1
|
Yagi S, Mohammad A, Wen Y, Batallán Burrowes AA, Blankers SA, Galea LAM. Estrogens dynamically regulate neurogenesis in the dentate gyrus of adult female rats. Hippocampus 2024; 34:583-597. [PMID: 39166359 DOI: 10.1002/hipo.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Estrone and estradiol differentially modulate neuroplasticity and cognition. How they influence the maturation of new neurons in the adult hippocampus, however, is not known. The present study assessed the effects of estrone and estradiol on the maturation timeline of neurogenesis in the dentate gyrus (DG) of ovariectomized (a model of surgical menopause) young adult Sprague-Dawley rats using daily subcutaneous injections of 17β-estradiol, estrone or vehicle. Rats were injected with a DNA synthesis marker, 5-bromo-2-deoxyuridine (BrdU), and were perfused 1, 2, or 3 weeks after BrdU injection and daily hormone treatment. Brains were sectioned and processed for various markers including: sex-determining region Y-box 2 (Sox2), glial fibrillary acidic protein (GFAP), antigen kiel 67 (Ki67), doublecortin (DCX), and neuronal nuclei (NeuN). Immunofluorescent labeling or co-labelling of BrdU with Sox2 (progenitor cells), Sox2/GFAP (neural progenitor cells), Ki67 (cell proliferation), DCX (immature neurons), NeuN (mature neurons) was used to examine the trajectory and maturation of adult-born neurons over time. Estrogens had early (1 week of exposure) effects on different stages of neurogenesis (neural progenitor cells, cell proliferation and early maturation of new cells into neurons) but these effects were less pronounced after prolonged treatment. Estradiol enhanced, whereas estrone reduced cell proliferation after 1 week but not after longer exposure to either estrogen. Both estrogens increased the density of immature neurons (BrdU/DCX-ir) after 1 week of exposure compared to vehicle treatment but this increased density was not sustained over longer durations of treatments to estrogens, suggesting that the enhancing effects of estrogens on neurogenesis were short-lived. Longer duration post-ovariectomy, without treatments with either of the estrogens, was associated with reduced neural progenitor cells in the DG. These results demonstrate that estrogens modulate several aspects of adult hippocampal neurogenesis differently in the short term, but may lose their ability to influence neurogenesis after long-term exposure. These findings have potential implications for treatments involving estrogens after surgical menopause.
Collapse
Affiliation(s)
- Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ahmad Mohammad
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel A Batallán Burrowes
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Alonso M, Petit AC, Lledo PM. The impact of adult neurogenesis on affective functions: of mice and men. Mol Psychiatry 2024; 29:2527-2542. [PMID: 38499657 DOI: 10.1038/s41380-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
In most mammals, new neurons are not only produced during embryogenesis but also after birth. Soon after adult neurogenesis was discovered, the influence of recruiting new neurons on cognitive functions, especially on memory, was documented. Likewise, the late process of neuronal production also contributes to affective functions, but this outcome was recognized with more difficulty. This review covers hypes and hopes of discovering the influence of newly-generated neurons on brain circuits devoted to affective functions. If the possibility of integrating new neurons into the adult brain is a commonly accepted faculty in the realm of mammals, the reluctance is strong when it comes to translating this concept to humans. Compiling data suggest now that new neurons are derived not only from stem cells, but also from a population of neuroblasts displaying a protracted maturation and ready to be engaged in adult brain circuits, under specific signals. Here, we discuss the significance of recruiting new neurons in the adult brain circuits, specifically in the context of affective outcomes. We also discuss the fact that adult neurogenesis could be the ultimate cellular process that integrates elements from both the internal and external environment to adjust brain functions. While we must be critical and beware of the unreal promises that Science could generate sometimes, it is important to continue exploring the potential of neural recruitment in adult primates. Reporting adult neurogenesis in humankind contributes to a new vision of humans as mammals whose brain continues to develop throughout life. This peculiar faculty could one day become the target of treatment for mental health, cognitive disorders, and elderly-associated diseases. The vision of an adult brain which never stops integrating new neurons is a real game changer for designing new therapeutic interventions to treat mental disorders associated with substantial morbidity, mortality, and social costs.
Collapse
Affiliation(s)
- Mariana Alonso
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | - Anne-Cécile Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
- Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
3
|
Chen J, Xie X, Lin M, Han H, Wang T, Lei Q, He R. Genes associated with cellular senescence as diagnostic markers of major depressive disorder and their correlations with immune infiltration. Front Psychiatry 2024; 15:1372386. [PMID: 38881549 PMCID: PMC11179437 DOI: 10.3389/fpsyt.2024.1372386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
Background Emerging evidence links cellular senescence to the pathogenesis of major depressive disorder (MDD), a life-threatening and debilitating mental illness. However, the roles of cellular senescence-related genes in MDD are largely unknown and were investigated in this study using a comprehensive analysis. Methods Peripheral blood microarray sequencing data were downloaded from Gene Expression Omnibus (GEO) database and retrieved cellular senescence-related genes from CellAge database. A weighted gene co-expression network analysis was used to screen MDD-associated genes. Protein-protein interactions (PPI) were predicted based on STRING data, and four topological algorithms were used to identify hub genes from the PPI network. Immune infiltration was evaluated using CIBERSORT, followed by a correlation analysis between hub genes and immune cells. Results A total of 84 cell senescence-related genes were differentially expressed in patients with MDD compared to healthy control participants. Among the 84 genes, 20 were identified to be associated with the MDD disease phenotype, and these genes were mainly involved in hormone-related signaling pathways (such as estrogen, steroid hormone, and corticosteroid) and immune and inflammatory pathways. Three genes, namely, JUN, CTSD, and CALR, which were downregulated in MDD, were identified as the hub genes. The expression of hub genes significantly moderate correlated with multiple immune cells, such as Tregs, NK cells, and CD4+ T cells, and the abundance of these immune cells markedly differed in MDD samples. Multiple microRNAs, transcription factors, and small-molecule drugs targeting hub genes were predicted to explore their molecular regulatory mechanisms and potential therapeutic value in MDD. Conclusion JUN, CTSD, and CALR were identified as potential diagnostic markers of MDD and may be involved in the immunoinflammatory mechanism of MDD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Xie
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Lin
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Han
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tingting Wang
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qirong Lei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rongfang He
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Xie XH, Xu SX, Yao L, Chen MM, Zhang H, Wang C, Nagy C, Liu Z. Altered in vivo early neurogenesis traits in patients with depression: Evidence from neuron-derived extracellular vesicles and electroconvulsive therapy. Brain Stimul 2024; 17:19-28. [PMID: 38101468 DOI: 10.1016/j.brs.2023.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The neurogenesis hypothesis is a promising candidate etiologic hypothesis for depression, and it is associated with electroconvulsive therapy (ECT). However, human in vivo molecular-level evidence is lacking. OBJECTIVE We used neuron-derived extracellular vesicles (NDEVs) as a "window to the neurons" to explore the in vivo neurogenesis status associated with ECT in patients with treatment-resistant depression (TRD). METHODS In this study, we enrolled 40 patients with TRD and 35 healthy controls (HCs). We isolated NDEVs from the plasma of each participant to test the levels of doublecortin (DCX), a marker of neurogenesis, and cluster of differentiation (CD) 81, a marker of EVs. We also assessed the plasma levels of brain-derived neurotrophic factor (BDNF), a protein that is known to be associated with ECT and neuroplastic processes. RESULTS Our findings indicated that both the levels of DCX in NDEVs and BDNF in plasma were significantly lower in TRD patients compared to HCs at baseline, but increased following ECTs. Conversely, levels of CD81 in NDEVs were found higher in TRD patients at baseline, but did not change after the ECT treatments. Exploratory analyses revealed that lower levels of BDNF in plasma and DCX in NDEVs, along with higher CD81 levels in NDEVs, were associated with more severe depressive symptoms and reduced cognitive function at baseline. Furthermore, higher baseline CD81 concentrations in NDEVs were correlated with greater decreases in depression symptoms. CONCLUSIONS We first present human in vivo evidence of early neurogenesis using DCX through NDEVs: decreased in TRD patients, increased after ECTs.
Collapse
Affiliation(s)
- Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, QC, Canada; McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Taikang center for life and medical sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
5
|
Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, Rábano A, Llorens-Martín M. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus 2023; 33:271-306. [PMID: 36259116 PMCID: PMC7614361 DOI: 10.1002/hipo.23474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.
Collapse
Affiliation(s)
- Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Berenice Márquez-Valadez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
6
|
Lorenzo EC, Kuchel GA, Kuo CL, Moffitt TE, Diniz BS. Major depression and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101805. [PMID: 36410621 PMCID: PMC9772222 DOI: 10.1016/j.arr.2022.101805] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is characterized by psychological and physiological manifestations contributing to the disease severity and outcome. In recent years, several lines of evidence have suggested that individuals with MDD have an elevated risk of age-related adverse outcomes across the lifespan. This review provided evidence of a significant overlap between the biological abnormalities in MDD and biological changes commonly observed during the aging process (i.e., hallmarks of biological aging). Based on such evidence, we formulate a mechanistic model showing how abnormalities in the hallmarks of biological aging can be a common denominator and mediate the elevated risk of age-related health outcomes commonly observed in MDD. Finally, we proposed a roadmap for novel studies to investigate the intersection between the biology of aging and MDD, including the use of geroscience-guided interventions, such as senolytics, to delay or improve major depression by targeting biological aging.
Collapse
Affiliation(s)
- Erica C Lorenzo
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Chia-Ling Kuo
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, United Kingdom; PROMENTA Center, University of Oslo, Oslo, Norway
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
7
|
Hodges TE, Lieblich SE, Rechlin RK, Galea LAM. Sex differences in inflammation in the hippocampus and amygdala across the lifespan in rats: associations with cognitive bias. Immun Ageing 2022; 19:43. [PMID: 36203171 PMCID: PMC9535862 DOI: 10.1186/s12979-022-00299-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Background Cognitive symptoms of major depressive disorder, such as negative cognitive bias, are more prevalent in women than in men. Cognitive bias involves pattern separation which requires hippocampal neurogenesis and is modulated by inflammation in the brain. Previously, we found sex differences in the activation of the amygdala and the hippocampus in response to negative cognitive bias in rats that varied with age. Given the association of cognitive bias to neurogenesis and inflammation, we examined associations between cognitive bias, neurogenesis in the hippocampus, and cytokine and chemokine levels in the ventral hippocampus (HPC) and basolateral amygdala (BLA) of male and female rats across the lifespan. Results After cognitive bias testing, males had more IFN-γ, IL-1β, IL-4, IL-5, and IL-10 in the ventral HPC than females in adolescence. In young adulthood, females had more IFN-γ, IL-1β, IL-6, and IL-10 in the BLA than males. Middle-aged rats had more IL-13, TNF-α, and CXCL1 in both regions than younger groups. Adolescent male rats had higher hippocampal neurogenesis than adolescent females after cognitive bias testing and young rats that underwent cognitive bias testing had higher levels of hippocampal neurogenesis than controls. Neurogenesis in the dorsal hippocampus was negatively associated with negative cognitive bias in young adult males. Conclusions Overall, the association between negative cognitive bias, hippocampal neurogenesis, and inflammation in the brain differs by age and sex. Hippocampal neurogenesis and inflammation may play greater role in the cognitive bias of young males compared to a greater role of BLA inflammation in adult females. These findings lay the groundwork for the discovery of sex-specific novel therapeutics that target region-specific inflammation in the brain and hippocampal neurogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00299-4. • Adolescent male rats had more hippocampal inflammation than females after cognitive bias testing. • Adult female rats had more basolateral amygdalar inflammation than males after cognitive bias testing. • HPC neurogenesis was negatively associated to cognitive bias in young adult male rats.
Collapse
Affiliation(s)
- Travis E. Hodges
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Stephanie E. Lieblich
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Rebecca K. Rechlin
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Liisa A. M. Galea
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Shao J, Zhang Y, Xue L, Wang X, Wang H, Zhu R, Yao Z, Lu Q. Shared and disease-sensitive dysfunction across bipolar and unipolar disorder during depressive episodes: a transdiagnostic study. Neuropsychopharmacology 2022; 47:1922-1930. [PMID: 35177806 PMCID: PMC9485137 DOI: 10.1038/s41386-022-01290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
Patients with depressive episodes (PDE), such as unipolar disorder (UD) and bipolar disorder (BD), are often defined as distinct diagnostic categories, but increasing converging evidence indicated shared etiologies and pathophysiological characteristics across different clinical diagnoses. We explored whether these transdiagnostic deficits are caused by the common neural substrates across diseases or disease-sensitive mechanisms, or a combination of both. In this study, we utilized a Bayesian model to decompose the resting-state brain activity into multiple hyper- and hypo-activity patterns (refer to as "factors"), so as to explore the shared and disease-sensitive alteration patterns in PDE. The model was constructed over a total of 259 patients (131 UD and 128 BD) with 100 healthy controls as the reference. The other 32 initial depressive episode BD (IDE-BD) patients who had symptoms of mania or hypomania during follow-up were taken as an independent set to estimate the factor composition using the established model for further analysis. We revealed three transdiagnostic alteration factors in PDE. Based on the distribution of factors and the tendency of factor composition at the group level, these factors were defined as BD sensitive factor, UD sensitive factor and shared basic alteration factor. We further found that the factor composition and the ROIs-based alteration degree (mainly involving in orbitofrontal gyrus and part of parietal lobe) were associated with the bipolar index in IDE-BD patients. Our findings contributed to understanding the core transdiagnostic shared and disease-sensitive alterations in PDE and to predicting the risk of emotional state transition in IDE-BD patients.
Collapse
Affiliation(s)
- Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
| | - Yujie Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.
| |
Collapse
|
9
|
Xu B, Li Q, Wu Y, Wang H, Xu J, Liu H, Xuan A. Mettl3-mediated m 6 A modification of Lrp2 facilitates neurogenesis through Ythdc2 and elicits antidepressant-like effects. FASEB J 2022; 36:e22392. [PMID: 35716070 DOI: 10.1096/fj.202200133rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023]
Abstract
N6 -methyladenosine (m6 A) is the most abundant mRNA modification affecting diverse biological processes. However, the functions and precise mechanisms of m6 A signaling in adult hippocampal neurogenesis and neurogenesis-related depression remain largely enigmatic. We found that depletion of Mettl3 or Mettl14 in neural stem cells (NSCs) dramatically reduced m6 A abundance, proliferation, and neuronal genesis, coupled with enhanced glial differentiation. Conversely, overexpressing Mettl3 promoted proliferation and neuronal differentiation. Mechanistically, the m6 A modification of Lrp2 mRNA by Mettl3 enhanced its stability and translation efficiency relying on the reader protein Ythdc2, which in turn promoted neurogenesis. Importantly, mice lacking Mettl3 manifested reduced hippocampal neurogenesis, which could contribute to spatial memory decline, and depression-like behaviors. We found that these defective behaviors were notably reversed by Lrp2 overexpression. Moreover, Mettl3 overexpression in the hippocampus of depressive mice rescues behavioral defects. Our findings uncover the biological role of m6 A modification in Lrp2-mediated neurogenesis via m6 A-binding protein Ythdc2, and propose a rationale that targeting Mettl3-Ythdc2-Lrp2 axis regulation of neurogenesis might serve as a promising antidepressant strategy.
Collapse
Affiliation(s)
- Biao Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qingfeng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yuanfei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Huan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiamin Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Hui Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Aiguo Xuan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
10
|
Hodges TE, Lee GY, Noh SH, Galea LA. Sex and age differences in cognitive bias and neural activation in response to cognitive bias testing. Neurobiol Stress 2022; 18:100458. [PMID: 35586750 PMCID: PMC9109184 DOI: 10.1016/j.ynstr.2022.100458] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Cognitive symptoms of depression, including negative cognitive bias, are more severe in women than in men. Current treatments to reduce negative cognitive bias are not effective and sex differences in the neural activity underlying cognitive bias may play a role. Here we examined sex and age differences in cognitive bias and functional connectivity in a novel paradigm. Male and female rats underwent an 18-day cognitive bias procedure, in which they learned to discriminate between two contexts (shock paired context A, no-shock paired context B), during either adolescence (postnatal day (PD 40)), young adulthood (PD 100), or middle-age (PD 210). Cognitive bias was measured as freezing behaviour in response to an ambiguous context (context C), with freezing levels akin to the shock paired context coded as negative bias. All animals learned to discriminate between the two contexts, regardless of sex or age. However, adults (young adults, middle-aged) displayed a greater negative cognitive bias compared to adolescents, and middle-aged males had a greater negative cognitive bias than middle-aged females. Females had greater neural activation of the nucleus accumbens, amygdala, and hippocampal regions to the ambiguous context compared to males, and young rats (adolescent, young adults) had greater neural activation in these regions compared to middle-aged rats. Functional connectivity between regions involved in cognitive bias differed by age and sex, and only adult males had negative correlations between the frontal regions and hippocampal regions. These findings highlight the importance of examining age and sex when investigating the underpinnings of negative cognitive bias and lay the groundwork for determining what age- and sex-specific regions to target in future cognitive bias studies.
Collapse
Affiliation(s)
- Travis E. Hodges
- Department of Psychology, University of British Columbia, Canada
| | - Grace Y. Lee
- Department of Psychology, University of British Columbia, Canada
| | - Sophia H. Noh
- Department of Psychology, University of British Columbia, Canada
| | - Liisa A.M. Galea
- Department of Psychology, University of British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| |
Collapse
|
11
|
Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval. Sci Rep 2022; 12:7016. [PMID: 35488117 PMCID: PMC9054819 DOI: 10.1038/s41598-022-10947-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Postnatal hippocampal neurogenesis has been demonstrated to affect learning and memory in numerous ways. Several studies have now demonstrated that increased neurogenesis can induce forgetting of memories acquired prior to the manipulation of neurogenesis and, as a result of this forgetting can also facilitate new learning. However, the mechanisms mediating neurogenesis-induced forgetting are not well understood. Here, we used a subregion-based analysis of the immediate early gene c-Fos as well as in vivo fiber photometry to determine changes in activity corresponding with neurogenesis induced forgetting. We found that increasing neurogenesis led to reduced CA1 activity during context memory retrieval. We also demonstrate here that perineuronal net expression in areas CA1 is bidirectionally altered by the levels or activity of postnatally generated neurons in the dentate gyrus. These results suggest that neurogenesis may induce forgetting by disrupting perineuronal nets in CA1 which may otherwise protect memories from degradation.
Collapse
|
12
|
Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, Xu C, Li Q, Morozov YM, Andrijevic D, Vrselja Z, Spajic A, Santpere G, Li M, Zhang S, Liu Y, Spurrier J, Zhang L, Gudelj I, Rapan L, Takahashi H, Huttner A, Fan R, Strittmatter SM, Sousa AMM, Rakic P, Sestan N. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 2022; 110:452-469.e14. [PMID: 34798047 PMCID: PMC8813897 DOI: 10.1016/j.neuron.2021.10.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 02/04/2023]
Abstract
The hippocampal-entorhinal system supports cognitive functions, has lifelong neurogenic capabilities in many species, and is selectively vulnerable to Alzheimer's disease. To investigate neurogenic potential and cellular diversity, we profiled single-nucleus transcriptomes in five hippocampal-entorhinal subregions in humans, macaques, and pigs. Integrated cross-species analysis revealed robust transcriptomic and histologic signatures of neurogenesis in the adult mouse, pig, and macaque but not humans. Doublecortin (DCX), a widely accepted marker of newly generated granule cells, was detected in diverse human neurons, but it did not define immature neuron populations. To explore species differences in cellular diversity and implications for disease, we characterized subregion-specific, transcriptomically defined cell types and transitional changes from the three-layered archicortex to the six-layered neocortex. Notably, METTL7B defined subregion-specific excitatory neurons and astrocytes in primates, associated with endoplasmic reticulum and lipid droplet proteins, including Alzheimer's disease-related proteins. This resource reveals cell-type- and species-specific properties shaping hippocampal-entorhinal neurogenesis and function.
Collapse
Affiliation(s)
- Daniel Franjic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Skarica
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jon I Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jinmyung Choi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chuan Xu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zvonimir Vrselja
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ana Spajic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yang Liu
- Department of Biomedical Engineering, Yale Stem Cell Center and Yale Cancer Center, and Human and Translational Immunology Program, Yale University, New Haven, CT 06520, USA
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Le Zhang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Ivan Gudelj
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lucija Rapan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hideyuki Takahashi
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Anita Huttner
- Department of Pathology, Brady Memorial Laboratory, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale Stem Cell Center and Yale Cancer Center, and Human and Translational Immunology Program, Yale University, New Haven, CT 06520, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Andre M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Zhang L, Li Q, Wang H, Wu Y, Ye X, Gong Z, Li Q, Xuan A. Gadd45g, a novel antidepressant target, mediates metformin-induced neuronal differentiation of neural stem cells via DNA demethylation. Stem Cells 2022; 40:59-73. [DOI: 10.1093/stmcls/sxab001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Increased neurogenesis elicits antidepressive-like effects. The antidiabetic drug metformin (Met) reportedly promotes hippocampal neurogenesis, which ameliorates spatial memory deficits and depression-like behaviors. However, the precise molecular mechanisms underpinning Met-induced neuronal differentiation of neural stem cells (NSCs) remain unclear. We showed that Met enhanced neuronal differentiation of NSCs via Gadd45g but not Gadd45a and Gadd45b. We further found that Gadd45g increased demethylation of neurogenic differentiation 1 (NeuroD1) promoter by regulating the activity of passive and active DNA demethylation enzymes through an AMPK-independent mechanism in Met-treated NSCs. Importantly, genetic deficiency of Gadd45g decreased hippocampal neurogenesis, which could contribute to spatial memory decline, and depression-like behaviors in the adult mice, whereas forced expression of Gadd45g alleviated the depressive-like behaviors. Our findings provide a model that Gadd45g-mediated DNA demethylation contributes to Met-induced neuronal genesis and its antidepressant-like effects, and propose the concept that targeting Gadd45g regulation of neurogenesis might serve as a novel antidepressant strategy.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingfeng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuanfei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiujuan Ye
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuo Gong
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingqing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Aiguo Xuan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
14
|
Wu G, Zhou J, Yang M, Xu C, Pang H, Qin X, Lin S, Yang J, Hu J. The Regulatory Effects of Taurine on Neurogenesis and Apoptosis of Neural Stem Cells in the Hippocampus of Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:351-367. [DOI: 10.1007/978-3-030-93337-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol Psychiatry 2022; 27:377-382. [PMID: 34667259 PMCID: PMC8967762 DOI: 10.1038/s41380-021-01314-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
In sub-mammalian vertebrates like fishes, amphibians, and reptiles, new neurons are produced during the entire lifespan. This capacity diminishes considerably in birds and even more in mammals where it persists only in the olfactory system and hippocampal dentate gyrus. Adult neurogenesis declines even more drastically in nonhuman primates and recent evidence shows that this is basically extinct in humans. Why should such seemingly useful capacity diminish during primate evolution? It has been proposed that this occurs because of the need to retain acquired complex knowledge in stable populations of neurons and their synaptic connections during many decades of human life. In this review, we will assess critically the claim of significant adult neurogenesis in humans and show how current evidence strongly indicates that humans lack this trait. In addition, we will discuss the allegation of many rodent studies that adult neurogenesis is involved in psychiatric diseases and that it is a potential mechanism for human neuron replacement and regeneration. We argue that these reports, which usually neglect significant structural and functional species-specific differences, mislead the general population into believing that there might be a cure for a variety of neuropsychiatric diseases as well as stroke and brain trauma by genesis of new neurons and their incorporation into existing synaptic circuitry.
Collapse
|
16
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Saito Y, Miyajima M, Yamamoto S, Sato T, Miura N, Fujimiya M, Chikenji TS. Accumulation of Senescent Neural Cells in Murine Lupus With Depression-Like Behavior. Front Immunol 2021; 12:692321. [PMID: 34804003 PMCID: PMC8597709 DOI: 10.3389/fimmu.2021.692321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Neuropsychiatric manifestations targeting the central, peripheral, and autonomic nervous system are common in systemic lupus erythematosus (SLE); collectively, these symptoms are termed neuropsychiatric SLE (NPSLE). Among a wide variety of neuropsychiatric symptoms, depression is observed in about 24-39% of SLE patients. Several cytokines and chemokines have been identified as biomarkers or therapeutic targets of NPSLE; in particular, the levels of type 1 interferons, TNFs, and IL-6 are elevated in SLE patient's cerebrospinal fluid (CSF), and these factors contribute to the pathology of depression. Here, we show that senescent neural cells accumulate in the hippocampal cornu ammonis 3 (CA3) region in MRL/lpr SLE model mice with depressive behavior. Furthermore, oral administration of fisetin, a senolytic drug, reduced the number of senescent neural cells and reduced depressive behavior in the MRL/lpr mice. In addition, transcription of several senescence and senescence-associated secretory phenotype (SASP) factors in the hippocampal region also decreased after fisetin treatment in the MRL/lpr mice. These results indicate that the accumulation of senescent neural cells in the hippocampus plays a role in NPSLE pathogenesis, and therapies targeting senescent cells may represent a candidate approach to treat NPSLE.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci 2021; 41:2541-2553. [PMID: 33762406 DOI: 10.1523/jneurosci.0675-20.2020] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The rodent hippocampus generates new neurons throughout life. This process, named adult hippocampal neurogenesis (AHN), is a striking form of neural plasticity that occurs in the brains of numerous mammalian species. Direct evidence of adult neurogenesis in humans has remained elusive, although the occurrence of this phenomenon in the human dentate gyrus has been demonstrated in seminal studies and recent research that have applied distinct approaches to birthdate newly generated neurons and to validate markers of adult-born neurons. Our data point to the persistence of AHN until the 10th decade of human life, as well as to marked impairments in this process in patients with Alzheimer's disease. Moreover, our work demonstrates that the methods used to process and analyze postmortem human brain samples can limit the detection of various markers of AHN to the point of making them undetectable. In this Dual Perspectives article, we highlight the critical methodological aspects that should be strictly controlled in human studies and the robust evidence that supports the occurrence of AHN in humans. We also put forward reasons that may account for current discrepancies on this topic. Finally, the unresolved questions and future challenges awaiting the field are highlighted.
Collapse
|
20
|
Trova S, Bovetti S, Bonzano S, De Marchis S, Peretto P. Sex Steroids and the Shaping of the Peripubertal Brain: The Sexual-Dimorphic Set-Up of Adult Neurogenesis. Int J Mol Sci 2021; 22:ijms22157984. [PMID: 34360747 PMCID: PMC8347822 DOI: 10.3390/ijms22157984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Steroid hormones represent an amazing class of molecules that play pleiotropic roles in vertebrates. In mammals, during postnatal development, sex steroids significantly influence the organization of sexually dimorphic neural circuits underlying behaviors critical for survival, such as the reproductive one. During the last decades, multiple studies have shown that many cortical and subcortical brain regions undergo sex steroid-dependent structural organization around puberty, a critical stage of life characterized by high sensitivity to external stimuli and a profound structural and functional remodeling of the organism. Here, we first give an overview of current data on how sex steroids shape the peripubertal brain by regulating neuroplasticity mechanisms. Then, we focus on adult neurogenesis, a striking form of persistent structural plasticity involved in the control of social behaviors and regulated by a fine-tuned integration of external and internal cues. We discuss recent data supporting that the sex steroid-dependent peripubertal organization of neural circuits involves a sexually dimorphic set-up of adult neurogenesis that in turn could be relevant for sex-specific reproductive behaviors.
Collapse
Affiliation(s)
- Sara Trova
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
- Correspondence:
| |
Collapse
|
21
|
Trova S, Bovetti S, Pellegrino G, Bonzano S, Giacobini P, Peretto P. HPG-Dependent Peri-Pubertal Regulation of Adult Neurogenesis in Mice. Front Neuroanat 2020; 14:584493. [PMID: 33328903 PMCID: PMC7732626 DOI: 10.3389/fnana.2020.584493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis, a striking form of neural plasticity, is involved in the modulation of social stimuli driving reproduction. Previous studies on adult neurogenesis have shown that this process is significantly modulated around puberty in female mice. Puberty is a critical developmental period triggered by increased secretion of the gonadotropin releasing hormone (GnRH), which controls the activity of the hypothalamic-pituitary-gonadal axis (HPG). Secretion of HPG-axis factors at puberty participates to the refinement of neural circuits that govern reproduction. Here, by exploiting a transgenic GnRH deficient mouse model, that progressively loses GnRH expression during postnatal development (GnRH::Cre;Dicer loxP/loxP mice), we found that a postnatally-acquired dysfunction in the GnRH system affects adult neurogenesis selectively in the subventricular-zone neurogenic niche in a sexually dimorphic way. Moreover, by examining adult females ovariectomized before the onset of puberty, we provide important evidence that, among the HPG-axis secreting factors, the circulating levels of gonadal hormones during pre-/peri-pubertal life contribute to set-up the proper adult subventricular zone-olfactory bulb neurogenic system.
Collapse
Affiliation(s)
- Sara Trova
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy.,Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Giuliana Pellegrino
- Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Paolo Giacobini
- Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| |
Collapse
|
22
|
Sex Differences in Maturation and Attrition of Adult Neurogenesis in the Hippocampus. eNeuro 2020; 7:ENEURO.0468-19.2020. [PMID: 32586842 PMCID: PMC7369314 DOI: 10.1523/eneuro.0468-19.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sex differences exist in the regulation of adult neurogenesis in the hippocampus in response to hormones and cognitive training. Here, we investigated the trajectory and maturation rate of adult-born neurons in the dentate gyrus (DG) of male and female rats. Sprague Dawley rats were perfused 2 h, 24 h, one week (1w), 2w, or 3w after bromodeoxyuridine (BrdU) injection, a DNA synthesis marker that labels dividing progenitor cells and their progeny. Adult-born neurons (BrdU/NeuN-ir) matured faster in males compared with females. Males had a greater density of neural stem cells (Sox2-ir) in the dorsal, but not in the ventral, DG and had higher levels of cell proliferation (Ki67-ir) than non-proestrous females. However, males showed a greater reduction in neurogenesis between 1week and 2weeks after mitosis, whereas females showed similar levels of neurogenesis throughout the weeks. The faster maturation and greater attrition of new neurons in males compared with females suggests greater potential for neurogenesis to respond to external stimuli in males and emphasizes the importance of studying sex on adult hippocampal neurogenesis.
Collapse
|
23
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
24
|
Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol Brain 2019; 12:22. [PMID: 30885239 PMCID: PMC6423800 DOI: 10.1186/s13041-019-0442-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
It is well established that estrogens affect neuroplasticity in a number of brain regions. In particular, estrogens modulate and mediate spine and synapse formation as well as neurogenesis in the hippocampal formation. In this review, we discuss current research exploring the effects of estrogens on dendritic spine plasticity and neurogenesis with a focus on the modulating factors of sex, age, and pregnancy. Hormone levels, including those of estrogens, fluctuate widely across the lifespan from early life to puberty, through adulthood and into old age, as well as with pregnancy and parturition. Dendritic spine formation and modulation are altered both by rapid (likely non-genomic) and classical (genomic) actions of estrogens and have been suggested to play a role in the effects of estrogens on learning and memory. Neurogenesis in the hippocampus is influenced by age, the estrous cycle, pregnancy, and parity in female rodents. Furthermore, sex differences exist in hippocampal cellular and molecular responses to estrogens and are briefly discussed throughout. Understanding how structural plasticity in the hippocampus is affected by estrogens and how these effects can influence function and be influenced by other factors, such as experience and sex, is critical and can inform future treatments in conditions involving the hippocampus.
Collapse
Affiliation(s)
- Paul A. S. Sheppard
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Elena Choleris
- Department of Psychology & Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Liisa A. M. Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
25
|
Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: Insights from clinical and preclinical studies. Prog Neurobiol 2019; 176:86-102. [PMID: 30721749 DOI: 10.1016/j.pneurobio.2019.01.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Depression represents a global mental health concern, and disproportionally affects women as they are twice more likely to be diagnosed than men. In this review, we provide a summary of evidence to support the notion that differences in depression between men and women span multiple facets of the disease, including epidemiology, symptomology, treatment, and pathophysiology. Through a lens of biological sex, we overview depression-related transcriptional patterns, changes in neuroanatomy and neuroplasticity, and immune signatures. We acknowledge the unique physiological and behavioral demands of pregnancy and motherhood by devoting special attention to depression occurring in the peripartum period. Specifically, we discuss issues surrounding the presentation, time course, treatment, and neurobiology of peripartum depression. We write this review with the intention of highlighting the encouraging advancements in our understanding of sex differences in depression, while underscoring the gaps that remain. A more systematic consideration of biological sex as a variable in depression research will be critical in the discovery and development of pharmacotherapies that are efficacious for both men and women.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
2,3,5,4'-Tetrahydroxystilbene-2-O-beta-D-glucoside Reverses Stress-Induced Depression via Inflammatory and Oxidative Stress Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9501427. [PMID: 30327715 PMCID: PMC6169245 DOI: 10.1155/2018/9501427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/01/2018] [Indexed: 01/21/2023]
Abstract
Major depressive disorder (MDD) is a chronic mental disease that adversely affects human mood and cognition. Many first-line antidepressant drugs have high rates of partial responsiveness or nonresponsiveness with side effects, and finding more effective drugs for the treatment of depression is therefore urgently needed. THSG, a main active compound of the traditional Chinese herb Polygonum multiflorum, reportedly acts as a neuroprotective agent. This study aimed to illustrate whether THSG prevents depressive-like behaviors induced by chronic restraint stress (CRS) in an MDD mouse model. Our results demonstrated that the peripheral administration of different THSG doses (10 mg/kg, 20 mg/kg, and 40 mg/kg) reversed the depressive-like behaviors in CRS mice as measured by the tail suspension test, forced swimming test, and open-field test. Further analyses suggested that THSG treatment reduced oxidative stress in both the central and peripheral nervous systems of CRS mice. In addition, heightened inflammatory responses, demonstrated by the increased expression of proinflammatory factors (TNF-α, IL-1β, and IL-6), in hippocampal and prefrontal cortex tissues of CRS mice were inhibited by THSG administration. THSG also restored the diminished Akt signaling pathway in the brains of CRS mice. Moreover, our data suggest increased astrocyte proliferation and neurogenesis in the hippocampus of CRS mice after THSG treatment. Taken together, our results demonstrated an antidepressant effect of THSG in a mouse model of MDD for the first time, and oxidative stress and inflammatory pathways were determined to play roles in this effect.
Collapse
|
27
|
Swift-Gallant A, Duarte-Guterman P, Hamson DK, Ibrahim M, Monks DA, Galea LAM. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice. J Neuroendocrinol 2018; 30:e12578. [PMID: 29411916 DOI: 10.1111/jne.12578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear.
Collapse
Affiliation(s)
- A Swift-Gallant
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, ON, Canada
| | - P Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - D K Hamson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - M Ibrahim
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - D A Monks
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, ON, Canada
- Department of Neuroscience, University of Toronto, Toronto, ON, Canada
| | - L A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
29
|
Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2018; 43:379-421. [PMID: 30414016 DOI: 10.1007/7854_2018_62] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult hippocampal neurogenesis exists in all mammalian species, including humans, and although there has been considerable research investigating the function and regulation of neurogenesis, there remain many open questions surrounding the complexity of this phenomenon. This stems partially from the fact that neurogenesis is a multistage process that involves proliferation, differentiation, migration, survival, and eventual integration of new cells into the existing hippocampal circuitry, each of which can be independently influenced. The function of adult neurogenesis in the hippocampus is related to stress regulation, behavioral efficacy of antidepressants, long-term spatial memory, forgetting, and pattern separation. Steroid hormones influence the regulation of hippocampal neurogenesis, stress regulation, and cognition and differently in males and females. In this chapter, we will briefly tap into the complex network of steroid hormone modulation of neurogenesis in the hippocampus with specific emphasis on stress, testosterone, and estrogen. We examine the possible role of neurogenesis in the etiology of depression and influencing treatment by examining the influence of both pharmacological (selective serotonin reuptake inhibitors, tricyclic antidepressants) treatments and non-pharmacological (exercise) remedies.
Collapse
Affiliation(s)
- Ana Gheorghe
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Sherstnev VV, Kedrov AV, Solov’eva OA, Gruden’ MA, Konovalova EV, Kalinin IA, Proshin AT. The effects of α-synuclein oligomers on neurogenesis in the hippocampus and the behavior of aged mice. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417040092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Alvandi MS, Bourmpoula M, Homberg JR, Fathollahi Y. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats. Addict Biol 2017; 22:1883-1894. [PMID: 28940732 DOI: 10.1111/adb.12547] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023]
Abstract
Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse.
Collapse
Affiliation(s)
- Mina Sadighi Alvandi
- Department of Physiology, School of Medical Sciences; Tarbiat Modares University; Tehran Iran
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Maria Bourmpoula
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Yaghoub Fathollahi
- Department of Physiology, School of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
32
|
Gobinath AR, Choleris E, Galea LA. Sex, hormones, and genotype interact to influence psychiatric disease, treatment, and behavioral research. J Neurosci Res 2016; 95:50-64. [DOI: 10.1002/jnr.23872] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Aarthi R. Gobinath
- Centre for Brain Health, Program in Neuroscience; University of British Columbia; Vancouver British Columbia V6T1Z3 Canada
| | - Elena Choleris
- Department of Psychology; University of Guelph; Guelph Ontario N1G 2W1 Canada
| | - Liisa A.M. Galea
- Centre for Brain Health, Program in Neuroscience; University of British Columbia; Vancouver British Columbia V6T1Z3 Canada
- Department of Psychology; University of British Columbia; Vancouver British Columbia V6T1Z3 Canada
| |
Collapse
|
33
|
Mahmoud R, Wainwright SR, Chaiton JA, Lieblich SE, Galea LA. Ovarian hormones, but not fluoxetine, impart resilience within a chronic unpredictable stress model in middle-aged female rats. Neuropharmacology 2016; 107:278-293. [DOI: 10.1016/j.neuropharm.2016.01.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/30/2023]
|
34
|
Fabbri C, Crisafulli C, Calabrò M, Spina E, Serretti A. Progress and prospects in pharmacogenetics of antidepressant drugs. Expert Opin Drug Metab Toxicol 2016; 12:1157-68. [DOI: 10.1080/17425255.2016.1202237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Marco Calabrò
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Biomedical Science, Odontoiatric and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Enzymatic Depletion of the Polysialic Acid Moiety Associated with the Neural Cell Adhesion Molecule Inhibits Antidepressant Efficacy. Neuropsychopharmacology 2016; 41:1670-80. [PMID: 26530284 PMCID: PMC4832030 DOI: 10.1038/npp.2015.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/04/2015] [Accepted: 10/27/2015] [Indexed: 01/01/2023]
Abstract
Antidepressant drugs are too often ineffective, the exact mechanism of efficacy is still ambiguous, and there has been a paucity of novel targets for pharmacotherapy. In an attempt to understand the pathogenesis of depression and subsequently develop more efficacious antidepressant drugs, multiple theories have been proposed, including the modulation of neurotransmission, the upregulation of neurogenesis and neurotrophic factors, normalizing hypothalamic-pituitary-adrenal reactivity, and the reduction of neuroinflammation; all of which have supporting lines of evidence. Therefore, an ideal molecular target for novel pharmaceutical intervention would function at the confluence of these theories. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) functions broadly, serving to mediate synaptic plasticity, neurogenesis, neurotrophic factor signaling, and inflammatory signaling throughout the brain; all of which are associated with the pathophysiology and treatment of depression. Moreover, the expression of PSA-NCAM is reduced by depression, and conversely enhanced by antidepressant treatment, particularly within the hippocampus. Here we demonstrate that selectively cleaving the polysialic acid moiety, using the bacteriophage-derived enzyme endoneuraminidase N, completely inhibits the antidepressant efficacy of the selective-serotonin reuptake inhibitor fluoxetine (FLX) in a chronic unpredictable stress model of depression. We also observe a corresponding attenuation of FLX-induced hippocampal neuroplasticity, including decreased hippocampal neurogenesis, synaptic density, and neural activation. These data indicate that PSA-NCAM-mediated neuroplasticity is necessary for antidepressant action; therefore PSA-NCAM represents an interesting, and novel, target for pharmacotherapy.
Collapse
|
37
|
Mahmoud R, Wainwright SR, Galea LAM. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front Neuroendocrinol 2016; 41:129-52. [PMID: 26988999 DOI: 10.1016/j.yfrne.2016.03.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Rand Mahmoud
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada; Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
38
|
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 2016; 41:153-71. [PMID: 26746105 DOI: 10.1016/j.yfrne.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/18/2023]
Abstract
Depression (MDD) is prodromal to, and a component of, Alzheimer's disease (AD): it may also be a trigger for incipient AD. MDD is not a unitary disorder, so there may be particular subtypes of early life MDD that pose independent high risks for later AD, though the identification of these subtypes is problematical. There may either be a common pathological event underlying both MDD and AD, or MDD may sensitize the brain to a second event ('hit') that precipitates AD. MDD may also accelerate brain ageing, including altered DNA methylation, increased cortisol but decreasing DHEA and thus the risk for AD. So far, genes predicting AD (e.g. APOEε4) are not risk factors for MDD, and those implicated in MDD (e.g. SLC6A4) are not risks for AD, so a common genetic predisposition looks unlikely. There is as yet no strong indication that an epigenetic event occurs during some forms of MDD that predisposes to later AD, though the evidence is limited. Glucocorticoids (GCs) are disturbed in some cases of MDD and in AD. GCs have marked degenerative actions on the hippocampus, a site of early β-amyloid deposition, and rare genetic variants of GC-regulating enzymes (e.g. 11β-HSD) predispose to AD. GCs also inhibit hippocampal neurogenesis and plasticity, and thus episodic memory, a core symptom of AD. Disordered GCs in MDD may inhibit neurogenesis, but the contribution of diminished neurogenesis to the onset or progression of AD is still debated. GCs and cytokines also reduce BDNF, implicated in both MDD and AD and hippocampal neurogenesis, reinforcing the notion that those cases of MDD with disordered GCs may be a risk for AD. Cytokines, including IL1β, IL6 and TNFα, are increased in the blood in some cases of MDD. They also reduce hippocampal neurogenesis, and increased cytokines are a known risk for later AD. Inflammatory changes occur in both MDD and AD (e.g. raised CRP, TNFα). Both cytokines and GCs can have pro-inflammatory actions in the brain. Inflammation (e.g. microglial activation) may be a common link, but this has not been systematically investigated. We lack substantial, rigorous and comprehensive follow-up studies to better identify possible subtypes of MDD that may represent a major predictor for later AD. This would enable specific interventions during critical episodes of these subtypes of MDD that should reduce this substantial risk.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
39
|
Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E. Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev 2016; 76:363-379. [PMID: 27039345 PMCID: PMC5045786 DOI: 10.1016/j.neubiorev.2016.03.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience.
Collapse
Affiliation(s)
- Liisa A M Galea
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
40
|
Wainwright SR, Workman JL, Tehrani A, Hamson DK, Chow C, Lieblich SE, Galea LAM. Testosterone has antidepressant-like efficacy and facilitates imipramine-induced neuroplasticity in male rats exposed to chronic unpredictable stress. Horm Behav 2016; 79:58-69. [PMID: 26774465 DOI: 10.1016/j.yhbeh.2016.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/29/2022]
Abstract
Hypogonadal men are more likely to develop depression, while testosterone supplementation shows antidepressant-like effects in hypogonadal men and facilitates antidepressant efficacy. Depression is associated with hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and testosterone exerts suppressive effects on the HPA axis. The hippocampus also plays a role in the feedback regulation of the HPA axis, and depressed patients show reduced hippocampal neuroplasticity. We assessed the antidepressant-like effects of testosterone with, or without, imipramine on behavioral and neural endophenotypes of depression in a chronic unpredictable stress (CUS) model of depression. A 21-day CUS protocol was used on gonadectomized male Sprague-Dawley rats treated with vehicle, 1mg of testosterone propionate, 10mg/kg of imipramine, or testosterone and imipramine in tandem. Testosterone treatment reduced novelty-induced hypophagia following CUS exposure, but not under non-stress conditions, representing state-dependent effects. Further, testosterone increased the latency to immobility in the forced swim test (FST), reduced basal corticosterone, and reduced adrenal mass in CUS-exposed rats. Testosterone also facilitated the effects of imipramine by reducing the latency to immobility in the FST and increasing sucrose preference. Testosterone treatment had no significant effect on neurogenesis, though the combination of testosterone and imipramine increased PSA-NCAM expression in the ventral dentate gyrus. These findings demonstrate the antidepressant- and anxiolytic-like effects of testosterone within a CUS model of depression, and provide insight into the mechanism of action, which appears to be independent of enhanced hippocampal neurogenesis.
Collapse
Affiliation(s)
| | - Joanna L Workman
- Department of Psychology, University of British Columbia, Canada
| | - Amir Tehrani
- Department of Psychology, University of British Columbia, Canada
| | - Dwayne K Hamson
- Department of Psychology, University of British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
41
|
Gobinath AR, Workman JL, Chow C, Lieblich SE, Galea LA. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis. Neuropharmacology 2016; 101:165-78. [DOI: 10.1016/j.neuropharm.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
|
42
|
Yun S, Donovan MH, Ross MN, Richardson DR, Reister R, Farnbauch LA, Fischer SJ, Riethmacher D, Gershenfeld HK, Lagace DC, Eisch AJ. Stress-Induced Anxiety- and Depressive-Like Phenotype Associated with Transient Reduction in Neurogenesis in Adult Nestin-CreERT2/Diphtheria Toxin Fragment A Transgenic Mice. PLoS One 2016; 11:e0147256. [PMID: 26795203 PMCID: PMC4721672 DOI: 10.1371/journal.pone.0147256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/02/2016] [Indexed: 01/01/2023] Open
Abstract
Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety and a depressive phenotype, and recovery of DCX+ cell number corresponds to normalization of these behaviors.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael H. Donovan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Michele N. Ross
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Devon R. Richardson
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Robin Reister
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Laure A. Farnbauch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Stephanie J. Fischer
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Dieter Riethmacher
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
- Human Development and Health, School of Medicine, Southampton General Hospital, Southampton University, Southampton, United Kingdom
| | - Howard K. Gershenfeld
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Diane C. Lagace
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AJE); (DCL)
| | - Amelia J. Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AJE); (DCL)
| |
Collapse
|
43
|
Brummelte S, Galea LAM. Postpartum depression: Etiology, treatment and consequences for maternal care. Horm Behav 2016; 77:153-66. [PMID: 26319224 DOI: 10.1016/j.yhbeh.2015.08.008] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023]
Abstract
This article is part of a Special Issue "Parental Care". Pregnancy and postpartum are associated with dramatic alterations in steroid and peptide hormones which alter the mothers' hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes. Dysregulations in these endocrine axes are related to mood disorders and as such it should not come as a major surprise that pregnancy and the postpartum period can have profound effects on maternal mood. Indeed, pregnancy and postpartum are associated with an increased risk for developing depressive symptoms in women. Postpartum depression affects approximately 10-15% of women and impairs mother-infant interactions that in turn are important for child development. Maternal attachment, sensitivity and parenting style are essential for a healthy maturation of an infant's social, cognitive and behavioral skills and depressed mothers often display less attachment, sensitivity and more harsh or disrupted parenting behaviors, which may contribute to reports of adverse child outcomes in children of depressed mothers. Here we review, in honor of the "father of motherhood", Jay Rosenblatt, the literature on postnatal depression in the mother and its effect on mother-infant interactions. We will cover clinical and pre-clinical findings highlighting putative neurobiological mechanisms underlying postpartum depression and how they relate to maternal behaviors and infant outcome. We also review animal models that investigate the neurobiology of maternal mood and disrupted maternal care. In particular, we discuss the implications of endogenous and exogenous manipulations of glucocorticoids on maternal care and mood. Lastly we discuss interventions during gestation and postpartum that may improve maternal symptoms and behavior and thus may alter developmental outcome of the offspring.
Collapse
Affiliation(s)
| | - Liisa A M Galea
- Dept. of Psychology, Graduate Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Duarte-Guterman P, Yagi S, Chow C, Galea LAM. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74:37-52. [PMID: 26122299 DOI: 10.1016/j.yhbeh.2015.05.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Shunya Yagi
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Carmen Chow
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
45
|
Fabbri C, Serretti A. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 2015; 17:50. [PMID: 25980509 DOI: 10.1007/s11920-015-0594-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy,
| | | |
Collapse
|
46
|
Wang Y, Hilton BA, Cui K, Zhu MY. Effects of Antidepressants on DSP4/CPT-Induced DNA Damage Response in Neuroblastoma SH-SY5Y Cells. Neurotox Res 2015; 28:154-70. [PMID: 26038195 DOI: 10.1007/s12640-015-9534-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
DNA damage is a form of cell stress and injury. Increased systemic DNA damage is related to the pathogenic development of neurodegenerative diseases. Depression occurs in a relatively high percentage of patients suffering from degenerative diseases, for whom antidepressants are often used to relieve depressive symptoms. However, few studies have attempted to elucidate why different groups of antidepressants have similar effects on relieving symptoms of depression. Previously, we demonstrated that neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)- and camptothecin (CPT) induced the DNA damage response in SH-SY5Y cells, and DSP4 caused cell cycle arrest which was predominately in the S-phase. The present study shows that CPT treatment also resulted in similar cell cycle arrest. Some classic antidepressants could reduce the DNA damage response induced by DSP4 or CPT in SH-SY5Y cells. Cell viability examination demonstrated that both DSP4 and CPT caused cell death, which was prevented by spontaneous administration of some tested antidepressants. Flow cytometric analysis demonstrated that a majority of the tested antidepressants protect cells from being arrested in S-phase. These results suggest that blocking the DNA damage response may be an important pharmacologic characteristic of antidepressants. Exploring the underlying mechanisms may allow for advances in the effort to improve therapeutic strategies for depression appearing in degenerative and psychiatric diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| | | | | | | |
Collapse
|
47
|
Fabbri C, Crisafulli C, Gurwitz D, Stingl J, Calati R, Albani D, Forloni G, Calabrò M, Martines R, Kasper S, Zohar J, Juven-Wetzler A, Souery D, Montgomery S, Mendlewicz J, Girolamo GD, Serretti A. Neuronal cell adhesion genes and antidepressant response in three independent samples. THE PHARMACOGENOMICS JOURNAL 2015; 15:538-48. [PMID: 25850031 DOI: 10.1038/tpj.2015.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/19/2022]
Abstract
Drug-effect phenotypes in human lymphoblastoid cell lines recently allowed to identify CHL1 (cell adhesion molecule with homology to L1CAM), GAP43 (growth-associated protein 43) and ITGB3 (integrin beta 3) as new candidates for involvement in the antidepressant effect. CHL1 and ITGB3 code for adhesion molecules, while GAP43 codes for a neuron-specific cytosolic protein expressed in neuronal growth cones; all the three gene products are involved in synaptic plasticity. Sixteen polymorphisms in these genes were genotyped in two samples (n=369 and 90) with diagnosis of major depressive episode who were treated with antidepressants in a naturalistic setting. Phenotypes were response, remission and treatment-resistant depression. Logistic regression including appropriate covariates was performed. Genes associated with outcomes were investigated in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) genome-wide study (n=1861) as both individual genes and through a pathway analysis (Reactome and String databases). Gene-based analysis suggested CHL1 rs4003413, GAP43 rs283393 and rs9860828, ITGB3 rs3809865 as the top candidates due to their replication across the largest original sample and the STAR*D cohort. GAP43 molecular pathway was associated with both response and remission in the STAR*D, with ELAVL4 representing the gene with the highest percentage of single nucleotide polymorphisms (SNPs) associated with outcomes. Other promising genes emerging from the pathway analysis were ITGB1 and NRP1. The present study was the first to analyze cell adhesion genes and their molecular pathways in antidepressant response. Genes and biomarkers involved in neuronal adhesion should be considered by further studies aimed to identify predictors of antidepressant response.
Collapse
Affiliation(s)
- C Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - C Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - D Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Italy
| | - J Stingl
- Federal Institute for Drugs and Medical Devices, University Bonn Medical School, Bonn, Germany
| | - R Calati
- Faculty Centre for Translational Medicine, University Bonn, Medical Faculty, Bonn, Germany
| | - D Albani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - G Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - M Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - R Martines
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - J Zohar
- Department of Psychiatry, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Juven-Wetzler
- Department of Psychiatry, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Souery
- Laboratoire de Psychologie Medicale, Universitè Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Medicale, Brussels, Belgium
| | | | - J Mendlewicz
- Université Libre de Bruxelles, Brussels, Belgium
| | - G D Girolamo
- Faculty Centre for Translational Medicine, University Bonn, Medical Faculty, Bonn, Germany
| | - A Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Aniol VA, Gulyaeva NV. Changes in adult neurogenesis in the hippocampus during depressive disorders in humans. NEUROCHEM J+ 2015. [DOI: 10.1134/s181971241501002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Allen KM, Purves-Tyson TD, Fung SJ, Shannon Weickert C. The effect of adolescent testosterone on hippocampal BDNF and TrkB mRNA expression: relationship with cell proliferation. BMC Neurosci 2015; 16:4. [PMID: 25886766 PMCID: PMC4367905 DOI: 10.1186/s12868-015-0142-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/05/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Testosterone attenuates postnatal hippocampal neurogenesis in adolescent male rhesus macaques through altering neuronal survival. While brain-derived neurotropic factor (BDNF)/ tyrosine kinase receptor B (TrkB) are critical in regulating neuronal survival, it is not known if the molecular mechanism underlying testosterone's action on postnatal neurogenesis involves changes in BDNF/TrkB levels. First, (1) we sought to localize the site of synthesis of the full length and truncated TrkB receptor in the neurogenic regions of the adolescent rhesus macaque hippocampus. Next, (2) we asked if gonadectomy or sex hormone replacement altered hippocampal BDNF and TrkB expression level in mammalian hippocampus (rhesus macaque and Sprague Dawley rat), and (3) if the relationship between BDNF/TrkB expression was altered depending on the sex steroid environment. RESULTS We find that truncated TrkB mRNA+ cells are highly abundant in the proliferative subgranular zone (SGZ) of the primate hippocampus; in addition, there are scant and scattered full length TrkB mRNA+ cells in this region. Gonadectomy or sex steroid replacement did not alter BDNF or TrkB mRNA levels in young adult male rat or rhesus macaque hippocampus. In the monkey and rat, we find a positive correlation with cell proliferation and TrkB-TK+ mRNA expression, and this positive relationship was found only when sex steroids were present. CONCLUSIONS We suggest that testosterone does not down-regulate neurogenesis at adolescence via overall changes in BDNF or TrkB expression. However, BDNF/TrkB mRNA appears to have a greater link to cell proliferation in the presence of circulating testosterone.
Collapse
Affiliation(s)
- Katherine M Allen
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - Samantha J Fung
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
50
|
Gobinath AR, Mahmoud R, Galea LAM. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus. Front Neurosci 2015; 8:420. [PMID: 25610363 PMCID: PMC4285110 DOI: 10.3389/fnins.2014.00420] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/02/2014] [Indexed: 12/18/2022] Open
Abstract
Sex differences exist in vulnerability, symptoms, and treatment of many neuropsychiatric disorders. In this review, we discuss both preclinical and clinical research that investigates how sex influences depression endophenotypes at the behavioral, neuroendocrine, and neural levels across the lifespan. Chronic exposure to stress is a risk factor for depression and we discuss how stress during the prenatal, postnatal, and adolescent periods differentially affects males and females depending on the method of stress and metric examined. Given that the integrity of the hippocampus is compromised in depression, we specifically focus on sex differences in how hippocampal plasticity is affected by stress and depression across the lifespan. In addition, we examine how female physiology predisposes depression in adulthood, specifically in postpartum and perimenopausal periods. Finally, we discuss the underrepresentation of women in both preclinical and clinical research and how this limits our understanding of sex differences in vulnerability, presentation, and treatment of depression.
Collapse
Affiliation(s)
- Aarthi R Gobinath
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - Rand Mahmoud
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - Liisa A M Galea
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada ; Department of Psychology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|