1
|
Sallard E, Fischer J, Schroeer K, Dawson LM, Beaude N, Affes A, Ehrke-Schulz E, Zhang W, Westhaus A, Cabanes-Creus M, Lisowski L, Ruszics Z, Ehrhardt A. ADEVO: Proof-of-concept of adenovirus-directed EVOlution by random peptide display on the fiber knob. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200867. [PMID: 39346764 PMCID: PMC11439537 DOI: 10.1016/j.omton.2024.200867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Directed evolution of viral vectors involves the generation of randomized libraries followed by artificial selection of improved variants. Directed evolution only yielded limited results in adenovirus (AdV) engineering until now, mainly due to insufficient complexities of randomized libraries. Meanwhile, clinical applications of AdVs as gene therapy or oncolytic vectors are still hampered by the predetermined tropism of natural types. To overcome this challenge, we hypothesized that randomized peptide insertions on the capsid surface can be incorporated into the AdV bioengineering toolbox for retargeting. Here we developed AdV-directed EVOlution protocols based on fiber knob peptide display. Human AdV-C5-derived libraries were constructed following three distinct protocols and selected on a panel of cancer cell lines, with the goal of identifying variants able to infect and lyse these tumor cells more efficiently. All protocols enabled the construction of high complexity libraries with up to 9.6 × 105 unique variants, an approximate 100-fold improvement compared with previously published AdV libraries. After selection, the most enriched variants, which were robustly selected in various cancer cell lines, did not display enhanced infectivity but rather more efficient replication and cell lysis. Selected inserts also conferred enhanced lysis ability to oncolytic AdVs restricted to telomerase-expressing cell lines.
Collapse
Affiliation(s)
- Erwan Sallard
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Julian Fischer
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Katrin Schroeer
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lisa-Marie Dawson
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Nissai Beaude
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- AgroParisTech, Paris-Saclay University, Palaiseau, France
| | - Arsalene Affes
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- AgroParisTech, Paris-Saclay University, Palaiseau, France
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- Military Institute of Medicine – National Research Institute, Laboratory of Molecular Oncology and Innovative Therapies, 04-141 Warsaw, Poland
| | - Zsolt Ruszics
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|
2
|
Freitag PC, Kolibius J, Wieboldt R, Weber R, Hartmann KP, van Gogh M, Brücher D, Läubli H, Plückthun A. DARPin-fused T cell engager for adenovirus-mediated cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200821. [PMID: 39021370 PMCID: PMC11253662 DOI: 10.1016/j.omton.2024.200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Bispecific T cell engagers are a promising class of therapeutic proteins for cancer therapy. Their potency and small size often come with systemic toxicity and short half-life, making intravenous administration cumbersome. These limitations can be overcome by tumor-specific in situ expression, allowing high local accumulation while reducing systemic concentrations. However, encoding T cell engagers in viral or non-viral vectors and expressing them in situ ablates all forms of quality control performed during recombinant protein production. It is therefore vital to design constructs that feature minimal domain mispairing, and increased homogeneity of the therapeutic product. Here, we report a T cell engager architecture specifically designed for vector-mediated immunotherapy. It is based on a fusion of a designed ankyrin repeat protein (DARPin) to a CD3-targeting single-chain antibody fragment, termed DATE (DARPin-fused T cell Engager). The DATE induces potent T cell-mediated killing of HER2+ cancer cells, both as recombinantly produced therapeutic protein and as in situ expressed payload from a HER2+-retargeted high-capacity adenoviral vector (HC-AdV). We report remarkable tumor remission, DATE accumulation, and T cell infiltration through in situ expression mediated by a HER2+-retargeted HC-AdV in vivo. Our results support further investigations and developments of DATEs as payloads for vector-mediated immunotherapy.
Collapse
Affiliation(s)
- Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ronja Wieboldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Remi Weber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Patricia Hartmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Merel van Gogh
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Dawson LM, Alshawabkeh M, Schröer K, Arakrak F, Ehrhardt A, Zhang W. Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution. ENGINEERING MICROBIOLOGY 2024; 4:100140. [PMID: 39628785 PMCID: PMC11611009 DOI: 10.1016/j.engmic.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 12/06/2024]
Abstract
Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications. This review summarizes recent advancements in the use of human adenoviral vectors in medicine and discusses the pivotal role of recombineering in the development of these vectors. Additionally, it highlights the current achievements and potential future impact of therapeutic adenoviral vectors.
Collapse
Affiliation(s)
| | | | | | - Fatima Arakrak
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| |
Collapse
|
4
|
Sallard E, Schulte L, van den Boom A, Klimovitskii A, Knierer J, Hagedorn C, Knocks M, Zhang W, Kreppel F, Ehrhardt A, Ehrke-Schulz E. Development of oncolytic and gene therapy vectors based on adenovirus serotype 4 as an alternative to adenovirus serotype 5. J Gene Med 2024; 26:e3576. [PMID: 37580111 DOI: 10.1002/jgm.3576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.
Collapse
Affiliation(s)
- Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Lukas Schulte
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Alexander van den Boom
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Alexander Klimovitskii
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Julius Knierer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Claudia Hagedorn
- Institute for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Maximilian Knocks
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Florian Kreppel
- Institute for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
5
|
Ricobaraza A, Bunuales M, Gonzalez-Aparicio M, Fadila S, Rubinstein M, Vides-Urrestarazu I, Banderas J, Sola-Sevilla N, Sanchez-Carpintero R, Lanciego JL, Roda E, Honrubia A, Arnaiz P, Hernandez-Alcoceba R. Preferential expression of SCN1A in GABAergic neurons improves survival and epileptic phenotype in a mouse model of Dravet syndrome. J Mol Med (Berl) 2023; 101:1587-1601. [PMID: 37819378 PMCID: PMC10697872 DOI: 10.1007/s00109-023-02383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The SCN1A gene encodes the alpha subunit of a voltage-gated sodium channel (Nav1.1), which is essential for the function of inhibitory neurons in the brain. Mutations in this gene cause severe encephalopathies such as Dravet syndrome (DS). Upregulation of SCN1A expression by different approaches has demonstrated promising therapeutic effects in preclinical models of DS. Limiting the effect to inhibitory neurons may contribute to the restoration of brain homeostasis, increasing the safety and efficacy of the treatment. In this work, we have evaluated different approaches to obtain preferential expression of the full SCN1A cDNA (6 Kb) in GABAergic neurons, using high-capacity adenoviral vectors (HC-AdV). In order to favour infection of these cells, we considered ErbB4 as a surface target. Incorporation of the EGF-like domain from neuregulin 1 alpha (NRG1α) in the fiber of adenovirus capsid allowed preferential infection in cells lines expressing ErbB4. However, it had no impact on the infectivity of the vector in primary cultures or in vivo. For transcriptional control of transgene expression, we developed a regulatory sequence (DP3V) based on the Distal-less homolog enhancer (Dlx), the vesicular GABA transporter (VGAT) promoter, and a portion of the SCN1A gene. The hybrid DP3V promoter allowed preferential expression of transgenes in GABAergic neurons both in vitro and in vivo. A new HC-AdV expressing SCN1A under the control of this promoter showed improved survival and amelioration of the epileptic phenotype in a DS mouse model. These results increase the repertoire of gene therapy vectors for the treatment of DS and indicate a new avenue for the refinement of gene supplementation in this disease. KEY MESSAGES: Adenoviral vectors can deliver the SCN1A cDNA and are amenable for targeting. An adenoviral vector displaying an ErbB4 ligand in the capsid does not target GABAergic neurons. A hybrid promoter allows preferential expression of transgenes in GABAergic neurons. Preferential expression of SCN1A in GABAergic cells is therapeutic in a Dravet syndrome model.
Collapse
Affiliation(s)
- Ana Ricobaraza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain
| | - Maria Bunuales
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain
| | - Manuela Gonzalez-Aparicio
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain
| | - Saja Fadila
- Sackler Faculty of Medicine, Goldschleger Eye Research Institute, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Sackler Faculty of Medicine, Goldschleger Eye Research Institute, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irene Vides-Urrestarazu
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain
| | - Julliana Banderas
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain
| | - Noemi Sola-Sevilla
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain
| | - Rocio Sanchez-Carpintero
- University Clinic of Navarra, Dravet Syndrome Unit, Pediatric Neurology Unit, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Jose Luis Lanciego
- Department of Neuroscience, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Elvira Roda
- Department of Neuroscience, CIMA, University of Navarra, Pamplona, Spain
| | - Adriana Honrubia
- Department of Neuroscience, CIMA, University of Navarra, Pamplona, Spain
| | - Patricia Arnaiz
- Department of Neuroscience, CIMA, University of Navarra, Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, CIMA, University of Navarra, CIMA, Av. Pio XII 55, E-31008, Pamplona, Spain.
| |
Collapse
|
6
|
Bahlmann NA, Tsoukas RL, Erkens S, Wang H, Jönsson F, Aydin M, Naumova EA, Lieber A, Ehrhardt A, Zhang W. Properties of Adenovirus Vectors with Increased Affinity to DSG2 and the Potential Benefits of Oncolytic Approaches and Gene Therapy. Viruses 2022; 14:v14081835. [PMID: 36016457 PMCID: PMC9412290 DOI: 10.3390/v14081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.
Collapse
Affiliation(s)
- Nora A. Bahlmann
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Raphael L. Tsoukas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sebastian Erkens
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Franziska Jönsson
- Institute of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| |
Collapse
|
7
|
O'Connell P, Blake MK, Pepelyayeva Y, Hyslop S, Godbehere S, Angarita AM, Pereira-Hicks C, Amalfitano A, Aldhamen YA. Adenoviral delivery of an immunomodulatory protein to the tumor microenvironment controls tumor growth. Mol Ther Oncolytics 2022; 24:180-193. [PMID: 35036523 PMCID: PMC8741417 DOI: 10.1016/j.omto.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/04/2021] [Indexed: 11/15/2022] Open
Abstract
Targeted modulation of the immune system against tumors can achieve responses in otherwise refractory cancers, which has spurred efforts aimed at optimizing such strategies. To this end, we have previously investigated cancer immunotherapy approaches using recombinant adenovirus vectors, as well as via modulation of the self-ligand receptor SLAMF7. Here, we present a gene transfer-based immunotherapy approach using targeted expression of a SLAMF7-Fc fusion construct directly into tumors at high concentrations via a recombinant adenoviral vector (Ad-SF7-Fc). Using multiple murine cancer models, we show that Ad-SF7-Fc can induce tumor control via augmentation of innate immunity; specifically, induction of type I interferons and activation of dendritic cells (DCs) and macrophages. Analogously, we find that modulating SLAMF7 signaling via an adenoviral vector expressing its intracellular adaptor, EAT-2, is also capable of inducing tumor control. Finally, we employ a novel in vivo prediction approach and dataset integration with machine learning to dissect how Ad-SF7-Fc modulates cell-type-specific responses in the tumor microenvironment to achieve tumor control. Thus, our novel combinatorial cancer immunotherapy highlights the benefit of multimodal immune modulation and lays a framework for combination with complementary approaches capable of inducing adaptive immune responses.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Maja K. Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Ariana M. Angarita
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Cristiane Pereira-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Doerner J, Sallard E, Zhang W, Solanki M, Liu J, Ehrke-Schulz E, Zirngibl H, Lieber A, Ehrhardt A. Novel Group C Oncolytic Adenoviruses Carrying a miRNA Inhibitor Demonstrate Enhanced Oncolytic Activity In Vitro and In Vivo. Mol Cancer Ther 2022; 21:460-470. [PMID: 35027480 PMCID: PMC9377726 DOI: 10.1158/1535-7163.mct-21-0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Oncolytic adenoviruses (OAd) represent an attractive treatment option for cancer. Clinical efficacy of commonly utilized human adenovirus type 5 (Ad5)-based oncolytic viruses is limited by variable expression levels of the coxsackie- and adenovirus receptor (CAR) in tumor cells and high prevalence of neutralizing antibodies against human Ad5. However, previous studies have highlighted alternative human Ad types as promising candidates for oncolytic therapy. In this study, we generated novel OAds based on Ad1, -2, -5, and -6 derived from species C Ads. These OAds contain a 24-bp deletion in the early gene E1A for tumor selective replication and express the RNAi inhibitor P19. We examined these OAds for in vitro anticancer activity on various cancer cell lines derived from lung, colon, gynecologic, bone, and pancreatic carcinoma. In most surveyed cell lines, OAds based on Ad1, -2, and -6 demonstrated higher cell lysis capability compared with Ad5, suggesting enhanced oncolytic potential. Moreover, enhanced oncolytic activity was associated with P19 expression in a cell type-dependent manner. We further explored a A549 tumor xenograft mouse model to compare the novel OAds directly with Ad5 and H101, an oncolytic adenovirus used in clinical trials. These P19-containing OAds based on Ad1, -2, and -6 showed significantly decelerated tumor progression compared with H101, indicating better antitumor potency in vivo. Our studies provide a novel path for OAd development based on alternative Ad types with improved effectiveness by RNA interference suppression.
Collapse
Affiliation(s)
- Johannes Doerner
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.,Chair for Surgery II, Helios University Hospital Wuppertal, Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Manish Solanki
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Jing Liu
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hubert Zirngibl
- Chair for Surgery II, Helios University Hospital Wuppertal, Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.,Corresponding Author: Anja Ehrhardt, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 10, Witten 58453, Germany. Phone: +49 23902 926 273; Fax: +49 2302 926 44278; E-mail:
| |
Collapse
|
9
|
Kim BK, Canonica J, Roudnicky F, Westenskow PD. Preventing VEGF-Mediated Vascular Permeability by Experimentally Potentiating BBB Characteristics in Endothelial Cells. Methods Mol Biol 2022; 2475:259-274. [PMID: 35451764 DOI: 10.1007/978-1-0716-2217-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Difficulties with poor reproducibility and translatability of animal model-based research, along with increased efforts to abide by the 3Rs tenet of animal welfare, are driving demand for more relevant human cellular systems. This is especially true for central nervous system (CNS) vasculatures with specialized properties and barriers, namely the blood-brain and blood-retinal barriers (BBB and BRB, respectively) which are difficult to model in vitro. The BBB and BRB protect neurovascular units by regulating nutrient homeostasis, maintaining local ion levels, protecting against exposure from circulating toxins and pathogens, and restricting passage of peripheral immune factors. In this manuscript, we will describe transgenic and pharmacological-based protocols to generate relevant BBB and BRB models both from human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and from primary human umbilical vein endothelial cells (HUVECs). When followed, researchers can expect to generate well-characterized, anatomical and functional BBB and BRB EC monolayers in 36-48 h that are stable up to 90 h. The ability to generate more relevant BBB and BRB EC cultures will improve drug discovery efforts and inform future therapies for neurovascular disorders.
Collapse
Affiliation(s)
- Bo Kyoung Kim
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jérémie Canonica
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Filip Roudnicky
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Peter D Westenskow
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
10
|
Wang Q, Liu J, Janssen JM, Tasca F, Mei H, Gonçalves MAFV. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res 2021; 49:11986-12001. [PMID: 34669958 PMCID: PMC8599732 DOI: 10.1093/nar/gkab938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prime editing is a recent precision genome editing modality whose versatility offers the prospect for a wide range of applications, including the development of targeted genetic therapies. Yet, an outstanding bottleneck for its optimization and use concerns the difficulty in delivering large prime editing complexes into cells. Here, we demonstrate that packaging prime editing constructs in adenoviral capsids overcomes this constrain resulting in robust genome editing in both transformed and non-transformed human cells with up to 90% efficiencies. Using this cell cycle-independent delivery platform, we found a direct correlation between prime editing activity and cellular replication and disclose that the proportions between accurate prime editing events and unwanted byproducts can be influenced by the target-cell context. Hence, adenovector particles permit the efficacious delivery and testing of prime editing reagents in human cells independently of their transformation and replication statuses. The herein integrated gene delivery and gene editing technologies are expected to aid investigating the potential and limitations of prime editing in numerous experimental settings and, eventually, in ex vivo or in vivo therapeutic contexts.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
11
|
Brücher D, Franc V, Smith SN, Heck AJR, Plückthun A. Malignant tissues produce divergent antibody glycosylation of relevance for cancer gene therapy effectiveness. MAbs 2021; 12:1792084. [PMID: 32643525 PMCID: PMC7531505 DOI: 10.1080/19420862.2020.1792084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene therapy approaches now allow for the production of therapeutic antibodies by healthy or cancerous human tissues directly in vivo, and, with an increasing number of gene delivery methods available, the cell type for expression can be chosen. Yet, little is known about the biophysical changes introduced by expressing antibodies from producer cells or tissues targeted by gene therapy approaches, nor about the consequences for the type of glycosylation. The effects of different glycosylation on therapeutic antibodies have been well studied by controlling their glycan compositions in non-human mammalian production cells, i.e., Chinese hamster ovary cells. Therefore, we investigated the glycosylation state of clinically approved antibodies secreted from cancer tissues frequently targeted by in vivo gene therapy, using native mass spectrometry and glycoproteomics. We found that antibody sialylation and fucosylation depended on the producer tissue and the antibody isotype, allowing us to identify optimal producer cell types according to the desired mode of action of the antibody. Furthermore, we discovered that high amounts (>20%) of non-glycosylated antibodies were produced in cells sensitive to the action of the produced antibodies. Different glycosylation in different producer cells can translate into an altered potency of in-vivo produced antibodies, depending on the desired mode of action, and can affect their serum half-lives. These results increase our knowledge about antibodies produced from cells targeted by gene therapy, enabling development of improved cancer gene therapy vectors that can include in vivo glycoengineering of expressed antibodies to optimize their efficacies, depending on the desired mode of action.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht, The Netherlands.,Netherlands Proteomics Center , Utrecht, The Netherlands
| | - Sheena N Smith
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht, The Netherlands.,Netherlands Proteomics Center , Utrecht, The Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| |
Collapse
|
12
|
Bi Y, Gu L, Wang J, Chang Y, Jin M, Mao Y, Wang H, Ji G. A Novel System for Simple Rapid Adenoviral Vector Construction to Facilitate CRISPR/Cas9-Mediated Genome Editing. CRISPR J 2021; 4:381-391. [PMID: 34077671 DOI: 10.1089/crispr.2020.0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant adenoviruses have broad applications for gene delivery and expression. Furthermore, the adenovirus packaging system facilitates the expression of RNA-guided CRISPR/Cas9 nuclease complexes. In this study, we developed a novel system, named AdBlue, for the construction of recombinant adenoviruses using an enzymatic assembly strategy. This system could significantly reduce the time and labor required to generate adenoviral vectors. When applied to CRISPR/Cas9 design, it simplifies the preparation of recombinant adenoviruses carrying nuclease complexes and can induce high levels of site-specific mutagenesis. Our system has outstanding advantages for adenovirus preparation and could be a useful molecular engineering tool for gene delivery and editing.
Collapse
Affiliation(s)
- Youkun Bi
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Gu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Jin
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Mao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangju Ji
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Brücher D, Kirchhammer N, Smith SN, Schumacher J, Schumacher N, Kolibius J, Freitag PC, Schmid M, Weiss F, Keller C, Grove M, Greber UF, Zippelius A, Plückthun A. iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:572-586. [PMID: 33665227 PMCID: PMC7890373 DOI: 10.1016/j.omtm.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Adenovirus-mediated combination gene therapies have shown promising results in vaccination or treating malignant and genetic diseases. Nevertheless, an efficient system for the rapid assembly and incorporation of therapeutic genes into high-capacity adenoviral vectors (HCAdVs) is still missing. In this study, we developed the iMATCH (integrated modular assembly for therapeutic combination HCAdVs) platform, which enables the generation and production of HCAdVs encoding therapeutic combinations in high quantity and purity within 3 weeks. Our modular cloning system facilitates the efficient combination of up to four expression cassettes and the rapid integration into HCAdV genomes with defined sizes. Helper viruses (HVs) and purification protocols were optimized to produce HCAdVs with distinct capsid modifications and unprecedented purity (0.1 ppm HVs). The constitution of HCAdVs, with adapters for targeting and a shield of trimerized single-chain variable fragment (scFv) for reduced liver clearance, mediated cell- and organ-specific targeting of HCAdVs. As proof of concept, we show that a single HCAdV encoding an anti PD-1 antibody, interleukin (IL)-12, and IL-2 produced all proteins, and it led to tumor regression and prolonged survival in tumor models, comparable to a mixture of single payload HCAdVs in vitro and in vivo. Therefore, the iMATCH system provides a versatile platform for the generation of high-capacity gene therapy vectors with a high potential for clinical development.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sheena N. Smith
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jatina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabian Weiss
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Corina Keller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Corresponding author: Andreas Plückthun, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
14
|
Abstract
Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.
Collapse
Affiliation(s)
- Jida Liu
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
15
|
Liu J, Seol DW. Helper virus-free gutless adenovirus (HF-GLAd): a new platform for gene therapy. BMB Rep 2020; 53:565-575. [PMID: 32958121 PMCID: PMC7704218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 08/05/2024] Open
Abstract
Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replicationcompetent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases. [BMB Reports 2020; 53(11): 565-575].
Collapse
Affiliation(s)
- Jida Liu
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
16
|
High-Throughput Cloning and Characterization of Emerging Adenovirus Types 70, 73, 74, and 75. Int J Mol Sci 2020; 21:ijms21176370. [PMID: 32887347 PMCID: PMC7504450 DOI: 10.3390/ijms21176370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Recently an increasing number of new adenovirus types associated with type-dependent pathogenicity have been identified. However, identification of these clinical isolates represents the very first step to characterize novel pathogens. For deeper analyses, these adenoviruses need to be further characterized in basic virology experiments or they could be applied in translational research. To achieve this goal, it is essential to get genetic access and to enable genetic modification of these novel adenovirus genomes (deletion, insertion, and mutation). Here we demonstrate a high-throughput approach to get genetic access to new adenoviruses via homologous recombination. We first defined the cloning conditions regarding homology arm-length and input adenoviral genome amounts. Then we cloned four naturally occurring adenoviruses (Ad70, Ad73, Ad74, and Ad75) into easy-to-manipulate plasmids and genetically modified them by reporter gene insertion. Three recombinant adenoviruses (Ad70, Ad73, and Ad74) containing a reporter cassette were successfully reconstituted. These novel reporter-labeled adenoviruses were further characterized using the inserted luciferase reporter with respect to receptor usage, presence of anti-adenovirus antibodies, and tropism in vitro. The identified receptor usage, the relatively low prevalence of anti-adenovirus antibodies, and the various cancer cell line transduction pattern are important features of these new pathogens providing essential information for their therapeutic application.
Collapse
|
17
|
Adenoviral Vectors Armed with PAPILLOMAVIRUs Oncogene Specific CRISPR/Cas9 Kill Human-Papillomavirus-Induced Cervical Cancer Cells. Cancers (Basel) 2020; 12:cancers12071934. [PMID: 32708897 PMCID: PMC7409089 DOI: 10.3390/cancers12071934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPV) cause malignant epithelial cancers including cervical carcinoma, non-melanoma skin and head and neck cancer. They drive tumor development through the expression of their oncoproteins E6 and E7. Designer nucleases were shown to be efficient to specifically destroy HPV16 and HPV18 oncogenes to induce cell cycle arrest and apoptosis. Here, we used high-capacity adenoviral vectors (HCAdVs) expressing the complete CRISPR/Cas9 machinery specific for HPV18-E6 or HPV16-E6. Cervical cancer cell lines SiHa and CaSki containing HPV16 and HeLa cells containing HPV18 genomes integrated into the cellular genome, as well as HPV-negative cancer cells were transduced with HPV-type-specific CRISPR-HCAdV. Upon adenoviral delivery, the expression of HPV-type-specific CRISPR/Cas9 resulted in decreased cell viability of HPV-positive cervical cancer cell lines, whereas HPV-negative cells were unaffected. Transduced cervical cancer cells showed increased apoptosis induction and decreased proliferation compared to untreated or HPV negative control cells. This suggests that HCAdV can serve as HPV-specific cancer gene therapeutic agents when armed with HPV-type-specific CRISPR/Cas9. Based on the versatility of the CRISPR/Cas9 system, we anticipate that our approach can contribute to personalized treatment options specific for the respective HPV type present in each individual tumor.
Collapse
|
18
|
Spectrum-Wide Exploration of Human Adenoviruses for Breast Cancer Therapy. Cancers (Basel) 2020; 12:cancers12061403. [PMID: 32486014 PMCID: PMC7352696 DOI: 10.3390/cancers12061403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Oncolytic adenoviruses (Ads) are promising tools for cancer therapeutics. However, most Ad-based therapies utilize Ad type 5 (Ad5), which displays unsatisfying efficiency in clinical trials, partly due to the low expression levels of its primary coxsackievirus and adenovirus receptor (CAR) on tumor cells. Since the efficacy of virotherapy strongly relies on efficient transduction of targeted tumor cells, initial screening of a broad range of viral agents to identify the most effective vehicles is essential. Using a novel Ad library consisting of numerous human Ads representing known Ad species, we evaluated the transduction efficiencies in four breast cancer (BC) cell lines. For each cell line over 20 Ad types were screened in a high-throughput manner based on reporter assays. Ad types featuring high transduction efficiencies were further investigated with respect to the percentage of transgene-positive cells and efficiencies of cellular entry in individual cell lines. Additionally, oncolytic assay was performed to test tumor cell lysis efficacy of selected Ad types. We found that all analyzed BC cell lines show low expression levels of CAR, while alternative receptors such as CD46, DSG-2, and integrins were also detected. We identified Ad3, Ad35, Ad37, and Ad52 as potential candidates for BC virotherapy.
Collapse
|
19
|
Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells 2020; 9:cells9040953. [PMID: 32295080 PMCID: PMC7226970 DOI: 10.3390/cells9040953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Gene editing permits changing specific DNA sequences within the vast genomes of human cells. Stem cells are particularly attractive targets for gene editing interventions as their self-renewal and differentiation capabilities consent studying cellular differentiation processes, screening small-molecule drugs, modeling human disorders, and testing regenerative medicines. To integrate gene editing and stem cell technologies, there is a critical need for achieving efficient delivery of the necessary molecular tools in the form of programmable DNA-targeting enzymes and/or exogenous nucleic acid templates. Moreover, the impact that the delivery agents themselves have on the performance and precision of gene editing procedures is yet another critical parameter to consider. Viral vectors consisting of recombinant replication-defective viruses are under intense investigation for bringing about efficient gene-editing tool delivery and precise gene-editing in human cells. In this review, we focus on the growing role that adenoviral vectors are playing in the targeted genetic manipulation of human stem cells, progenitor cells, and their differentiated progenies in the context of in vitro and ex vivo protocols. As preamble, we provide an overview on the main gene editing principles and adenoviral vector platforms and end by discussing the possibilities ahead resulting from leveraging adenoviral vector, gene editing, and stem cell technologies.
Collapse
|
20
|
Sonic Hedgehog upregulation does not enhance the survival and engraftment of stem cell-derived cardiomyocytes in infarcted hearts. PLoS One 2020; 15:e0227780. [PMID: 31945113 PMCID: PMC6964843 DOI: 10.1371/journal.pone.0227780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
The engraftment of human stem cell-derived cardiomyocytes (hSC-CMs) is a promising treatment for remuscularizing the heart wall post-infarction, but it is plagued by low survival of transplanted cells. We hypothesize that this low survival rate is due to continued ischemia within the infarct, and that increasing the vascularization of the scar will ameliorate the ischemia and improve hSC-CM survival and engraftment. An adenovirus expressing the vascular growth factor Sonic Hedgehog (Shh) was injected into the infarcted myocardium of rats immediately after ischemia/reperfusion, four days prior to hSC-CM injection. By two weeks post-cell injection, Shh treatment had successfully increased capillary density outside the scar, but not within the scar. In addition, there was no change in vessel size or percent vascular volume when compared to cell injection alone. Micro-computed tomography revealed that Shh failed to increase the number and size of larger vessels. It also had no effect on graft size or heart function when compared to cell engraftment alone. Our data suggests that, when combined with the engraftment of hSC-CMs, expression of Shh within the infarct scar and surrounding myocardium is unable to increase vascularization of the infarct scar, and it does not improve survival or function of hSC-CM grafts.
Collapse
|
21
|
Lee D, Liu J, Junn HJ, Lee EJ, Jeong KS, Seol DW. No more helper adenovirus: production of gutless adenovirus (GLAd) free of adenovirus and replication-competent adenovirus (RCA) contaminants. Exp Mol Med 2019; 51:1-18. [PMID: 31659156 PMCID: PMC6817846 DOI: 10.1038/s12276-019-0334-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is emerging as an effective treatment option for various inherited genetic diseases. Gutless adenovirus (GLAd), also known as helper-dependent adenovirus (HDAd), has many notable characteristics as a gene delivery vector for this particular type of gene therapy, including broad tropism, high infectivity, a large transgene cargo capacity, and an absence of integration into the host genome. Additionally, GLAd ensures long-term transgene expression in host organisms owing to its minimal immunogenicity, since it was constructed following the deletion of all the genes from an adenovirus. However, the clinical use of GLAd for the treatment of inherited genetic diseases has been hampered by unavoidable contamination of the highly immunogenic adenovirus used as a helper for GLAd production. Here, we report the production of GLAd in the absence of a helper adenovirus, which was achieved with a helper plasmid instead. Utilizing this helper plasmid, we successfully produced large quantities of recombinant GLAd. Importantly, our helper plasmid-based system exclusively produced recombinant GLAd with no generation of helper plasmid-originating adenovirus and replication-competent adenovirus (RCA). The recombinant GLAd that was produced efficiently delivered transgenes regardless of their size and exhibited therapeutic potential for Huntington’s disease (HD) and Duchenne muscular dystrophy (DMD). Our data indicate that our helper plasmid-based GLAd production system could become a new platform for GLAd-based gene therapy. A new protocol allows for the manufacturing of a next-generation gene therapy vector without contamination of helper adenovirus and replication-competent adenovirus (RCA). Adenoviruses are often used to deliver therapeutic DNA, but their proteins can trigger immune reactions. So-called ‘gutless’ adenoviruses that lack all viral genes don’t cause the same problem but their production has traditionally relied on a helper adenovirus that remains as an unavoidable contaminant. A team led by Dai-Wu Seol from Chung-Ang University in Seoul, South Korea, has now prepared large quantities of gutless adenoviruses using helper plasmid, a circular DNA that encodes all the proteins needed for production of gutless adenoviruses but do not leave behind any contaminant adenoviruses. Gutless adenoviruse vectors made this way successfully delivered corrected copies of the faulty genes responsible for human diseseas into human cells and mice.
Collapse
Affiliation(s)
- Dongwoo Lee
- Genenmed Inc., 84 Seongsuil-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jida Liu
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Junn
- Genenmed Inc., 84 Seongsuil-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Eun-Joo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu City, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu City, Republic of Korea
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Yoon AR, Hong J, Li Y, Shin HC, Lee H, Kim HS, Yun CO. Mesenchymal Stem Cell-Mediated Delivery of an Oncolytic Adenovirus Enhances Antitumor Efficacy in Hepatocellular Carcinoma. Cancer Res 2019; 79:4503-4514. [PMID: 31289131 DOI: 10.1158/0008-5472.can-18-3900] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
Oncolytic virotherapy is a promising alternative to conventional treatment, yet systemic delivery of these viruses to tumors remains a major challenge. In this regard, mesenchymal stem cells (MSC) with well-established tumor-homing property could serve as a promising systemic delivery tool. We showed that MSCs could be effectively infected by hepatocellular carcinoma (HCC)-targeted oncolytic adenovirus (HCC-oAd) through modification of the virus' fiber domain and that the virus replicated efficiently in the cell carrier. HCC-targeting oAd loaded in MSCs (HCC-oAd/MSC) effectively lysed HCC cells in vitro under both normoxic and hypoxic conditions as a result of the hypoxia responsiveness of HCC-oAd. Importantly, systemically administered HCC-oAd/MSC, which were initially infected with a low viral dose, homed to HCC tumors and resulted in a high level of virion accumulation in the tumors, ultimately leading to potent tumor growth inhibition. Furthermore, viral dose reduction and tumor localization of HCC-oAd/MSC prevented the induction of hepatotoxicity by attenuating HCC-oAd hepatic accumulation. Taken together, these results demonstrate that MSC-mediated systemic delivery of oAd is a promising strategy for achieving synergistic antitumor efficacy with improved safety profiles. SIGNIFICANCE: Mesenchymal stem cells enable delivery of an oncolytic adenovirus specifically to the tumor without posing any risk associated with systemic administration of naked virions to the host.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South).,Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea (South)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South).,GeneMedicine CO., Ltd., Seoul, Republic of Korea (South)
| | - Yan Li
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South)
| | - Ha Chul Shin
- Pharmicell Co., Ltd., Gangnam-gu, Seoul, Republic of Korea (South)
| | - Hyunah Lee
- Pharmicell Co., Ltd., Gangnam-gu, Seoul, Republic of Korea (South)
| | - Hyun Soo Kim
- Pharmicell Co., Ltd., Gangnam-gu, Seoul, Republic of Korea (South)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South). .,Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea (South).,GeneMedicine CO., Ltd., Seoul, Republic of Korea (South)
| |
Collapse
|
23
|
Luo S, Zhang P, Ma X, Wang Q, Lu J, Liu B, Zhao W, Allain JP, Li C, Li T. A rapid strategy for constructing novel simian adenovirus vectors with high viral titer and expressing highly antigenic proteins applicable for vaccine development. Virus Res 2019; 268:1-10. [DOI: 10.1016/j.virusres.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
|
24
|
Lai JI, Nachun D, Petrosyan L, Throesch B, Campau E, Gao F, Baldwin KK, Coppola G, Gottesfeld JM, Soragni E. Transcriptional profiling of isogenic Friedreich ataxia neurons and effect of an HDAC inhibitor on disease signatures. J Biol Chem 2019; 294:1846-1859. [PMID: 30552117 PMCID: PMC6369281 DOI: 10.1074/jbc.ra118.006515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by transcriptional silencing of the frataxin (FXN) gene, resulting in loss of the essential mitochondrial protein frataxin. Based on the knowledge that a GAA·TTC repeat expansion in the first intron of FXN induces heterochromatin, we previously showed that 2-aminobenzamide-type histone deacetylase inhibitors (HDACi) increase FXN mRNA levels in induced pluripotent stem cell (iPSC)-derived FRDA neurons and in circulating lymphocytes from patients after HDACi oral administration. How the reduced expression of frataxin leads to neurological and other systemic symptoms in FRDA patients remains unclear. Similar to other triplet-repeat disorders, it is unknown why FRDA affects only specific cell types, primarily the large sensory neurons of the dorsal root ganglia and cardiomyocytes. The combination of iPSC technology and genome-editing techniques offers the unique possibility to address these questions in a relevant cell model of FRDA, obviating confounding effects of variable genetic backgrounds. Here, using "scarless" gene-editing methods, we created isogenic iPSC lines that differ only in the length of the GAA·TTC repeats. To uncover the gene expression signatures due to the GAA·TTC repeat expansion in FRDA neuronal cells and the effect of HDACi on these changes, we performed RNA-seq-based transcriptomic analysis of iPSC-derived central nervous system (CNS) and isogenic sensory neurons. We found that cellular pathways related to neuronal function, regulation of transcription, extracellular matrix organization, and apoptosis are affected by frataxin loss in neurons of the CNS and peripheral nervous system and that these changes are partially restored by HDACi treatment.
Collapse
Affiliation(s)
- Jiun-I Lai
- From the Departments of Molecular Medicine and
| | - Daniel Nachun
- the Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | | | - Benjamin Throesch
- Neuroscience, The Scripps Research Institute, La Jolla, California 92037 and
| | | | - Fuying Gao
- the Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Kristin K Baldwin
- Neuroscience, The Scripps Research Institute, La Jolla, California 92037 and
| | - Giovanni Coppola
- the Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | | | | |
Collapse
|
25
|
Gao J, Bergmann T, Zhang W, Schiwon M, Ehrke-Schulz E, Ehrhardt A. Viral Vector-Based Delivery of CRISPR/Cas9 and Donor DNA for Homology-Directed Repair in an In Vitro Model for Canine Hemophilia B. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:364-376. [PMID: 30690229 PMCID: PMC6356096 DOI: 10.1016/j.omtn.2018.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023]
Abstract
Gene therapy represents an attractive alternative to treat hemophilia B. Here we established three hepatocyte-derived cell lines based on Huh7, PLC/PRF/5, and Hep3B cells stably carrying a mutated canine FIX (cFIXmut) transgene containing a single point mutation in the catalytic domain. Based on these in vitro models resembling a commonly used canine large animal model, the tetracycline-controlled transcriptional activator (Tet-on)-inducible CRISPR/Cas9 system and an optimized donor were used to correct mutated cFIX gene through homology-directed repair (HDR). For efficient delivery of designer nuclease and donor DNA, we produced a high-capacity adenovirus vector type 5 (HCAdV5) containing the Tet-on-inducible cFIX-specific CRISPR/Cas9 system and a single-stranded adeno-associated virus type 2 vector (ssAAV2) containing the modified donor. Moreover, we designed a single HCAdV5 delivering all components for HDR. Our amplification-refractory mutation system based on qPCR analysis (ARMS-qPCR) revealed that the single vector application in Huh7-cFIXmut cells resulted in up to 5.52% HDR efficiencies, which was superior to the two-vector strategy. Furthermore the single vector also resulted in increased phenotypic correction efficiencies assayed by ELISA. We conclude that HDR in combination with viral vector delivery holds great promise for the correction of mutated FIX in disease models.
Collapse
Affiliation(s)
- Jian Gao
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Thorsten Bergmann
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Wenli Zhang
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Maren Schiwon
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany.
| |
Collapse
|
26
|
Bunz O, Mese K, Zhang W, Piwowarczyk A, Ehrhardt A. Effect of cold atmospheric plasma (CAP) on human adenoviruses is adenovirus type-dependent. PLoS One 2018; 13:e0202352. [PMID: 30365500 PMCID: PMC6203248 DOI: 10.1371/journal.pone.0202352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
More than 70 human adenovirus types were identified divided into 7 different species (A-G). Diseases caused by human adenoviruses are type-dependent and can range from mild to severe respiratory infections, gastrointestinal infections or eye infections such as epidemic keratoconjunctivitis. Unfortunately there is no specific anti-adenovirus therapy available. Here we addressed the question whether treatment with cold atmospheric plasma (CAP) for anti-adenoviral therapy such as virus-mediated ulcerations may be feasible. CAP has already been explored for the treatment of dermatological diseases such as chronic wounds. To investigate whether CAP is an effective antiviral tool, purified human adenovirus types derived from different human adenovirus species (HAdV -4, -5, -20, -35, -37, -50) tagged with luciferase were treated with defined dosages of plasma. The CAP treatment was varied by incrementally increasing the time span of CAP treatment. After CAP treatment, the virus containing solution was added to eukaryotic cells and the viral load was determined by measurement of luciferase expression levels. Through the plasma treatment the adenovirus driven luciferase expression directly correlating with adenovirus transduction efficiencies could be reduced for HAdV-5 and HAdV-37. Plasma treatment had no influence on adenovirus derived luciferase expression levels for HAdV-4 and HAdV-50 and it even had a positive effect on luciferase expression levels for HAdV-20 and HAdV-35. These results suggest that CAP has a type dependent effect on adenoviruses and that infectivity can be even increased for certain adenovirus types. Further studies should address the mechanisms behind this phenomenon. In summary we demonstrate that CAP may represent an interesting option for antiviral treatment in a virus type dependent manner.
Collapse
Affiliation(s)
- Oskar Bunz
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Andree Piwowarczyk
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- * E-mail:
| |
Collapse
|
27
|
Liu J, Boehme P, Zhang W, Fu J, Yumul R, Mese K, Tsoukas R, Solanki M, Kaufmann M, Lu R, Schmidtko A, Stewart AF, Lieber A, Ehrhardt A. Human adenovirus type 17 from species D transduces endothelial cells and human CD46 is involved in cell entry. Sci Rep 2018; 8:13442. [PMID: 30194327 PMCID: PMC6128842 DOI: 10.1038/s41598-018-31713-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
More than 70 human adenoviruses with type-dependent pathogenicity have been identified but biological information about the majority of these virus types is scarce. Here we employed multiple sequence alignments and structural information to predict receptor usage for the development of an adenoviral vector with novel biological features. We report the generation of a cloned adenovirus based on human adenovirus type 17 (HAdV17) with high sequence homology to the well characterized human adenovirus type 37 (HAdV37) that causes epidemic keratoconjunctivitis (EKC). Our study revealed that human CD46 (CD46) is involved in cell entry of HAdV17. Moreover, we found that HAdV17 infects endothelial cells (EC) in vitro including primary cells at higher efficiencies compared to the commonly used human adenovirus type 5 (HAdV5). Using a human CD46 transgenic mouse model, we observed that HAdV17 displays a broad tropism in vivo after systemic injection and that it transduces ECs in this mouse model. We conclude that the HAdV17-based vector may provide a novel platform for gene therapy.
Collapse
Affiliation(s)
- Jing Liu
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Department of Oncology and cancer immunotherapy, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip Boehme
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Medical Student, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnoloy, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China.,Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Dresden, Germany
| | - Roma Yumul
- Division for Medical Biochemistry, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Raphael Tsoukas
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Manish Solanki
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Institute for Experimental Gene Therapy and Cancer Research (IEGT), Medical University Rostock, Rostock, Germany
| | - Michael Kaufmann
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, USA
| | - Ruirui Lu
- Institute for Pharmakology and Toxicology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmakology and Toxicology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Dresden, Germany
| | - André Lieber
- Division for Medical Biochemistry, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
28
|
Miciak JJ, Hirshberg J, Bunz F. Seamless assembly of recombinant adenoviral genomes from high-copy plasmids. PLoS One 2018; 13:e0199563. [PMID: 29949649 PMCID: PMC6021080 DOI: 10.1371/journal.pone.0199563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
The adenoviruses are essential tools for basic research and therapeutic development. Robust methods for the generation of mutant and recombinant viruses are crucial for these diverse applications. Here we describe a simple plasmid-based method that permits highly efficient modification of the adenoviral genome and rapid production of high-titer virus stocks. The 36-kilobase genome of adenovirus serotype 5 was divided into seven tractable blocks that could be individually modified in a single step and reassembled in vitro. Because the system is composed of compact modules, modifications at different loci can be readily recombined. Viral assemblies were delivered to packaging cells by electroporation, a strategy that consistently resulted in the de novo production of 108 infectious units in 3-5 days. In principle, a similar strategy could be applied to any other adenovirus serotype or to other double-strand DNA viruses.
Collapse
Affiliation(s)
- Jessica J. Miciak
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jason Hirshberg
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Schiwon M, Ehrke-Schulz E, Oswald A, Bergmann T, Michler T, Protzer U, Ehrhardt A. One-Vector System for Multiplexed CRISPR/Cas9 against Hepatitis B Virus cccDNA Utilizing High-Capacity Adenoviral Vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:242-253. [PMID: 30195763 PMCID: PMC6023846 DOI: 10.1016/j.omtn.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/08/2023]
Abstract
High-capacity adenoviral vectors (HCAdVs) devoid of all coding genes are powerful tools to deliver large DNA cargos into cells. Here HCAdVs were designed to deliver a multiplexed complete CRISPR/Cas9 nuclease system or a complete pair of transcription activator-like effector nucleases (TALENs) directed against the hepatitis B virus (HBV) genome. HBV, which remains a serious global health burden, forms covalently closed circular DNA (cccDNA) as a persistent DNA species in infected cells. This cccDNA promotes the chronic carrier status, and it represents a major hurdle in the treatment of chronic HBV infection. To date, only one study demonstrated viral delivery of a CRISPR/Cas9 system and a single guide RNA (gRNA) directed against HBV by adeno-associated viral (AAV) vectors. The advancement of this study is the co-delivery of multiple gRNA expression cassettes along with the Cas9 expression cassette in one HCAdV. Treatment of HBV infection models resulted in a significant reduction of HBV antigen production and the introduction of mutations into the HBV genome. In the transduction experiments, the HBV genome, including the HBV cccDNA, was degraded by the CRISPR/Cas9 system. In contrast, the combination of two parts of a TALEN pair in one vector could not be proven to yield an active system. In conclusion, we successfully delivered the CRISPR/Cas9 system containing three gRNAs using HCAdV, and we demonstrated its antiviral effect.
Collapse
Affiliation(s)
- Maren Schiwon
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Andreas Oswald
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Thorsten Bergmann
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Thomas Michler
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Anja Ehrhardt
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
30
|
Zhang W, Fu J, Ehrhardt A. Novel Vector Construction Based on Alternative Adenovirus Types via Homologous Recombination. Hum Gene Ther Methods 2018; 29:124-134. [PMID: 29756505 DOI: 10.1089/hgtb.2018.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenoviral vector (AdV) is one of the most used vectors in gene therapy clinical trials. However the therapeutic effect of AdV is limited due to preexisting immunity to the currently used human adenovirus type 5 and pre-decided vector tropism. It is highly demanded to develop novel AdVs originated from other types than adenovirus type 5. Here, we describe a method for direct cloning of adenovirus utilizing linear-linear homologous recombination, followed by rapid adenoviral genome modification via linear-circular homologous recombination. A plasmid bearing chosen adenoviral genome with the desired modification is generated in three weeks, from which a novel AdV can be reconstituted.
Collapse
Affiliation(s)
- Wenli Zhang
- 1 Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| | - Jun Fu
- 2 Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University , Qingdao, China
| | - Anja Ehrhardt
- 1 Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| |
Collapse
|
31
|
Zhang W, Fu J, Liu J, Wang H, Schiwon M, Janz S, Schaffarczyk L, von der Goltz L, Ehrke-Schulz E, Dörner J, Solanki M, Boehme P, Bergmann T, Lieber A, Lauber C, Dahl A, Petzold A, Zhang Y, Stewart AF, Ehrhardt A. An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity. Cell Rep 2018; 19:1698-1709. [PMID: 28538186 DOI: 10.1016/j.celrep.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource.
Collapse
Affiliation(s)
- Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China; Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jing Liu
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China; Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maren Schiwon
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Sebastian Janz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lukas Schaffarczyk
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lukas von der Goltz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Johannes Dörner
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Philip Boehme
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Thorsten Bergmann
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Andre Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA
| | - Chris Lauber
- Institute for Medical Informatics and Biometry, Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China.
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany.
| |
Collapse
|
32
|
Hepatocytic expression of human sodium-taurocholate cotransporting polypeptide enables hepatitis B virus infection of macaques. Nat Commun 2017; 8:2146. [PMID: 29247188 PMCID: PMC5732258 DOI: 10.1038/s41467-017-01953-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a major global health concern, and the development of curative therapeutics is urgently needed. Such efforts are impeded by the lack of a physiologically relevant, pre-clinical animal model of HBV infection. Here, we report that expression of the HBV entry receptor, human sodium-taurocholate cotransporting polypeptide (hNTCP), on macaque primary hepatocytes facilitates HBV infection in vitro, where all replicative intermediates including covalently closed circular DNA (cccDNA) are present. Furthermore, viral vector-mediated expression of hNTCP on hepatocytes in vivo renders rhesus macaques permissive to HBV infection. These in vivo macaque HBV infections are characterized by longitudinal HBV DNA in serum, and detection of HBV DNA, RNA, and HBV core antigen (HBcAg) in hepatocytes. Together, these results show that expressing hNTCP on macaque hepatocytes renders them susceptible to HBV infection, thereby establishing a physiologically relevant model of HBV infection to study immune clearance and test therapeutic and curative approaches.
Collapse
|
33
|
Ehrke-Schulz E, Schiwon M, Leitner T, Dávid S, Bergmann T, Liu J, Ehrhardt A. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Sci Rep 2017; 7:17113. [PMID: 29215041 PMCID: PMC5719366 DOI: 10.1038/s41598-017-17180-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.
Collapse
Affiliation(s)
- Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Maren Schiwon
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Theo Leitner
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Stephan Dávid
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Thorsten Bergmann
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Jing Liu
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
34
|
Abstract
ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.
Collapse
|
35
|
Evolution and Cryo-electron Microscopy Capsid Structure of a North American Bat Adenovirus and Its Relationship to Other Mastadenoviruses. J Virol 2017; 91:JVI.01504-16. [PMID: 27807242 DOI: 10.1128/jvi.01504-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV. IMPORTANCE Although many adenoviruses are host specific and likely codiverged with their hosts over millions of years, other adenoviruses appear to have emerged through successful cross-species transmission events on more recent time scales. The wide geographic distribution and genetic diversity of adenoviruses in bats and their close phylogenetic relationship to Canine mastadenovirus A (CAdV A) has raised important questions about how CAdV A, and possibly other mammalian adenoviruses, may have emerged. Although most adenoviruses tend to cause limited disease in their natural hosts, CAdV A is unusual in that it may cause high morbidity and sometimes fatal infections in immunocompetent hosts and is thus an important pathogen of carnivores. Here, we performed a comparative evolutionary and structural study of representative bat and canine adenoviruses to better understand the relationship between these two viral groups.
Collapse
|
36
|
Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages. J Virol 2017; 91:JVI.01871-16. [PMID: 27847360 DOI: 10.1128/jvi.01871-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023] Open
Abstract
Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity.
Collapse
|
37
|
Yang Z, Shi L, Yu H, Zhang Y, Chen K, Saint Fleur A, Bai G, Feng H. Intravenous adenovirus expressing a multi-specific, single-domain antibody neutralizing TcdA and TcdB protects mice from Clostridium difficile infection. Pathog Dis 2016; 74:ftw078. [PMID: 27502696 DOI: 10.1093/femspd/ftw078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 01/09/2023] Open
Abstract
Clostridium difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea and colitis in developed countries. The disease is mainly mediated via two major exotoxins TcdA and TcdB secreted by the bacterium. We have previously developed a novel, potently neutralizing, tetravalent and bispecific heavy-chain-only single domain (VHH) antibody to both TcdA and TcdB (designated as ABA) that reverses fulminant CDI in mice. Since ABA has a short serum half-life, in this study a replication-deficient recombinant adenovirus expressing ABA was generated and the long-lasting expression of functional ABA was demonstrated in vitro and in vivo Mice transduced with one dose of the adenovirus displayed high levels of serum ABA for more than1 month and were fully protected against systemic toxin challenges. More importantly, the ABA delivered by the adenovirus protected mice from both primary and recurrent CDI. Thus, replication-deficient adenoviral vector may be used to deliver neutralizing antibodies against the toxins in order to prevent CDI and recurrence.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Lianfa Shi
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Schlingmann B, Overgaard CE, Molina SA, Lynn KS, Mitchell LA, Dorsainvil White S, Mattheyses AL, Guidot DM, Capaldo CT, Koval M. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat Commun 2016; 7:12276. [PMID: 27452368 PMCID: PMC4962485 DOI: 10.1038/ncomms12276] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.
Collapse
Affiliation(s)
- Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Christian E. Overgaard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Samuel A. Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - K. Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Leslie A. Mitchell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - StevenClaude Dorsainvil White
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | | | - David M. Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
39
|
A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e337. [PMID: 27434682 PMCID: PMC5330939 DOI: 10.1038/mtna.2016.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.
Collapse
|
40
|
Wang Y, Hu Y, Sun C, Zhuo S, He Z, Wang H, Yan M, Liu J, Luan Y, Dai C, Yang Y, Huang R, Zhou B, Zhang F, Zhai Q. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy. FASEB J 2016; 30:3133-45. [PMID: 27251173 DOI: 10.1096/fj.201500058r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/23/2016] [Indexed: 01/05/2023]
Abstract
It has been reported that some small noncoding RNAs are involved in the regulation of insulin sensitivity. However, whether long noncoding RNAs also participate in the regulation of insulin sensitivity is still largely unknown. We identified and characterized a long noncoding RNA, regulator of insulin sensitivity and autophagy (Risa), which is a poly(A)(+) cytoplasmic RNA. Overexpression of Risa in mouse primary hepatocytes or C2C12 myotubes attenuated insulin-stimulated phosphorylation of insulin receptor, Akt, and Gsk3β, and knockdown of Risa alleviated insulin resistance. Further studies showed that overexpression of Risa in hepatocytes or myotubes decreased autophagy, and knockdown of Risa up-regulated autophagy. Moreover, knockdown of Atg7 or -5 significantly inhibited the effect of knockdown of Risa on insulin resistance, suggesting that knockdown of Risa alleviated insulin resistance via enhancing autophagy. In addition, tail vein injection of adenovirus to knock down Risa enhanced insulin sensitivity and hepatic autophagy in both C57BL/6 and ob/ob mice. Taken together, the data demonstrate that Risa regulates insulin sensitivity by affecting autophagy and suggest that Risa is a potential target for treating insulin-resistance-related diseases.-Wang, Y., Hu, Y., Sun, C., Zhuo, S., He, Z., Wang, H., Yan, M., Liu, J., Luan, Y., Dai, C., Yang, Y., Huang, R., Zhou, B., Zhang, F., Zhai, Q. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy.
Collapse
Affiliation(s)
- Yuangao Wang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Yanan Hu
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Chenxia Sun
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Shu Zhuo
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Zhishui He
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Hui Wang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Menghong Yan
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Jun Liu
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Yi Luan
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Changgui Dai
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Yonggang Yang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Rui Huang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Ben Zhou
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Fang Zhang
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
41
|
Ehrke-Schulz E, Zhang W, Schiwon M, Bergmann T, Solanki M, Liu J, Boehme P, Leitner T, Ehrhardt A. Cloning and Large-Scale Production of High-Capacity Adenoviral Vectors Based on the Human Adenovirus Type 5. J Vis Exp 2016:e52894. [PMID: 26863087 DOI: 10.3791/52894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
High-capacity adenoviral vectors (HCAdV) devoid of all viral coding sequences represent one of the most advanced gene delivery vectors due to their high packaging capacity (up to 35 kb), low immunogenicity and low toxicity. However, for many laboratories the use of HCAdV is hampered by the complicated procedure for vector genome construction and virus production. Here, a detailed protocol for efficient cloning and production of HCAdV based on the plasmid pAdFTC containing the HCAdV genome is described. The construction of HCAdV genomes is based on a cloning vector system utilizing homing endonucleases (I-CeuI and PI-SceI). Any gene of interest of up to 14 kb can be subcloned into the shuttle vector pHM5, which contains a multiple cloning site flanked by I-CeuI and PI-SceI. After I-CeuI and PI-SceI-mediated release of the transgene from the shuttle vector the transgene can be inserted into the HCAdV cloning vector pAdFTC. Because of the large size of the pAdFTC plasmid and the long recognition sites of the used enzymes associated with strong DNA binding, careful handling of the cloning fragments is needed. For virus production, the HCAdV genome is released by NotI digest and transfected into a HEK293 based producer cell line stably expressing Cre recombinase. To provide all adenoviral genes for adenovirus amplification, co-infection with a helper virus containing a packing signal flanked by loxP sites is required. Pre-amplification of the vector is performed in producer cells grown on surfaces and large-scale amplification of the vector is conducted in spinner flasks with producer cells grown in suspension. For virus purification, two ultracentrifugation steps based on cesium chloride gradients are performed followed by dialysis. Here tips, tricks and shortcuts developed over the past years working with this HCAdV vector system are presented.
Collapse
Affiliation(s)
- Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Maren Schiwon
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Thorsten Bergmann
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Jing Liu
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Philip Boehme
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Theo Leitner
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke;
| |
Collapse
|
42
|
Solanki M, Zhang W, Jing L, Ehrhardt A. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors. J Gen Virol 2015; 97:160-168. [PMID: 26519158 DOI: 10.1099/jgv.0.000328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors.
Collapse
Affiliation(s)
- Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten-58453, Germany
| | - Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten-58453, Germany
| | - Liu Jing
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten-58453, Germany
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten-58453, Germany
| |
Collapse
|
43
|
Boehme P, Stellberger T, Solanki M, Zhang W, Schulz E, Bergmann T, Liu J, Doerner J, Baiker AE, Ehrhardt A. Standard free droplet digital polymerase chain reaction as a new tool for the quality control of high-capacity adenoviral vectors in small-scale preparations. Hum Gene Ther Methods 2015; 26:25-34. [PMID: 25640117 DOI: 10.1089/hgtb.2014.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.
Collapse
Affiliation(s)
- Philip Boehme
- 1 Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke , Witten 58453, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rosinski SL, Stone B, Graves SS, Fuller DH, De Rosa SC, Spies GA, Mize GJ, Fuller JT, Storb R. Development of a Minor Histocompatibility Antigen Vaccine Regimen in the Canine Model of Hematopoietic Cell Transplantation. Transplantation 2015; 99:2083-94. [PMID: 25965411 PMCID: PMC4591091 DOI: 10.1097/tp.0000000000000744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Minor histocompatibility antigen (miHA) vaccines have the potential to augment graft-versus-tumor effects without graft-versus-host disease (GVHD). We used mixed hematopoietic chimerism in the canine model of major histocompatibility complex-matched allogeneic hematopoietic cell transplantation as a platform to develop a miHA vaccination regimen. METHODS We engineered DNA plasmids and replication-deficient human adenovirus type 5 constructs encoding large sections of canine SMCY and the entire canine SRY gene. RESULTS Priming with replication-deficient human adenovirus type 5 constructs and boosting with ex vivo plasmid-transfected dendritic cells and cutaneous delivery of plasmids with a particle-mediated epidermal delivery device (PMED) in 2 female dogs induced antigen-specific T-cell responses. Similar responses were observed after a prime-boost vaccine regimen in three female hematopoietic cell transplantation donors. Subsequent donor lymphocyte infusion resulted in a significant change of chimerism in 1 of 3 male recipients without any signs of graft-versus-host disease. The change in chimerism in the recipient occurred in association with the development of CD4+ and CD8+ T-cell responses to the same peptide pools detected in the donor. CONCLUSIONS These studies describe the first in vivo response to miHA vaccination in a large, outbred animal model without using recipient cells to sensitize the donor. This model provides a platform for ongoing experiments designed to define optimal miHA targets and develop protocols to directly vaccinate the recipient.
Collapse
Affiliation(s)
- Steven Lawrence Rosinski
- 1 Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA. 2 Department of Medicine, University of Washington, Seattle, WA. 3 The Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA. 4 Department of Microbiology, University of Washington, Seattle, WA. 5 The Washington National Primate Research Center, University of Washington, Seattle, WA. 6 Division of Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA. 7 Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Richard GF. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends Genet 2015; 31:177-86. [PMID: 25743488 DOI: 10.1016/j.tig.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Trinucleotide repeat expansions are involved in more than two dozen neurological and developmental disorders. Conventional therapeutic approaches aimed at regulating the expression level of affected genes, which rely on drugs, oligonucleotides, and/or transgenes, have met with only limited success so far. An alternative approach is to shorten repeats to non-pathological lengths using highly specific nucleases. Here, I review early experiments using meganucleases, zinc-finger nucleases (ZFN), and transcription-activator like effector nucleases (TALENs) to contract trinucleotide repeats, and discuss the possibility of using CRISPR-Cas nucleases to the same end. Although this is a nascent field, I explore the possibility of designing nucleases and effectively delivering them in the context of gene therapy.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Department Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3525, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
46
|
Mück-Häusl M, Solanki M, Zhang W, Ruzsics Z, Ehrhardt A. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses. Nucleic Acids Res 2015; 43:e50. [PMID: 25609697 PMCID: PMC4417142 DOI: 10.1093/nar/gkv031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/11/2015] [Indexed: 11/13/2022] Open
Abstract
Recombinant adenoviruses containing a double-stranded DNA genome of 26-45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies.
Collapse
Affiliation(s)
- Martin Mück-Häusl
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany Institute of Virology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
47
|
Zhao WS, Hu SL, Yu K, Wang H, Wang W, Loor J, Luo J. Lipoprotein lipase, tissue expression and effects on genes related to fatty acid synthesis in goat mammary epithelial cells. Int J Mol Sci 2014; 15:22757-71. [PMID: 25501331 PMCID: PMC4284735 DOI: 10.3390/ijms151222757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis.
Collapse
Affiliation(s)
- Wang-Sheng Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shi-Liang Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Kang Yu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wei Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Juan Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
48
|
De la Rossa A, Jabaudon D. In vivo rapid gene delivery into postmitotic neocortical neurons using iontoporation. Nat Protoc 2014; 10:25-32. [DOI: 10.1038/nprot.2015.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
|
50
|
Abstract
Bacterial artificial chromosomes (BACs) are recombinant DNA molecules designed for propagation of large and instable foreign DNA fragment in Escherichia coli. BACs are used in genetics of large DNA viruses such as herpes and baculoviruses for propagation and manipulation of complex genomic regions or even entire viral genomes in one piece. Viral genomes in BACs are ready for the advanced tools of E. coli genetics. These techniques based on homologous or site-specific recombination allow engineering of virtually any kind of genetic changes. In the recent years, BAC technology was also adapted to manipulation of adenovirus genomes and became an effective alternative to traditional genetic engineering of recombinant adenoviruses.
Collapse
|