1
|
Lin L, Chen Y, Dai Y, Yan Z, Zou M, Zhou Q, Qian L, Cui W, Liu M, Zhang H, Yang Z, Su S. Quantification of myelination in children with attention-deficit/hyperactivity disorder: a comparative assessment with synthetic MRI and DTI. Eur Child Adolesc Psychiatry 2024; 33:1935-1944. [PMID: 37712949 DOI: 10.1007/s00787-023-02297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Evaluation of myelin content is crucial for attention-deficit/hyperactivity disorder (ADHD). To estimate myelin content in ADHD based on synthetic MRI-based method and compare it with established diffusion tensor imaging (DTI) method. Fifth-nine ADHD and fifty typically developing (TD) children were recruited. Global and regional myelin content (myelin volume fraction [MVF] and myelin volume [MYV]) were assessed using SyMRI and compared with DTI metrics (fractional anisotropy and mean/radial/axial diffusivity). The relationship between significant MRI parameters and clinical variables were assessed in ADHD. No between-group differences of whole-brain myelin content were found. Compared to TDs, ADHD showed higher mean MVF in bilateral internal capsule, external capsule, corona radiata, and corpus callosum, as well as in left tapetum, left superior fronto-occipital fascicular, and right cingulum (all PFDR-corrected < 0.05). Increased MYV were found in similar regions. Abnormalities of DTI metrics were mainly in bilateral corticospinal tract. Besides, MVF in right retro lenticular part of internal capsule was negatively correlated with cancellation test scores (r = - 0.41, P = 0.002), and MYV in right posterior limb of internal capsule (r = 0.377, P = 0.040) and left superior corona radiata (r = 0.375, P = 0.041) were positively correlated with cancellation test scores in ADHD. Increased myelin content underscored the important pathway of frontostriatal tract, posterior thalamic radiation, and corpus callosum underlying ADHD, which reinforced the insights into myelin quantification and its potential role in pathophysiological mechanism and disease diagnosis. Prospectively registered trials number: ChiCTR2100048109; date: 2021-07.
Collapse
Affiliation(s)
- Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengsha Zou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
de Blank P, Nishiyama A, López-Juárez A. A new era for myelin research in Neurofibromatosis type 1. Glia 2023; 71:2701-2719. [PMID: 37382486 PMCID: PMC10592420 DOI: 10.1002/glia.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, The Cure Starts Now Brain Tumor Center, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
3
|
Hyde C, Fuelscher I, Efron D, Anderson VA, Silk TJ. Adolescents with ADHD and co-occurring motor difficulties show a distinct pattern of maturation within the corticospinal tract from those without: A longitudinal fixel-based study. Hum Brain Mapp 2023; 44:5504-5513. [PMID: 37608610 PMCID: PMC10543105 DOI: 10.1002/hbm.26462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
It is well documented that attention-deficit hyperactivity disorder (ADHD) often presents with co-occurring motor difficulties. However, little is known about the biological mechanisms that explain compromised motor skills in approximately half of those with ADHD. To provide insight into the neurobiological basis of poor motor outcomes in ADHD, this study profiled the development of white matter organization within the cortico-spinal tract (CST) in adolescents with ADHD with and without co-occurring motor problems, as well as non-ADHD control children with and without motor problems. Participants were 60 children aged 9-14 years, 27 with a history of ADHD and 33 controls. All underwent high-angular resolution diffusion MRI data at up to three time points (115 in scans total). We screened for motor impairment in all participants at the third time point (≈14 years) using the Developmental Coordination Disorder Questionnaire (DCD-Q). Following pre-processing of diffusion MRI scans, fixel-based analysis was performed, and the bilateral CST was delineated using TractSeg. Mean fiber density (FD) and fiber cross-section (FC) were extracted for each tract at each time-point. To investigate longitudinal trajectories of fiber development, linear mixed models were performed separately for the left and right CST, controlling for nuisance variables. To examine possible variations in fiber development between groups, we tested whether the inclusion of group and the interaction between age and group improved model fit. At ≈10 years, those with ADHD presented with lower FD within the bilateral CST relative to controls, irrespective of their prospective motor status. While these microstructural abnormalities persisted into adolescence for individuals with ADHD and co-occurring motor problems, they resolved for those with ADHD alone. Divergent maturational pathways of motor networks (i.e., the CST) may, at least partly, explain motor problems individuals with ADHD.
Collapse
Affiliation(s)
- Christian Hyde
- Centre for Social and Early Emotional Development, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Ian Fuelscher
- Centre for Social and Early Emotional Development, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Daryl Efron
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- The Royal Children's HospitalParkvilleVictoriaAustralia
| | - Vicki A. Anderson
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- The Royal Children's HospitalParkvilleVictoriaAustralia
| | - Tim J. Silk
- Centre for Social and Early Emotional Development, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Parlatini V, Itahashi T, Lee Y, Liu S, Nguyen TT, Aoki YY, Forkel SJ, Catani M, Rubia K, Zhou JH, Murphy DG, Cortese S. White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Mol Psychiatry 2023; 28:4098-4123. [PMID: 37479785 PMCID: PMC10827669 DOI: 10.1038/s41380-023-02173-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed, Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age, sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23 datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to consistency and comparability among studies, and should be addressed in future investigations.
Collapse
Affiliation(s)
- Valeria Parlatini
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Yeji Lee
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Siwei Liu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thuan T Nguyen
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Stephanie J Forkel
- Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Marco Catani
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Declan G Murphy
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Dipnall LM, Hourani D, Darling S, Anderson V, Sciberras E, Silk TJ. Fronto-parietal white matter microstructure associated with working memory performance in children with ADHD. Cortex 2023; 166:243-257. [PMID: 37406409 DOI: 10.1016/j.cortex.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/26/2022] [Accepted: 03/24/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with many functional impairments thought to be underpinned by difficulties in executive function domains such as working memory. The superior longitudinal fasciculus (SLF) plays an integral role in the development of working memory in neurotypical children. Neuroimaging research suggests reduced white matter organization of the SLF may contribute to working memory difficulties commonly seen in ADHD. This study aimed to examine the relationship between white matter organization of the SLF and working memory in children with ADHD. METHODS We examined the association of tract volume and apparent fibre density (AFD) of the SLF with working memory in children with ADHD (n = 64) and controls (n = 58) aged 9-11years. Children completed a computerized spatial n-back task and underwent diffusion magnetic resonance imaging (dMRI). Constrained spherical deconvolution-based tractography was used to construct the three branches of the SLF bilaterally and examine volume and AFD of the SLF. RESULTS Regression analyses revealed children with ADHD exhibited poorer working memory, and lower volume and AFD of the left SLF-II compared to healthy controls. There was also an association between reaction time and variability (RT and RT-V) and the left SLF-II. Further analyses revealed volume of the left SLF-II mediated the relationship between ADHD and working memory performance (RT and RT-V). DISCUSSION These findings add to the current body of ADHD literature, revealing the potential role of frontoparietal white matter in working memory difficulties in ADHD.
Collapse
Affiliation(s)
| | - Danah Hourani
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Simone Darling
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Australia; The Royal Children's Hospital, Melbourne, Australia
| | - Emma Sciberras
- School of Psychology, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia; The Royal Children's Hospital, Melbourne, Australia
| | - Timothy J Silk
- School of Psychology, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
The shared white matter developmental trajectory anomalies of attention-deficit/hyperactivity disorder and autism spectrum disorders: A meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110731. [PMID: 36764642 DOI: 10.1016/j.pnpbp.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) show common brain area abnormalities, which may contribute to the high shared co-occurrence symptoms and comorbidity of the two disorders. However, neuroanatomic anomalies in neurodevelopmental disorders may change over the course of development, and the developmental variation of these two disorders is unclear. Our study conducted a systematic literature search of PubMed, Web of Science, and EMBASE databases to identify disorder-shared abnormalities of white matter (WM) from childhood to adulthood in ADHD and ASD. 28 ADHD and 23 ASD datasets were included in this meta-analysis and were analysed by AES-SDM to detect differences in fractional anisotropy in patients compared to typically developing individuals. Our main findings reveal the variable WM developmental trajectories in ADHD and ASD respectively, and the two disorders showed overlapping corpus callosum tract abnormalities in their development from children to adults. Furthermore, the overlapping abnormalities of the corpus callosum tract increased with age, which may be related to their gradually increasing shared symptoms and comorbidity in these two disorders.
Collapse
|
7
|
Rawlings-Mortimer F, Gullino LS, Rühling S, Ashton A, Barkus C, Johansen-Berg H. DUSP15 expression is reduced in the hippocampus of Myrf knock-out mice but attention and object recognition memory remain intact. PLoS One 2023; 18:e0281264. [PMID: 36730342 PMCID: PMC9894471 DOI: 10.1371/journal.pone.0281264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
The atypical protein tyrosine phosphatase enzyme, dual-specificity phosphate 15 (DUSP15) is thought to be activated by myelin regulatory factor (MyRF) and to have a role in oligodendrocyte differentiation. Here, we assess whether Dusp15 is reduced in the hippocampus of mice with conditional knock-out of Myrf in oligodendrocyte precursor cells. Using quantitative polymerase chain reaction (qPCR) we found that Dusp15 expression was indeed lower in these mice. Alterations in myelin have been associated with Alzheimer's disease (AD), autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Symptoms of these disorders can include impairments of object recognition and attention. We, therefore tested the mice in the object recognition task (ORT) and 5-choice serial reaction time task (5CSRTT). However, we did not find behavioural impairments indicating that attentional abilities and object recognition are not impacted by reduced oligodendrogenesis and hippocampal Dusp15 expression. Gaining insight into the role of newly formed oligodendrocytes and Dusp15 expression is helpful for the development of well targeted treatments for myelin dysregulation.
Collapse
Affiliation(s)
- Florence Rawlings-Mortimer
- Wellcome Centre for Integrative Neuroimaging, Nuffield Dept of Clinical Neurosciences, Oxford, United Kingdom
| | - L Sophie Gullino
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Sebastian Rühling
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anna Ashton
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Dept of Clinical Neurosciences, Oxford, United Kingdom
| |
Collapse
|
8
|
Bu X, Gao Y, Liang K, Bao W, Chen Y, Guo L, Gong Q, Lu H, Caffo B, Mori S, Huang X. Multivariate associations between behavioural dimensions and white matter across children and adolescents with and without attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry 2023; 64:244-253. [PMID: 36000340 PMCID: PMC10087687 DOI: 10.1111/jcpp.13689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder. Integrity of white matter microstructure plays a key role in the neural mechanism of ADHD presentations. However, the relationships between specific behavioural dimensions and white matter microstructure are less well known. This study aimed to identify associations between white matter and a broad set of clinical features across children and adolescent with and without ADHD using a data-driven multivariate approach. METHOD We recruited a total of 130 children (62 controls and 68 ADHD) and employed regularized generalized canonical correlation analysis to characterize the associations between white matter and a comprehensive set of clinical measures covering three domains, including symptom, cognition and behaviour. We further applied linear discriminant analysis to integrate these associations to explore potential developmental effects. RESULTS We delineated two brain-behaviour dimensional associations in each domain resulting a total of six multivariate patterns of white matter microstructural alterations linked to hyperactivity-impulsivity and mild affected; executive functions and working memory; externalizing behaviour and social withdrawal, respectively. Apart from executive function and externalizing behaviour sharing similar white matter patterns, all other dimensions linked to a specific pattern of white matter microstructural alterations. The multivariate dimensional association scores showed an overall increase and normalization with age in ADHD group while remained stable in controls. CONCLUSIONS We found multivariate neurobehavioral associations exist across ADHD and controls, which suggested that multiple white matter patterns underlie ADHD heterogeneity and provided neural bases for more precise diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Xuan Bu
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Yingxue Gao
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Kaili Liang
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Weijie Bao
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Ying Chen
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Lanting Guo
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Brian Caffo
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| |
Collapse
|
9
|
Wu ZM, Wang P, Liu J, Liu L, Cao XL, Sun L, Yang L, Cao QJ, Wang YF, Yang BR. The clinical, neuropsychological, and brain functional characteristics of the ADHD restrictive inattentive presentation. Front Psychiatry 2023; 14:1099882. [PMID: 36937718 PMCID: PMC10014598 DOI: 10.3389/fpsyt.2023.1099882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives There is an ongoing debate about the restrictive inattentive (RI) presentation of attention deficit hyperactivity disorder (ADHD). The current study aimed to systematically investigate the clinical, neuropsychological, and brain functional characteristics of children with ADHD restrictive inattentive presentation. Methods A clinical sample of 789 children with or without ADHD participated in the current study and finished clinical interviews, questionnaires, and neuropsychological tests. Those individuals with a diagnosis of ADHD were further divided into three subgroups according to the presentation of inattentive and/or hyperactive/impulsive symptoms, the ADHD-RI, the ADHD-I (inattentive), and the ADHD-C (combined) groups. Between-group comparisons were carried out on each clinical and neuropsychological measure using ANCOVA, with age and sex as covariates. Bonferroni corrections were applied to correct for multiple comparisons. Two hundred twenty-seven of the subjects also went through resting-state functional magnetic resonance imaging scans. Five ADHD-related brain functional networks, including the default mode network (DMN), the dorsal attention network (DAN), the ventral attention network, the executive control network, and the salience network, were built using predefined regions of interest (ROIs). Voxel-based group-wise comparisons were performed. Results Compared with healthy controls, all ADHD groups presented more clinical problems and weaker cognitive function. Among the ADHD groups, the ADHD-C group had the most clinical problems, especially delinquent and aggressive behaviors. Regarding cognitive function, the ADHD-RI group displayed the most impaired sustained attention, and the ADHD-C group had the worst response inhibition function. In terms of brain functional connectivity (FC), reduced FC in the DMN was identified in the ADHD-C and the ADHD-I groups but not the ADHD-RI group, compared to the healthy controls. Subjects with ADHD-I also presented decreased FC in the DAN in contrast to the control group. The ADHD-RI displayed marginally significantly lower FC in the salience network compared to the ADHD-I and the control groups. Conclusion The ADHD-RI group is distinguishable from the ADHD-I and the ADHD-C groups. It is characterized by fewer externalizing behaviors, worse sustained attention, and better response inhibition function. The absence of abnormally high hyperactive/impulsive symptoms in ADHD-RI might be related to less impaired brain function in DMN, but potentially more impairment in the salience network.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Children's Hospital, Shenzhen, China
- *Correspondence: Zhao-Min Wu,
| | - Peng Wang
- Cardiac Rehabilitation Center, Fuwai Hospital, CAMS and PUMC, Beijing, China
| | - Juan Liu
- Shenzhen Children's Hospital, Shenzhen, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | | | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qing-Jiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
- Yu-Feng Wang,
| | - Bin-Rang Yang
- Shenzhen Children's Hospital, Shenzhen, China
- Bin-Rang Yang,
| |
Collapse
|
10
|
Identification of the Shared Gene Signatures between Autism Spectrum Disorder and Epilepsy via Bioinformatic Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9883537. [PMID: 36601364 PMCID: PMC9806688 DOI: 10.1155/2022/9883537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Purpose To identify gene signatures that are shared by autism spectrum disorder (ASD) and epilepsy (EP) and explore the potential molecular mechanism of the two diseases using WGCNA analysis. Additionally, to verify the effects of the shared molecular mechanism on ADHD, which is another neurological comorbidity. Methods We screened the crosstalk genes between ASD and EP based on WGCNA and differential expression analysis from GEO and DisGeNET database and analyzed the function of the genes' enrichment by GO and KEGG analyses. Then, with combination of multiple datasets and multiple bioinformatic analysis methods, the shared gene signatures were identified. Moreover, we explored whether the shared gene signature had influence on the other neurological disorder like ADHD by analyzing the difference of the relative genes' expression based on bioinformatic analysis and molecular experiment. Results By comprehensive bioinformatic analysis for multiple datasets, we found that abnormal immune response and abnormal lipid metabolic pathway played important roles in coincidence of ASD and EP. Base on the results of WGCNA, we got the hub genes in ASD and EP. In attention deficit and hyperactivity disorder (ADHD) animal model, we also found a significant difference of gene expression related to sulfatide metabolism, indicating that the abnormal sphingolipid metabolism was common in multiple neurological disorders. Conclusion This study reveals shared gene signatures between ASD and EP and identifies abnormal sphingolipid metabolism as an important participant in the development of ASD, EP, and ADHD.
Collapse
|
11
|
Gagnon A, Descoteaux M, Bocti C, Takser L. Better characterization of attention and hyperactivity/impulsivity in children with ADHD: The key to understanding the underlying white matter microstructure. Psychiatry Res Neuroimaging 2022; 327:111568. [PMID: 36434901 DOI: 10.1016/j.pscychresns.2022.111568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The apparent increase in the prevalence of the attention deficit hyperactivity disorder (ADHD) diagnosis raises many questions regarding the variability of the subjective diagnostic method. This comprehensive review reports findings in studies assessing white matter (WM) bundles in diffusion MRI and symptom severity in children with ADHD. These studies suggested the involvement of the connections between the frontal, parietal, and basal ganglia regions. This review discusses the limitations surrounding diffusion tensor imaging (DTI) and suggests novel imaging techniques allowing for a more reliable representation of the underlying biology. We propose a more inclusive approach to studying ADHD that includes known endophenotypes within the ADHD diagnosis. Aligned with the Research Domain Criteria Initiative, we also propose to investigate attentional capabilities and impulsive behaviours outside of the borders of the diagnosis. We support the existing hypothesis that ADHD originates from a developmental error and propose that it could lead to an accumulation in time of abnormalities in WM microstructure and pathways. Finally, state-of-the-art diffusion processing and novel artificial intelligence approaches would be beneficial to fully understand the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Anthony Gagnon
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), University of Sherbrooke, Sherbrooke, Quebec, Canada; Imeka Solutions Inc, Sherbrooke, QC, Canada
| | - Christian Bocti
- Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada; Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Larissa Takser
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
12
|
Jones SA, Nagel BJ, Nigg JT, Karalunas SL. Attention-deficit/hyperactivity disorder and white matter microstructure: the importance of dimensional analyses and sex differences. JCPP ADVANCES 2022; 2:e12109. [PMID: 36817187 PMCID: PMC9937645 DOI: 10.1002/jcv2.12109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) has substantial heterogeneity in clinical presentation. A potentially important clue may be variation in brain microstructure. Using fractional anisotropy (FA), previous studies have produced equivocal results in relation to ADHD. This may be due to insufficient consideration of possible sex differences and ADHD's multi-componential nature. Methods Using whole-brain analyses, we investigated the association between FA and both ADHD diagnosis and ADHD symptom domains in a well-characterized, ADHD (n = 234; 32% female youth) and non-ADHD (n = 177; 52% female youth), case-control cohort (ages 7-12). Sex-specific effects were tested. Results No ADHD group differences were found using categorical assessment of ADHD without consideration of moderators. However, dimensional analyses found total symptoms were associated with higher FA in the superior corona radiata. Further, inattention symptoms were associated with higher FA in the corpus callosum and ansa lenticularis, and lower FA in the superior longitudinal fasciculus, after control for overlap with hyperactivity-impulsivity. Hyperactivity-impulsivity symptoms were associated with higher FA in the superior longitudinal fasciculus, and lower FA in the superior cerebellar peduncles, after control for overlap with inattention. Meanwhile, both categorical and dimensional analyses revealed ADHD-by-sex interactions (voxel-wise p < 0.01). Girls with ADHD had higher FA, but boys with ADHD had lower FA (or no effect), compared to their same-sex peers, in the bilateral anterior corona radiata. Further, higher ADHD symptom severity was associated with higher FA in girls, but lower FA in boys, in the anterior and posterior corona radiata and cerebral peduncles. Conclusions ADHD symptom domains appear to be differentially related to white matter microstructure, highlighting the multi-componential nature of the disorder. Further, sex differences will be crucial to consider in future studies characterizing ADHD-related differences in white matter microstructure.
Collapse
Affiliation(s)
- Scott A. Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR
| | - Bonnie J. Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Joel T. Nigg
- Department of Psychiatry, Oregon Health & Science University, Portland, OR,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | | |
Collapse
|
13
|
Mackes NK, Mehta MA, Beyh A, Nkrumah RO, Golm D, Sarkar S, Fairchild G, Dell'Acqua F, Sonuga-Barke EJS. A Prospective Study of the Impact of Severe Childhood Deprivation on Brain White Matter in Adult Adoptees: Widespread Localized Reductions in Volume But Unaffected Microstructural Organization. eNeuro 2022; 9:ENEURO.0188-22.2022. [PMID: 36376082 PMCID: PMC9665880 DOI: 10.1523/eneuro.0188-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Early childhood neglect can impact brain development across the lifespan. Using voxel-based approaches we recently reported that severe and time-limited institutional deprivation in early childhood was linked to substantial reductions in total brain volume in adulthood, >20 years later. Here, we extend this analysis to explore deprivation-related regional white matter volume and microstructural organization using diffusion-based techniques. A combination of tensor-based morphometry (TBM) analysis and tractography was conducted on diffusion-weighted imaging (DWI) data from 59 young adults who spent between 3 and 41 months in the severely depriving Romanian institutions of the 1980s before being adopted into United Kingdom families, and 20 nondeprived age-matched United Kingdom controls. Independent of total volume, institutional deprivation was associated with smaller volumes in localized regions across a range of white matter tracts including (1) long-ranging association fibers such as bilateral inferior longitudinal fasciculus (ILF), bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculi (SLFs), and left arcuate fasciculus; (2) tracts of the limbic circuitry including fornix and cingulum; and (3) projection fibers with the corticospinal tract particularly affected. Tractographic analysis found no evidence of altered microstructural organization of any tract in terms of hindrance modulated orientational anisotropy (HMOA), fractional anisotropy (FA), or mean diffusivity (MD). We provide further evidence for the effects of early neglect on brain development and their persistence in adulthood despite many years of environmental enrichment associated with successful adoption. Localized white matter effects appear limited to volumetric changes with microstructural organization unaffected.
Collapse
Affiliation(s)
- Nuria K Mackes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Ahmad Beyh
- Department of Forensic & Neurodevelopmental Sciences. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Richard O Nkrumah
- Department of Neuroimaging, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim J5 68159, Germany
| | - Dennis Golm
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton SO17 1PS, United Kingdom
| | - Sagari Sarkar
- Cognitive Neuroscience & Neuropsychiatry, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Graeme Fairchild
- Department of Psychology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Flavio Dell'Acqua
- Department of Forensic & Neurodevelopmental Sciences. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Edmund J S Sonuga-Barke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Department of Child & Adolescent Psychiatry, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
14
|
Association between attention-deficit/hyperactivity disorder symptom severity and white matter integrity moderated by in-scanner head motion. Transl Psychiatry 2022; 12:434. [PMID: 36202807 PMCID: PMC9537185 DOI: 10.1038/s41398-022-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and debilitating neurodevelopmental disorder associated with various negative life impacts. The manifestation of ADHD is very heterogeneous, and previous investigations on neuroanatomical alterations in ADHD have yielded inconsistent results. We investigated the mediating effect of in-scanner head motion and ADHD hyperactivity severity on motion-corrected fractional anisotropy (FA) using diffusion tensor imaging in the currently largest sample (n = 739) of medication-naïve children and adolescents (age range 5-22 years). We used automated tractography to examine whole-brain and mean FA of the tracts most frequently reported in ADHD; corpus callosum forceps major and forceps minor, left and right superior-longitudinal fasciculus, and left and right corticospinal tract (CST). Associations between FA and hyperactivity severity appeared when in-scanner head motion was not accounted for as mediator. However, causal mediation analysis revealed that these effects are fully mediated through in-scanner head motion for whole-brain FA, the corpus callosum forceps minor, and left superior-longitudinal fasciculus. Direct effect of hyperactivity severity on FA was only found for the left CST. This study illustrates the crucial role of in-scanner head motion in the identification of white matter integrity alterations in ADHD and shows how neglecting irremediable motion artifacts causes spurious findings. When the mediating effect of in-scanner head motion on FA is accounted for, an association between hyperactivity severity and FA is only present for the left CST; this may play a crucial role in the manifestation of hyperactivity and impulsivity symptoms in ADHD.
Collapse
|
15
|
Mattheisen M, Grove J, Als TD, Martin J, Voloudakis G, Meier S, Demontis D, Bendl J, Walters R, Carey CE, Rosengren A, Strom NI, Hauberg ME, Zeng B, Hoffman G, Zhang W, Bybjerg-Grauholm J, Bækvad-Hansen M, Agerbo E, Cormand B, Nordentoft M, Werge T, Mors O, Hougaard DM, Buxbaum JD, Faraone SV, Franke B, Dalsgaard S, Mortensen PB, Robinson EB, Roussos P, Neale BM, Daly MJ, Børglum AD. Identification of shared and differentiating genetic architecture for autism spectrum disorder, attention-deficit hyperactivity disorder and case subgroups. Nat Genet 2022; 54:1470-1478. [PMID: 36163277 PMCID: PMC10848300 DOI: 10.1038/s41588-022-01171-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/20/2022] [Indexed: 02/02/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are highly heritable neurodevelopmental conditions, with considerable overlap in their genetic etiology. We dissected their shared and distinct genetic etiology by cross-disorder analyses of large datasets. We identified seven loci shared by the disorders and five loci differentiating them. All five differentiating loci showed opposite allelic directions in the two disorders and significant associations with other traits, including educational attainment, neuroticism and regional brain volume. Integration with brain transcriptome data enabled us to identify and prioritize several significantly associated genes. The shared genomic fraction contributing to both disorders was strongly correlated with other psychiatric phenotypes, whereas the differentiating portion was correlated most strongly with cognitive traits. Additional analyses revealed that individuals diagnosed with both ASD and ADHD were double-loaded with genetic predispositions for both disorders and showed distinctive patterns of genetic association with other traits compared with the ASD-only and ADHD-only subgroups. These results provide insights into the biological foundation of the development of one or both conditions and of the factors driving psychopathology discriminatively toward either ADHD or ASD.
Collapse
Affiliation(s)
- Manuel Mattheisen
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology & Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
| | - Jakob Grove
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Thomas D Als
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Meier
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Department of Community Health and Epidemiology & Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymond Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caitlin E Carey
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anders Rosengren
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nora I Strom
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mads Engel Hauberg
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Biao Zeng
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wen Zhang
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health (CORE), Mental Health Centre Copenhagen, Copenhagen, Denmark
- University Hospital, Hellerup, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- GLOBE Institute, Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen V Faraone
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, JJ Peters VA Medical Center, Bronx, NY, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Anders D Børglum
- Department of Biomedicine - Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus, Denmark.
| |
Collapse
|
16
|
Damatac CG, Chauvin RJM, Zwiers MP, van Rooij D, Akkermans SEA, Naaijen J, Hoekstra PJ, Hartman CA, Oosterlaan J, Franke B, Buitelaar JK, Beckmann CF, Sprooten E. White Matter Microstructure in Attention-Deficit/Hyperactivity Disorder: A Systematic Tractography Study in 654 Individuals. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:979-988. [PMID: 33054990 DOI: 10.1016/j.bpsc.2020.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate levels of inattention and/or hyperactivity-impulsivity. ADHD has been related to differences in white matter (WM) microstructure. However, much remains unclear regarding the nature of these WM differences and which clinical aspects of ADHD they reflect. We systematically investigated whether fractional anisotropy (FA) is associated with current and/or lifetime categorical diagnosis, impairment in daily life, and continuous ADHD symptom measures. METHODS Diffusion-weighted imaging data were obtained from 654 participants (322 unaffected, 258 affected, 74 subthreshold; 7-29 years of age). We applied automated global probabilistic tractography on 18 major WM pathways. Linear mixed-effects regression models were used to examine associations of clinical measures with overall brain and tract-specific FA. RESULTS There were significant interactions of tract with all ADHD variables on FA. There were no significant associations of FA with current or lifetime diagnosis, nor with impairment. Lower FA in the right cingulum angular bundle was associated with higher hyperactivity-impulsivity symptom severity (pfamilywise error = .045). There were no significant effects for other tracts. CONCLUSIONS This is the first time global probabilistic tractography has been applied to an ADHD dataset of this size. We found no evidence for altered FA in association with ADHD diagnosis. Our findings indicate that associations of FA with ADHD are not uniformly distributed across WM tracts. Continuous symptom measures of ADHD may be more sensitive to FA than diagnostic categories. The right cingulum angular bundle in particular may play a role in symptoms of hyperactivity and impulsivity.
Collapse
Affiliation(s)
- Christienne G Damatac
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Roselyne J M Chauvin
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sophie E A Akkermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pieter J Hoekstra
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Emma Sprooten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
ADHD-inattentive versus ADHD-Combined subtypes: A severity continuum or two distinct entities? A comprehensive analysis of clinical, cognitive and neuroimaging data. J Psychiatr Res 2022; 149:28-36. [PMID: 35219873 DOI: 10.1016/j.jpsychires.2022.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
The current study aimed to explore the multimodal differences between the inattentive ADHD (ADHD-I) subtype and the combined ADHD (ADHD-C) subtype. A large sample of medication-naïve children with pure ADHD (i.e., without any comorbidity) (145 with ADHD-I, 132 with ADHD-C) and healthy controls (n = 98) were recruited. A battery of multiple scales and cognitive tests were utilized to assess the clinical and cognitive profiles of each individual. In addition, structural and diffusion magnetic resonance imaging (MRI) were acquired for 120 subjects with ADHD and 85 controls. Regional gray matter volume, white matter volume, and diffusion tensors, e.g., axial diffusivity (AD), were compared among the three groups in a whole-brain voxel-wise manner. Compared with healthy controls, both ADHD groups exhibited elevated levels of behavioral and emotional problems. The ADHD-C group had more behavioral problems and emotional liability, as well as less anxiety, than the ADHD-I group. The two ADHD groups were equally impaired in most cognitive domains, with the exception of sustained attention. Compared with healthy controls, the ADHD-C group showed a high gray matter volume (GMV) in the bilateral thalamus and a high white matter volume in the body of the corpus callosum, while the ADHD-I group presented an elevated GMV mainly in the left precentral gyrus and posterior cingulate cortex. Compared with participants with ADHD-C and healthy controls, subjects with ADHD-I showed increased AD in widespread brain regions. Our study has revealed a distinct, interconnected pattern of behavioral, cognitive, and brain structural characteristics in children with different ADHD subtypes.
Collapse
|
18
|
Irie K, Doi M, Usui N, Shimada S. Evolution of the Human Brain Can Help Determine Pathophysiology of Neurodevelopmental Disorders. Front Neurosci 2022; 16:871979. [PMID: 35431788 PMCID: PMC9010664 DOI: 10.3389/fnins.2022.871979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
The evolution of humans brought about a co-occurring evolution of the human brain, which is far larger and more complex than that of many other organisms. The brain has evolved characteristically in humans in many respects, including macro-and micro-anatomical changes in the brain structure, changes in gene expression, and cell populations and ratios. These characteristics are essential for the execution of higher functions, such as sociality, language, and cognition, which express humanity, and are thought to have been acquired over evolutionary time. However, with the acquisition of higher functions also comes the risk of the disease in which they fail. This review focuses on human brain evolution and neurodevelopmental disorders (NDDs) and discusses brain development, molecular evolution, and human brain evolution. Discussing the potential for the development and pathophysiology of NDDs acquired by human brain evolution will provide insights into the acquisition and breakdown of higher functions from a new perspective.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
19
|
Naffaa V, Hochar I, Lama C, Magny R, Regazzetti A, Gressens P, Laprévote O, Auzeil N, Schang AL. Bisphenol A Impairs Lipid Remodeling Accompanying Cell Differentiation in the Oligodendroglial Cell Line Oli-Neu. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072274. [PMID: 35408676 PMCID: PMC9000593 DOI: 10.3390/molecules27072274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022]
Abstract
In the central nervous system, the process of myelination involves oligodendrocytes that wrap myelin around axons. Myelin sheaths are mainly composed of lipids and ensure efficient conduction of action potentials. Oligodendrocyte differentiation is an essential preliminary step to myelination which, in turn, is a key event of neurodevelopment. Bisphenol A (BPA), a ubiquitous endocrine disruptor, is suspected to disrupt this developmental process and may, thus, contribute to several neurodevelopmental disorders. In this study, we assessed the effect of BPA on oligodendrocyte differentiation through a comprehensive analysis of cell lipidome by UHPLC-HRMS. For this purpose, we exposed the oligodendroglial cell line Oli-neu to several BPA concentrations for 72 h of proliferation and another 72 h of differentiation. In unexposed cells, significant changes occurred in lipid distribution during Oli-neu differentiation, including an increase in characteristic myelin lipids, sulfatides, and ethanolamine plasmalogens, and a marked remodeling of phospholipid subclasses and fatty acid contents. Moreover, BPA induced a decrease in sulfatide and phosphatidylinositol plasmalogen contents and modified monounsaturated/polyunsaturated fatty acid relative contents in phospholipids. These effects counteracted the lipid remodeling accompanying differentiation and were confirmed by gene expression changes. Altogether, our results suggest that BPA disrupts lipid remodeling accompanying early oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Vanessa Naffaa
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Isabelle Hochar
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Chéryane Lama
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Romain Magny
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012 Paris, France
| | - Anne Regazzetti
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Pierre Gressens
- NeuroDiderot, Inserm, Université Paris Cité, 75019 Paris, France;
| | - Olivier Laprévote
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
- Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015 Paris, France
| | - Nicolas Auzeil
- CiTCoM, CNRS, Université Paris Cité, 75006 Paris, France; (V.N.); (I.H.); (C.L.); (R.M.); (A.R.); (O.L.); (N.A.)
| | - Anne-Laure Schang
- UMR 1153 CRESS, Université Paris Cité, 75004 Paris, France
- Correspondence:
| |
Collapse
|
20
|
Zhao Y, Yang L, Gong G, Cao Q, Liu J. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110477. [PMID: 34798202 DOI: 10.1016/j.pnpbp.2021.110477] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) usually present overlapping symptoms. Abnormal white matter (WM) microstructure has been found in these disorders. Identification of common and unique neural abnormalities across NDDs could provide further insight into the underlying pathophysiological mechanisms. METHODS We performed a voxel-based meta-analysis of whole-brain diffusion tensor imaging (DTI) studies in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) and other NDDs. A systematic literature search was conducted through March 2020 to identify studies that compared measures of WM microstructure between patients with NDDs and neurotypical controls. Peak voxel coordinates were meta-analyzed via anisotropic effect size-signed differential mapping (AES-SDM) as well as activation likelihood estimation (ALE). RESULTS Our final sample included a total of 4137 subjects from 66 studies across five NDDs. Fractional anisotropy (FA) reductions were found in the splenium of the CC in ADHD, and the genu and splenium of CC in ASD. And mean diffusivity (MD) increases were shown in posterior thalamic radiation in ASD. No consistent abnormalities were detected in specific learning disorder, motor disorder or communication disorder. Significant differences between child/adolescent and adult patients were found within the CC across NDDs, reflective of aberrant neurodevelopmental processes in NDDs. CONCLUSIONS The current study demonstrated atypical WM patterns in ASD, ADHD and other NDDs. Microstructural abnormalities in the splenium of the CC were possibly shared among ASD and ADHD.
Collapse
Affiliation(s)
- Yilu Zhao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Li Yang
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Qingjiu Cao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| | - Jing Liu
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| |
Collapse
|
21
|
Connaughton M, Whelan R, O'Hanlon E, McGrath J. White matter microstructure in children and adolescents with ADHD. Neuroimage Clin 2022; 33:102957. [PMID: 35149304 PMCID: PMC8842077 DOI: 10.1016/j.nicl.2022.102957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
A systematic review of diffusion MRI studies in children and adolescents with ADHD. 46 studies included, encompassing multiple diffusion MRI techniques. Reduced white matter microstructure was reported in several studies. Mixed evidence linking white matter differences with specific cognitive processes. Common limitations included sample size, head motion and medication status.
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Advances in diffusion magnetic resonance imaging (MRI) acquisition sequences and analytic techniques have led to growing body of evidence that abnormal white matter microstructure is a core pathophysiological feature of ADHD. This systematic review provides a qualitative assessment of research investigating microstructural organisation of white matter amongst children and adolescents with ADHD. This review included 46 studies in total, encompassing multiple diffusion MRI imaging techniques and analytic approaches, including whole-brain, region of interest and connectomic analyses. Whole-brain and region of interest analyses described atypical organisation of white matter microstructure in several white matter tracts: most notably in frontostriatal tracts, corpus callosum, superior longitudinal fasciculus, cingulum bundle, thalamic radiations, internal capsule and corona radiata. Connectomic analyses, including graph theory approaches, demonstrated global underconnectivity in connections between functionally specialised networks. Although some studies reported significant correlations between atypical white matter microstructure and ADHD symptoms or other behavioural measures there was no clear pattern of results. Interestingly however, many of the findings of disrupted white matter microstructure were in neural networks associated with key neuropsychological functions that are atypical in ADHD. Limitations to the extant research are outlined in this review and future studies in this area should carefully consider factors such as sample size, sex balance, head motion and medication status.
Collapse
Affiliation(s)
| | - Robert Whelan
- Dept of Psychiatry, School of Medicine, Trinity College Dublin, Ireland; School of Psychology, Trinity Dublin, Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience, Trinity Dublin, Ireland; Dept of Psychiatry, School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jane McGrath
- Dept of Psychiatry, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
22
|
Sex differences in microstructural alterations in the corpus callosum tracts in drug-naïve children with ADHD. Brain Imaging Behav 2022; 16:1592-1604. [PMID: 35102486 DOI: 10.1007/s11682-021-00556-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/05/2021] [Indexed: 02/05/2023]
Abstract
Widespread alterations in the corpus callosum (CC) microstructure and organization have been found in children with attention-deficit/hyperactivity disorder (ADHD); however, few studies have investigated the diffusion characteristics and volume of transcallosal fiber tracts defined by specific cortical projections in ADHD, which is important for identifying distinct functional interhemispheric connection abnormalities. In the current study, an automated fiber-tract quantification (AFQ) approach based on diffusion tensor imaging identified seven CC tracts according to their cortical projections and estimated diffusion parameters and volume among 76 drug-naïve ADHD patients (53 boys and 23 girls) and 37 typically developing children (TDC) (20 boys and 17 girls) matched for age, IQ, and handedness. We found significantly lower fractional anisotropy (FA) in the occipital and superior parietal tracts and higher mean diffusivity (MD) in the posterior, superior parietal and anterior frontal tracts in children with ADHD compared with TDC. In addition, lower FA and higher radial diffusivity (RD) in the occipital callosal tract were significantly associated with higher hyperactivity and impulsivity performance in ADHD. In addition, sex-by-diagnosis interactions were observed in the occipital, posterior and superior parietal tracts. Girls with ADHD showed decreased FA and volume in the occipital tract, which were significantly associated with increased impulsivity performance and poor response control, and increased MD in the posterior and superior parietal callosal tracts, which were significantly associated with increased inattention performance, whereas boys with ADHD merely showed decreased volume in the frontal tract. Our results elucidated that sex-specific alterations in the CC tracts potentially underlie ADHD symptomatology and further suggested a differential contribution of abnormalities in different CC tracts to impulsivity and inattention among girls with ADHD.
Collapse
|
23
|
Xu F, Jin C, Zuo T, Wang R, Yang Y, Wang K. Segmental abnormalities of superior longitudinal fasciculus microstructure in patients with schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder: An automated fiber quantification tractography study. Front Psychiatry 2022; 13:999384. [PMID: 36561639 PMCID: PMC9766353 DOI: 10.3389/fpsyt.2022.999384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Superior longitudinal fasciculus (SLF) is a white matter (WM) tract that connects the frontal, parietal and temporal lobes. SLF integrity has been widely assessed in neuroimaging studies of psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD). However, prior studies have revealed inconsistent findings and comparisons across disorders have not been fully examined. METHODS Here, we obtained data for 113 patients (38 patients with SZ, 40 with BD, 35 with ADHD) and 94 healthy controls from the UCLA Consortium for Neuropsychiatric Phenomic LA5c dataset. We assessed the integrity of 20 major WM tracts with a novel segmentation method by automating fiber tract quantification (AFQ). The AFQ divides each tract into 100 equal parts along the direction of travel, with fractional anisotropy (FA) of each part taken as a characteristic. Differences in FA among the four groups were examined. RESULTS Compared to healthy controls, patients with SZ showed significantly lower FA in the second half (51-100 parts) of the SLF. No differences were found between BD and healthy controls, nor between ADHD and healthy controls. Results also demonstrated that patients with SZ showed FA reduction in the second half of the SLF relative to patients with BP. Moreover, greater FA in patients in SLF was positively correlated with the manic-hostility score of the Brief Psychiatry Rating scale. DISCUSSION These findings indicated that differences in focal changes in SLF might be a key neurobiological abnormality contributing to characterization of these psychiatric disorders.
Collapse
Affiliation(s)
- Feiyu Xu
- School of Mental Health, Jining Medical University, Jining, China.,Shandong Mental Health Center, Shandong University, Jinan, China
| | - Chengliang Jin
- School of Mental Health, Jining Medical University, Jining, China.,Shandong Mental Health Center, Shandong University, Jinan, China
| | - Tiantian Zuo
- Shandong Mental Health Center, Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruzhan Wang
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Ying Yang
- Shandong Mental Health Center, Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Bu X, Cao M, Huang X, He Y. The structural connectome in ADHD. PSYCHORADIOLOGY 2021; 1:257-271. [PMID: 38666220 PMCID: PMC10939332 DOI: 10.1093/psyrad/kkab021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) has been conceptualized as a brain dysconnectivity disorder. In the past decade, noninvasive diffusion magnetic resonance imaging (dMRI) studies have demonstrated that individuals with ADHD have alterations in the white matter structural connectome, and that these alterations are associated with core symptoms and cognitive deficits in patients. This review aims to summarize recent dMRI-based structural connectome studies in ADHD from voxel-, tractography-, and network-based perspectives. Voxel- and tractography-based studies have demonstrated disrupted microstructural properties predominantly located in the frontostriatal tracts, the corpus callosum, the corticospinal tracts, and the cingulum bundle in patients with ADHD. Network-based studies have suggested abnormal global and local efficiency as well as nodal properties in the prefrontal and parietal regions in the ADHD structural connectomes. The altered structural connectomes in those with ADHD provide significant signatures for prediction of symptoms and diagnostic classification. These studies suggest that abnormalities in the structural connectome may be one of the neural underpinnings of ADHD psychopathology and show potential for establishing imaging biomarkers in clinical evaluation. However, given that there are inconsistent findings across studies due to sample heterogeneity and analysis method variations, these ADHD-related white matter alterations are still far from informing clinical practice. Future studies with larger and more homogeneous samples are needed to validate the consistency of current results; advanced dMRI techniques can help to generate much more precise estimation of white matter pathways and assure specific fiber configurations; and finally, dimensional analysis frameworks can deepen our understanding of the neurobiology underlying ADHD.
Collapse
Affiliation(s)
- Xuan Bu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Xiaoqi Huang
- Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
25
|
Koirala N, Kleinman D, Perdue MV, Su X, Villa M, Grigorenko EL, Landi N. Widespread effects of dMRI data quality on diffusion measures in children. Hum Brain Mapp 2021; 43:1326-1341. [PMID: 34799957 PMCID: PMC8837592 DOI: 10.1002/hbm.25724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) datasets are susceptible to several confounding factors related to data quality, which is especially true in studies involving young children. With the recent trend of large‐scale multicenter studies, it is more critical to be aware of the varied impacts of data quality on measures of interest. Here, we investigated data quality and its effect on different diffusion measures using a multicenter dataset. dMRI data were obtained from 691 participants (5–17 years of age) from six different centers. Six data quality metrics—contrast to noise ratio, outlier slices, and motion (absolute, relative, translation, and rotational)—and four diffusion measures—fractional anisotropy, mean diffusivity, tract density, and length—were computed for each of 36 major fiber tracts for all participants. The results indicated that four out of six data quality metrics (all except absolute and translation motion) differed significantly between centers. Associations between these data quality metrics and the diffusion measures differed significantly across the tracts and centers. Moreover, these effects remained significant after applying recently proposed harmonization algorithms that purport to remove unwanted between‐site variation in diffusion data. These results demonstrate the widespread impact of dMRI data quality on diffusion measures. These tracts and measures have been routinely associated with individual differences as well as group‐wide differences between neurotypical populations and individuals with neurological or developmental disorders. Accordingly, for analyses of individual differences or group effects (particularly in multisite dataset), we encourage the inclusion of data quality metrics in dMRI analysis.
Collapse
Affiliation(s)
| | | | - Meaghan V Perdue
- Haskins Laboratories, New Haven, Connecticut, USA.,Department of Psychological Sciences, University of Connecticut, Connecticut, USA
| | - Xing Su
- Haskins Laboratories, New Haven, Connecticut, USA
| | - Martina Villa
- Haskins Laboratories, New Haven, Connecticut, USA.,Department of Psychological Sciences, University of Connecticut, Connecticut, USA
| | - Elena L Grigorenko
- Haskins Laboratories, New Haven, Connecticut, USA.,Department of Psychology, University of Houston, Houston, Texas, USA
| | - Nicole Landi
- Haskins Laboratories, New Haven, Connecticut, USA.,Department of Psychological Sciences, University of Connecticut, Connecticut, USA
| |
Collapse
|
26
|
Increased interhemispheric somatomotor functional connectivity and mirror overflow in ADHD. NEUROIMAGE-CLINICAL 2021; 31:102759. [PMID: 34280835 PMCID: PMC8319349 DOI: 10.1016/j.nicl.2021.102759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
Resting state fMRI study of the neurobiological basis of mirror overflow in ADHD. Children with ADHD show greater interhemispheric motor functional connectivity. Children with ADHD show greater mirror overflow during finger sequencing. Interhemispheric functional connectivity correlates with mirror overflow in ADHD. Greater interhemispheric motor connectivity may impede overflow inhibition in ADHD.
Mirror overflow is a developmental phenomenon defined as unintentional movements that mimic the execution of intentional movements in homologous muscles on the opposite side of the body. In children with attention-deficit/hyperactivity disorder (ADHD), mirror overflow is commonly excessive, abnormally persistent, and correlated with ADHD symptom severity. As such, it represents a promising clinical biomarker for disinhibited behavior associated with ADHD. Yet, the neural underpinnings of mirror overflow in ADHD remain unclear. Our objective was to test whether intrinsic interhemispheric functional connectivity between homologous regions of the somatomotor network (SMN) is associated with mirror overflow in school age children with and without ADHD using resting state functional magnetic resonance imaging. To this end, we quantified mirror overflow in 119 children (8–12 years old, 62 ADHD) during a finger sequencing task using finger twitch transducers affixed to the index and ring fingers. Group ICA was used to identify right- and left-lateralized SMNs and subject-specific back reconstructed timecourses were correlated to obtain a measure of SMN interhemispheric connectivity. We found that children with ADHD showed increased mirror overflow (p < 0.001; d = 0.671) and interhemispheric SMN functional connectivity (p = 0.023; d = 0.521) as compared to typically developing children. In children with ADHD, but not the typically developing children, there was a significant relationship between interhemispheric SMN functional connectivity and mirror overflow (t = 2.116; p = 0.039). Our findings of stronger interhemispheric functional connectivity between homologous somatomotor regions in children with ADHD is consistent with previous transcranial magnetic stimulation and diffusion-tractography imaging studies suggesting that interhemispheric cortical inhibitory mechanisms may be compromised in children with ADHD. The observed brain-behavior correlation further suggests that abnormally strong interhemispheric SMN connectivity in children with ADHD may diminish their ability to suppress overflow movements.
Collapse
|
27
|
Zhao B, Li T, Yang Y, Wang X, Luo T, Shan Y, Zhu Z, Xiong D, Hauberg ME, Bendl J, Fullard JF, Roussos P, Li Y, Stein JL, Zhu H. Common genetic variation influencing human white matter microstructure. Science 2021; 372:372/6548/eabf3736. [PMID: 34140357 DOI: 10.1126/science.abf3736] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Brain regions communicate with each other through tracts of myelinated axons, commonly referred to as white matter. We identified common genetic variants influencing white matter microstructure using diffusion magnetic resonance imaging of 43,802 individuals. Genome-wide association analysis identified 109 associated loci, 30 of which were detected by tract-specific functional principal components analysis. A number of loci colocalized with brain diseases, such as glioma and stroke. Genetic correlations were observed between white matter microstructure and 57 complex traits and diseases. Common variants associated with white matter microstructure altered the function of regulatory elements in glial cells, particularly oligodendrocytes. This large-scale tract-specific study advances the understanding of the genetic architecture of white matter and its genetic links to a wide spectrum of clinical outcomes.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark.,Centre for Integrative Sequencing (iSEQ), Aarhus University, 8000 Aarhus, Denmark
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Li D, Cui X, Yan T, Liu B, Zhang H, Xiang J, Wang B. Abnormal Rich Club Organization in Hemispheric White Matter Networks of ADHD. J Atten Disord 2021; 25:1215-1229. [PMID: 31884863 DOI: 10.1177/1087054719892887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Brain network studies have revealed abnormal topology asymmetry of white matter (WM) in ADHD. Recently, rich club organization was proposed to be a key feature of brain network topology. However, abnormalities in the rich club organization of hemispheric WM networks in ADHD remain unclear. Method: Forty ADHD patients and 51 normal controls participated in this study. Structural networks were reconstructed based on diffusion tensor imaging (DTI) and analyzed with graph theory. Results: The two groups exhibited different patterns of asymmetry in connectivity measures of rich club connections. ADHD patients showed more feeder connections than normal controls. Reduced rightward asymmetry was observed in connectivity measures of local connections involving several peripheral regions of the ADHD patients. In addition, abnormal regional asymmetry scores were associated with ADHD symptoms. Conclusion: The topological changes in rich club organization provide a novel insight into the alteration of WM connections in ADHD.
Collapse
Affiliation(s)
- Dandan Li
- Taiyuan University of Technology, China
| | | | - Ting Yan
- Shanxi Medical University, Taiyuan, China
| | - Bo Liu
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Zhang
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Xiang
- Taiyuan University of Technology, China
| | - Bing Wang
- Taiyuan University of Technology, China
| |
Collapse
|
29
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
30
|
Saad JF, Griffiths KR, Kohn MR, Braund TA, Clarke S, Williams LM, Korgaonkar MS. No support for white matter connectivity differences in the combined and inattentive ADHD presentations. PLoS One 2021; 16:e0245028. [PMID: 33951031 PMCID: PMC8099057 DOI: 10.1371/journal.pone.0245028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Evidence from functional neuroimaging studies support neural differences between the Attention Deficit Hyperactivity Disorder (ADHD) presentation types. It remains unclear if these neural deficits also manifest at the structural level. We have previously shown that the ADHD combined, and ADHD inattentive types demonstrate differences in graph properties of structural covariance suggesting an underlying difference in neuroanatomical organization. The goal of this study was to examine and validate white matter brain organization between the two subtypes using both scalar and connectivity measures of brain white matter. We used both tract-based spatial statistical (TBSS) and tractography analyses with network-based Statistics (NBS) and graph-theoretical analyses in a cohort of 35 ADHD participants (aged 8-17 years) defined using DSM-IV criteria as combined (ADHD-C) type (n = 19) or as predominantly inattentive (ADHD-I) type (n = 16), and 28 matched neurotypical controls. We performed TBSS analyses on scalar measures of fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivity to assess differences in WM between ADHD types and controls. NBS and graph theoretical analysis of whole brain inter-regional tractography examined connectomic differences and brain network organization, respectively. None of the scalar measures significantly differed between ADHD types or relative to controls. Similarly, there were no tractography connectivity differences between the two subtypes and relative to controls using NBS. Global and regional graph measures were also similar between the groups. A single significant finding was observed for nodal degree between the ADHD-C and controls, in the right insula (corrected p = .029). Our result of no white matter differences between the subtypes is consistent with most previous findings. These findings together might suggest that the white matter structural architecture is largely similar between the DSM-based ADHD presentations is similar to the extent of being undetectable with the current cohort size.
Collapse
Affiliation(s)
- Jacqueline F. Saad
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Discipline of Psychiatry, Western Clinical School, The University of Sydney, Sydney, Australia
| | - Kristi R. Griffiths
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Michael R. Kohn
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Department of Adolescent and Young Adult Medicine, Centre for Research into Adolescents’ Health, Westmead Hospital, Sydney, New South Wales, Australia
| | - Taylor A. Braund
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Discipline of Psychiatry, Western Clinical School, The University of Sydney, Sydney, Australia
| | - Simon Clarke
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Department of Adolescent and Young Adult Medicine, Centre for Research into Adolescents’ Health, Westmead Hospital, Sydney, New South Wales, Australia
| | - Leanne M. Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Mayuresh S. Korgaonkar
- The Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Discipline of Psychiatry, Western Clinical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Fu G, Chen W, Li H, Wang Y, Liu L, Qian Q. A potential association of RNF219-AS1 with ADHD: Evidence from categorical analysis of clinical phenotypes and from quantitative exploration of executive function and white matter microstructure endophenotypes. CNS Neurosci Ther 2021; 27:603-616. [PMID: 33644999 PMCID: PMC8025624 DOI: 10.1111/cns.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS Attention-deficit/hyperactivity disorder (ADHD) is a neuropsychiatric disorder of substantial heritability, yet emerging evidence suggests that key risk variants might reside in the noncoding regions of the genome. Our study explored the association of lncRNAs (long noncoding RNAs) with ADHD as represented at three different phenotypic levels guided by the Research Domain Criteria (RDoC) framework: (i) ADHD caseness and symptom dimension, (ii) executive functions as functional endophenotype, and (iii) potential genetic influence on white matter architecture as brain structural endophenotype. METHODS Genotype data of 107 tag single nucleotide polymorphisms (SNP) from 10 candidate lncRNAs were analyzed in 1040 children with ADHD and 630 controls of Chinese Han descent. Executive functions including inhibition and set-shifting were assessed by STROOP and trail making tests, respectively. Imaging genetic analyses were performed in a subgroup of 33 children with ADHD and 55 controls using fractional anisotropy (FA). RESULTS One SNP rs3908461 polymorphism in RNF219-AS1 was found to be significantly associated with ADHD caseness: with C-allele detected as the risk genotype in the allelic model (P = 8.607E-05) and dominant genotypic model (P = 9.628E-05). Nominal genotypic effects on inhibition (p = 0.020) and set-shifting (p = 0.046) were detected. While no direct effect on ADHD core symptoms was detected, mediation analysis suggested that SNP rs3908461 potentially exerted an indirect effect through inhibition function [B = 0.21 (SE = 0.12), 95% CI = 0.02-0.49]. Imaging genetic analyses detected significant associations between rs3908461 genotypes and FA values in corpus callosum, left superior longitudinal fasciculus, left posterior limb of internal capsule, left posterior thalamic radiate (include optic radiation), and the left anterior corona radiate (P FWE corrected < 0.05). CONCLUSION Our present study examined the potential roles of lncRNA in genetic etiological of ADHD and provided preliminary evidence in support of the potential RNF219-AS1 involvement in the pathophysiology of ADHD in line with the RDoC framework.
Collapse
Affiliation(s)
- Guang‐Hui Fu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Wai Chen
- Mental Health ServiceFiona Stanley HospitalPerthAustralia
- Graduate School of EducationThe University of Western AustraliaPerthAustralia
- School of MedicineThe University of Notre Dame AustraliaFremantleAustralia
- School of PsychologyMurdoch UniversityPerthAustralia
| | - Hai‐Mei Li
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Yu‐Feng Wang
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Qiu‐Jin Qian
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| |
Collapse
|
32
|
Hyde C, Sciberras E, Efron D, Fuelscher I, Silk T. Reduced fine motor competence in children with ADHD is associated with atypical microstructural organization within the superior longitudinal fasciculus. Brain Imaging Behav 2021; 15:727-737. [PMID: 32333317 DOI: 10.1007/s11682-020-00280-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent work in healthy adults suggests that white matter organization within the superior longitudinal fasciculus (SLF) may, at least partly, explain individual differences in fine motor skills. The SLF is also often implicated in the neurobiology underlying attention deficit hyperactivity disorder (ADHD) as part of the attention network connecting frontal and parietal regions. While ADHD is primarily characterized by inattention, impulsivity and/or hyperactivity, atypical fine motor control is a common comorbid feature. This study aimed to investigate the association between reduced fine motor skills in ADHD and microstructural properties within the SLF. Participants were 55 right-handed children with ADHD and 61 controls aged 9-11 years. Fine motor control was assessed using the Grooved Pegboard task. Children underwent high angular resolution diffusion MRI. Following pre-processing, constrained spherical deconvolution tractography was performed to delineate the three SLF branches bilaterally. Children with ADHD showed significantly poorer fine motor performance relative to controls in the non-dominant hand, indicated by significantly slower left handed Grooved Pegboard task performance. This slower response time for the non-dominant (left) hand was significantly associated with reduced apparent fibre density within the right SLF I, and reduced right SLF I, II and III volume. This finding was independent of spatial attention performance. These data support previous reports indicating that children with ADHD have poorer fine motor performance than controls in their non-dominant hand, and indicates that the neurobiological basis for impaired fine motor control may involve white matter properties within the contralateral SLF. This suggests that white matter properties in fronto-parietal areas may have broader implications than attention.
Collapse
Affiliation(s)
- Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Emma Sciberras
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Daryl Efron
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Tim Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Fuelscher I, Hyde C, Anderson V, Silk TJ. White matter tract signatures of fiber density and morphology in ADHD. Cortex 2021; 138:329-340. [PMID: 33784515 DOI: 10.1016/j.cortex.2021.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Previous studies investigating white matter organization in attention deficit hyperactivity disorder (ADHD) have adopted diffusion tensor imaging (DTI). However, attempts to derive pathophysiological models from this research have had limited success, possibly reflecting limitations of the DTI method. This study investigated the organization of white matter tracts in ADHD using fixel based analysis (FBA), a fiber specific analysis framework that is well placed to provide novel insights into the pathophysiology of ADHD. High angular diffusion weighted imaging and clinical data were collected in a large paediatric cohort (N = 144; 76 with ADHD; age range 9-11 years). White matter tractography and FBA were performed across 14 white matter tracts. Permutation based inference testing (using FBA derived measures of fiber density and morphology) assessed differences in white matter tract profiles between children with and without ADHD. Analysis further examined the association between white matter properties and ADHD symptom severity. Relative to controls, children with ADHD showed reduced white matter connectivity along association and projection pathways considered critical to behavioral control and motor function. Increased ADHD symptom severity was associated with reduced white matter organization in fronto-pontine fibers projecting to and from the supplementary motor area. Providing novel insight into the neurobiological foundations of ADHD, this is the first research to uncover fiber specific white matter alterations across a comprehensive set of white matter tracts in ADHD using FBA. Findings inform pathophysiological models of ADHD and hold great promise for the consistent identification and systematic replication of brain differences in this disorder.
Collapse
Affiliation(s)
- Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Vicki Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia; The Royal Children's Hospital, Parkville, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
34
|
Cardenas-Iniguez C, Moore TM, Kaczkurkin AN, Meyer FAC, Satterthwaite TD, Fair DA, White T, Blok E, Applegate B, Thompson LM, Rosenberg MD, Hedeker D, Berman MG, Lahey BB. Direct and Indirect Associations of Widespread Individual Differences in Brain White Matter Microstructure With Executive Functioning and General and Specific Dimensions of Psychopathology in Children. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 7:362-375. [PMID: 33518499 DOI: 10.1016/j.bpsc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Executive functions (EFs) are important partly because they are associated with risk for psychopathology and substance use problems. Because EFs have been linked to white matter microstructure, we tested the prediction that fractional anisotropy (FA) and mean diffusivity (MD) in white matter tracts are associated with EFs and dimensions of psychopathology in children younger than the age of widespread psychoactive substance use. METHODS Parent symptom ratings, EF test scores, and diffusion tensor parameters from 8588 9- to 10-year-olds in the ABCD Study (Adolescent Brain Cognitive Development Study) were used. RESULTS A latent factor derived from EF test scores was significantly associated with specific conduct problems and attention-deficit/hyperactivity disorder problems, with dimensions defined in a bifactor model. Furthermore, EFs were associated with FA and MD in 16 of 17 bilateral white matter tracts (range: β = .05; SE = .17; through β = -.31; SE = .06). Neither FA nor MD was directly associated with psychopathology, but there were significant indirect associations via EFs of both FA (range: β = .01; SE = .01; through β = -.09; SE = .02) and MD (range: β = .01; SE = .01; through β = .09; SE = .02) with both specific conduct problems and attention-deficit/hyperactivity disorder in all tracts except the forceps minor. CONCLUSIONS EFs in children are inversely associated with diffusion tensor imaging measures in nearly all tracts throughout the brain. Furthermore, variance in diffusion tensor measures that is shared with EFs is indirectly shared with attention-deficit/hyperactivity disorder and conduct problems.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Antonia N Kaczkurkin
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Francisco A C Meyer
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damien A Fair
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elisabet Blok
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brooks Applegate
- Department of Educational Leadership, Research and Technology, College of Education and Human Development, Western Michigan University, Kalamazoo, Michigan
| | - Lauren M Thompson
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Monica D Rosenberg
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Donald Hedeker
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Marc G Berman
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Benjamin B Lahey
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois.
| |
Collapse
|
35
|
Albajara Sáenz A, Van Schuerbeek P, Baijot S, Septier M, Deconinck N, Defresne P, Delvenne V, Passeri G, Raeymaekers H, Slama H, Victoor L, Willaye E, Peigneux P, Villemonteix T, Massat I. Disorder-specific brain volumetric abnormalities in Attention-Deficit/Hyperactivity Disorder relative to Autism Spectrum Disorder. PLoS One 2020; 15:e0241856. [PMID: 33166335 PMCID: PMC7652272 DOI: 10.1371/journal.pone.0241856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
The overlap/distinctiveness between Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) has been increasingly investigated in recent years, particularly since the DSM-5 allows the dual diagnosis of ASD and ADHD, but the underlying brain mechanisms remain unclear. Although both disorders are associated with brain volumetric abnormalities, it is necessary to unfold the shared and specific volume abnormalities that could contribute to explain the similarities and differences in the clinical and neurocognitive profiles between ADHD and ASD. In this voxel-based morphometry (VBM) study, regional grey matter volumes (GMV) were compared between 22 children with ADHD, 18 children with ASD and 17 typically developing (TD) children aged 8 to 12 years old, controlling for age and total intracranial volume. When compared to TD children or children with ASD, children with ADHD had a larger left precuneus, and a smaller right thalamus, suggesting that these brain abnormalities are specific to ADHD relative to ASD. Overall, this study contributes to the delineation of disorder-specific structural abnormalities in ADHD and ASD.
Collapse
Affiliation(s)
- Ariadna Albajara Sáenz
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| | - Peter Van Schuerbeek
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Simon Baijot
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Mathilde Septier
- Hôpital Universitaire Robert Debré, Paris, France
- Institut de Psychiatrie et de Neurosciences de Paris Inserm U894 Team 1, Paris, France
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | | | - Véronique Delvenne
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Gianfranco Passeri
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Hichem Slama
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Victoor
- PsyPluriel, Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - Eric Willaye
- Fondation SUSA-Université de Mons, Mons, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Thomas Villemonteix
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Paris 8 Vincennes - St Denis University, Laboratoire de Psychopathologie et Neuropsychologie, Saint Denis, France
| | - Isabelle Massat
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Experimental Neurology, ULB, Brussels, Belgium
- National Fund of Scientific Research (FNRS), Brussels, Belgium
- Department of Neurology, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
36
|
Fattah M, Raman MM, Reiss AL, Green T. PTPN11 Mutations in the Ras-MAPK Signaling Pathway Affect Human White Matter Microstructure. Cereb Cortex 2020; 31:1489-1499. [PMID: 33119062 DOI: 10.1093/cercor/bhaa299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
We examined whether PTPN11 mutations affect the white matter connectivity of the developing human brain. Germline activating mutations to the PTPN11 gene cause overactivation of the Ras-Mitogen-Activated Protein Kinase pathway. Activating mutations cause Noonan syndrome (NS), a developmental disorder associated with hyperactivity and cognitive weakness in attention, executive function, and memory. In mouse models of NS, PTPN11 mutations cause reduced axon myelination and white matter formation, while the effects of PTPN11 mutations on human white matter are largely unknown. For the first time, we assessed 17 children with NS (9 females, mean age, 8.68 ± 2.39) and 17 age- and sex-matched controls (9 female, mean age, 8.71 ± 2.40) using diffusion brain imaging for white matter connectivity and structural magnetic resonance imaging to characterize brain morphology. Children with NS showed widespread reductions in fractional anisotropy (FA; 82 613 voxels, t = 1.49, P < 0.05) and increases in radial diffusivity (RD; 94 044 voxels, t = 1.22, P < 0.05), denoting decreased white matter connectivity. In NS, the FA of the posterior thalamic radiation correlated positively with inhibition performance, whereas connectivity in the genu of the corpus callosum was inversely associated with auditory attention performance. Additionally, we observed negative and positive correlations, respectively, between memory and the cingulum hippocampus, and memory and the cingulum cingulate gyrus. These findings elucidate the neural mechanism underpinning the NS cognitive phenotype, and may serve as a brain-based biomarker.
Collapse
Affiliation(s)
- Mustafa Fattah
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
37
|
White Matter Microstructure in Pediatric Bipolar Disorder and Disruptive Mood Dysregulation Disorder. J Am Acad Child Adolesc Psychiatry 2020; 59:1135-1145. [PMID: 31330239 PMCID: PMC9686453 DOI: 10.1016/j.jaac.2019.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/18/2019] [Accepted: 07/16/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Disruptive mood dysregulation disorder (DMDD) codifies severe, chronic irritability. Youths with bipolar disorder (BD) also present with irritability, but with an episodic course. To date, it is not clear whether aberrant white matter microstructure-a well-replicated finding in BD-can be observed in DMDD and relates to symptoms of irritability. METHOD We acquired diffusion tensor imaging data from 118 participants (BD = 36, DMDD = 44, healthy volunteers (HV = 38). Images of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) were processed with tract-based spatial statistics controlling for age and sex. The data were also used to train Gaussian process classifiers to predict diagnostic group. RESULTS In BD vs DMDD, FA in the corticospinal tract was reduced. In DMDD vs HV, reductions in FA and AD were confined to the anterior corpus callosum. In BD vs HV, widespread reductions in FA and increased RD were observed. FA in the anterior corpus callosum and corticospinal tract was negatively associated with irritability. The Gaussian process classifier could not discriminate between BD and DMDD, but achieved 68% accuracy in predicting DMDD vs HV and 75% accuracy in predicting BD vs HV. CONCLUSION Aberrant white matter microstructure was associated with both categorical diagnosis and the dimension of irritability. Alterations in DMDD were regionally discrete and related to reduced AD. In BD, we observed widespread increases in RD, supporting the hypothesis of altered myelination in BD. These findings will contribute to the pathophysiological understanding of DMDD and its differentiation from BD. CLINICAL TRIAL REGISTRATION INFORMATION Studies of Brain Function and Course of Illness in Pediatric Bipolar Disorder; https://clinicaltrials.gov/; NCT00025935; Child & Adolescent Bipolar Disorder Brain Imaging and Treatment Study; https://clinicaltrials.gov/; NCT00006177.
Collapse
|
38
|
Albajara Sáenz A, Villemonteix T, Slama H, Baijot S, Mary A, Balériaux D, Metens T, Kavec M, Peigneux P, Massat I. Relationship Between White Matter Abnormalities and Neuropsychological Measures in Children With ADHD. J Atten Disord 2020; 24:1020-1031. [PMID: 30014760 DOI: 10.1177/1087054718787878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: Using Diffusion Tensor Imaging (DTI), to investigate microstructural white matter differences between ADHD and typically developing children (TDC), and their association with inhibition and working memory performance usually impaired in ADHD. Method: Fractional anisotropy (FA) and mean diffusivity (MD) were estimated in 36 noncomorbid children with a Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR) diagnosis of combined type ADHD and 20 TDC. Correlations between FA/MD and Stop Signal Task and N-Back performance parameters were computed. Results: Working memory performance was significantly associated with MD in the superior longitudinal fasciculus (SLF) and the cingulum in the ADHD group. No between-group differences in FA/MD reached significance, after controlling for between-group head motion differences. Conclusion: The association between white matter integrity in the cingulum and the SLF and working memory performance confirms previous studies. Our results also show that when critical conditions are controlled (age, comorbidity, head motion), no ADHD-related structural abnormality (FA/MD) are observed, in line with prior suggestions.
Collapse
Affiliation(s)
| | - Thomas Villemonteix
- Université Libre de Bruxelles, Brussels, Belgium.,Paris 8 Vincennes-Saint Denis University, France
| | - Hichem Slama
- Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Baijot
- Université Libre de Bruxelles, Brussels, Belgium.,Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Alison Mary
- Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | - Isabelle Massat
- Université Libre de Bruxelles, Brussels, Belgium.,FNRS-National Fund of Scientific Research, Brussels, Belgium
| |
Collapse
|
39
|
Jiang W, Duan K, Rootes-Murdy K, Hoekstra PJ, Hartman CA, Oosterlaan J, Heslenfeld D, Franke B, Buitelaar J, Arias-Vasquez A, Liu J, Turner JA. Structural brain alterations and their association with cognitive function and symptoms in Attention-deficit/Hyperactivity Disorder families. Neuroimage Clin 2020; 27:102273. [PMID: 32387850 PMCID: PMC7210582 DOI: 10.1016/j.nicl.2020.102273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
Gray matter disruptions have been found consistently in Attention-deficit/Hyperactivity Disorder (ADHD). The organization of these alterations into brain structural networks remains largely unexplored. We investigated 508 participants (281 males) with ADHD (N = 210), their unaffected siblings (N = 108), individuals with subthreshold ADHD (N = 49), and unrelated healthy controls (N = 141) with an age range from 7 to 18 years old from 336 families in the Dutch NeuroIMAGE project. Source based morphometry was used to examine structural brain network alterations and their association with symptoms and cognitive performance. Two networks showed significant reductions in individuals with ADHD compared to unrelated healthy controls after False Discovery Rate correction. Component A, mainly located in bilateral Crus I, showed a ADHD/typically developing difference with subthreshold cases being intermediate between ADHD and typically developing controls. The unaffected siblings were similar to controls. After correcting for IQ and medication status, component A showed a negative correlation with inattention symptoms across the entire sample. Component B included a maximum cluster in the bilateral insula, where unaffected siblings, similar to individuals with ADHD, showed significantly reduced loadings compared to controls; but no relationship with individual symptoms or cognitive measures was found for component B. This multivariate approach suggests that areas reflecting genetic liability within ADHD are partly separate from those areas modulating symptom severity.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Psychology, Georgia State University, USA
| | - Kuaikuai Duan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, USA
| | | | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Dirk Heslenfeld
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jingyu Liu
- Department of Computer Science, TReNDS Center, Georgia State University, Atlanta, USA
| | - Jessica A Turner
- Department of Psychology, Georgia State University, USA; Neuroscience Institute, Georgia State University, USA.
| |
Collapse
|
40
|
Association between diffusivity measures and language and cognitive-control abilities from early toddler’s age to childhood. Brain Struct Funct 2020; 225:1103-1122. [DOI: 10.1007/s00429-020-02062-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
41
|
Wu ZM, Wang P, Yang L, Liu L, Sun L, An L, Cao QJ, Chan RCK, Yang BR, Wang YF. Altered brain white matter microstructural asymmetry in children with ADHD. Psychiatry Res 2020; 285:112817. [PMID: 32035376 DOI: 10.1016/j.psychres.2020.112817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES We aimed to examine brain white matter integrity in children with ADHD. METHODS In a cohort of children with ADHD (n = 83) and healthy controls (n = 122), we used tract-based spatial statistics on Diffusion Tensor Imaging (DTI) data to obtain the mean fractional anisotropy (FA) in 40 bilateral regions of interest (ROIs). Lateralization Index (LI) was calculated. The difference in LI between groups and correlations between the LI of each ROI and ADHD symptom scores as well as cognitive function were examined. RESULTS Children with ADHD had significantly greater LI at the posterior thalamic radiation (PTR) compared with healthy controls (mean LI in ADHD = 0.0096; in Control = 0.0044, p = 0.0143), and LI of the external capsule (EC) was significantly correlated with inattention symptoms in both groups (β = -0.00059, p = 0.0181). LI of the PTR was significantly correlated with inhibitory function in healthy controls (β = -0.0008510, p = 0.0248), but not in children with ADHD. CONCLUSION We found increased brain white matter asymmetry (leftward) in children with ADHD compared with healthy controls at the posterior thalamic radiation. Leftward lateralization of FA values at the external capsule was negatively correlated with ADHD symptoms in both children with ADHD and healthy controls.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Children's Hospital, Shenzhen, 518000, China; Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands.
| | - Peng Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Li An
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Qing-Jiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Rang Yang
- Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
42
|
Change in Brain Plasmalogen Composition by Exposure to Prenatal Undernutrition Leads to Behavioral Impairment of Rats. J Neurosci 2019; 39:7689-7702. [PMID: 31391260 DOI: 10.1523/jneurosci.2721-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition. Maternal food or protein restriction between gestational day (GD) 5.5 and GD 10.5 resulted in hyperactivity of rat male adult offspring. Genes related to the phospholipid biosynthesis were found to be activated in the PFC, but not in the NAcc or striatum, in the offspring exposed to prenatal undernutrition. Corresponding to these gene activations, increased ethanolamine plasmalogen (18:0p-22:6) was observed in the PFC using mass spectrometry imaging. A high number of crossings and the long time spent in the center area were observed in the offspring exposed to prenatal undernutrition and were mimicked in adult rats via the intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome. Additionally, plasmalogen (18:0p-22:6) increased only in the PFC, and not in the NAcc or striatum. These results suggest that brain plasmalogen is one of the key molecules to control behavior, and its injection using liposome is a potential therapeutic approach for cognitive impairment.SIGNIFICANCE STATEMENT Maternal undernutrition correlates to developmental and psychiatric disorders. Here, we found that maternal undernutrition in early pregnancy led to hyperactivity in rat male offspring and induced gene activation of phospholipid-synthesizing enzyme and elevation of ethanolamine plasmalogen (18:0p-22:6) level in the PFC. Intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome maintained crossing activity and the activity was circumscribed to the center area for a long time period, as in prenatally undernourished offspring with aberrant behavior. Furthermore, the amount of ethanolamine plasmalogen (18:0p-22:6) increased in the PFC of the rat after injection. Our result suggests that brain plasmalogen is one of the key molecules to control behavior and that its injection using liposome is a potential therapeutic approach for cognitive impairment.
Collapse
|
43
|
Wu ZM, Llera A, Hoogman M, Cao QJ, Zwiers MP, Bralten J, An L, Sun L, Yang L, Yang BR, Zang YF, Franke B, Beckmann CF, Mennes M, Wang YF. Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. NEUROIMAGE-CLINICAL 2019; 23:101851. [PMID: 31077980 PMCID: PMC6514365 DOI: 10.1016/j.nicl.2019.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Objectives Neuroimaging studies have independently demonstrated brain anatomical and functional impairments in participants with ADHD. The aim of the current study was to explore the relationship between structural and functional brain alterations in ADHD through an integrated analysis of multimodal neuroimaging data. Methods We performed a multimodal analysis to integrate resting-state functional magnetic resonance imaging (MRI), structural MRI, and diffusion-weighted imaging data in a large, single-site sample of children with and without diagnosis for ADHD. The inferred subject contributions were fed into regression models to investigate the relationships between diagnosis, symptom severity, gender, and age. Results Compared with controls, children with ADHD diagnosis showed altered white matter microstructure in widespread white matter fiber tracts as well as greater gray matter volume (GMV) in bilateral frontal regions, smaller GMV in posterior regions, and altered functional connectivity (FC) in default mode and fronto-parietal networks. Age-related growth of GMV of bilateral occipital lobe, FC in frontal regions as well as age-related decline of GMV in medial regions seen in controls appeared reversed in children with ADHD. In the whole group, higher symptom severity was related to smaller GMV in widespread regions in bilateral frontal, parietal, and temporal lobes, as well as greater GMV in intracalcarine and temporal cortices. Conclusions Through a multimodal analysis approach we show that structural and functional alterations in brain regions known to be altered in subjects with ADHD from unimodal studies are linked across modalities. The brain alterations were related to clinical features of ADHD, including disorder status, age, and symptom severity. Multimodal imaging analysis provides new insights in interconnected imaging findings. Co-occurrence of structural and functional brain alterations were observed in ADHD. The identified multimodal alterations are related to clinical features of ADHD.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Children's Hospital, China; Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands.
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Qing-Jiu Cao
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Li An
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | | | - Yu-Feng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Maarten Mennes
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yu-Feng Wang
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China.
| |
Collapse
|
44
|
Zhang L, Xue Z, Liu Q, Liu Y, Xi S, Cheng Y, Li J, Yan J, Shen Y, Xiao C, Xie Z, Qiu Z, Jiang H. Disrupted folate metabolism with anesthesia leads to myelination deficits mediated by epigenetic regulation of ERMN. EBioMedicine 2019; 43:473-486. [PMID: 31060905 PMCID: PMC6562069 DOI: 10.1016/j.ebiom.2019.04.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Background Exposure to anesthetics during early life may impair cognitive functions. However, the underlying mechanisms remain largely unknown. We set out to determine effects of sevoflurane anesthesia on folate metabolism and myelination in young non-human primates, mice and children. Methods Young rhesus macaque and mice received 2.5 to 3% sevoflurane daily for three days. DNA and RNA sequencing and immunohistochemistry among others were used in the studies. We performed unbiased transcriptome profiling in prefrontal cortex of rhesus macaques and mice after the sevoflurane anesthesia. We constructed a brain blood barrier-crossing AAV-PHP.EB vector to harbor ERMN expression in rescue studies. We measured blood folate levels in children after anesthesia and surgery. Findings We found that thymidylate synthase (TYMS) gene was downregulated after the sevoflurane anesthesia in both rhesus macaque and mice. There was a reduction in blood folate levels in children after the anesthesia and surgery. Combined with transcriptome and genome-wide DNA methylation analysis, we identified that ERMN was the primary target of the disrupted folate metabolism. Myelination was compromised by the anesthesia in the young mice, which was rescued by systematic administration of folic acid or expression of ERMN in the brain through brain-specific delivery of the adeno-associated virus. Moreover, folic acid and expression of ERMN alleviated the cognitive impairment caused by the sevoflurane anesthesia in the mice. Interpretation General anesthesia leads to disrupted folate metabolism and subsequently defects in myelination in the developmental brain, and ERMN is the important target affected by the anesthesia via epigenetic mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Qidong Liu
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yunbo Liu
- The Institute of Laboratory Animal Science, CAMS & PUMC. Beijing, PR China
| | - Siwei Xi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Jingjie Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Yuan Shen
- Department of Psychiatry, Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chong Xiao
- The Institute of Laboratory Animal Science, CAMS & PUMC. Beijing, PR China
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China.
| |
Collapse
|
45
|
Albajara Sáenz A, Villemonteix T, Massat I. Structural and functional neuroimaging in attention-deficit/hyperactivity disorder. Dev Med Child Neurol 2019; 61:399-405. [PMID: 30276811 DOI: 10.1111/dmcn.14050] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 01/13/2023]
Abstract
Over the last decade, there has been a dramatic increase in the number of neuroimaging studies in attention-deficit/hyperactivity disorder (ADHD). In terms of brain structure, magnetic resonance imaging (MRI), and diffusion tensor imaging studies have evidenced differences in volume, surface-based measures (cortical thickness, surface area, and gyrification), and white matter integrity in different cerebral regions, in children and adults with ADHD compared to population norms. Abnormalities in the basal ganglia, prefrontal structures, and the corpus callosum have been the most consistently reported findings across studies. Hemodynamic (functional MRI, functional near-infrared spectroscopy, positron emission tomography, single-photon emission computed tomography) and magnetoencephalography measurements have also shown differences in neural activity during the execution of neuropsychological tasks and during rest, in widespread regions of the brain. Importantly, multimodal studies combining structural and functional methods have shown an intercorrelation between structural and functional abnormalities in ADHD. Further longitudinal studies are needed to clarify the effects of age and medication on brain structure and function in individuals with ADHD. WHAT THIS PAPER ADDS: In attention-deficit/hyperactivity disorder (ADHD), the brain is characterized by abnormal neural network interplay. Structural and functional cerebral abnormalities in ADHD are intercorrelated. Currently there is no neural biomarker that can be used in diagnosis. Longitudinal studies have shed light on the brain correlates of ADHD over the lifespan. The effects of stimulant intake on the brain correlates of ADHD remain unclear.
Collapse
Affiliation(s)
- Ariadna Albajara Sáenz
- UR2NF/Neuropsychology and Functional Neuroimaging Research Group, Centre for Research in Cognition and Neurosciences, Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Villemonteix
- UR2NF/Neuropsychology and Functional Neuroimaging Research Group, Centre for Research in Cognition and Neurosciences, Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratoire de Psychopathologie et Neuropsychologie, Universite de Vincennes, Paris, France
| | - Isabelle Massat
- UR2NF/Neuropsychology and Functional Neuroimaging Research Group, Centre for Research in Cognition and Neurosciences, Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium.,National Fund of Scientific Research, Brussels, Belgium.,Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
46
|
Naz S, Najam N. Neurological deficits and comorbidity in children with reading disorder. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1589174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Sajida Naz
- Department of Behavioral Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Najma Najam
- Department of Behavioral Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
47
|
Martins BP, Bandarra NM, Figueiredo-Braga M. The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder – a review. Crit Rev Food Sci Nutr 2019; 60:1431-1446. [DOI: 10.1080/10408398.2019.1573800] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bárbara P. Martins
- Department of Clinical Neurosciences and Mental Health, Medical Psychology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Narcisa M. Bandarra
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
| | - Margarida Figueiredo-Braga
- Department of Clinical Neurosciences and Mental Health, Medical Psychology, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Group: Metabolism, Nutrition & Endocrinology, i3S Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| |
Collapse
|
48
|
Polygenic Risk and Neural Substrates of Attention-Deficit/Hyperactivity Disorder Symptoms in Youths With a History of Mild Traumatic Brain Injury. Biol Psychiatry 2019; 85:408-416. [PMID: 30119875 PMCID: PMC6330150 DOI: 10.1016/j.biopsych.2018.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a major sequela of traumatic brain injury (TBI) in youths. The objective of this study was to examine whether ADHD symptoms are differentially associated with genetic risk and brain structure in youths with and without a history of TBI. METHODS Medical history, ADHD symptoms, genetic data, and neuroimaging data were obtained from a community sample of youths. ADHD symptom severity was compared between those with and without TBI (TBI n = 418, no TBI n = 3193). The relationship of TBI history, genetic vulnerability, brain structure, and ADHD symptoms was examined by assessing 1) ADHD polygenic score (discovery sample ADHD n = 19,099, control sample n = 34,194), 2) basal ganglia volumes, and 3) fractional anisotropy in the corpus callosum and corona radiata. RESULTS Youths with TBI reported greater ADHD symptom severity compared with those without TBI. Polygenic score was positively associated with ADHD symptoms in youths without TBI but not in youths with TBI. The negative association between the caudate volume and ADHD symptoms was not moderated by a history of TBI. However, the relationship between ADHD symptoms and structure of the genu of the corpus callosum was negative in youths with TBI and positive in youths without TBI. CONCLUSIONS The identification of distinct ADHD etiology in youths with TBI provides neurobiological insight into the clinical heterogeneity in the disorder. Results indicate that genetic predisposition to ADHD does not increase the risk for ADHD symptoms associated with TBI. ADHD symptoms associated with TBI may be a result of a mechanical insult rather than neurodevelopmental factors.
Collapse
|
49
|
Klein M, Walters RK, Demontis D, Stein JL, Hibar DP, Adams HH, Bralten J, Roth Mota N, Schachar R, Sonuga-Barke E, Mattheisen M, Neale BM, Thompson PM, Medland SE, Børglum AD, Faraone SV, Arias-Vasquez A, Franke B. Genetic Markers of ADHD-Related Variations in Intracranial Volume. Am J Psychiatry 2019; 176:228-238. [PMID: 30818988 PMCID: PMC7780894 DOI: 10.1176/appi.ajp.2018.18020149] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with a complex pathophysiology. Intracranial volume (ICV) and volumes of the nucleus accumbens, amygdala, caudate nucleus, hippocampus, and putamen are smaller in people with ADHD compared with healthy individuals. The authors investigated the overlap between common genetic variation associated with ADHD risk and these brain volume measures to identify underlying biological processes contributing to the disorder. METHODS The authors combined genome-wide association results from the largest available studies of ADHD (N=55,374) and brain volumes (N=11,221-24,704), using a set of complementary methods to investigate overlap at the level of global common variant genetic architecture and at the single variant level. RESULTS Analyses revealed a significant negative genetic correlation between ADHD and ICV (rg=-0.22). Meta-analysis of single variants revealed two significant loci of interest associated with both ADHD risk and ICV; four additional loci were identified for ADHD and volumes of the amygdala, caudate nucleus, and putamen. Exploratory gene-based and gene-set analyses in the ADHD-ICV meta-analytic data showed association with variation in neurite outgrowth-related genes. CONCLUSIONS This is the first genome-wide study to show significant genetic overlap between brain volume measures and ADHD, both on the global and the single variant level. Variants linked to smaller ICV were associated with increased ADHD risk. These findings can help us develop new hypotheses about biological mechanisms by which brain structure alterations may be involved in ADHD disease etiology.
Collapse
Affiliation(s)
- Marieke Klein
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Raymond K. Walters
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Ditte Demontis
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Jason L. Stein
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Derrek P. Hibar
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Hieab H. Adams
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Janita Bralten
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Nina Roth Mota
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Russell Schachar
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Edmund Sonuga-Barke
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Manuel Mattheisen
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Benjamin M. Neale
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Paul M. Thompson
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Sarah E. Medland
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Anders D. Børglum
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Stephen V. Faraone
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Alejandro Arias-Vasquez
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Barbara Franke
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| |
Collapse
|
50
|
Bessette KL, Stevens MC. Neurocognitive Pathways in Attention-Deficit/Hyperactivity Disorder and White Matter Microstructure. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:233-242. [PMID: 30478002 PMCID: PMC6549508 DOI: 10.1016/j.bpsc.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study sought to identify attention-deficit/hyperactivity disorder (ADHD) abnormalities in relationships between brain white matter structure and individual differences in several types of impulsive behavior. METHODS Adolescents, n = 67 with ADHD combined subtype and n = 68 without ADHD, were given neuropsychological tests and underwent diffusion tensor imaging scans. Principal component analysis reduced test scores into factors representing different types of impulsive behavior. Tract-based spatial statistics quantified white matter integrity in relationship to components of impulsive behavior. ADHD versus non-ADHD differences in the strength and nature of linear relationships between regional white matter and three impulsivity components were examined using multiple regression. RESULTS Principal component analysis found three separate impulsivity-related factors that were interpreted as motor response inhibition, impulsive choice, and delay aversion. Relationships between regional fractional anisotropy and response inhibition or impulsive choice did not differ between ADHD and non-ADHD groups. There was a significant interaction between diagnostic group and delay aversion test performance relationships with regional fractional anisotropy. For youths without ADHD, greater anisotropy in numerous tracts predicted better delay aversion test performance. In contrast, anisotropy in regions including the corpus callosum, corona radiata, internal capsule, and corticospinal tracts had either a negative or no relationship with delay aversion test performance in ADHD. CONCLUSIONS The results provide additional support that different proposed etiological pathways to ADHD have discretely different neurobiological features. Large disorganization of white matter microstructure appears to contribute to reward-based ADHD pathways rather than motor inhibition.
Collapse
Affiliation(s)
- Katie L Bessette
- Olin Neuropsychiatry Research Center, The Institute of Living, Hartford, Connecticut; Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Michael C Stevens
- Olin Neuropsychiatry Research Center, The Institute of Living, Hartford, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|