1
|
Tancsics P, Kovács A, Palotai M, Bagosi Z. The effects of corticotropin-releasing factor (CRF) and urocortins on the noradrenaline (NA) released from the locus coeruleus (LC). Peptides 2024; 182:171322. [PMID: 39581268 DOI: 10.1016/j.peptides.2024.171322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal (HPA) axis and stimulates the noradrenergic neurotransmission, both processes being implicated in the pathogenesis of anxiety and depression, but the intimate site and mechanism of interaction of CRF and CRF-related peptides, named urocortins (UCN1, UCN2, UCN3), with noradrenaline (NA) was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the NA released from the rat locus coeruleus (LC), the primary source of NA in the brain, and the participation of CRF receptors (CRF1 and CRF2) in these actions. In order to do so, male Wistar rats were used, their LC were isolated and dissected, and the LC slices were incubated with tritium-labelled NA, superfused and stimulated electrically. During superfusion, the LC slices were treated with CRF, UCN1, UCN2 or UCN3, and, when significant effect was observed, pretreated with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B. The release of tritium-labelled NA from the LC was determined by liquid scintillation counting. CRF and UCN1 increased significantly the tritium-labelled NA release from the LC, and these effects were reduced by antalarmin, but not by astressin2B. In addition, UCN2, but not UCN3, decreased significantly the tritium-labelled NA release from the LC, and this effect was reversed by astressin2B, but not antalarmin. Our results indicate the existence of two apparently opposing CRF systems in the LC, since activation of CRF1 by CRF and UCN1 stimulated, whereas activation of CRF2 by UCN2 inhibited the NA release.
Collapse
Affiliation(s)
- Patrícia Tancsics
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
| | - Aliz Kovács
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Miklós Palotai
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zsolt Bagosi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| |
Collapse
|
2
|
Brannan S, Garbe L, Richardson BD. Early life stress induced sex-specific changes in behavior is paralleled by altered locus coeruleus physiology in BALB/cJ mice. Neurobiol Stress 2024; 33:100674. [PMID: 39385751 PMCID: PMC11462065 DOI: 10.1016/j.ynstr.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Adverse childhood experiences have been associated with many neurodevelopmental and affective disorders including attention deficit hyperactivity disorder and generalized anxiety disorder, with more exposures increasing negative risk. Sex and genetic background are biological variables involved in adverse psychiatric outcomes due to early life trauma. Females in general have an increased prevalence of stress-related psychopathologies beginning after adolescence, indicative of adolescence being a female-specific sensitive period. To understand the underlying neuronal mechanisms potentially responsible for this relationship between genetic background, sex, stress/trauma, and cognitive/affective behaviors, we assessed behavioral and neuronal changes in a novel animal model of early life stress exposure. Male and female BALB/cJ mice that express elevated basal anxiety-like behaviors and differences in monoamine signaling-associated genes, were exposed to an early life variable stress protocol that combined deprivation in early life with unpredictability in adolescence. Stress exposure produced hyperlocomotion and attention deficits (5-choice serial reaction time task) in male and female mice along with female-specific increased anxiety-like behavior. These behavioral changes were paralleled by reduced excitability of locus coeruleus (LC) neurons, due to resting membrane potential hyperpolarization in males and a female-specific increase in action potential delay time. These data describe a novel interaction between sex, genetic background, and early life stress that results in behavioral changes in clinically relevant domains and potential underlying mechanistic lasting changes in physiological properties of neurons in the LC.
Collapse
Affiliation(s)
- Savannah Brannan
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Lauren Garbe
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Ben D. Richardson
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| |
Collapse
|
3
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
4
|
Nigro M, Tortorelli LS, Garad M, Dinh K, Zlebnik NE, Yang H. Locus coeruleus modulation of prefrontal dynamics and encoding of flexible rule switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571356. [PMID: 38168151 PMCID: PMC10760137 DOI: 10.1101/2023.12.13.571356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of pharmacology and lesion studies, the underlying neurophysiological correlates and mechanisms that support flexible rule switching are under active investigation. To address this question, we trained mice to distinguish complex sensory cues comprising different perceptual dimensions (set shifting). Endoscopic calcium imaging revealed that medial prefrontal cortex (mPFC) neurons exhibited pronounced dynamic changes during rule switching. Notably, prominent encoding capacity in the mPFC was associated with switching across, but not within perceptual dimensions. We then showed the functional importance of the ascending input from the locus coeruleus (LC), as LC inhibition impaired rule switching behavior and impeded mPFC dynamic processes and encoding. Our results highlight the pivotal role of the mPFC in set shifting processes and demonstrate the profound impact of ascending neuromodulation on shaping prefrontal neural dynamics and behavioral flexibility.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Kevin Dinh
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Natalie E Zlebnik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Nigro M, Tortorelli LS, Yang H. Distinct roles of prefrontal cortex neurons in set shifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608808. [PMID: 39229035 PMCID: PMC11370324 DOI: 10.1101/2024.08.20.608808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies, requires adaptive processing of internal states and contextual cues to guide goal-oriented behavior, and is dependent on prefrontal cortex (PFC) functions. However, the neurophysiological underpinning of how the PFC supports cognitive flexibility is not well understood and has been under active investigation. We recorded spiking activity from single PFC neurons in mice performing the attentional set-shifting task, where mice learned to associate different contextually relevant sensory stimuli to reward. We identified subgroups of PFC neurons encoding task context, choice and trial outcome. Putative fast-spiking neurons were more involved in representing outcome and choice than putative regular-spiking neurons. Regression model further revealed that task context and trial outcome modulated the activity of choice-encoding neurons in rule-dependent and cell type-dependent manners. Together, our data provide new evidence to elucidate PFC's role in cognitive flexibility, suggesting differential cell type-specific engagement during set shifting, and that both contextual rule representation and trial outcome monitoring underlie PFC's unique capacity to support flexible behavioral switching.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Fortin SM, Chen JC, Petticord MC, Ragozzino FJ, Peters JH, Hayes MR. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. SCIENCE ADVANCES 2023; 9:eadh0980. [PMID: 37729419 PMCID: PMC10511187 DOI: 10.1126/sciadv.adh0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Increasing the therapeutic potential and reducing the side effects of U.S. Food and Drug Administration-approved glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat obesity require complete characterization of the central mechanisms that mediate both the food intake-suppressive and illness-like effects of GLP-1R signaling. Our studies, in the rat, demonstrate that GLP-1Rs in the locus coeruleus (LC) are pharmacologically and physiologically relevant for food intake control. Furthermore, agonism of LC GLP-1Rs induces illness-like behaviors, and antagonism of LC GLP-1Rs can attenuate GLP-1R-mediated nausea. Electrophysiological and behavioral pharmacology data support a role for LC GLP-1Rs expressed on presynaptic glutamatergic terminals in the control of feeding and malaise. Collectively, our work establishes the LC as a site of action for GLP-1 signaling and extends our understanding of the GLP-1 signaling mechanism necessary for the development of improved obesity pharmacotherapies.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack C. Chen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa C. Petticord
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Abivardi A, Korn CW, Rojkov I, Gerster S, Hurlemann R, Bach DR. Acceleration of inferred neural responses to oddball targets in an individual with bilateral amygdala lesion compared to healthy controls. Sci Rep 2023; 13:14550. [PMID: 37667022 PMCID: PMC10477323 DOI: 10.1038/s41598-023-41357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Detecting unusual auditory stimuli is crucial for discovering potential threat. Locus coeruleus (LC), which coordinates attention, and amygdala, which is implicated in resource prioritization, both respond to deviant sounds. Evidence concerning their interaction, however, is sparse. Seeking to elucidate if human amygdala affects estimated LC activity during this process, we recorded pupillary responses during an auditory oddball and an illuminance change task, in a female with bilateral amygdala lesions (BG) and in n = 23 matched controls. Neural input in response to oddballs was estimated via pupil dilation, a reported proxy of LC activity, harnessing a linear-time invariant system and individual pupillary dilation response function (IRF) inferred from illuminance responses. While oddball recognition remained intact, estimated LC input for BG was compacted to an impulse rather than the prolonged waveform seen in healthy controls. This impulse had the earliest response mean and highest kurtosis in the sample. As a secondary finding, BG showed enhanced early pupillary constriction to darkness. These findings suggest that LC-amygdala communication is required to sustain LC activity in response to anomalous sounds. Our results provide further evidence for amygdala involvement in processing deviant sound targets, although it is not required for their behavioral recognition.
Collapse
Affiliation(s)
- Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Adult Psychiatry, Heidelberg University, 69115, Heidelberg, Germany
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ivan Rojkov
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Institute for Quantum Electronics, ETH Zurich, 8093, Zurich, Switzerland
| | - Samuel Gerster
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, Carl von Ossietzky University of Oldenburg, 26160, Bad Zwischenahn, Germany
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
- Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, 53012, Bonn, Germany.
| |
Collapse
|
8
|
Tong RL, Kahn UN, Grafe LA, Hitti FL, Fried NT, Corbett BF. Stress circuitry: mechanisms behind nervous and immune system communication that influence behavior. Front Psychiatry 2023; 14:1240783. [PMID: 37706039 PMCID: PMC10495591 DOI: 10.3389/fpsyt.2023.1240783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes are increased by stress and contribute to the pathology of mood disorders. Stress is thought to primarily induce inflammation through peripheral and central noradrenergic neurotransmission. In healthy individuals, these pro-inflammatory effects are countered by glucocorticoid signaling, which is also activated by stress. In chronically stressed individuals, the anti-inflammatory effects of glucocorticoids are impaired, allowing pro-inflammatory effects to go unchecked. Mechanisms underlying this glucocorticoid resistance are well understood, but the precise circuits and molecular mechanisms by which stress increases inflammation are not as well known. In this narrative review, we summarize the mechanisms by which chronic stress increases inflammation and contributes to the onset and development of stress-related mood disorders. We focus on the neural substrates and molecular mechanisms, especially those regulated by noradrenergic signaling, that increase inflammatory processes in stressed individuals. We also discuss key knowledge gaps in our understanding of the communication between nervous and immune systems during stress and considerations for future therapeutic strategies. Here we highlight the mechanisms by which noradrenergic signaling contributes to inflammatory processes during stress and how this inflammation can contribute to the pathology of stress-related mood disorders. Understanding the mechanisms underlying crosstalk between the nervous and immune systems may lead to novel therapeutic strategies for mood disorders and/or provide important considerations for treating immune-related diseases in individuals suffering from stress-related disorders.
Collapse
Affiliation(s)
- Rose L. Tong
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Ubaidah N. Kahn
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Laura A. Grafe
- Grafe Laboratory, Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Frederick L. Hitti
- Hitti Laboratory, Department of Neurological Surgery and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan T. Fried
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Brian F. Corbett
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
9
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Inhibition of norepinephrine signaling during a sensitive period disrupts locus coeruleus circuitry and emotional behaviors in adulthood. Sci Rep 2023; 13:3077. [PMID: 36813805 PMCID: PMC9946949 DOI: 10.1038/s41598-023-29175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Deficits in arousal and stress responsiveness are a feature of numerous psychiatric disorders including depression and anxiety. Arousal is supported by norepinephrine (NE) released from specialized brainstem nuclei, including the locus coeruleus (LC) neurons into cortical and limbic areas. During development, the NE system matures in concert with increased exploration of the animal's environment. While several psychiatric medications target the NE system, the possibility that its modulation during discreet developmental periods can have long-lasting consequences has not yet been explored. We used a chemogenetic strategy in mice to reversibly inhibit NE signaling during brief developmental periods and then evaluated any long-lasting impact of our intervention on adult NE circuit function and on emotional behavior. We also tested whether developmental exposure to the α2 receptor agonist guanfacine, which is commonly used in the pediatric population and is not contraindicated during pregnancy and nursing, recapitulates the effect seen with the chemogenetic strategy. Our results reveal that postnatal days 10-21 constitute a sensitive period during which alterations in NE signaling lead to changes in baseline anxiety, increased anhedonia, and passive coping behaviors in adulthood. Disruption of NE signaling during this sensitive period also caused altered LC autoreceptor function, along with circuit specific changes in LC-NE target regions at baseline, and in response to stress. Our findings indicate an early critical role for NE in sculpting brain circuits that support adult emotional function. Interfering with this role by guanfacine and similar clinically used drugs can have lasting implications for mental health.
Collapse
|
11
|
Bates MLS, Arner JR, Curtis AL, Valentino R, Bhatnagar S. Sex-specific alterations in corticotropin-releasing factor regulation of coerulear-cortical network activity. Neuropharmacology 2023; 223:109317. [PMID: 36334761 DOI: 10.1016/j.neuropharm.2022.109317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The locus coeruleus (LC)-norepinephrine system is a stress responsive system that regulates arousal and cognitive functions through extensive projections, including to the prefrontal cortex. LC-cortical circuits are activated by stressors, and this activation is thought to contribute to stress-induced impairments in executive function. Because corticotropin-releasing factor (CRF) is a mediator of stress-induced LC activation, we examined the effects of CRF administered into the LC of male and female rats on network activity of two functionally distinct regions of the PFC, the medial PFC (mPFC) and the orbitofrontal cortex (OFC). Network activity, measured as local field potentials, was recorded in awake animals before and after intra-LC infusion of aCSF or CRF (2 or 20 ng). CRF had qualitatively distinct effects on network activity in males and females with respect to dose, region and timecourse. CRF (20 ng) produced a prominent theta oscillation (7-9 Hz) selectively in female rats shortly after LC infusion and 20 min later. In contrast, in male rats, CRF (2 and 20 ng) decreased the amplitude of power in the 4-6 Hz range in the mPFC 10 min after injection. Lastly, CRF (20 ng) increased mPFC-OFC coherence in females and decreased mPFC-OFC coherence in males. In sum, these results show sex differences in CRF modulation of the LC-norepinephrine system that regulates prefrontal cortical networks, which may underlie sex differences in cognitive and behavioral responses to stress.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychology, California State University, Chico, 400 W. First St, Chico, CA, 95929, USA
| | - Jay R Arner
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Andre L Curtis
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Rita Valentino
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA; The Perelman School of Medicine, University of Pennsylvania, USA
| | - Seema Bhatnagar
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA; The Perelman School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|
12
|
Maness EB, Burk JA, McKenna JT, Schiffino FL, Strecker RE, McCoy JG. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull 2022; 188:47-58. [PMID: 35878679 PMCID: PMC9514025 DOI: 10.1016/j.brainresbull.2022.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
Experimental evidence has implicated multiple neurotransmitter systems in either the direct or indirect modulation of cortical arousal and attention circuitry. In this review, we selectively focus on three such systems: 1) norepinephrine (NE)-containing neurons of the locus coeruleus (LC), 2) acetylcholine (ACh)-containing neurons of the basal forebrain (BF), and 3) parvalbumin (PV)-containing gamma-aminobutyric acid neurons of the BF. Whereas BF-PV neurons serve as a rapid and transient arousal system, LC-NE and BF-ACh neuromodulation are typically activated on slower but longer-lasting timescales. Recent findings suggest that the BF-PV system serves to rapidly respond to even subtle sensory stimuli with a microarousal. We posit that salient sensory stimuli, such as those that are threatening or predict the need for a response, will quickly activate the BF-PV system and subsequently activate both the BF-ACh and LC-NE systems if the circumstances require longer periods of arousal and vigilance. We suggest that NE and ACh have overlapping psychological functions with the main difference being the precise internal/environmental sensory situations/contexts that recruit each neurotransmitter system - a goal for future research to determine. Implications of dysfunction of each of these three attentional systems for our understanding of neuropsychiatric conditions are considered. Finally, the contemporary availability of research tools to selectively manipulate and measure the activity of these distinctive neuronal populations promises to answer longstanding questions, such as how various arousal systems influence downstream decision-making and motor responding.
Collapse
Affiliation(s)
- Eden B Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - James T McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Felipe L Schiffino
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - John G McCoy
- Department of Psychology, Stonehill College, Easton, MA 02357, USA.
| |
Collapse
|
13
|
Delta Opioid Receptors and Enkephalinergic Signaling within Locus Coeruleus Promote Stress Resilience. Brain Sci 2022; 12:brainsci12070860. [PMID: 35884666 PMCID: PMC9320195 DOI: 10.3390/brainsci12070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The noradrenergic nucleus locus coeruleus is a key component of the stress circuitry of the brain. During stress, the neuropeptide corticotropin-releasing factor (CRF) is secreted onto LC, increasing LC output and norepinephrine concentration in the brain, which is thought to promote anxiety-like behavior. LC is also innervated by several structures that synthesize and release the endogenous opioid peptide enkephalin onto LC upon stressor termination. While the role of CRF neurotransmission within LC in mediating anxiety-like behavior and the behavioral response to stress has been well characterized, the role of enkephalinergic signaling at LC-expressed δ-opioid receptors has been comparatively understudied. We have previously shown that acute stressor exposure increases LC activity and anxiety-like behavior for at least one week. Here, we extend these findings by showing that these effects may be mediated at least in part through stress-induced downregulation of DORs within LC. Furthermore, overexpression of DORs in LC blocks the effects of stress on both LC firing properties and anxiety-like behavior. In addition, intra-LC infusions of enkephalin blocked stress-induced freezing behavior and promoted conditioned place preference. These findings indicate that enkephalinergic neurotransmission at DORs within LC is an important component of the behavioral response to stress and may drive reward-related behavior as well.
Collapse
|
14
|
Binette AN, Totty MS, Maren S. Sex differences in the immediate extinction deficit and renewal of extinguished fear in rats. PLoS One 2022; 17:e0264797. [PMID: 35687598 PMCID: PMC9187087 DOI: 10.1371/journal.pone.0264797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Extinction learning is central to exposure-based behavioral therapies for reducing fear and anxiety in humans. However, patients with fear and anxiety disorders are often resistant to extinction. Moreover, trauma and stress-related disorders are highly prone to relapse and are twice as likely to occur in females compared to males, suggesting that females may be more susceptible to extinction deficits and fear relapse phenomena. In this report, we tested this hypothesis by examining sex differences in a stress-induced extinction learning impairment, the immediate extinction deficit (IED), and renewal, a common form of fear relapse. In contrast to our hypothesis, there were no sex differences in the magnitude of the immediate extinction deficit in two different rat strains (Long-Evans and Wistar). However, we did observe a sex difference in the renewal of fear when the extinguished conditioned stimulus was presented outside the extinction context. Male Wistar rats exhibited significantly greater renewal than female rats, a sex difference that has previously been reported after appetitive extinction. Collectively, these data reveal that stress-induced extinction impairments are similar in male and female rats, though the context-dependence of extinction is more pronounced in males.
Collapse
Affiliation(s)
- Annalise N. Binette
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| | - Michael S. Totty
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Downs AM, McElligott ZA. Noradrenergic circuits and signaling in substance use disorders. Neuropharmacology 2022; 208:108997. [PMID: 35176286 PMCID: PMC9498225 DOI: 10.1016/j.neuropharm.2022.108997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The central noradrenergic system innervates almost all regions of the brain and, as such, is well positioned to modulate many neural circuits implicated in behaviors and physiology underlying substance use disorders. Ample pharmacological evidence demonstrates that α1, α2, and β adrenergic receptors may serve as therapeutic targets to reduce drug -seeking behavior and drug withdrawal symptoms. Further, norepinephrine is a key modulator of the stress response, and stress has been heavily implicated in reinstatement of drug taking. In this review, we discuss recent advances in our understanding of noradrenergic circuitry and noradrenergic receptor signaling in the context of opioid, alcohol, and psychostimulant use disorders.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Babushkina N, Manahan-Vaughan D. Frequency-dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 2022; 32:449-465. [PMID: 35478421 DOI: 10.1002/hipo.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Patterned stimulation of the locus coeruleus (LC, 100 Hz), in conjunction with test-pulse stimulation of hippocampal afferents, results in input-specific long-term depression (LTD) of synaptic plasticity in the hippocampus. Effects are long-lasting and have been described in Schaffer-collateral-CA1 and perforant path-dentate gyrus synapses in behaving rats. To what extent LC-mediated hippocampal LTD (LC-LTD) is frequency-dependent is unclear. Here, we report that LC-LTD can be triggered by LC stimulation with 2 and 5 Hz akin to tonic activity, 10 Hz equivalent to phasic activity, and 100 Hz akin to high-phasic activity in the dentate gyrus (DG) of freely behaving rats. LC-LTD at both 2 and 100 Hz can be significantly prevented by an NMDA receptor antagonist. The LC releases both noradrenaline (NA) and dopamine (DA) from its hippocampal terminals and may also trigger hippocampal DA release by activating the ventral tegmental area (VTA). Unclear is whether both neurotransmitters contribute equally to hippocampal LTD triggered by LC stimulation (LC-LTD). Both DA D1/D5 receptors (D1/D5R) and beta-adrenergic receptors (β-AR) are critically required for hippocampal LTD that is induced by patterned stimulation of hippocampal afferents, or is facilitated by spatial learning. We, therefore, explored to what extent these receptor subtypes mediate frequency-dependent hippocampal LC-LTD. LC-LTD elicited by 2, 5, and 10 Hz stimulation was unaffected by antagonism of β-AR with propranolol, whereas LC-LTD induced by these frequencies was prevented by D1/D5R-antagonism using SCH23390. By contrast, LC-LTD evoked at 100 Hz was prevented by β-AR-antagonism and only mildly affected by D1/D5R-antagonism. Taken together, these findings support that LC-LTD can be triggered by LC activity at a wide range of frequencies. Furthermore, the contribution of D1/D5R and β-AR to hippocampal LTD that is triggered by LC activity is frequency-dependent and suggests that D1/D5R may be involved in LC-mediated hippocampal tonus.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Rudzki S. Is PTSD an Evolutionary Survival Adaptation Initiated by Unrestrained Cytokine Signaling and Maintained by Epigenetic Change? Mil Med 2022; 188:usac095. [PMID: 35446412 DOI: 10.1093/milmed/usac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Treatment outcomes for PTSD with current psychological therapies are poor, with very few patients achieving sustained symptom remission. A number of authors have identified physiological and immune disturbances in Post Traumatic Stress Disorder (PTSD) patients, but there is no unifying hypothesis that explains the myriad features of the disorder. MATERIALS AND METHODS The medical literature was reviewed over a 6-year period primarily using the medical database PUBMED. RESULTS The literature contains numerous papers that have identified a range of physiological and immune dysfunction in association with PTSD. This paper proposes that unrestrained cytokine signaling induces epigenetic changes that promote an evolutionary survival adaptation, which maintains a defensive PTSD phenotype. The brain can associate immune signaling with past threat and initiate a defensive behavioral response. The sympathetic nervous system is pro-inflammatory, while the parasympathetic nervous system is anti-inflammatory. Prolonged cholinergic withdrawal will promote a chronic inflammatory state. The innate immune cytokine IL-1β has pleiotropic properties and can regulate autonomic, glucocorticoid, and glutamate receptor functions, sleep, memory, and epigenetic enzymes. Changes in epigenetic enzyme activity can potentially alter phenotype and induce an adaptation. Levels of IL-1β correlate with severity and duration of PTSD and PTSD can be prevented by bolus administration of hydrocortisone in acute sepsis, consistent with unrestrained inflammation being a risk factor for PTSD. The nervous and immune systems engage in crosstalk, governed by common receptors. The benefits of currently used psychiatric medication may arise from immune, as well as synaptic, modulation. The psychedelic drugs (3,4-Methylenedioxymethamphetamine (MDMA), psilocybin, and ketamine) have potent immunosuppressive and anti-inflammatory effects on the adaptive immune system, which may contribute to their reported benefit in PTSD. There may be distinct PTSD phenotypes induced by innate and adaptive cytokine signaling. CONCLUSION In order for an organism to survive, it must adapt to its environment. Cytokines signal danger to the brain and can induce epigenetic changes that result in a persistent defensive phenotype. PTSD may be the price individuals pay for the genomic flexibility that promotes adaptation and survival.
Collapse
Affiliation(s)
- Stephan Rudzki
- Canberra Sports Medicine, Deakin, Australian Capital Territory 2600, Australia
| |
Collapse
|
18
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
19
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
20
|
Bülbül M, Sinen O. Centrally Administered Neuropeptide-S Alleviates Gastrointestinal Dysmotility Induced by Neonatal Maternal Separation. Neurogastroenterol Motil 2022; 34:e14269. [PMID: 34561917 DOI: 10.1111/nmo.14269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuropeptide-S (NPS) regulates autonomic outflow, stress response, and gastrointestinal (GI) motor functions. This study aimed to investigate the effects of NPS on GI dysmotility induced by neonatal maternal separation (MS). METHODS MS was conducted by isolating newborn pups from dams from postnatal day 1 to day 14. In adulthood, rats were also exposed to chronic homotypic stress (CHS). Visceral sensitivity was assessed by colorectal distension-induced abdominal contractions. Gastric emptying (GE) was measured following CHS, whereas fecal output was monitored daily. NPS or NPS receptor (NPSR) antagonist was centrally applied simultaneously with electrocardiography and gastric motility recording. Immunoreactivities for NPS, NPSR, corticotropin-releasing factor (CRF), choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and c-Fos were assessed by immunohistochemistry. KEY RESULTS NPS alleviated the MS-induced visceral hypersensitivity. Under basal conditions, central exogenous or endogenous NPS had no effect on GE and gastric motility. NPS restored CHS-induced gastric and colonic dysmotility in MS rats while increasing sympatho-vagal balance without affecting vagal outflow. NPSR expression was detected in CRF-producing cells of hypothalamic paraventricular nucleus, and central amygdala, but not in Barrington's nucleus. Moreover, NPSR was present in ChAT-expressing neurons in dorsal motor nucleus of the vagus (DMV), and nucleus ambiguus (NAmb) in addition to the TH-positive neurons in C1/A1, and locus coeruleus (LC). Neurons adjacent to the adrenergic cells in LC were found to produce NPS. NPS administration caused c-Fos expression in C1/A1 cells, while no immunoreactivity was detected in DMV or NAmb. CONCLUSIONS NPS/NPSR system might be a novel target for the treatment of stress-related GI dysmotility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
21
|
Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain 2021; 144:2243-2256. [PMID: 33725122 PMCID: PMC8418349 DOI: 10.1093/brain/awab111] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/09/2023] Open
Abstract
Many aspects of cognition and behaviour are regulated by noradrenergic projections to the forebrain originating from the locus coeruleus, acting through alpha and beta adrenoreceptors. Loss of these projections is common in neurodegenerative diseases and contributes to their cognitive and behavioural deficits. We review the evidence for a noradrenergic modulation of cognition in its contribution to Alzheimer's disease, Parkinson's disease and other cognitive disorders. We discuss the advances in human imaging and computational methods that quantify the locus coeruleus and its function in humans, and highlight the potential for new noradrenergic treatment strategies.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
22
|
Noradrenergic contributions to cue-driven risk-taking and impulsivity. Psychopharmacology (Berl) 2021; 238:1765-1779. [PMID: 33649970 DOI: 10.1007/s00213-021-05806-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
RATIONALE The flashing lights and sounds of modern casinos are alluring and may contribute to the addictive nature of gambling. Such cues can have a profound impact on the noradrenaline (NA) system, which could therefore be a viable therapeutic target for gambling disorder (GD). While there is substantial evidence to support the involvement of NA in the impulsive symptoms of GD, its function in mediating the "pro-addictive" impact of cues is less understood. OBJECTIVE We wished to investigate the role of NA in our rodent assay of decision making and impulsivity, the cued rat gambling task (crGT). Given that sex differences are prominent in addiction disorders, and increasingly reported in the monoaminergic regulation of behaviour, we also prioritised evaluating noradrenergic drugs in both sexes. METHODS Female and male rats were trained to stability on the crGT and then given intraperitoneal injections of the noradrenaline reuptake inhibitor atomoxetine, the α2A receptor agonist guanfacine, the beta receptor antagonist propranolol, and the α2 receptor antagonist yohimbine. RESULTS Atomoxetine dose-dependently improved decision-making score. Guanfacine selectively enhanced decision making in risk-preferring males and optimal performing females. Propranolol and yohimbine did not influence decision making. Atomoxetine and guanfacine reduced premature responses, while yohimbine bi-phasically affected this index of motor impulsivity. CONCLUSIONS These results support the hypothesis that NA is an important neuromodulator of the cue-induced deficits in decision making observed in laboratory-based gambling paradigms, and suggest that NAergic drugs like atomoxetine and guanfacine may be useful in treating GD.
Collapse
|
23
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
24
|
Grueschow M, Stenz N, Thörn H, Ehlert U, Breckwoldt J, Brodmann Maeder M, Exadaktylos AK, Bingisser R, Ruff CC, Kleim B. Real-world stress resilience is associated with the responsivity of the locus coeruleus. Nat Commun 2021; 12:2275. [PMID: 33859187 PMCID: PMC8050280 DOI: 10.1038/s41467-021-22509-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/04/2021] [Indexed: 02/02/2023] Open
Abstract
Individuals may show different responses to stressful events. Here, we investigate the neurobiological basis of stress resilience, by showing that neural responsitivity of the noradrenergic locus coeruleus (LC-NE) and associated pupil responses are related to the subsequent change in measures of anxiety and depression in response to prolonged real-life stress. We acquired fMRI and pupillometry data during an emotional-conflict task in medical residents before they underwent stressful emergency-room internships known to be a risk factor for anxiety and depression. The LC-NE conflict response and its functional coupling with the amygdala was associated with stress-related symptom changes in response to the internship. A similar relationship was found for pupil-dilation, a potential marker of LC-NE firing. Our results provide insights into the noradrenergic basis of conflict generation, adaptation and stress resilience.
Collapse
Affiliation(s)
- Marcus Grueschow
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Nico Stenz
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hanna Thörn
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- Division of Clinical Psychology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
| | - Ulrike Ehlert
- Division of Clinical Psychology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
| | - Jan Breckwoldt
- Medical School, Deanery, University of Zurich, Zurich, Switzerland
| | | | | | - Roland Bingisser
- Department of Emergency Medicine, University Hospital Basel, Basel, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Guajardo HM, Valentino RJ. Sex differences in μ-opioid regulation of coerulear-cortical transmission. Neurosci Lett 2021; 746:135651. [PMID: 33482313 DOI: 10.1016/j.neulet.2021.135651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Stress-induced activation of locus coeruleus (LC)-norepinephrine (NE) projections to the prefrontal cortex are thought to promote cognitive responses to stressors. LC activation by stressors is modulated by endogenous opioids that restrain LC activation and facilitate a return to baseline activity upon stress termination. Sex differences in this opioid influence could be a basis for sex differences in stress vulnerability. Consistent with this, we recently demonstrated that μ-opioid receptor (MOR) expression is decreased in the female rat LC compared to the male LC, and this was associated with sexually distinct consequences of activating MOR in the LC on cognitive flexibility. Given that the LC-NE system affects cognitive flexibility through its projections to the medial prefrontal cortex (mPFC), the present study quantified and compared the effects of LC-MOR activation on mPFC neural activity in male and female rats. Local field potential (LFPs) were recorded from the mPFC of freely behaving male and female rats before and following local LC microinjection of the MOR agonist, DAMGO, or vehicle. Intra-LC DAMGO altered the LFP power spectrum selectively in male but not female rats, resulting in a time-dependent increase in the power in delta and alpha frequency bands. LC microinfusion of ACSF had no effect on either sex. Together, the results are consistent with previous evidence for decreased MOR function in the female rat LC and demonstrate that this translates to a diminished effect on cortical activity that can account for sex differences in cognitive consequences. Decreased LC-MOR function in females could contribute to greater stress-induced activation of the LC and increased vulnerability of females to hyperarousal symptoms of stress-related neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Herminio M Guajardo
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Rita J Valentino
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110041. [PMID: 32682872 PMCID: PMC7484229 DOI: 10.1016/j.pnpbp.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Depression is the most common psychiatric illness affecting numerous people world-wide. The currently available antidepressant treatment presents low response and remission rates. Thus, new effective antidepressants need to be developed or discovered. Aiming to give an overview of novel possible antidepressant drug targets, we summarized the molecular targets of antidepressants and the underlying neurobiology of depression. We have also addressed the multidimensional perspectives on the progress in the psychopharmacological treatment of depression and on the new potential approaches with effective drug discovery.
Collapse
Affiliation(s)
- Qingzhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Lv Y, Chen P, Kuang L, Han Z, Solanki B, Zhou W, Tao F, Chen R, Yao Y. Role of corticotropin-releasing hormone in the impact of chronic stress during pregnancy on inducing depression in male offspring mice. Brain Res 2020; 1747:147029. [PMID: 32717275 DOI: 10.1016/j.brainres.2020.147029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Yili Lv
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Peng Chen
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Kuang
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhenmin Han
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Bhawna Solanki
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Weiju Zhou
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui 230032, China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui 230032, China.
| |
Collapse
|
28
|
Lustberg D, Tillage RP, Bai Y, Pruitt M, Liles LC, Weinshenker D. Noradrenergic circuits in the forebrain control affective responses to novelty. Psychopharmacology (Berl) 2020; 237:3337-3355. [PMID: 32821984 PMCID: PMC7572912 DOI: 10.1007/s00213-020-05615-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE In rodents, exposure to novel environments elicits initial anxiety-like behavior (neophobia) followed by intense exploration (neophilia) that gradually subsides as the environment becomes familiar. Thus, innate novelty-induced behaviors are useful indices of anxiety and motivation in animal models of psychiatric disease. Noradrenergic neurons are activated by novelty and implicated in exploratory and anxiety-like responses, but the role of norepinephrine (NE) in neophobia has not been clearly delineated. OBJECTIVE We sought to define the role of central NE transmission in neophilic and neophobic behaviors. METHODS We assessed dopamine β-hydroxylase knockout (Dbh -/-) mice lacking NE and their NE-competent (Dbh +/-) littermate controls in neophilic (novelty-induced locomotion; NIL) and neophobic (novelty-suppressed feeding; NSF) behavioral tests with subsequent quantification of brain-wide c-fos induction. We complimented the gene knockout approach with pharmacological interventions. RESULTS Dbh -/- mice exhibited blunted locomotor responses in the NIL task and completely lacked neophobia in the NSF test. Neophobia was rescued in Dbh -/- mice by acute pharmacological restoration of central NE with the synthetic precursor L-3,4-dihydroxyphenylserine (DOPS), and attenuated in control mice by the inhibitory α2-adrenergic autoreceptor agonist guanfacine. Following either NSF or NIL, Dbh -/- mice demonstrated reduced c-fos in the anterior cingulate cortex, medial septum, ventral hippocampus, bed nucleus of the stria terminalis, and basolateral amygdala. CONCLUSION These findings indicate that central NE signaling is required for the expression of both neophilic and neophobic behaviors. Further, we describe a putative noradrenergic novelty network as a potential therapeutic target for treating anxiety and substance abuse disorders.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Yu Bai
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory. J Neurosci 2020; 40:9260-9271. [PMID: 33097638 DOI: 10.1523/jneurosci.1769-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.
Collapse
|
30
|
Bryce CA, Floresco SB. Central CRF and acute stress differentially modulate probabilistic reversal learning in male and female rats. Behav Brain Res 2020; 397:112929. [PMID: 32998044 DOI: 10.1016/j.bbr.2020.112929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
Abstract
Acute stress can have variable and sometimes sex-dependent effects on different executive functions, including cognitive flexibility, some of which may be mediated by increased corticotropin releasing factor (CRF). Previous studies on the effects of stress and CRF on cognitive flexibility have used procedures entailing deterministic rewards, yet how they may alter behavior when outcomes are probabilistic is unclear. The present study examined how acute stress and increased CRF activity alters probabilistic reversal learning (PRL) in male and female rats. Rats learned to discriminate between a 'correct' lever rewarded on 80 % of trials, and an "incorrect" lever delivering reward on 20 % of trials, with reward contingencies reversed after 8 consecutive correct choices. Separate groups received either intracerebroventricular infusions of CRF (3 μg) or restraint stress prior to a PRL session. Experiments examined how these manipulations affected learning when given prior to a one-day acquisition test or during performance in well-trained rats. Exogenous CRF, and to a lesser extent acute stress, impaired motivation across sexes, slowing deliberation times and increasing the number of trials omitted, particularly following a switch in reward contingencies. Neither manipulation significantly altered errors or reversal performance. However, increased CRF activity reduced negative feedback sensitivity. Across manipulations, females showed increased omissions and choice latencies, and were less sensitive to feedback than males. These results reveal the complexity with which stress, CRF, sex, and experience interact to alter aspects of motivation and probabilistic reinforcement learning and provide insight into how CRF activity may contribute to symptoms of stress-related disorders.
Collapse
Affiliation(s)
- Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
31
|
|
32
|
Joshi N, McAree M, Chandler D. Corticotropin releasing factor modulates excitatory synaptic transmission. VITAMINS AND HORMONES 2020; 114:53-69. [PMID: 32723550 DOI: 10.1016/bs.vh.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The mammalian brain contains many regions which synthesize and release the hormone and transmitter corticotropin releasing factor. This peptide is a key player in the function of the hypothalamic-pituitary-adrenal axis and has major role in mediating the endocrine limb of the stress response. However, there are several regions outside of the paraventricular nucleus of the hypothalamus which synthesize this peptide in which it has a role more akin to a classical neurotransmitter. A significant body of literature exists in which its role as a transmitter and its cellular effects in many brain regions, as well as how it affects various forms of behavior, is described. However, the receptors which corticotropin releasing factor interacts with in the brain are G-protein coupled receptors, and therefore their activation promotes a multitude of cellular effects. Despite this, comparatively little research has been done to investigate how this peptide affects excitatory synaptic transmission in the brain. This is important because both excitatory and inhibitory regulation of physiology are important extrinsic factors in the operation of neurons which occur in conjunction with their intrinsic properties. By not taking into account how corticotropin releasing factor affects these processes, a complete picture of this peptide's role in brain function is not available. In this chapter, the limited body of research which has explicitly investigated how corticotropin releasing factor affects excitatory synaptic transmission in various brain regions will be explored.
Collapse
Affiliation(s)
- Neal Joshi
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Michael McAree
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Daniel Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
33
|
McBurney-Lin J, Sun Y, Tortorelli LS, Nguyen QAT, Haga-Yamanaka S, Yang H. Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection. Neuropharmacology 2020; 174:108151. [PMID: 32445638 DOI: 10.1016/j.neuropharm.2020.108151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
The brain neuromodulatory systems heavily influence behavioral and cognitive processes. Previous work has shown that norepinephrine (NE), a classic neuromodulator mainly derived from the locus coeruleus (LC), enhances neuronal responses to sensory stimuli. However, the role of the LC-NE system in modulating perceptual task performance is not well understood. In addition, systemic perturbation of NE signaling has often been proposed to specifically target the LC in functional studies, yet the assumption that localized (specific) and systemic (nonspecific) perturbations of LC-NE have the same behavioral impact remains largely untested. In this study, we trained mice to perform a head-fixed, quantitative tactile detection task, and administered an α2 adrenergic receptor agonist or antagonist to pharmacologically down- or up-regulate LC-NE activity, respectively. We addressed the outstanding question of how bidirectional perturbations of LC-NE activity affect tactile detection, and tested whether localized and systemic drug treatments exert the same behavioral effects. We found that both localized and systemic suppression of LC-NE impaired tactile detection by reducing motivation. Surprisingly, while locally activating LC-NE enabled mice to perform in a near-optimal regime, systemic activation impaired behavior by promoting impulsivity. Our results demonstrate that localized silencing and activation of LC-NE differentially affect tactile detection, and that localized and systemic NE activation induce distinct behavioral changes.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Yina Sun
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas S Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Quynh Anh T Nguyen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
34
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
35
|
Bryce CA, Adalbert AJ, Claes MM, van Holstein M, Floresco SB. Differential effects of corticotropin-releasing factor and acute stress on different forms of risk/reward decision-making. Neurobiol Learn Mem 2020; 169:107167. [DOI: 10.1016/j.nlm.2020.107167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
|
36
|
Wang Q, Liu Y, Zhang J, Wang W. Corticotropin-Releasing Factor Receptors in the Locus Coeruleus Modulate the Enhancement of Active Coping Behaviors Induced by Chronic Predator Odor Inoculation in Mice. Front Psychol 2020; 10:3028. [PMID: 31998206 PMCID: PMC6965494 DOI: 10.3389/fpsyg.2019.03028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
Stress inoculation has been proved to induce active coping behaviors to subsequent stress. However, the specific neural mechanisms underlying this effect remain unclear. In this study, a chronic and mild predator odor exposure model was established to investigate the effect of predator odor stress inoculation on behaviors in novel predator odor exposure, open field test and forced swimming test (FST), and on the expression of CRF receptors in locus coeruleus (LC) and dorsal raphe nuclei (DRN). The results showed that predator odor stress inoculation increased the active coping of mice under the severe stress environment without changing the stress response to a new predator odor. Meanwhile, in LC, the CRFR1 expression was increased by predator odor stress inoculation. These results suggested that predator odor stress inoculation can be used as an effective training method to improve active response to later severe stress and the function of CRFR1 in LC might be a potential underlying biological mechanism.
Collapse
Affiliation(s)
- Qiong Wang
- School of Education, Zhengzhou University, Zhengzhou, China
| | - Yingjuan Liu
- School of Life Sciences and Technology, Nanyang Normal University, Nanyang, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Calva CB, Fayyaz H, Fadel JR. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci 2020; 11:362. [PMID: 32038222 PMCID: PMC6987046 DOI: 10.3389/fnagi.2019.00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cognitive function represents a key determinative factor for independent functioning among the elderly, especially among those with age-related cognitive disorders. However; existing pharmacotherapeutic tactics for treating these disorders provide only modest benefits on cognition. The hypothalamic orexin (hypocretin) system is uniquely positioned, anatomically and functionally, to integrate physiological functions that support proper cognition. The ongoing paucity of orexin receptor agonists has mired the ability to study their potential as cognitive enhancers. Fortunately, intranasal administration of native orexin peptides circumvents this issue and others concerning peptide transport into the central nervous system (CNS). To investigate the ability of intranasal orexin-A (OxA) administration to improve the anatomical, neurochemical, and behavioral substrates of age-related cognitive dysfunction, these studies utilized a rodent model of aging combined with acute intranasal administration of saline or OxA. Here, intranasal OxA increases c-Fos expression in several telencephalic brain regions that mediate important cognitive functions, increases prefrontal cortical acetylcholine efflux, and alters set-shifting-mediated attentional function in rats. Ultimately, these studies provide a framework for the possible mechanisms and therapeutic potential of intranasal OxA in treating age-related cognitive dysfunction.
Collapse
Affiliation(s)
- Coleman B Calva
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Habiba Fayyaz
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
38
|
Hupalo S, Bryce CA, Bangasser DA, Berridge CW, Valentino RJ, Floresco SB. Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neurosci Biobehav Rev 2019; 103:50-59. [PMID: 31212019 DOI: 10.1016/j.neubiorev.2019.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
The neuropeptide, corticotropin-releasing factor (CRF), is a key modulator of physiological, endocrine, and behavioral responses during stress. Dysfunction of the CRF system has been observed in stress-related affective disorders including post-traumatic stress disorder, depression, and anxiety. Beyond affective symptoms, these disorders are also characterized by impaired cognition, for which current pharmacological treatments are lacking. Thus, there is a need for pro-cognitive treatments to improve quality of life for individuals suffering from mental illness. In this review, we highlight research demonstrating that CRF elicits potent modulatory effects on higher-order cognition via actions within the prefrontal cortex and subcortical monoaminergic and cholinergic systems. Additionally, we identify questions for future preclinical research on this topic, such as the need to investigate sex differences in the cognitive and microcircuit actions of CRF, and whether CRF may represent a pharmacological target to treat cognitive dysfunction. Addressing these questions will provide new insight into pathophysiology underlying cognitive dysfunction and may lead to improved treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sofiya Hupalo
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, United States.
| | - Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Debra A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Craig W Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Rita J Valentino
- National Institute on Drug Abuse, Bethesda, MD 20892, United States
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Mancuso L, Costa T, Nani A, Manuello J, Liloia D, Gelmini G, Panero M, Duca S, Cauda F. The homotopic connectivity of the functional brain: a meta-analytic approach. Sci Rep 2019; 9:3346. [PMID: 30833662 PMCID: PMC6399443 DOI: 10.1038/s41598-019-40188-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Homotopic connectivity (HC) is the connectivity between mirror areas of the brain hemispheres. It can exhibit a marked and functionally relevant spatial variability, and can be perturbed by several pathological conditions. The voxel-mirrored homotopic connectivity (VMHC) is a technique devised to enquire this pattern of brain organization, based on resting state functional connectivity. Since functional connectivity can be revealed also in a meta-analytical fashion using co-activations, here we propose to calculate the meta-analytic homotopic connectivity (MHC) as the meta-analytic counterpart of the VMHC. The comparison between the two techniques reveals their general similarity, but also highlights regional differences associated with how HC varies from task to rest. Two main differences were found from rest to task: (i) regions known to be characterized by global hubness are more similar than regions displaying local hubness; and (ii) medial areas are characterized by a higher degree of homotopic connectivity, while lateral areas appear to decrease their degree of homotopic connectivity during task performance. These findings show that MHC can be an insightful tool to study how the hemispheres functionally interact during task and rest conditions.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Gabriele Gelmini
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Melissa Panero
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Deuter CE, Wingenfeld K, Schultebraucks K, Otte C, Kuehl LK. Influence of glucocorticoid and mineralocorticoid receptor stimulation on task switching. Horm Behav 2019; 109:18-24. [PMID: 30684522 DOI: 10.1016/j.yhbeh.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
The influence of stress on executive functions has been demonstrated in numerous studies and is potentially mediated by the stress-induced cortisol release. Yet, the impact of cortisol on cognitive flexibility and task switching in particular remains equivocal. In this study, we investigated the influence of pharmacological glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) stimulation, two corticosteroid receptor types known to be responsible for cortisol effects on the brain. We conducted two experiments, each with 80 healthy participants (40 women and 40 men), and tested the effect of the unspecific MR/GR agonist hydrocortisone (Experiment I) and the more specific MR agonist fludrocortisone (Experiment II) on switch costs and task rule congruency in a bivalent, cued task switching paradigm. The results did not confirm our hypotheses; we found no significant effects of our manipulations on task switching capacity, although general switching and congruency effects were observed. We discuss the absence of MR/GR-mediated effects and propose alternative mechanisms that could explain stress induced effects on task switching.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katharina Schultebraucks
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany; New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Christian Otte
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Linn K Kuehl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
41
|
Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019; 44:129-139. [PMID: 30022063 PMCID: PMC6235989 DOI: 10.1038/s41386-018-0137-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males, females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits. Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
Collapse
|
42
|
Yin-and-yang bifurcation of opioidergic circuits for descending analgesia at the midbrain of the mouse. Proc Natl Acad Sci U S A 2018; 115:11078-11083. [PMID: 30297409 DOI: 10.1073/pnas.1806082115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the descending analgesia pathway, opioids are known to disinhibit the projections from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM), leading to suppression of pain signals at the spinal cord level. The locus coeruleus (LC) has been proposed to engage in the descending pathway through noradrenergic inputs to the spinal cord. Nevertheless, how the LC is integrated in the descending analgesia circuit has remained unknown. Here, we show that the opioidergic analgesia pathway is bifurcated in structure and function at the PAG. A knockout as well as a PAG-specific knockdown of phospholipase C β4 (PLCβ4), a signaling molecule for G protein-coupled receptors, enhanced swim stress-induced and morphine-induced analgesia in mice. Immunostaining after simultaneous retrograde labeling from the RVM and the LC revealed two mutually exclusive neuronal populations at the PAG, each projecting either to the LC or the RVM, with PLCβ4 expression only in the PAG-LC projecting cells that provide a direct synaptic input to LC-spinal cord (SC) projection neurons. The PAG-LC projection neurons in wild-type mice turned quiescent in response to opiates, but remained active in the PLCβ4 mutant, suggesting a possibility that an increased adrenergic function induced by the persistent PAG-LC activity underlies the enhanced opioid analgesia in the mutant. Indeed, the enhanced analgesia in the mutant was reversed by blocking α2-noradrenergic receptors. These findings indicate that opioids suppress descending analgesia through the PAG-LC pathway, while enhancing it through the PAG-RVM pathway, i.e., two distinct pathways with opposing effects on opioid analgesia. These results point to a therapeutic target in pain control.
Collapse
|
43
|
Llorca-Torralba M, Pilar-Cuéllar F, Bravo L, Bruzos-Cidon C, Torrecilla M, Mico JA, Ugedo L, Garro-Martínez E, Berrocoso E. Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Mol Neurobiol 2018; 56:4135-4150. [PMID: 30284123 DOI: 10.1007/s12035-018-1361-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Pain affects both sensory and emotional aversive responses, often provoking depression and anxiety-related conditions when it becomes chronic. As the opioid receptors in the locus coeruleus (LC) have been implicated in pain, stress responses, and opioid drug effects, we explored the modifications to LC opioid neurotransmission in a chronic constriction injury (CCI) model of short- and long-term neuropathic pain (7 and 30 days after nerve injury). No significant changes were found after short-term CCI, yet after 30 days, CCI provoked an up-regulation of cAMP (cyclic 5'-adenosine monophosphate), pCREB (phosphorylated cAMP response element binding protein), protein kinase A, tyrosine hydroxylase, and electrical activity in the LC, as well as enhanced c-Fos expression. Acute mu opioid receptor desensitization was more intense in these animals, measured as the decline of the peak current caused by [Met5]-enkephalin and the reduction of forskolin-stimulated cAMP produced in response to DAMGO. Sustained morphine treatment did not markedly modify certain LC parameters in CCI-30d animals, such as [Met5]-enkephalin-induced potassium outward currents or burst activity and c-Fos rebound after naloxone precipitation, which may limit the development of some typical opioid drug-related adaptations. However, other phenomena were impaired by long-term CCI, including the reduction in forskolin-stimulated cAMP accumulation by DAMGO after naloxone precipitation in morphine dependent animals. Overall, this study suggests that long-term CCI leads to changes at the LC level that may contribute to the anxiodepressive phenotype that develops in these animals. Furthermore, opioid drugs produce complex adaptations in the LC in this model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Bruzos-Cidon
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Juan A Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
44
|
Paretkar T, Dimitrov E. The Central Amygdala Corticotropin-releasing hormone (CRH) Neurons Modulation of Anxiety-like Behavior and Hippocampus-dependent Memory in Mice. Neuroscience 2018; 390:187-197. [PMID: 30170157 DOI: 10.1016/j.neuroscience.2018.08.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022]
Abstract
The encoding, consolidation and retrieval of memories is a multifaceted process that depends strongly on the optimal level of arousal but high levels of arousal may trigger anxiety, which negatively impacts the memory processing by the brain. We investigated the role of CRH neurons in the central amygdala (CeA) for their capacity to modulate both, the anxiety-like behavior and hippocampus-dependent memory. First, we activated the CRH neurons in CeA using cre-dependent AAV-DREADD in CRH-cre mice. The activation of CeA CRH neurons increased the anxiety-like behavior in Elevated-O maze (O-maze) and Light-Dark box (LDB). The activation of the CeA CRH also decreased Y-maze memory performance and the discrimination index in novel object recognition test (NOR). The inhibition of CeA CRH neurons with AAV-DREADD had the opposite effects on the anxiety-like behavior and the memory tests. Next, we used a combination of retrograde cre virus injected into locus ceruleus (LC) and cre-dependent AAV-DREADD injected into the CeA. While the excitation of the CeA neurons that project to LC increased the anxiety-like behavior, it also led to a better performance on the memory tests. The behavioral and memory effects were accompanied by increased c-Fos expression in the LC region. Pretreatment with CRH1 receptor antagonist antalarmin hydrochloride blocked the effects that were observed after the activation of the CeA projections to LC. Our findings highlight the role of CeA CRH neuronal population not only as a generator of anxiety but also demonstrate their role in the control of hippocampus-dependent memory.
Collapse
Affiliation(s)
- Tanvi Paretkar
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
| | - Eugene Dimitrov
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA.
| |
Collapse
|
45
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
47
|
Region-Dependent Alterations in Cognitive Function and ERK1/2 Signaling in the PFC in Rats after Social Defeat Stress. Neural Plast 2018; 2018:9870985. [PMID: 29849577 PMCID: PMC5925180 DOI: 10.1155/2018/9870985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/26/2018] [Indexed: 12/23/2022] Open
Abstract
Cognitive dysfunctions are highly comorbid with depression. Impairments of cognitive flexibility, which are modulated by the monoaminergic system of the prefrontal cortex (PFC), are increasingly recognized as an important component of the pathophysiology and treatment of depression. However, the downstream molecular mechanisms remain unclear. Using a classical model of depression, this study investigated the effects of social defeat stress on emotional behaviors, on cognitive flexibility in the attentional set-shifting task (AST), and on the expression of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) and their downstream signaling molecules cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in two subregions of the PFC, the medial prefrontal cortex (mPFC), and the orbitofrontal cortex (OFC). The results showed that stress induced emotional and cognitive alterations associated with depression, including a decreased sucrose intake ratio and impaired reversal learning and set-shifting performance in the AST. Additionally, rats in the stress group showed a significant decrease only in ERK2 signaling in the mPFC, while more extensive decreases in both ERK1 signaling and ERK2 signaling were observed in the OFC. Along with the decreased ERK signaling, compared to controls, stressed rats showed downregulation of CREB phosphorylation and BDNF expression in both the OFC and the mPFC. Further analysis showed that behavioral changes were differentially correlated with several molecules in subregions of the PFC. These results suggested that social defeat stress was an effective animal model to induce both emotional and cognitive symptoms of depression and that the dysfunction of ERK signaling activities in the PFC might be a potential underlying biological mechanism.
Collapse
|
48
|
George SA, Rodriguez-Santiago M, Riley J, Abelson JL, Floresco SB, Liberzon I. D-Cycloserine Facilitates Reversal in an Animal Model of Post-traumatic Stress Disorder. Behav Brain Res 2018; 347:332-338. [PMID: 29580893 DOI: 10.1016/j.bbr.2018.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022]
Abstract
Many psychiatric disorders are associated with cognitive dysfunction that is ineffectively treated by existing pharmacotherapies and which may contribute to poor real-world functioning. D-cycloserine (DCS) is a partial N-methyl-D-aspartate (NMDA) agonist that has attracted attention because of its cognitive enhancing properties, including in people with post-traumatic stress disorder (PTSD). Here, we examined the effect of DCS on reversal learning - a type of cognitive flexibility - following exposure to single prolonged stress (SPS), a rodent model of PTSD. Male Sprague Dawley rats (n = 64) were trained to press levers in an operant chamber, matched for performance and assigned to SPS or control (unstressed) groups. Following SPS, rats received three additional lever press sessions, followed by a side bias test on day three. One day later they learned a response discrimination rule (press left or right lever, opposite to side bias) and on a subsequent day were trained (and tested) for reversal to the opposite lever. DCS (15 mg/kg) or vehicle was administered 30 minutes prior to the reversal session. No between-group differences were found in acquisition or retrieval of the initial rule, but a significant drug x stress interaction on response discrimination reversal indicated that DCS had a greater beneficial effect on SPS rats' cognitive flexibility than it did on performance in controls. These findings add to a growing literature on the beneficial effects of DCS for treating a wide variety of deficits that develop following exposure to extreme stress and may have implications for the development of novel pharmacotherapies for PTSD.
Collapse
Affiliation(s)
- Sophie A George
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA; Department of Social and Behavioral Sciences, Dixie State University, 225 South University Ave. E, St George, UT, 84770, USA.
| | - Mariana Rodriguez-Santiago
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA.
| | - John Riley
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA.
| | - James L Abelson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Bangasser DA, Wiersielis KR. Sex differences in stress responses: a critical role for corticotropin-releasing factor. Hormones (Athens) 2018; 17:5-13. [PMID: 29858858 DOI: 10.1007/s42000-018-0002-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
Rates of post-traumatic stress disorder, panic disorder, and major depression are higher in women than in men. Another shared feature of these disorders is that dysregulation of the stress neuropeptide, corticotropin-releasing factor (CRF), is thought to contribute to their pathophysiology. Therefore, sex differences in responses to CRF could contribute to this sex bias in disease prevalence. Here, we review emerging data from non-human animal models that reveal extensive sex differences in CRF functions ranging from its presynaptic regulation to its postsynaptic efficacy. Specifically, detailed are sex differences in the regulation of CRF-containing neurons and the amount of CRF that they produce. We also describe sex differences in CRF receptor expression, distribution, trafficking, and signaling. Finally, we highlight sex differences in the processes that mitigate the effects of CRF. In most cases, the identified sex differences can lead to increased stress sensitivity in females. Thus, the relevance of these differences for the increased risk of depression and anxiety disorders in women compared to men is also discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, PA, 19122, USA.
| | - Kimberly R Wiersielis
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, PA, 19122, USA
| |
Collapse
|
50
|
Borodovitsyna O, Flamini MD, Chandler DJ. Acute Stress Persistently Alters Locus Coeruleus Function and Anxiety-like Behavior in Adolescent Rats. Neuroscience 2018; 373:7-19. [DOI: 10.1016/j.neuroscience.2018.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/01/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
|