1
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Marino G, Campanelli F, Natale G, De Carluccio M, Servillo F, Ferrari E, Gardoni F, Caristo ME, Picconi B, Cardinale A, Loffredo V, Crupi F, De Leonibus E, Viscomi MT, Ghiglieri V, Calabresi P. Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson's disease restoring striatal synaptic plasticity. SCIENCE ADVANCES 2023; 9:eadh1403. [PMID: 37450585 PMCID: PMC10348672 DOI: 10.1126/sciadv.adh1403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Intensive physical activity improves motor functions in patients with Parkinson's disease (PD) at early stages. However, the mechanisms underlying the beneficial effects of exercise on PD-associated neuronal alterations have not been fully clarified yet. Here, we tested the hypothesis that an intensive treadmill training program rescues alterations in striatal plasticity and early motor and cognitive deficits in rats receiving an intrastriatal injection of alpha-synuclein (α-syn) preformed fibrils. Improved motor control and visuospatial learning in active animals were associated with a recovery of dendritic spine density alterations and a lasting rescue of a physiological corticostriatal long-term potentiation (LTP). Pharmacological analyses of LTP show that modulations of N-methyl-d-aspartate receptors bearing GluN2B subunits and tropomyosin receptor kinase B, the main brain-derived neurotrophic factor receptor, are involved in these beneficial effects. We demonstrate that intensive exercise training has effects on the early plastic alterations induced by α-syn aggregates and reduces the spread of toxic α-syn species to other vulnerable brain areas.
Collapse
Affiliation(s)
- Gioia Marino
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Campanelli
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria De Carluccio
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosciences and Neurorehabilitation IRCCS S.Raffaele-Roma, Rome, Italy
| | - Federica Servillo
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | | | - Barbara Picconi
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
- IRCCS San Raffaele Roma, Lab. Neurofisiologia Sperimentale, Roma, Italy
| | - Antonella Cardinale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- IRCCS San Raffaele Roma, Lab. Neurofisiologia Sperimentale, Roma, Italy
| | - Vittorio Loffredo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
| | - Francesco Crupi
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
| | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Veronica Ghiglieri
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
3
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
4
|
Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS One 2021; 16:e0258928. [PMID: 34767546 PMCID: PMC8589152 DOI: 10.1371/journal.pone.0258928] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
The rotenone-induced animal model of Parkinson's disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.
Collapse
|
5
|
Barón-Quiroz K, García-Ramirez M, Chuc-Meza E. Dopaminergic denervation of the globus pallidus produces short-memory impairment in rats. Physiol Behav 2021; 240:113535. [PMID: 34303714 DOI: 10.1016/j.physbeh.2021.113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Rats with low-level globus pallidus (GP) dopaminergic denervation can develop anxiety without any motor alterations. The aim of this study was to evaluate the effect of low-level 6-OHDA-induced unilateral and bilateral GP lesions in male Wistar rats (n = 8/group) on recognition memory, motor activity, and the number of TH+ neurons in the SNc. For unilateral- and bilateral-lesioned animals, there was a significant decrease in the number of TH+ neurons (27% and 42%, respectively) and in the object, location, and temporal order discrimination indexes of recognition memory tests. Motor activity was unaffected. Thus, GP dopamine denervation was detrimental to short-memory.
Collapse
Affiliation(s)
- Katia Barón-Quiroz
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, CP 07340, Ciudad de México, México
| | - Martha García-Ramirez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu sn, San Pedro Zacatenco, CP 07738, Ciudad de México, México
| | - Eliezer Chuc-Meza
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu sn, San Pedro Zacatenco, CP 07738, Ciudad de México, México.
| |
Collapse
|
6
|
Scheuer T, dem Brinke EA, Grosser S, Wolf SA, Mattei D, Sharkovska Y, Barthel PC, Endesfelder S, Friedrich V, Bührer C, Vida I, Schmitz T. Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development 2021; 148:272278. [PMID: 34557899 DOI: 10.1242/dev.198390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the underlying mechanisms are not known. In a translational hyperoxia model, exposing mice pups at P5 to 80% oxygen for 48 h to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin-expressing interneurons until adulthood. Developmental delay of cortical myelin was observed, together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning and attention. These results demonstrate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate that an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.
Collapse
Affiliation(s)
- Till Scheuer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Elena Auf dem Brinke
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Susanne A Wolf
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Department of Experimental Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Daniele Mattei
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich CH-8057, Switzerland
| | - Yuliya Sharkovska
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Paula C Barthel
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Vivien Friedrich
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| |
Collapse
|
7
|
Holter KM, Lekander AD, LaValley CM, Bedingham EG, Pierce BE, Sands LP, Lindsley CW, Jones CK, Gould RW. Partial mGlu 5 Negative Allosteric Modulator M-5MPEP Demonstrates Antidepressant-Like Effects on Sleep Without Affecting Cognition or Quantitative EEG. Front Neurosci 2021; 15:700822. [PMID: 34276300 PMCID: PMC8283128 DOI: 10.3389/fnins.2021.700822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/28/2023] Open
Abstract
Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor subtype 5 (mGlu5) demonstrate anxiolytic-like and antidepressant-like effects yet concern regarding adverse effect liability remains. Functional coupling of mGlu5 with ionotropic N-methyl-D-aspartate receptors (NMDARs) represents a potential mechanism through which full inhibition leads to adverse effects, as NMDAR inhibition can induce cognitive impairments and psychotomimetic-like effects. Recent development of "partial" mGlu5 NAMs, characterized by submaximal but saturable levels of blockade, may represent a novel development approach to broaden the therapeutic index of mGlu5 NAMs. This study compared the partial mGlu5 NAM, M-5MPEP, with the full mGlu5 NAM, VU0424238 on sleep, cognition, and brain function alone and in combination with a subthreshold dose of the NMDAR antagonist, MK-801, using a paired-associates learning (PAL) cognition task and electroencephalography (EEG) in rats. M-5MPEP and VU0424238 decreased rapid eye movement (REM) sleep and increased REM sleep latency, both putative biomarkers of antidepressant-like activity. Neither compound alone affected accuracy, but 30 mg/kg VU0424238 combined with MK-801 decreased accuracy on the PAL task. Using quantitative EEG, VU0424238, but not M-5MPEP, prolonged arousal-related elevations in high gamma power, and, in combination, VU0424238 potentiated effects of MK-801 on high gamma power. Together, these studies further support a functional interaction between mGlu5 and NMDARs that may correspond with cognitive impairments. Present data support further development of partial mGlu5 NAMs given their potentially broader therapeutic index than full mGlu5 NAMs and use of EEG as a translational biomarker to titrate doses aligning with therapeutic versus adverse effects.
Collapse
Affiliation(s)
- Kimberly M. Holter
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alex D. Lekander
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christina M. LaValley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - Bethany E. Pierce
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W. Gould
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Neuropsychiatric and Cognitive Deficits in Parkinson's Disease and Their Modeling in Rodents. Biomedicines 2021; 9:biomedicines9060684. [PMID: 34204380 PMCID: PMC8234051 DOI: 10.3390/biomedicines9060684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD.
Collapse
|
9
|
Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, Quiroga-Varela A, Chiasserini D, Mellone M, Mazzocchetti P, Calabrese V, Campanelli F, Mechelli A, Di Filippo M, Ghiglieri V, Picconi B, El-Agnaf OM, De Leonibus E, Gardoni F, Tozzi A, Calabresi P. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain 2020; 142:1365-1385. [PMID: 30927362 DOI: 10.1093/brain/awz065] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.
Collapse
Affiliation(s)
- Valentina Durante
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Antonio de Iure
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Vittorio Loffredo
- Institute of Cellular Biology and Neurobiology, National Research Council, Monterotondo (Rome), Italy.,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Italy
| | - Nishant Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maria De Risi
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Silvia Paciotti
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Ana Quiroga-Varela
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Manuela Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Valeria Calabrese
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Federica Campanelli
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Alessandro Mechelli
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Veronica Ghiglieri
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Perugia, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,University of San Raffaele, Rome, Italy
| | - Omar M El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Elvira De Leonibus
- Institute of Cellular Biology and Neurobiology, National Research Council, Monterotondo (Rome), Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Sikora J, Kieffer BL, Paoletti P, Ouagazzal AM. Synaptic zinc contributes to motor and cognitive deficits in 6-hydroxydopamine mouse models of Parkinson's disease. Neurobiol Dis 2019; 134:104681. [PMID: 31759136 DOI: 10.1016/j.nbd.2019.104681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperactivity of glutamatergic corticostrial pathways is recognized as a key pathophysiological mechanism contributing to development of PD symptoms and dopaminergic neurotoxicity. Subset of corticostriatal projection neurons uses Zn2+ as a co-transmitter alongside glutamate, but the role of synaptically released Zn2+ in PD remains unexplored. We used genetically modified mice and pharmacological tools in combination with 6-hydroxydopamine (6-OHDA) lesion models of PD to investigate the contribution of synaptic zinc to disease associated behavioral deficits and neurodegeneration. Vesicular zinc transporter-3 (ZnT3) knockout mice lacking releasable Zn2+ were more resistant to locomotor deficit and memory impairment of nigrostriatal dopamine (DA) denervation compared to wildtype littermates. The loss of striatal dopaminergic fibers was comparable between genotypes, indicating that synaptically released Zn2+ contributes to behavioral deficits but not neurotoxic effects of 6-OHDA. To gain further insight into the mechanisms of Zn2+ actions, we used the extracellular Zn2+ chelator CaEDTA and knock-in mice lacking the high affinity Zn2+ inhibition of GluN2A-containing NMDA receptors (GluN2A-NMDARs). Acute chelation of extracellular Zn2+ in the striatum restored locomotor deficit of 6-OHDA lesion, confirming that synaptic Zn2+ suppresses locomotor behavior. Disruption of the Zn2+-GluN2A interaction had, on the other hand, no impact on locomotor deficit or neurotoxic effect of 6-OHDA. Collectively, these findings provide clear evidence for the implication of striatal synaptic Zn2+ in the pathophysiology of PD. They unveil that synaptic Zn2+ plays predominantly a detrimental role by promoting motor and cognitive deficits caused by nigrostriatal DA denervation, pointing towards new therapeutic interventions.
Collapse
Affiliation(s)
- Joanna Sikora
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France; Aix-marseille Université, Marseille, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Canada
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Abdel-Mouttalib Ouagazzal
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France.
| |
Collapse
|
11
|
Giordano N, Iemolo A, Mancini M, Cacace F, De Risi M, Latagliata EC, Ghiglieri V, Bellenchi GC, Puglisi-Allegra S, Calabresi P, Picconi B, De Leonibus E. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain 2019; 141:505-520. [PMID: 29281030 DOI: 10.1093/brain/awx351] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Nigro-striatal dopamine transmission is central to a wide range of neuronal functions, including skill learning, which is disrupted in several pathologies such as Parkinson's disease. The synaptic plasticity mechanisms, by which initial motor learning is stored for long time periods in striatal neurons, to then be gradually optimized upon subsequent training, remain unexplored. Addressing this issue is crucial to identify the synaptic and molecular mechanisms involved in striatal-dependent learning impairment in Parkinson's disease. In this study, we took advantage of interindividual differences between outbred rodents in reaching plateau performance in the rotarod incremental motor learning protocol, to study striatal synaptic plasticity ex vivo. We then assessed how this process is modulated by dopamine receptors and the dopamine active transporter, and whether it is impaired by overexpression of human α-synuclein in the mesencephalon; the latter is a progressive animal model of Parkinson's disease. We found that the initial acquisition of motor learning induced a dopamine active transporter and D1 receptors mediated long-term potentiation, under a protocol of long-term depression in striatal medium spiny neurons. This effect disappeared in animals reaching performance plateau. Overexpression of human α-synuclein reduced striatal dopamine active transporter levels, impaired motor learning, and prevented the learning-induced long-term potentiation, before the appearance of dopamine neuronal loss. Our findings provide evidence of a reorganization of cellular plasticity within the dorsolateral striatum that is mediated by dopamine receptors and dopamine active transporter during the acquisition of a skill. This newly identified mechanism of cellular memory is a form of metaplasticity that is disrupted in the early stage of synucleinopathies, such as Parkinson's disease, and that might be relevant for other striatal pathologies, such as drug abuse.
Collapse
Affiliation(s)
- Nadia Giordano
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| | - Attilio Iemolo
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Maria Mancini
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Fabrizio Cacace
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Maria De Risi
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| | - Emanuele Claudio Latagliata
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Psychology, University of Rome La Sapienza, Rome, Italy
| | - Veronica Ghiglieri
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Perugia, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Stefano Puglisi-Allegra
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Psychology, University of Rome La Sapienza, Rome, Italy
| | - Paolo Calabresi
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Medicine, Neurology Unit, University of Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Barbara Picconi
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| |
Collapse
|
12
|
Pourmirbabaei S, Dolatshahi M, Rahmani F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol 2019; 855:149-159. [PMID: 31063776 DOI: 10.1016/j.ejphar.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
Levodopa remains to be the mainstay for treatment of Parkinson disease (PD). Long-term levodopa treatment bears a risk for developing levodopa-induced dyskinesia (LID). LID significantly overshadows patients' quality of life and therapeutic efficacy of levodopa. Pre- and post-synaptic changes in dopamine secretion and signaling, along with altered glutamate receptor expression and glutamatergic signaling in striatal neurons, and the resulting disinhibition-like changes in the corticostriatal circuitry, lead to aberrant activity of motor cortex and formation of LID. Research has highlighted the role of group I metabotropic glutamate receptors especially the metabotropic glutamate receptor 5 (mGlu5) in formation of LID through potentiating of ionotropic glutamate NMDA receptors and dopamine D1/D5 receptors in direct pathway. Accordingly, MTEP and MPEP were the first mGlu5 receptor antagonists which were shown to attenuate LID in animal models through suppression of downstream signaling cascades involving mitogen-activated protein kinase (MAPK) and FosB/delta FosB activation, as well as modulation of prodynorphinegic, preproenkephalinergic, and GABA-ergic neurotransmission systems. Beneficial effects of other mGlu5 receptor antagonists such as AFQ056/mavoglurant and ADX48621/dipraglurant in amelioration of LID has been shown not only in animal models but also in clinical trials. Considering the presence of mGlu receptor dysregulation in rapid eye movement (REM) sleep behavior disorder and depression, which are prodromal signs of PD, along with the neuroprotective effects of mGlu receptor antagonists, and their cognitive benefits, potential effectiveness of mGlu receptor antagonists in early prevention of PD remains to be investigated.
Collapse
Affiliation(s)
- Shayan Pourmirbabaei
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
13
|
Wang W, Duclot F, Groveman BR, Carrier N, Qiao H, Fang XQ, Wang H, Xin W, Jiang XH, Salter MW, Ding XS, Kabbaj M, Yu XM. Hippocampal protein kinase D1 is necessary for DHPG-induced learning and memory impairments in rats. PLoS One 2018; 13:e0195095. [PMID: 29614089 PMCID: PMC5882104 DOI: 10.1371/journal.pone.0195095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/18/2018] [Indexed: 11/18/2022] Open
Abstract
Background Understanding molecular mechanisms underlying the induction of learning and memory impairments remains a challenge. Recent investigations have shown that the activation of group I mGluRs (mGluR1 and mGluR5) in cultured hippocampal neurons by application of (S)-3,5-Dihydroxyphenylglycine (DHPG) causes the regulated internalization of N-methyl-D-aspartate receptors (NMDARs), which subsequently activates protein kinase D1 (PKD1). Through phosphorylating the C-terminals of the NMDAR GluN2 subunits, PKD1 down-regulates the activity of remaining (non-internalized) surface NMDARs. The knockdown of PKD1 does not affect the DHPG-induced inhibition of AMPA receptor-mediated miniature excitatory post-synaptic currents (mEPSCs) but prevents the DHPG-induced inhibition of NMDAR-mediated mEPSCs in vitro. Thus, we investigated the in vivo effects of bilateral infusions of DHPG into the hippocampal CA1 area of rats in the Morris water maze (MWM) and the novel object discrimination (NOD) tests. Methods A total of 300 adult male Sprague Dawley rats (250–280 g) were used for behavioral tests. One hundred ninety four were used in MWM test and the other 106 rats in the NOD test. Following one week of habituation to the vivarium, rats were bilaterally implanted under deep anesthesia with cannulas aimed at the CA1 area of the hippocampus (CA1 coordinates in mm from Bregma: AP -3.14; lateral +/-2; DV -3.0). Through implanted cannulas artificial cerebrospinal fluid (ACSF), the group1 mGluR antagonist 6-Methyl-2-(phenylethynyl)pyridine (MPEP), the dynamin-dependent internalization inhibitor Dynasore, or the PKD1 inhibitor CID755673 were infused into the bilateral hippocampal CA1 areas (2 μL per side, over 5 min). The effects of these infusions and the effects of PKD1 knockdown were examined in MWM or NOD test. Results DHPG infusion increased the latency to reach the platform in the MWM test and reduced the preference for the novel object in the NOD task. We found that the DHPG effects were dose-dependent and could be maintained for up to 2 days. Notably, these effects could be prevented by pre-infusion of the group1 mGluR antagonist MPEP, the dynamin-dependent internalization inhibitor Dynasore, the PKD1 inhibitor CID755673, or by PKD1 knockdown in the hippocampal CA1 area. Conclusion Altogether, these findings provide direct evidence that PKD1-mediated signaling may play a critical role in the induction of learning and memory impairments by DHPG infusion into the hippocampal CA1 area.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- BenQ Affiliated Hospital and Neurological Institute, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Bradley R. Groveman
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Nicole Carrier
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Haifa Qiao
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Xiao-Qian Fang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas, United States of America
| | - Hui Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Wenkuan Xin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Xing-Hong Jiang
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Michael W. Salter
- Program in Neuroscience and Mental Health, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Xin-Sheng Ding
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- BenQ Affiliated Hospital and Neurological Institute, Nanjing Medical University, Nanjing, People’s Republic of China
- * E-mail: (XD); (MK); (XMY)
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (XD); (MK); (XMY)
| | - Xian-Min Yu
- BenQ Affiliated Hospital and Neurological Institute, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People’s Republic of China
- * E-mail: (XD); (MK); (XMY)
| |
Collapse
|
14
|
Yoo SBM, Sleezer BJ, Hayden BY. Robust Encoding of Spatial Information in Orbitofrontal Cortex and Striatum. J Cogn Neurosci 2018; 30:898-913. [PMID: 29561237 DOI: 10.1162/jocn_a_01259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowing whether core reward regions carry information about the positions of relevant objects is crucial for adjudicating between choice models. One limitation of previous studies, including our own, is that spatial positions can be consistently differentially associated with rewards, and thus position can be confounded with attention, motor plans, or target identity. We circumvented these problems by using a task in which value-and thus choices-was determined solely by a frequently changing rule, which was randomized relative to spatial position on each trial. We presented offers asynchronously, which allowed us to control for reward expectation, spatial attention, and motor plans in our analyses. We find robust encoding of the spatial position of both offers and choices in two core reward regions, orbitofrontal Area 13 and ventral striatum, as well as in dorsal striatum of macaques. The trial-by-trial correlation in noise in encoding of position was associated with variation in choice, an effect known as choice probability correlation, suggesting that the spatial encoding is associated with choice and is not incidental to it. Spatial information and reward information are not carried by separate sets of neurons, although the two forms of information are temporally dissociable. These results highlight the ubiquity of multiplexed information in association cortex and argue against the idea that these ostensible reward regions serve as part of a pure value domain.
Collapse
|
15
|
Nardecchia F, Orlando R, Iacovelli L, Colamartino M, Fiori E, Leuzzi V, Piccinin S, Nistico R, Puglisi-Allegra S, Di Menna L, Battaglia G, Nicoletti F, Pascucci T. Targeting mGlu5 Metabotropic Glutamate Receptors in the Treatment of Cognitive Dysfunction in a Mouse Model of Phenylketonuria. Front Neurosci 2018; 12:154. [PMID: 29615849 PMCID: PMC5864888 DOI: 10.3389/fnins.2018.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/26/2018] [Indexed: 11/23/2022] Open
Abstract
We studied group-I metabotropic glutamate (mGlu) receptors in Pahenu2 (ENU2) mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test) after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy.
Collapse
Affiliation(s)
- Francesca Nardecchia
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy.,Department of Pediatrics and Child Neuropsychiatry, Sapienza Università di Roma, Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Marco Colamartino
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy
| | - Elena Fiori
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Pediatrics and Child Neuropsychiatry, Sapienza Università di Roma, Rome, Italy
| | - Sonia Piccinin
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy.,Department of Biology, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Robert Nistico
- Department of Biology, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Stefano Puglisi-Allegra
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy.,IRCCS Foundation Santa Lucia, Rome, Italy
| | | | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Tiziana Pascucci
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy.,IRCCS Foundation Santa Lucia, Rome, Italy
| |
Collapse
|
16
|
Dynamic Changes in Striatal mGluR1 But Not mGluR5 during Pathological Progression of Parkinson's Disease in Human Alpha-Synuclein A53T Transgenic Rats: A Multi-PET Imaging Study. J Neurosci 2016; 36:375-84. [PMID: 26758830 DOI: 10.1523/jneurosci.2289-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is a prevalent degenerative disorder affecting the CNS that is primarily characterized by resting tremor and movement deficits. Group I metabotropic glutamate receptor subtypes 1 and 5 (mGluR1 and mGluR5, respectively) are important targets for investigation in several CNS disorders. In the present study, we investigated the in vivo roles of mGluR1 and mGluR5 in chronic PD pathology by performing longitudinal positron emission tomography (PET) imaging in A53T transgenic (A53T-Tg) rats expressing an abnormal human α-synuclein (ASN) gene. A53T-Tg rats showed a dramatic decline in general motor activities with age, along with abnormal ASN aggregation and striatal neuron degeneration. In longitudinal PET imaging, striatal nondisplaceable binding potential (BPND) values for [(11)C]ITDM (N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[(11)C]methylbenzamide), a selective PET ligand for mGluR1, temporarily increased before PD symptom onset and dramatically decreased afterward with age. However, striatal BPND values for (E)-[(11)C]ABP688 [3-(6-methylpyridin-2-ylethynyl)-cyclohex-2-enone-(E)-O-[(11)C]methyloxime], a specific PET ligand for mGluR5, remained constant during experimental terms. The dynamic changes in striatal mGluR1 BPND values also showed a high correlation in pathological decreases in general motor activities. Furthermore, declines in mGluR1 BPND values were correlated with decreases in BPND values for [(18)F]FE-PE2I [(E)-N-(3-iodoprop-2E-enyl)-2β-carbo-[(18)F]fluoroethoxy-3β-(4-methylphenyl) nortropane], a specific PET ligand for the dopamine transporter, a biomarker for dopaminergic neurons. In conclusion, our results have demonstrated for the first time that dynamic changes occur in mGluR1, but not mGluR5, that accompany pathological progression in a PD animal model. SIGNIFICANCE STATEMENT Synaptic signaling by glutamate, the principal excitatory neurotransmitter in the brain, is modulated by group I metabotropic glutamate receptors, including the mGluR1 and mGluR5 subtypes. In the brain, mGluR1 and mGluR5 have distinct functional roles and regional distributions. Their roles in brain pathology, however, are not well characterized. Using longitudinal PET imaging in a chronic rat model of PD, we demonstrated that expression of mGluR1, but not mGluR5, dynamically changed in the striatum accompanying pathological PD progression. These findings imply that monitoring mGluR1 in vivo may provide beneficial information to further understand central nervous system disorders.
Collapse
|
17
|
Negative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats. Psychopharmacology (Berl) 2015; 232:1107-22. [PMID: 25323624 DOI: 10.1007/s00213-014-3746-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Evidence is emerging that positive and negative modulation of the metabotropic glutamate (mGluR5) receptors has the potential for treating cognitive deficits and neuroprotection associated with psychiatric and neurodegenerative diseases, respectively. Sleep and synchronisation of disparate neuronal networks are critically involved in neuronal plasticity, and disturbance in vigilance states and cortical network connectivity contribute significantly to cognitive deficits described in schizophrenia and Alzheimer's disease. Here, we examined the circadian changes of mGluR5 density and the functional response to modulation of mGluR5 signaling. METHODS The current study carried out in Sprague-Dawley rats quantified the density of mGluR5 across the light-dark cycle with autoradiography. The central activity of mGluR5 negative allosteric modulators (2-methyl-6-(phenylethynyl)pyridine (MPEP) and [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and positive allosteric modulators (S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (ADX47273) and (7S)-3-tert-butyl-7-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyridine (LSN2814617) was examined on sleep-wake architecture. The functional effect of mGluR5 modulation on cortical networks communication was described in freely moving animals. RESULTS The density of mGluR5 in the striatal, cortical, hippocampal and thalamic structures was unchanged across the light-dark cycle. Allosteric blockade of mGluR5 consistently consolidated deep sleep, enhanced sleep efficiency and elicited prominent functional coherent network activity in slow theta and gamma oscillations. However, allosteric activation of mGluR5 increased waking, decreased deep sleep and reduced functional network connectivity following the activation of slow alpha oscillatory activity. CONCLUSION This functional study differentiates the pharmacology of allosteric blockade of mGluR5 from that of allosteric activation and suggests that mGluR5 blockade enhances sleep and facilitates oscillatory network connectivity, both processes being known to have relevance in cognition processes.
Collapse
|
18
|
Khalil WK, Assaf N, ElShebiney SA, Salem NA. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochem Int 2015; 80:79-86. [DOI: 10.1016/j.neuint.2014.11.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 11/17/2022]
|
19
|
Amalric M. Targeting metabotropic glutamate receptors (mGluRs) in Parkinson's disease. Curr Opin Pharmacol 2014; 20:29-34. [PMID: 25462289 DOI: 10.1016/j.coph.2014.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/28/2022]
Abstract
The interplay between dopamine and glutamate in the basal ganglia regulate critical aspects of motor and cognitive behavior. Metabotropic glutamate (mGlu) receptors are key modulators of glutamatergic dysfunction in Parkinson's disease (PD). Preclinical evidence demonstrate that group I mGlu receptor antagonism and groups II and III mGlu receptor activation improve motor symptomatology of PD and decrease l-DOPA-induced dyskinesia by regulating excitatory and inhibitory transmission in the basal ganglia. Emotional and cognitive deficits are also observed in PD. Treatment of these symptoms is challenging and underscore the need for novel effective and well tolerated pharmacological treatments. This article will thus review the currently available knowledge regarding the therapeutic potential of targeting mGlu receptors to restore motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Marianne Amalric
- Aix-Marseille University, CNRS UMR 7291, Laboratoire de Neurosciences Cognitives (LNC), FR3C 3512, 13331 Marseille, France.
| |
Collapse
|
20
|
Xia J, Miu J, Ding H, Wang X, Chen H, Wang J, Wu J, Zhao J, Huang H, Tian W. Changes of brain gray matter structure in Parkinson's disease patients with dementia. Neural Regen Res 2014; 8:1276-85. [PMID: 25206422 PMCID: PMC4107646 DOI: 10.3969/j.issn.1673-5374.2013.14.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
Voxel-based morphometry is gaining considerable interest for studies examining Parkinson's disease dementia patients. In this study, 12 patients with clinically defined Parkinson's disease and dementia and 12 non-demented patients with Parkinson's disease were examined using a T1WI three-dimensional fast spoiled gradient echo sequence. Gray matter data were analyzed using a voxel-based morphometry method and independent sample t-test based on Statistical Parametric Mapping 5 software. Differences in gray matter volume were represented with statistical parametric mapping. Compared with Parkinson's disease patients without dementia, decreased gray matter volume in Parkinson's disease dementia patients was observed in the bilateral superior temporal gyrus, bilateral posterior cingulate and left cingulate gyrus, right parahippocampal gyrus and hippocampus, right precuneus and right cuneus, left inferior frontal gyrus and left insular lobe. No increased gray matter volume was apparent. These data indicate that gray matter atrophy in the limbic system and cerebral neocortex is related to the presence of dementia.
Collapse
Affiliation(s)
- Jianguo Xia
- Department of Radiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China
| | - Jinlin Miu
- Department of Radiology, the Fourth People's Hospital of Taizhou, Taizhou 225300, Jiangsu Province, China
| | - Hongbin Ding
- Department of Radiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China
| | - Xiuping Wang
- Department of Radiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China
| | - Hua Chen
- Department of Radiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China
| | - Juan Wang
- Department of Medical Image Engineering, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Juan Wu
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jingli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Huanxin Huang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weizhong Tian
- Department of Radiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China
| |
Collapse
|
21
|
Sciamanna G, Ponterio G, Tassone A, Maltese M, Madeo G, Martella G, Poli S, Schirinzi T, Bonsi P, Pisani A. Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia. Neuropharmacology 2014; 85:440-50. [PMID: 24951854 DOI: 10.1016/j.neuropharm.2014.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.
Collapse
Affiliation(s)
- G Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Madeo
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Martella
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - S Poli
- ADDEX Therapeutics, Geneva, Switzerland
| | - T Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
22
|
Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biol Psychiatry 2014; 75:701-10. [PMID: 23541633 DOI: 10.1016/j.biopsych.2013.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway and the emergence of rigidity, tremor, and bradykinesia. Accumulating evidence indicates that PD is also accompanied by nonmotor symptoms including cognitive deficits, often manifested as impaired visuospatial memory. METHODS We studied cognitive performance and synaptic plasticity in a mouse model of PD, characterized by partial lesion of the dopaminergic and noradrenergic inputs to striatum and hippocampus. Sham- and 6-hydroxydopamine-lesioned mice were subjected to the novel object recognition test, and long-term potentiation was examined in the dentate gyrus and CA1 regions of the hippocampus. RESULTS Bilateral 6-hydroxydopamine lesion reduced long-term but not short-term novel object recognition and decreased long-term potentiation specifically in the dentate gyrus. These abnormalities did not depend on the loss of noradrenaline but were abolished by the antiparkinsonian drug, L-DOPA, or by SKF81297, a dopamine D1-type receptor agonist. In contrast, activation of dopamine D2-type receptors did not modify the effects produced by the lesion. Blockade of the extracellular signal-regulated kinases prevented the ability of SKF81297 to rescue novel object recognition and long-term potentiation. CONCLUSIONS These findings show that partial dopamine depletion leads to impairment of long-term recognition memory accompanied by abnormal synaptic plasticity in the dentate gyrus. They also demonstrate that activation of dopamine D1 receptors corrects these deficits, through a mechanism that requires intact extracellular signal-regulated kinases signaling.
Collapse
|
23
|
Finlay C, Duty S. Therapeutic potential of targeting glutamate receptors in Parkinson's disease. J Neural Transm (Vienna) 2014; 121:861-80. [PMID: 24557498 DOI: 10.1007/s00702-014-1176-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Clare Finlay
- Wolfson Centre for Age-Related Diseases, King's College London, WW1.28. Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
24
|
Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Neuroscience 2014; 256:61-71. [DOI: 10.1016/j.neuroscience.2013.09.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 01/08/2023]
|
25
|
Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K. Glutamate in Parkinson's disease: Role of antiglutamatergic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.baga.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Solari N, Bonito-Oliva A, Fisone G, Brambilla R. Understanding cognitive deficits in Parkinson's disease: lessons from preclinical animal models. Learn Mem 2013; 20:592-600. [PMID: 24049188 DOI: 10.1101/lm.032029.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) has been, until recently, mainly defined by the presence of characteristic motor symptoms, such as rigidity, tremor, bradykinesia/akinesia, and postural instability. Accordingly, pharmacological and surgical treatments have so far addressed these motor disturbances, leaving nonmotor, cognitive deficits an unmet clinical condition. At the preclinical level, the large majority of studies aiming at defining mechanisms and testing novel therapies have similarly focused on the motor aspects of PD. Unfortunately, deterioration of the executive functions, such as attention, recognition, working memory, and problem solving, often appear in an early, premotor phase of the disease and progressively increase in intensity, negatively affecting the quality of life of ∼50%-60% of PD patients. At present, the cellular mechanisms underlying cognitive impairments in PD patients are largely unknown and an adequate treatment is still missing. The preclinical research has recently developed new animal models that may open new perspectives for a more integrated approach to the treatment of both motor and cognitive symptoms of the disease. This review will provide an overview on the cognitive symptoms occurring in early PD patients and then focus on the rodent and nonhuman primate models so far available for the study of discriminative and spatial memory attention and learning abilities related to this pathological condition.
Collapse
Affiliation(s)
- Nicola Solari
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, 20132 Milano, Italy
| | | | | | | |
Collapse
|
27
|
Managò F, Lopez S, Oliverio A, Amalric M, Mele A, De Leonibus E. Interaction between the mGlu receptors 5 antagonist, MPEP, and amphetamine on memory and motor functions in mice. Psychopharmacology (Berl) 2013. [PMID: 23192313 DOI: 10.1007/s00213-012-2925-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RATIONALE Metabotropic glutamate mGlu receptors 5 (mGluR5) receptors are abundant in corticolimbic circuitry where they modulate glutamate and dopamine signal transduction. OBJECTIVES In this study, we explored the hypothesis that mGluR5 antagonist, (2-methyl-6-(phenylethynyl)pyridine hydrochloride) (MPEP), facilitates dopamine-dependent effects on memory and motor functions. METHODS To this aim, we examined the effects of different doses (from 0 to 24 mg/kg) of the mGluR5 antagonist, MPEP, on the modulation of amphetamine-dependent behaviors, namely passive avoidance, locomotor activity, and rotation behavior in intact and dopamine-depleted CD1 male mice. RESULTS We demonstrated that a low dose (3 mg/kg) of MPEP, which is void of behavioral effects on its own, facilitates amphetamine-induced effects independently on the behavior measured both in naïve and in dopamine-lesioned mice; this synergistic effect is lost when higher doses of MPEP are used. CONCLUSION The results are discussed in terms of possible balance between dopamine and glutamate activity in regulating the proper fine tuning of information processing.
Collapse
Affiliation(s)
- Francesca Managò
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Università degli Studi di Roma "La Sapienza", Rome, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Seithel-Keuth A, Johne A, Freisleben A, Kupas K, Lissy M, Krösser S. Absolute Bioavailability and Effect of Food on the Disposition of Safinamide Immediate Release Tablets in Healthy Adult Subjects. Clin Pharmacol Drug Dev 2013; 2:79-89. [DOI: 10.1002/cpdd.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/24/2012] [Indexed: 11/05/2022]
Affiliation(s)
| | - Andreas Johne
- Department of Exploratory Medicine; Merck KGaA; Darmstadt Germany
| | - Achim Freisleben
- Institute of Drug Metabolism and Pharmacokinetics; Merck KGaA; Grafing Germany
| | - Katrin Kupas
- Department of Biostatistics; Merck KGaA; Darmstadt Germany
| | | | - Sonja Krösser
- Department of Exploratory Medicine; Merck KGaA; Darmstadt Germany
| |
Collapse
|
29
|
Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson's disease. CNS Drugs 2012; 26:1017-32. [PMID: 23114872 DOI: 10.1007/s40263-012-0016-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The appearance of levodopa-induced dyskinesia (LID) and ongoing degeneration of nigrostriatal dopaminergic neurons are two key features of Parkinson's disease (PD) that current treatments fail to address. Increased glutamate transmission contributes to the motor symptoms in PD, to the striatal plasticity that underpins LID and to the progression of neurodegeneration through excitotoxic mechanisms. Glutamate receptors have therefore long been considered as potential targets for pharmacological intervention in PD, with emphasis on either blocking activation of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA), N-methyl-D-aspartate (NMDA) or excitatory metabotropic glutamate (mGlu) 5 receptors or promoting the activation of group II/III mGlu receptors. Following a brief summary of the role of glutamate in PD and LID, this article explores the current status of pharmacological studies in pre-clinical rodent and primate models through to clinical trials, where applicable, that support the potential of glutamate-based therapeutic interventions. To date, AMPA antagonists have shown good efficacy against LID in rat and primate models, but the failure of perampanel to lessen LID in clinical trials casts doubt on the translational potential of this approach. In contrast, antagonists selective for NR2B-containing NMDA receptors were effective against LID in animal models and in small-scale clinical trials, though observed adverse cognitive effects need addressing. So far, mGlu5 antagonists or negative allosteric modulators (NAMs) look set to become the first introduced for tackling LID, with AFQ-056 reported to exhibit good efficacy in phase II clinical trials. NR2B antagonists and mGlu5 NAMs may subsequently prove to also be effective disease-modifying agents if their protective effects in rat and primate models of PD, respectively, are replicated in the next stages of investigation. Finally, group III mGlu4 agonists or positive allosteric modulators (PAMs), although in the early pre-clinical stages of investigation, are showing good efficacy against motor symptoms, neurodegeneration and LID. It is anticipated that the recent development of mGlu4 PAMs with improved systemic bioavailability will facilitate progression of these agents into the primate model of PD where their potential can be further explored.
Collapse
|
30
|
Krösser S, Marquet A, Gallemann D, Wolna P, Fauchoux N, Hermann R, Johne A. Effects of ketoconazole treatment on the pharmacokinetics of safinamide and its plasma metabolites in healthy adult subjects. Biopharm Drug Dispos 2012; 33:550-9. [DOI: 10.1002/bdd.1822] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/17/2012] [Accepted: 10/17/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Sonja Krösser
- Department of Exploratory Medicine; Merck KGaA; D-64293; Darmstadt; Germany
| | - Anne Marquet
- Department of Exploratory Medicine; Merck Serono S.A.- Geneva, Switzerland, a branch of Merck Serono S.A., Coinsins, Switzerland, an affiliate of Merck KGaA; Darmstadt; Germany
| | - Dieter Gallemann
- Institute of Drug Metabolism and Pharmacokinetics; Merck KGaA; D-85567; Grafing; Germany
| | - Peter Wolna
- Department of Biostatistics; Merck KGaA; D-64293; Darmstadt; Germany
| | | | - Robert Hermann
- Clinical Research Appliance (cr.appliance); D-78315; Radolfzell; Germany
| | - Andreas Johne
- Department of Exploratory Medicine; Merck KGaA; D-64293; Darmstadt; Germany
| |
Collapse
|
31
|
Lindgren HS, Dunnett SB. Cognitive dysfunction and depression in Parkinson's disease: what can be learned from rodent models? Eur J Neurosci 2012; 35:1894-907. [PMID: 22708601 DOI: 10.1111/j.1460-9568.2012.08162.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) has for decades been considered a pure motor disorder and its cardinal motor symptoms have been attributed to the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and to nigral Lewy body pathology. However, there has more recently been a shift in the conceptualization of the disease, and its pathological features have now been recognized as involving several other areas of the brain and indeed even outside the central nervous system. There are a corresponding variety of intrinsic non-motor symptoms such as autonomic dysfunction, cognitive impairment, sleep disturbances and neuropsychiatric problems, which cannot be explained exclusively by nigral pathology. In this review, we will focus on cognitive impairment and affective symptoms in PD, and we will consider whether, and how, these deficits can best be modelled in rodent models of the disorder. As only a few of the non-motor symptoms respond to standard DA replacement therapies, the quest for a broader therapeutic approach remains a major research effort, and success in this area in particular will be strongly dependent on appropriate rodent models. In addition, better understanding of the different models, as well as the advantages and disadvantages of the available behavioural tasks, will result in better tools for evaluating new treatment strategies for PD patients suffering from these neuropsychological symptoms.
Collapse
Affiliation(s)
- Hanna S Lindgren
- Brain Repair Group, School of Biosciences, Cardiff University, Life Sciences Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK.
| | | |
Collapse
|
32
|
Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson's disease rat model. Pharmacol Biochem Behav 2012; 102:64-71. [DOI: 10.1016/j.pbb.2012.03.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
33
|
Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression. Neuropharmacology 2012; 66:202-14. [PMID: 22551786 DOI: 10.1016/j.neuropharm.2012.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/23/2012] [Accepted: 04/05/2012] [Indexed: 01/03/2023]
Abstract
Evidence suggests that 30-50% of patients suffering from major depressive disorder (MDD) are classified as suffering from treatment resistant depression (TRD) as they have an inadequate response to standard antidepressants. A key feature of this patient population is the increased incidence of co-morbid symptoms like anxiety and pain. Recognizing that current standards of care are largely focused on monoaminergic mechanisms of action (MOAs), innovative approaches to drug discovery for TRD are targeting glutamate hyperfunction. Here we describe the in vitro and in vivo profile of GRN-529, a novel negative allosteric modulator (NAM) of metabotropic glutamate receptor 5 (mGluR5). In cell based pharmacology assays, GRN-529 is a high affinity (Ki 5.4 nM), potent (IC50 3.1 nM) and selective (>1000-fold selective vs mGluR1) mGluR5 NAM. Acute administration of GRN-529 (0.1-30 mg/kg p.o.) had dose-dependent efficacy across a therapeutically relevant battery of animal models, comprising depression (decreased immobility time in tail suspension and forced swim tests) and 2 of the co-morbid symptoms overrepresented in TRD, namely anxiety (attenuation of stress-induced hyperthermia, and increased punished crossings in the four plate test) and pain (reversal of hyperalgesia due to sciatic nerve ligation or inflammation). The potential side effect liability of GRN-529 was also assessed using preclinical models: GRN-529 had no effect on rat sexual behavior or motor co-ordination (rotarod), however it impaired cognition in mice (social odor recognition). Efficacy and side effects of GRN-529 were compared to standard of care agents (antidepressant, anxiolytic or analgesics) and the tool mGluR5 NAM, MTEP. To assess the relationship between target occupancy and efficacy, ex vivo receptor occupancy was measured in parallel with efficacy testing. This revealed a strong correlation between target engagement, exposure and efficacy across behavioral endpoints, which supports the potential translational value of PET imaging to dose selection in patients. Collectively this broad spectrum profile of efficacy of GRN-529 supports our hypothesis that negative allosteric modulation of mGluR5 could represent an innovative therapeutic approach to the treatment of TRD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
|
34
|
Dickerson JW, Conn PJ. Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson's disease. Neurodegener Dis Manag 2012; 2:221-232. [PMID: 23526920 DOI: 10.2217/nmt.12.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder predominantly characterized by motor symptoms including bradykinesia and resting tremor. The gold standard of treatment for PD remains dopamine replacement therapy, which eventually fails due to continued progression of the disease and the development of debilitating side effects. Recent breakthroughs are providing the first major advances in the development of fundamentally new pharmacological strategies for the treatment of PD that do not rely on dopamine replacement strategies, but rather aim to reduce the overactive indirect pathway within the basal ganglia. In this article, we will review the role of metabotropic glutamate receptors within the basal ganglia and discuss the potential for modulation of metabotropic glutamate receptors as a treatment for PD.
Collapse
Affiliation(s)
- Jonathan W Dickerson
- Vanderbilt University Medical Center, Department of Pharmacology & Center for Neuroscience Drug Discovery, 1205 LH, Nashville, TN 37232, USA
| | | |
Collapse
|
35
|
Metabotropic Glutamate Receptor–Dopamine Interactions in the Basal Ganglia Motor Circuit. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b11284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson's disease. J Physiol Biochem 2011; 68:59-69. [PMID: 22006204 DOI: 10.1007/s13105-011-0119-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/31/2011] [Indexed: 11/27/2022]
Abstract
One of the most widely used animal models of Parkinson's disease (PD) involves injecting 6-hydroxydopamine (6-OHDA) directly into the substantia nigra (SN). Some recent reports speculated that dopaminergic drugs may exert brain antioxidant activity, which could explain some of their protective actions. In this way, the aim of the present study was to examine the effects of low-dose pergolide on memory deficits and brain oxidative stress in a 6-OHDA-induced rat model of PD. Right-unilateral lesions of the SN were produced with 6-OHDA. Two weeks after neurosurgery, pergolide (0.3 mg/kg/day) was injected intraperitoneally in the 6-OHDA + pergolide and sham-operated + pergolide groups, while sham-operated and 6-OHDA alone groups received saline. Radial-8-arm maze and Y-maze were used for memory assessment. We also determined some enzymatic antioxidant defenses like superoxide dismutase or glutathione peroxidase and a lipid peroxidation marker [malondialdehyde (MDA)], from the temporal lobe. A reduced number of working/reference memory errors was observed in 6-OHDA + pergolide group, compared to sham-operated rats. Additionally, post hoc analysis showed significant differences between 6-OHDA and 6-OHDA + pergolide groups in both Y-maze and radial-arm-maze tasks. We also noted a significant decrease of MDA level in the 6-OHDA + pergolide group, compared to sham-operated rats. Significant correlations were also found between behavioral parameters and MDA levels. Our data suggest that pergolide facilitates spatial memory and improves brain oxidative balance, after a 6-OHDA-induced model of PD. This could be useful for further investigations and clinical applications of pergolide.
Collapse
Affiliation(s)
- Alin Ciobica
- Department of Biology, Alexandru Ioan Cuza University, Bd. Carol I, nr. 11, Iasi 700506, Romania.
| | | | | | | |
Collapse
|
37
|
Barone P, Aarsland D, Burn D, Emre M, Kulisevsky J, Weintraub D. Cognitive impairment in nondemented Parkinson's disease. Mov Disord 2011; 26:2483-95. [PMID: 22170275 DOI: 10.1002/mds.23919] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 11/06/2022] Open
Abstract
A substantial percentage of patients with newly diagnosed Parkinson's disease without dementia are reported to be affected by cognitive impairment (CI). In practice, however, CI is underrecognized, as the signs may not be apparent in early-stage disease and many routine assessment tools lack the sensitivity to detect subtle cognitive dysfunction. Patients with PD and mild CI (MCI) may have a higher risk of developing dementia than cognitively intact PD patients; however, it is not currently known which patients with CI are at increased risk of developing dementia. This review summarizes current knowledge about CI in nondemented PD; it discusses the structural and functional changes associated with CI and addresses areas of unmet needs. We focus on questions that should be addressed in future studies to achieve consensus on its characteristics and definition, pathophysiology, epidemiology, diagnosis and assessment, and treatment and management.
Collapse
Affiliation(s)
- Paolo Barone
- Department of Neurological Sciences, University Federico II-ICD Hermitage, Capodimonte, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Di Stefano AFD, Rusca A. Pressor response to oral tyramine during co-administration with safinamide in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:505-15. [DOI: 10.1007/s00210-011-0674-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
39
|
Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, Cartier A, Spencer B, Patrick C, Desplats P, Ellisman MH, Masliah E. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity. PLoS One 2010; 5:e14020. [PMID: 21103359 PMCID: PMC2982819 DOI: 10.1371/journal.pone.0014020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 10/19/2010] [Indexed: 12/21/2022] Open
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn). Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR), particularly mGluR5 which has been linked to deficits in murine models of PD. In this context, levels of mGluR5 were analyzed in the brains of PD and DLB human cases and alpha-syn transgenic (tg) mice and compared to age-matched, unimpaired controls, we report a 40% increase in the levels of mGluR5 and beta-arrestin immunoreactivity in the frontal cortex, hippocampus and putamen in DLB cases and in the putamen in PD cases. In the hippocampus, mGluR5 was more abundant in the CA3 region and co-localized with alpha-syn aggregates. Similarly, in the hippocampus and basal ganglia of alpha-syn tg mice, levels of mGluR5 were increased and mGluR5 and alpha-syn were co-localized and co-immunoprecipitated, suggesting that alpha-syn interferes with mGluR5 trafficking. The increased levels of mGluR5 were accompanied by a concomitant increase in the activation of downstream signaling components including ERK, Elk-1 and CREB. Consistent with the increased accumulation of alpha-syn and alterations in mGluR5 in cognitive- and motor-associated brain regions, these mice displayed impaired performance in the water maze and pole test, these behavioral alterations were reversed with the mGluR5 antagonist, MPEP. Taken together the results from study suggest that mGluR5 may directly interact with alpha-syn resulting in its over activation and that this over activation may contribute to excitotoxic cell death in select neuronal regions. These results highlight the therapeutic importance of mGluR5 antagonists in alpha-synucleinopathies.
Collapse
Affiliation(s)
- Diana L. Price
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Kiren Ubhi
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Van Phung
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
- Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Natalie MacLean-Lewis
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
- Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - David Askay
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
| | - Anna Cartier
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Christina Patrick
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Paula Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Mark H. Ellisman
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
- Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
40
|
Simonyi A, Schachtman TR, Christoffersen GRJ. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. Eur J Pharmacol 2010; 639:17-25. [PMID: 20363219 PMCID: PMC2892203 DOI: 10.1016/j.ejphar.2009.12.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
The role of the metabotropic glutamate receptor 5 (mGlu(5) receptor) in learning and memory and other behaviors are reviewed by examining the influence of selective antagonists and genetic knockout on performance. This receptor is involved in spatial learning, contextual fear conditioning, inhibitory avoidance, fear potentiated startle, and conditioned taste aversion. However, mGlu(5) receptor antagonists have proven to be ineffective in other learning tasks, such as the delayed-match-to-position test and a three-hole spatial learning task. Locomotion is often decreased by mGlu(5) receptor antagonists; and other behaviors such as social interaction and consummatory responses can also be affected. In mGlu(5) receptor knockout mice, performance in contextual fear conditioning and spatial water maze tasks is impaired. Although the available evidence is suggestive of an important contribution of mGlu(5) receptors to cognitive functions, further studies are needed, particularly those with in vivo evaluation of the role of mGlu(5) receptors in selective brain regions in different stages of memory formation.
Collapse
Affiliation(s)
- Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
41
|
Stefani MR, Moghaddam B. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade. Eur J Pharmacol 2010; 639:26-32. [PMID: 20371234 DOI: 10.1016/j.ejphar.2010.01.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 01/02/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Metabotropic glutamate (mGlu) receptors provide a mechanism by which the function of NMDA glutamate receptors can be modulated. As NMDA receptor hypofunction is implicated in the etiology of psychiatric disorders, including schizophrenia, the pharmacological regulation of mGlu receptor activity represents a promising therapeutic approach. We examined the effects of the positive allosteric mGlu(5) receptor modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), alone and in combination with the NMDA receptor antagonist MK-801, on a task measuring cognitive set-shifting ability. This task measures NMDA receptor-dependent cognitive abilities analogous to those impaired in schizophrenia. Systemic administration of CDPPB (10 and 30 mg/kg i.p) blocked MK-801 (0.1mg/kg, i.p.)-induced impairments in set-shifting ability. The effect on learning was dose-dependent, with the 30 mg/kg dose having a greater effect than the 10mg/kg dose across all trials. This ameliorative effect of CDPPB reflected a reduction in MK-801-induced perseverative responding. These results add to the evidence that mGlu(5) receptors interact functionally with NMDA receptors to regulate behavior, and suggest that positive modulators of mGlu(5) receptors may have therapeutic potential in the treatment of disorders, like schizophrenia, characterized by impairments in cognitive flexibility and memory.
Collapse
|
42
|
Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, Di Paolo T. Effect of L-Dopa on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 2010; 113:715-24. [PMID: 20132464 DOI: 10.1111/j.1471-4159.2010.06635.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Behavioral investigations of selective and potent metabotropic glutamate receptor type 5 (mGluR5) antagonists in animal models suggest involvement of mGluR5 in compensatory mechanisms of the basal ganglia circuitry in Parkinson's disease and levodopa (L-Dopa) induced motor complications. This study investigated mGluR5 changes in MPTP lesioned monkeys. The effect of a chronic 1 month treatment with L-Dopa on mGluR5-specific binding and mRNA levels was investigated in MPTP monkeys killed 4 or 24 h after their last L-Dopa administration. [(3)H]ABP688 specific binding in the putamen was elevated in L-Dopa-treated MPTP monkeys killed 24 h but not 4 h after their last L-Dopa dose compared with vehicle-treated MPTP monkeys. Caudate nucleus [(3)H]ABP688-specific binding was elevated in both groups of L-Dopa treated compared with vehicle-treated MPTP monkeys. In contrast, caudate nucleus and putamen mGluR5 mRNA levels were elevated only in L-Dopa-treated MPTP monkeys killed 4 h after their last L-Dopa administration. MPTP monkeys killed 4 h after their last L-Dopa treatment showed higher caudate nucleus and putamen L-Dopa concentrations compared with those killed after 24 h. Hence, mGluR5 in the putamen are sensitive to presence of L-Dopa leading to a rapid decrease of [(3)H]ABP688-specific binding possibly involving a direct mGluR5/dopamine receptors interaction.
Collapse
Affiliation(s)
- Bazoumana Ouattara
- Molecular Endocrinology and Genomic Research Center, Laval University Medical Center (CHUL), Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Parkinson's disease (PD) is most frequently associated with characteristic motor symptoms that are known to arise with degeneration of dopaminergic neurons. However, patients with this disease also experience a multitude of non-motor symptoms, such as sleep disturbances, fatigue, apathy, anxiety, depression, cognitive impairment, dementia, olfactory dysfunction, pain, sweating and constipation, some of which can be at least as debilitating as the movement disorders and have a major impact on patients' quality of life. Many of these non-motor symptoms may be evident prior to the onset of motor dysfunction. The neuropathology of PD has shown that complex, interconnected neuronal systems, regulated by a number of different neurotransmitters in addition to dopamine, are involved in the aetiology of motor and non-motor symptoms. This review focuses on the non-dopaminergic neurotransmission systems associated with PD with particular reference to the effect that their modulation and interaction with dopamine has on the non-motor symptoms of the disease. PD treatments that focus on the dopaminergic system alone are unable to alleviate both motor and non-motor symptoms, particularly those that develop at early stages of the disease. The development of agents that interact with several of the affected neurotransmission systems could prove invaluable for the treatment of this disease.
Collapse
Affiliation(s)
- P Barone
- Dipartimento di Scienze Neurologiche and IDC-Hermitage-Capodimonte, Naples, Italy.
| |
Collapse
|
45
|
Johnson KA, Conn PJ, Niswender CM. Glutamate receptors as therapeutic targets for Parkinson's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:475-91. [PMID: 19702565 DOI: 10.2174/187152709789824606] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/23/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms including tremor and bradykinesia. The primary pathophysiology underlying PD is the degeneration of dopaminergic neurons of the substantia nigra pars compacta. Loss of these neurons causes pathological changes in neurotransmission in the basal ganglia motor circuit. The ability of ionotropic and metabotropic glutamate receptors to modulate neurotransmission throughout the basal ganglia suggests that these receptors may be targets for reversing the effects of altered neurotransmission in PD. Studies in animal models suggest that modulating the activity of these receptors may alleviate the primary motor symptoms of PD as well as side effects induced by dopamine replacement therapy. Moreover, glutamate receptor ligands may slow disease progression by delaying progressive dopamine neuron degeneration. Antagonists of NMDA receptors have shown promise in reversing motor symptoms, levodopa-induced dyskinesias, and neurodegeneration in preclinical PD models. The effects of drugs targeting AMPA receptors are more complex; while antagonists of these receptors exhibit utility in the treatment of levodopa-induced dyskinesias, AMPA receptor potentiators show promise for neuroprotection. Pharmacological modulation of metabotropic glutamate receptors (mGluRs) may hold even more promise for PD treatment due to the ability of mGluRs to fine-tune neurotransmission. Antagonists of mGluR5, as well as activators of group II mGluRs and mGluR4, have shown promise in several animal models of PD. These drugs reverse motor deficits in addition to providing protection against neurodegeneration. Glutamate receptors therefore represent exciting targets for the development of novel pharmacological therapies for PD.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
46
|
Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA. Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 2009; 330:227-35. [PMID: 19357321 DOI: 10.1124/jpet.108.150425] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
L-DOPA-induced dyskinesia (LID) in Parkinson's disease has been linked to altered dopamine and glutamate transmission within the basal ganglia. In the present study, we compared compounds targeting specific subtypes of glutamate receptors or calcium channels for their ability to attenuate LID and the associated activation of striatal nuclear signaling and gene expression in the rat. Rats with 6-hydroxydopamine lesions were treated acutely or chronically with L-DOPA in combination with the following selective compounds: antagonists of group I metabotropic glutamate receptors (mGluR), (2-methyl-1,3-thiazol-4-yl) ethynylpyridine (MTEP) for mGluR5 and (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methane sulfonate (EMQMCM) for mGluR1; an agonist of group II mGluR, 1R,4R,5S,6R-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268); N-methyl-D-aspartate (NMDA)-R2B subunit (NR2B)-selective NMDA receptor antagonists 1-[2-(4-hydroxyphenoxy)ethyl]-4-[(4-methylphenyl)methyl]-4-piperidinol hydrochloride (Ro631908) and (+/-)-(R(*),S(*))-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)1-piperidine propanol (Ro256981); and an L-type calcium channel antagonist, 4-(4-benzofurazanyl)-1,-4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid methyl 1-methylethyl ester (isradipine). Dyskinesia and rotarod performance were monitored during chronic drug treatment. The striatal expression of phospho-extracellular signal-regulated kinase (ERK) 1/2 and mitogen- and stress-activated kinase (MSK)-1, or prodynorphin mRNA was examined after acute or chronic treatment, respectively. In the acute treatment studies, only MTEP and EMQMCM significantly attenuated L-DOPA-induced phospho-ERK1/2 and/or phospho-MSK-1 expression, with MTEP being the most effective (70-80% reduction). In the chronic experiment, only MTEP significantly attenuated dyskinesia without adverse motor effects, whereas EMQMCM and LY379268 inhibited the L-DOPA-induced improvement in rotarod performance. The NR2B antagonist had positive antiakinetic effects but did not reduce dyskinesia. Only MTEP blocked the up-regulation of prodynorphin mRNA induced by L-DOPA. Among the pharmacological treatments examined, MTEP was most effective in inhibiting LID and the associated molecular alterations. Antagonism of mGluR5 seems to be a promising strategy to reduce dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Daniella Rylander
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Richel DJ, Colly LP, Lurvink E, Willemze R. Comparison of the antileukaemic activity of 5 aza-2-deoxycytidine and arabinofuranosyl-cytosine in rats with myelocytic leukaemia. Br J Cancer 1989; 23:729-42. [PMID: 2465015 DOI: 10.1517/13543784.2014.897694] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using a Brown Norway rat leukaemia model (BNML), which is a realistic model of human myelocytic leukaemia, we compared the antileukaemic activity, influence on cell cycle kinetics and effect on normal haematopoiesis of 5 aza-2-deoxycytidine (aza-dC) and arabinofuranosyl-cytosine (ara-C). The antileukaemic activity was evaluated by means of a survival study. For aza-dC a dose-response relationship was demonstrated for doses up to 50 mg kg-1 (3 times q 12 h); a higher dose resulted in only a slight increase in median survival time (MST). For ara-C a weak dose-response relationship was observed. At the maximum dose of aza-dC and ara-C tested, aza-dC induced a 10-day longer survival time than ara-C, which means 2 logs more of leukaemic cell kill for aza-dC. By means of flow cytometric analysis and a 3HTdR uptake study it was shown that aza-dC does not influence the cell cycle kinetics in the first 24 h after exposure, in contrast to ara-C which caused the characteristic G1/S blockage and synchronization. The influence of aza-dC and ara-C on normal haematopoiesis was evaluated with the CFU-S assay. The dose-response curve for CFU-S did not show a significant difference in stem cell cytotoxicity between aza-dC and ara-C. In the BNML model aza-dC is a much more effective antileukaemic agent than ara-C, while the toxic effect on normal haematopoiesis is comparable to that of ara-C.
Collapse
Affiliation(s)
- D J Richel
- Division of Hematology, University Hospital Leiden, The Netherlands
| | | | | | | |
Collapse
|