L. albus. In conclusion, the tonoplast-localized Mn transporter LaMTP8.1 mediates Mn detoxification in leaf vacuoles, providing a mechanistic explanation for the high Mn accumulation and Mn tolerance in this species.
Collapse
Affiliation(s)
- Philipp Olt
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Santiago Alejandro-Martinez
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johann Fermum
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edith Ramos
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
25
|
Xiao H, Zhang Q, Ahmad M, Dong S, Zhang Y, Fang D, Wang X, Peng H, Lei Y, Wu G, Bai Y, Deng S, Ye F, Zeng Z. Carbonate Mediated Hole Transfer Boosting the Photocatalytic Degradation of Organic Pollutants over Carbon Nitride Nanosheets. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Khan MA, Sen UR, Khan S, Sengupta S, Shruti S, Naskar S. Manganese based Molecular Water Oxidation Catalyst: From Natural to Artificial Photosynthesis. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Sahanwaj Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology-Mesra, Ranchi, India
| | - Sonal Shruti
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, India
| |
Collapse
|
27
|
Xu B, Chen Y, Yao R, Chen C, Zhang C. Redox‐Induced Structural Change in Artificial Heterometallic‐Oxide Cluster Mimicking the Photosynthetic Oxygen‐Evolving Center. Chemistry 2022; 28:e202201456. [DOI: 10.1002/chem.202201456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Boran Xu
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Yang Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Changhui Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
28
|
Chawla A, Sudhaik A, Raizada P, Khan AAP, Singh A, Van Le Q, Van Huy Nguyen, Ahamad T, Alsheri SM, Asiri AM, Singh P. An overview of SnO2 based Z scheme heterojuctions: Fabrication, mechanism and advanced photocatalytic applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Nixon PJ, Telfer A. Remembering James Barber (1940-2020). PHOTOSYNTHESIS RESEARCH 2022; 153:1-20. [PMID: 35534741 PMCID: PMC9522743 DOI: 10.1007/s11120-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
James Barber, known to colleagues and friends as Jim, passed away in January 2020 after a long battle against cancer. During his long and distinguished career in photosynthesis research, Jim made many outstanding contributions with the pinnacle achieving his dream of determining the first detailed structure of the Mn cluster involved in photosynthetic water oxidation. Here, colleagues and friends remember Jim and reflect upon his scientific career and the impact he had on their lives and the scientific community.
Collapse
Affiliation(s)
- Peter J Nixon
- Sir Ernst Chain Building - Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| | - Alison Telfer
- Sir Ernst Chain Building - Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
30
|
Chen Y, Xu B, Yao R, Chen C, Zhang C. Mimicking the Oxygen-Evolving Center in Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:929532. [PMID: 35874004 PMCID: PMC9302449 DOI: 10.3389/fpls.2022.929532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of oxygenic photosynthetic organisms is a unique heterometallic-oxide Mn4CaO5-cluster that catalyzes water splitting into electrons, protons, and molecular oxygen through a five-state cycle (Sn, n = 0 ~ 4). It serves as the blueprint for the developing of the man-made water-splitting catalysts to generate solar fuel in artificial photosynthesis. Understanding the structure-function relationship of this natural catalyst is a great challenge and a long-standing issue, which is severely restricted by the lack of a precise chemical model for this heterometallic-oxide cluster. However, it is a great challenge for chemists to precisely mimic the OEC in a laboratory. Recently, significant advances have been achieved and a series of artificial Mn4XO4-clusters (X = Ca/Y/Gd) have been reported, which closely mimic both the geometric structure and the electronic structure, as well as the redox property of the OEC. These new advances provide a structurally well-defined molecular platform to study the structure-function relationship of the OEC and shed new light on the design of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boran Xu
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Wang PY, Zhou JF, Chen H, Peng B, Zhang K. Activation of H 2O Tailored by Interfacial Electronic States at a Nanoscale Interface for Enhanced Electrocatalytic Hydrogen Evolution. JACS AU 2022; 2:1457-1471. [PMID: 35783181 PMCID: PMC9241158 DOI: 10.1021/jacsau.2c00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 05/29/2023]
Abstract
Despite the fundamental and practical significance of the hydrogen evolution reaction (HER), the reaction kinetics at the molecular level are not well-understood, especially in basic media. Here, with ZIF-67-derived Co-based carbon frameworks (Co/NCs) as model catalysts, we systematically investigated the effects of different reaction parameters on the HER kinetics and discovered that the HER activity was directly dependent not on the type of nitrogen in the carbon framework but on the relative content of surface hydroxyl and water (OH-/H2O) adsorbed on Co active sites embedded in carbon frameworks. When the ratio of the OH-/H2O was close to 1:1, the Co/NC nanocatalyst showed the best reaction performance under the condition of high-pH electrolytes, e.g., an overpotential of only 232 mV at a current density of 10 mA cm-2 in the 1 M KOH electrolyte. We unambiguously identified that the structural water molecules (SWs) in the form of hydrous hydroxyl complexes absorbed on metal centers {OHad·H2O@M+} were catalytic active sites for the enhanced HER, where M+ could be transition or alkaline metal cations. Different from the traditional hydrogen bonding of water, the hydroxyl (hydroxide) groups and water molecules in the SWs were mainly bonded together via the spatial interaction between the p orbitals of O atoms, exhibiting features of a delocalized π-bond with a metastable state. These newly formed surface bonds or transitory states could be new weak interactions that synergistically promote both interfacial electron transfer and the activation of water (dissociation of O-H bonds) at the electrode surface, i.e., the formation of activated H adducts (H*). The capture of new surface states not only explains pH-, cation-, and transition-metal-dependent hydrogen evolution kinetics but also provides completely new insights into the understanding of other electrocatalytic reductions involving other small molecules, including CO2, CO, and N2.
Collapse
Affiliation(s)
- Pan-Yue Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jia-Feng Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hui Chen
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Laboratoire
de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie
de Lyon, Université de Lyon, 46 Allée d’italie, Lyon 69364 CEDEX 07, France
- Shandong
Provincial Key Laboratory of Chemical Energy Storage and Novel Cell
Technology, School of Chemistry and Chemical
Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
32
|
Guo Y, Messinger J, Kloo L, Sun L. Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation. J Am Chem Soc 2022; 144:11736-11747. [PMID: 35748306 PMCID: PMC9264352 DOI: 10.1021/jacs.2c03528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Photosynthetic water
oxidation is catalyzed by a manganese–calcium
oxide cluster, which experiences five “S-states” during
a light-driven reaction cycle. The unique “distorted chair”-like
geometry of the Mn4CaO5(6) cluster shows structural
flexibility that has been frequently proposed to involve “open”
and “closed”-cubane forms from the S1 to
S3 states. The isomers are interconvertible in the S1 and S2 states, while in the S3 state,
the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples.
In this work, using density functional theory calculations, we go
beyond the S3+Yz state to the S3nYz• → S4+Yz step, and report for the first time
that the reversible isomerism, which is suppressed in the S3+Yz state, is fully recovered
in the ensuing S3nYz• state due to the proton release
from a manganese-bound water ligand. The altered coordination strength
of the manganese–ligand facilitates formation of the closed-cubane
form, in a dynamic equilibrium with the open-cubane form. This tautomerism
immediately preceding dioxygen formation may constitute the rate limiting
step for O2 formation, and exert a significant influence
on the water oxidation mechanism in photosystem II.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187 Umeå, Sweden.,Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
33
|
Artificial Photosynthesis(AP): From Molecular Catalysts to Heterogeneous Materials. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Gupta G, Bera M, Paul S, Paria S. Electrochemical Properties and Reactivity Study of [Mn V(O)(μ-OR-Lewis Acid)] Cores. Inorg Chem 2021; 60:18006-18016. [PMID: 34813300 DOI: 10.1021/acs.inorgchem.1c02601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mononuclear manganese(V) oxo complex of a bis(amidate)bis(alkoxide) ligand, (NMe4)[MnV(HMPAB)(O)] [2; H4HMPAB = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene], was synthesized and structurally characterized. A Mn-Oterm distance of 1.566(4) Å was observed in the solid-state structure of 2, consistent with the Mn≡O formulation. The reaction of redox-inactive metal ions (Mn+ = Li+, Ca2+, Mg2+, Y3+, and Sc3+) with 2 resulted in the formation of 2-Mn+ species, which were characterized by UV-vis, 1H NMR, cyclic voltammetry, and in situ IR spectroscopy. Theoretical calculations suggested that the alkoxide oxygen atoms of the ligand scaffold are energetically most favorable for coordinating the Mn+ ions in 2. Complex 2 revealed one-electron-reduction potential at -0.01 V versus ferrocenium/ferrocene, which shifted anodically upon coordination of Mn+ ions to 2, and such a shift became more prominent with stronger Lewis acids. The oxygen-atom transfer (OAT) reactivities of 2 and 2-Mn+ species with triphenylphosphine were compared, which exhibited a systematic increase of the reaction rate with increasing Lewis acidity of Mn+ ions, and a plot of log k2 versus Lewis acidity of Mn+ ions (ΔE) followed a linear relationship. It was observed that 2-Sc3+ was ca. 3200 times more reactive toward the OAT reaction compared to 2. Hammett analysis of 2 exhibited a V-shaped plot, indicating a change of the reaction mechanism upon going from electron-rich to electron-deficient Ar3P substrates. In contrast, 2-Ca2+ and 2-Sc3+ showed an electrophilic nature toward the OAT reaction, thus demonstrating the role of the Lewis acid in controlling the OAT mechanism. The hydrogen-atom abstraction reaction of 2 and 2-Mn+ adducts with 1-benzyl-1,4-dihydronicotinamide was investigated, and it was observed that the rate of reaction did not vary considerably with the Lewis acidity of Mn+ ions. On the basis of Eyring analysis of 2 and 2-Mn+ adducts, we hypothesized an entropy-controlled hydrogen-atom-transfer reaction for 2-Sc3+, which is different from the reaction mechanism of 2 and 2-Ca2+.
Collapse
Affiliation(s)
- Geetika Gupta
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, Kolkata 700009, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
35
|
Kim YJ, Hong H, Yun J, Kim SI, Jung HY, Ryu W. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005919. [PMID: 33236450 DOI: 10.1002/adma.202005919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.
Collapse
Affiliation(s)
- Yong Jae Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyeonaug Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - JaeHyoung Yun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seon Il Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Yun Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
36
|
Li C, Ding S, Ma X, Chen M, Zhong Z, Zhang Y, Ren M, Zhang M, Yang L, Rong N, Wang Y. O 2 distribution and dynamics in the rhizosphere of Phragmites australis, and implications for nutrient removal in sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117193. [PMID: 33989948 DOI: 10.1016/j.envpol.2021.117193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Root-triggered microscale variations in O2 distribution in the rhizosphere of young Phragmites australis are important for nutrient removal in sediments. In this study, the micro-scale O2 dynamics and the small-scale changes of soluble reactive phosphorus (SRP) and ammonium (NH4+) in the rhizosphere of P. australis were investigated using planar optodes and high-resolution dialysis (HR-Peeper), respectively. Results suggested that root O2 leakage has a highly variable distribution depending on the stage of root growth, the site of O2 leakage gradually shift from the entire emerging main roots to the main root tip and subsequently shifted the emerging lateral roots. The O2 concentration increased in the rhizosphere with increasing light intensity and O2 levels in the overlying water. Continuous O2 release from the lateral roots causes the formation of iron plaque on the surface of lateral roots, which reduce the mobility of P by adsorption of iron plaque in the rhizosphere. The oscillation of oxic-anoxic root zones improves nitrogen removal through the processes of anammox, heterotrophic denitrification and nitrification. This work from the micro-scale demonstrates that the O2 concentration is the spatio-temporal variations in the rhizosphere, and it presents an important role for nutrient removal in sediments.
Collapse
Affiliation(s)
- Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Ma
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhilin Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- School of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Mingyi Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Nan Rong
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing, 210018, China
| |
Collapse
|
37
|
Capone M, Narzi D, Guidoni L. Mechanism of Oxygen Evolution and Mn 4CaO 5 Cluster Restoration in the Natural Water-Oxidizing Catalyst. Biochemistry 2021; 60:2341-2348. [PMID: 34283569 DOI: 10.1021/acs.biochem.1c00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation occurring in the first steps of natural oxygenic photosynthesis is catalyzed by the pigment/protein complex Photosystem II. This process takes place on the Mn4Ca cluster located in the core of Photosystem II and proceeds along the five steps (S0-S4) of the so-called Kok-Joliot cycle until the release of molecular oxygen. The catalytic cycle can therefore be started afresh through insertion of a new water molecule. Here, combining quantum mechanics/molecular mechanics simulations and minimum energy path calculations, we characterized on different spin surfaces the events occurring in the last sector of the catalytic cycle from structural, electronic, and thermodynamic points of view. We found that the process of oxygen evolution and water insertion can be described well by a two-step mechanism, with oxygen release being the rate-limiting step of the process. Moreover, our results allow us to identify the upcoming water molecule required to regenerate the initial structure of the Mn4Ca cluster in the S0 state. The insertion of the water molecule was found to be coupled with the transfer of a proton to a neighboring hydroxide ion, thus resulting in the reconstitution of the most widely accepted model of the S0 state.
Collapse
Affiliation(s)
- Matteo Capone
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli studi dell'Aquila, Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | - Daniele Narzi
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli studi dell'Aquila, Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli studi dell'Aquila, Via Vetoio (Coppito), 67100 L'Aquila, Italy
| |
Collapse
|
38
|
Wang L, Wan B, Lai S, Weng L, Liu H, Wang H. Light‐Induced Electron Transfer in Manganese(V)–Oxo Corroles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Li‐Li Wang
- School of Physics Sun Yat-Sen University 510275 Guangzhou P. R. China
| | - Bei Wan
- Department of Chemistry South China University of Technology 510641 Guangzhou P. R. China
| | - Shu‐Hui Lai
- Department of Chemistry South China University of Technology 510641 Guangzhou P. R. China
| | - Lin‐Fang Weng
- School of Physics Sun Yat-Sen University 510275 Guangzhou P. R. China
| | - Hai‐Yang Liu
- Department of Chemistry South China University of Technology 510641 Guangzhou P. R. China
| | - Hui Wang
- School of Physics Sun Yat-Sen University 510275 Guangzhou P. R. China
| |
Collapse
|
39
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
40
|
Solar-driven water-splitting provides a solution to the energy problem underpinning climate change. Biochem Soc Trans 2020; 48:2865-2874. [PMID: 33242067 PMCID: PMC7752056 DOI: 10.1042/bst20200758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The emergence of the oxygen-evolving photosystem two complex over 2.6 billion years ago represented the ‘big bang of evolution’ on planet Earth. It allowed phototrophic organisms to use sun light as an energy source to extract electrons and protons from water, and concomitantly release oxygen. Oxygenic photosynthesis not only created an aerobic atmosphere but also removed CO2 to produce the organic molecules that make up the current global biomass and fossil fuel. In addition, it paved the way for animal life. Today extensive burning of fossil fuels is reversing the results of photosynthesis through billions of years, rapidly releasing CO2 back into the atmosphere and consequently increasing the temperature of the planet. There is an urgent need to develop new sustainable energy sources, but the choice is not obvious. My approach to this problem has been to unravel the blueprint of photosystem II (PSII) and to develop an ‘Artificial Leaf’ technology. A significant step with respect to that mission was achieved at Imperial College when we could conclude from X-ray diffraction of PSII crystals, that the water-splitting catalytic centre consists of a unique Mn3Ca2+O4 cubane structure with a fourth dangler Mn oxo-bonded to the cubane. Here I use this and more recent structures to discuss the mechanism of water splitting and O–O bond formation. Furthermore, I will address how this information can be used to design novel water-splitting catalysts and highlight recent progress in this direction. My conviction is ‘if plants can do it, we can do it — after all it is all about chemistry’.
Collapse
|
41
|
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020; 49:9057-9094. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various therapeutic techniques have been studied for treating cancer precisely and effectively, such as targeted drug delivery, phototherapy, tumor-specific catalytic therapy, and synergistic therapy, which, however, evoke numerous challenges due to the inherent limitations of these therapeutic modalities and intricate biological circumstances as well. With the remarkable advances of nanotechnology, nanoplatform-based cascade engineering, as an efficient and booming strategy, has been tactfully introduced to optimize these cancer therapies. Based on the designed nanoplatforms, pre-supposed cascade processes could be triggered under specific conditions to generate/deliver more therapeutic species or produce stronger tumoricidal effects inside tumors, aiming to achieve cancer therapy with increased anti-tumor efficacy and diminished side effects. In this review, the recent advances in nanoplatform-based cascade engineering for cancer therapy are summarized and discussed, with an emphasis on the design of smart nanoplatforms with unique structures, compositions and properties, and the implementation of specific cascade processes by means of endogenous tumor microenvironment (TME) resources and/or exogenous energy inputs. This fascinating strategy presents unprecedented potential in the enhancement of cancer therapies, and offers better controllability, specificity and effectiveness of therapeutic functions compared to the corresponding single components/functions. In the end, challenges and prospects of such a burgeoning strategy in the field of cancer therapy will be discussed, hopefully to facilitate its further development to meet the personalized treatment demands.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | | | | | | |
Collapse
|
42
|
Chen R, Zhuang GL, Wang ZY, Gao YJ, Li Z, Wang C, Zhou Y, Du MH, Zeng S, Long LS, Kong XJ, Zheng LS. Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. Natl Sci Rev 2020; 8:nwaa234. [PMID: 34691725 PMCID: PMC8433082 DOI: 10.1093/nsr/nwaa234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 01/28/2023] Open
Abstract
Photosynthesis in nature uses the Mn4CaO5 cluster as the oxygen-evolving center to catalyze the water oxidation efficiently in photosystem II. Herein, we demonstrate bio-inspired heterometallic LnCo3 (Ln = Nd, Eu and Ce) clusters, which can be viewed as synthetic analogs of the CaMn4O5 cluster. Anchoring LnCo3 on phosphorus-doped graphitic carbon nitrides (PCN) shows efficient overall water splitting without any sacrificial reagents. The NdCo3/PCN-c photocatalyst exhibits excellent water splitting activity and a quantum efficiency of 2.0% at 350 nm. Ultrafast transient absorption spectroscopy revealed the transfer of a photoexcited electron and hole into the PCN and LnCo3 for hydrogen and oxygen evolution reactions, respectively. A density functional theory (DFT) calculation showed the cooperative water activation on lanthanide and O−O bond formation on transition metal for water oxidation. This work not only prepares a synthetic model of a bio-inspired oxygen-evolving center but also provides an effective strategy to realize light-driven overall water splitting.
Collapse
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhi-Ye Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Suyuan Zeng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
43
|
Cox N, Pantazis DA, Lubitz W. Current Understanding of the Mechanism of Water Oxidation in Photosystem II and Its Relation to XFEL Data. Annu Rev Biochem 2020; 89:795-820. [DOI: 10.1146/annurev-biochem-011520-104801] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOxcomplex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.
Collapse
Affiliation(s)
- Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| | | | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
44
|
Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Structural and dynamical characterization of the S4 state of the Kok-Joliot’s cycle by means of QM/MM Molecular Dynamics Simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of plants, algae and cyanobacteria is a unique natural catalyst that splits water into electrons, protons and dioxygen. The crystallographic studies of PSII have revealed that the OEC is an asymmetric Mn4CaO5-cluster. The understanding of the structure-function relationship of this natural Mn4CaO5-cluster is impeded mainly due to the complexity of the protein environment and lack of a rational chemical model as a reference. Although it has been a great challenge for chemists to synthesize the OEC in the laboratory, significant advances have been achieved recently. Different artificial complexes have been reported, especially a series of artificial Mn4CaO4-clusters that closely mimic both the geometric and electronic structures of the OEC in PSII, which provides a structurally well-defined chemical model to investigate the structure-function relationship of the natural Mn4CaO5-cluster. The deep investigations on this artificial Mn4CaO4-cluster could provide new insights into the mechanism of the water-splitting reaction in natural photosynthesis and may help the development of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
|
47
|
Chen R, Yan Z, Kong X. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Zhi‐Hao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
48
|
|
49
|
Mesa CA, Francàs L, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat Chem 2019; 12:82-89. [DOI: 10.1038/s41557-019-0347-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/03/2019] [Indexed: 11/09/2022]
|
50
|
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 142:105-125. [PMID: 31187340 PMCID: PMC6763417 DOI: 10.1007/s11120-019-00648-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Biological water oxidation, performed by a single enzyme, photosystem II, is a central research topic not only in understanding the photosynthetic apparatus but also for the development of water splitting catalysts for technological applications. Great progress has been made in this endeavor following the report of a high-resolution X-ray crystallographic structure in 2011 resolving the cofactor site (Umena et al. in Nature 473:55-60, 2011), a tetra-manganese calcium complex. The electronic properties of the protein-bound water oxidizing Mn4OxCa complex are crucial to understand its catalytic activity. These properties include: its redox state(s) which are tuned by the protein matrix, the distribution of the manganese valence and spin states and the complex interactions that exist between the four manganese ions. In this short review we describe how magnetic resonance techniques, particularly EPR, complemented by quantum chemical calculations, have played an important role in understanding the electronic structure of the cofactor. Together with isotope labeling, these techniques have also been instrumental in deciphering the binding of the two substrate water molecules to the cluster. These results are briefly described in the context of the history of biological water oxidation with special emphasis on recent work using time resolved X-ray diffraction with free electron lasers. It is shown that these data are instrumental for developing a model of the biological water oxidation cycle.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Maria Chrysina
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, Australia
| |
Collapse
|