1
|
Karwatkar PA, Kulkarni SJ, Goswami AK. Bionanomaterials in Food Systems: Sources, Synthesis, Properties and Opportunities. BIONANOSCIENCE 2025; 15:5. [DOI: 10.1007/s12668-024-01660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 01/06/2025]
|
2
|
Tian W, Liu Y, Han B, Cheng F, Yang K, Hu W, Ye D, Wu S, Yang J, Chen Q, Hai Y, Ritchie RO, He G, Guan J. Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential. Bioact Mater 2025; 45:584-598. [PMID: 39811246 PMCID: PMC11732114 DOI: 10.1016/j.bioactmat.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Through millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions. During in vivo degradation, this material primarily undergoes host cell-mediated surface degradation, rather than bulk hydrolysis. We demonstrate significant capabilities of CFSCs in promoting vascularization and macrophage differentiation toward repair. A bone defect model further indicates the potential of CFSC for bone graft applications. Our belief is that the material family of CFSCs may promise a novel biomaterial strategy for yet to be achieved excellent regenerative implants.
Collapse
Affiliation(s)
- Wenhan Tian
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Yuzeng Liu
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Bo Han
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Fengqi Cheng
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Weiyuan Hu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Dongdong Ye
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Sujun Wu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Jiping Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
| | - Qi Chen
- Ningbo Regen Biotech Co., Ltd., Ningbo, Zhejiang, 315157, PR China
| | - Yong Hai
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Robert O. Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, CA, 94720, USA
| | - Guanping He
- Department of Orthopedics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, 100083, PR China
| |
Collapse
|
3
|
Ma Y, Huang T, Hu Z, Yu J, Liu L, Lin L, Chen M, Jia R, Li X, Wang Z, Fan Y. Preparation of nanocellulose-silk fibroin stiff hydrogel and high absorbing-low expansion xerogel via polysaccharide-protein interactions. Carbohydr Polym 2025; 348:122867. [PMID: 39567116 DOI: 10.1016/j.carbpol.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Inspired by the unique environmental sensitivities of polysaccharides and proteins, nanocellulose (NC) and silk fibroin (SF) nanocomposite hydrogels with tailored network structures and mechanical properties were developed by varying induction methods and assembly sequences. In the optimal process, SF was first assembled along the NC template to create a unique nanobead-like structure under thermal induction, followed by crosslinking in an acetic acid coagulation bath to form a polysaccharide-protein nanocomposite hydrogel with high mechanical strength, with elastic modulus as of 62,330 G' in Pa at only 0.25 wt% NC and 1.5 wt% SF. The introduction of carboxyl groups to NC via TEMPO-mediated oxidation and the formation of nanobead-like structures improved structure stability and significantly enhanced water retention. The NC-SF nanocomposite hydrogels exhibited excellent mechanical properties, while the derived xerogels offered outstanding liquid absorption (up to 2300 %) and retention with minimal volume expansion upon liquid binding (dissolution ratio below 5 %). These properties make them promising candidates for biodegradable, biocompatible materials in applications such as sanitary products, diapers, and hemostatic matrices.
Collapse
Affiliation(s)
- Yue Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Tian Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Zhixing Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Lin Lin
- Jiangsu Opera Medical Supplies Co., Ltd, Gaoyou, Jiangsu 225600, China.
| | - Meijuan Chen
- Jiangsu Opera Medical Supplies Co., Ltd, Gaoyou, Jiangsu 225600, China.
| | - Ruoxian Jia
- Jiangsu Opera Medical Supplies Co., Ltd, Gaoyou, Jiangsu 225600, China.
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
4
|
Quan S, Yang J, Huang S, Shao J, Liu Y, Yang H. Silk fibroin as a potential candidate for bone tissue engineering applications. Biomater Sci 2025; 13:364-378. [PMID: 39620282 DOI: 10.1039/d4bm00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Silk fibroin (SF), a pivotal biomaterial, holds immense promise for diverse applications within the realm of bone tissue engineering. SF is an ideal scaffold material with exceptional biocompatibility, mechanical robustness, biodegradability, and bioactivity. A plethora of investigations have corroborated SF's efficacy in supporting bone tissue repair and regeneration. This comprehensive review delves into the structural attributes, physicochemical characteristics, and extraction methodologies of SF. Moreover, it elucidates the strides taken in harnessing SF across a spectrum of forms, including films, hydrogels, scaffolds, electrospun fibers, and composites for bone tissue engineering applications. Moreover, the application bottleneck of SF as a bone repair material is highlighted, and its development prospects and potential biomedical applications are also presented in this review. We expect that this review can inspire the broad interest of a wide range of readers working in the fields of materials science, tissue engineering, biomaterials, bioengineering, and biomedicine.
Collapse
Affiliation(s)
- Shaohao Quan
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China.
| | - Jie Yang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Sirui Huang
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jundong Shao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China.
| | - Yang Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213000, China.
| | - Hui Yang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Adelfio M, Callen GE, Diaz AR, Paster BJ, He X, Hasturk H, Ghezzi CE. Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model. NPJ Biofilms Microbiomes 2025; 11:9. [PMID: 39789014 PMCID: PMC11718163 DOI: 10.1038/s41522-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies. Here, we are showing for the first time the investigation of host-microbiome interactions in healthy conditions within a human oral tissue model over seven days. Our results indicated long-term host and microbiome viability, host barrier integrity, phenotypic functional response, and preservation of healthy microbial populations and interbacterial dialogs. This in vitro platform can maintain tissue homeostasis at the interface of the periodontal niche, thus, offering opportunities to identify predictive disease biomarkers and to develop intervention strategies to promote oral and overall health.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - A R Diaz
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - B J Paster
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - X He
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - H Hasturk
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
6
|
Eliaz D, Kellersztein I, Miali ME, Benyamin D, Brookstein O, Daraio C, Wagner HD, Raviv U, Shimanovich U. Fine Structural Analysis of Degummed Fibroin Fibers Reveals Its Superior Mechanical Capabilities. CHEMSUSCHEM 2025; 18:e202401148. [PMID: 39023515 PMCID: PMC11696198 DOI: 10.1002/cssc.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Bombyx mori silk fibroin fibers constitute a class of protein building blocks capable of functionalization and reprocessing into various material formats. The properties of these fibers are typically affected by the intense thermal treatments needed to remove the sericin gum coating layer. Additionally, their mechanical characteristics are often misinterpreted by assuming the asymmetrical cross-sectional area (CSA) as a perfect circle. The thermal treatments impact not only the mechanics of the degummed fibroin fibers, but also the structural configuration of the resolubilized protein, thereby limiting the performance of the resulting silk-based materials. To mitigate these limitations, we explored varying alkali conditions at low temperatures for surface treatment, effectively removing the sericin gum layer while preserving the molecular structure of the fibroin protein, thus, maintaining the hierarchical integrity of the exposed fibroin microfiber core. The precise determination of the initial CSA of the asymmetrical silk fibers led to a comprehensive analysis of their mechanical properties. Our findings indicate that the alkali surface treatment raised the Young's modulus and tensile strength, by increasing the extent of the fibers' crystallinity, by approximately 40 % and 50 %, respectively, without compromising their strain. Furthermore, we have shown that this treatment facilitated further production of high-purity soluble silk protein with rheological and self-assembly characteristics comparable to those of native silk feedstock, initially stored in the animal's silk gland. The developed approaches benefits both the development of silk-based materials with tailored properties and the proper mechanical characterization of asymmetrical fibrous biological materials made of natural building blocks.
Collapse
Affiliation(s)
- D. Eliaz
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
- Present address: SilkIt Ltd.Ness Ziona7403626Israel
| | - I. Kellersztein
- Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaCalifornia91125USA
| | - M. E. Miali
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - D. Benyamin
- Institute of ChemistryThe Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram9190401JerusalemIsrael
- Present address: Department of Physics of Complex SystemsWeizmann Institute of Science7610001RehovotIsrael
| | - O. Brookstein
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - C. Daraio
- Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaCalifornia91125USA
| | - H. D. Wagner
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| | - U. Raviv
- Institute of ChemistryThe Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram9190401JerusalemIsrael
| | - U. Shimanovich
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science7610001RehovotIsrael
| |
Collapse
|
7
|
Mei L, Wei J, Yang R, Guo W, Liu Y, Ke F, Peng C, Hou R, Chen G, Liu J, Li D, Wan X, Cai H. Application of lanthanum-modified silk fibroin/polyvinyl alcohol film for highly selective defluoridation in brick tea infusion. Int J Biol Macromol 2025; 293:139456. [PMID: 39755298 DOI: 10.1016/j.ijbiomac.2025.139456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.4 %. In addition, the Langmuir model revealed a maximum fluoride adsorption capacity of 9.15 mg/g for SF/PVA-La in brick tea infusion. Both FTIR and XPS analyses confirmed that SF/PVA-La engages in electrostatic adsorption of fluoride ions, with ion exchange occurring between the hydroxyl groups on its surface and the fluoride ions. These findings underscore the potential of SF/PVA-La as an effective material for selective fluoride removal from brick tea infusions.
Collapse
Affiliation(s)
- Liping Mei
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; Hefei Technology College, Hefei 238000, PR China
| | - Jiao Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruirui Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China
| | - Yuexin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; School of Tea Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; School of Tea Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; School of Tea Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Junsheng Liu
- Department of Chemical and Material Engineering, Hefei University, 99 Jinxiu Avenue, Hefei 230601, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; School of Tea Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; School of Tea Science, Anhui Agricultural University, Hefei 230036, PR China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
8
|
Kamaraj M, Rezayof O, Barer A, Kim H, Moghimi N, Joshi A, Dokmeci MR, Khademhosseini A, Alambeigi F, John JV. Development of silk microfiber-reinforced bioink for muscle tissue engineering and in situ printing by a handheld 3D printer. BIOMATERIALS ADVANCES 2025; 166:214057. [PMID: 39366204 PMCID: PMC11560616 DOI: 10.1016/j.bioadv.2024.214057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Volumetric muscle loss (VML) presents a significant challenge in tissue engineering due to the irreparable nature of extensive muscle injuries. In this study, we propose a novel approach for VML treatment using a bioink composed of silk microfiber-reinforced silk fibroin (SF) hydrogel. The engineered scaffolds are predesigned to provide structural support and fiber alignment to promote tissue regeneration in situ. We also validated our custom-made handheld 3D printer performance and showcased its potential applications for in situ printing using robotics. The fiber contents of SF and gelatin ink were varied from 1 to 5 %. Silk fibroin microfibers reinforced ink offered increased viscosity of the gel, which enhanced the shape fidelity and mechanical strength of the bulk scaffold. The fiber-reinforced bioink also demonstrated better cell-biomaterial interaction upon printing. The handheld 3D printer enabled the precise and on-demand fabrication of scaffolds directly at the defect site, for personalized and minimally invasive treatment. This innovative approach holds promise for addressing the challenges associated with VML treatment and advancing the field of regenerative medicine.
Collapse
Affiliation(s)
| | - Omid Rezayof
- Walker Department of Mechanical Engineering and Texas Robotics, The University of Texas at Austin, TX, USA
| | - Alison Barer
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Hansoul Kim
- Walker Department of Mechanical Engineering and Texas Robotics, The University of Texas at Austin, TX, USA
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Akshat Joshi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Farshid Alambeigi
- Walker Department of Mechanical Engineering and Texas Robotics, The University of Texas at Austin, TX, USA
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Li H, Guo Y, Yin J, Chen W, Xu H, Cheng T, Liu C. Critical roles of small silk fibroin molecules in the self-assembly and properties of regenerated silk fibroin. Int J Biol Macromol 2025; 284:137926. [PMID: 39577537 DOI: 10.1016/j.ijbiomac.2024.137926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Silk is primarily composed of silk fibroin (SF) and silk sericin (SS), with SF significantly contributing to the mechanical properties of silk fibers. SF consists of the large molecular fibroin heavy chain (Fib-H), small molecular fibroin light chain (Fib-L), and P25 protein. Degumming is a crucial step in both the silk reeling process and the preparation of regenerated silk fibroin (RSF), but it can cause damage to Fib-H. This study investigates how degumming affects small SF molecules and their influence on the properties of silk fibers and RSF. A gradient degumming treatment using various reagents was employed. SS antibody detection indicated that 3 g/L papain and sodium carbonate (Na2CO3) at concentrations ≥0.2 % almost completely removed SS. SF antibody detection revealed that Na2CO3 degumming severely damaged Fib-H and degraded Fib-L and P25. While tensile tests showed that this damage did not significantly affect the mechanical properties of SF fibers, the loss of small SF molecules reduced the mechanical properties of the RSF membranes and delayed RSF gelation. Atomic force microscopy demonstrated that RSF containing Fib-H of similar molecular weight (100-180 kDa) can self-assemble into nanofibrils when small SF molecules are present, whereas 0.5 % Na2CO3-degummed RSF lacking these small SF molecules cannot form nanofibrils. By adding additional small SF molecules to the 0.5 % Na2CO3-degummed RSF, nanofibrils can be formed. This research highlights the critical role of small SF molecules in the properties of RSF and provides a theoretical foundation for the development of RSF-derived materials.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jie Yin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wei Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China.
| |
Collapse
|
10
|
Haki M, Shafaei N, Moeini M. In Situ Gelling Silk Fibroin/ECM Hydrogel With Sustained Oxygen Release for Neural Tissue Engineering Applications. J Biomed Mater Res A 2025; 113:e37837. [PMID: 39739320 DOI: 10.1002/jbm.a.37837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 01/02/2025]
Abstract
In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach. Oxygen-releasing hydrogels have been developed to address this issue, but they suffer from fast oxygen release over a short period, limiting their efficacy. This study develops an in situ gelling hydrogel system based on silk fibroin (SF) and decellularized brain extracellular matrix (dECM) with sustained oxygen release and tunable gelation time. Calcium peroxide nanoparticles (CPO NPs) served as the oxygen generating material, which were encapsulated within SF microparticles before incorporation into the SF-dECM hydrogel, aiming to regulate the oxygen release rate. The total CPO content of the hydrogels was only 2%-4% w/w. Characterization of hydrogels containing various SF concentrations (2%, 4% or 6% w/v) and microparticle loadings (10%, 15% or 20% w/w) demonstrated that SF concentration in the hydrogel matrix significantly affects the swelling, resorption rate and mechanical properties, while microparticle loading has a milder effect. On the other hand, microparticle loading strongly affected the oxygen release profile. High SF concentration in the hydrogel matrix (6% w/v) led to slow resorption rate and high stiffness, likely unsuitable for intended application. Low SF concentration (2% w/v), on the other hand, led to a high swelling ratio and a less sustained oxygen release. Among 4% w/v SF hydrogels, increased microparticle loading led to a slower resorption rate, increased stiffness and enhanced oxygen release. However, cell viability was reduced at 20% w/w microparticle loading, likely due to decreased cell attachment. The 4% w/v SF hydrogels containing 10% w/w SF-CPO microparticles exhibited relatively low swelling ratio (12.8% ± 2.4%), appropriate resorption rate (70.16% ± 10.75% remaining weight after 28 days) and compressive modulus (36.9 ± 1.7 kPa) and sustained oxygen release for over 2 weeks. This sample also showed the highest viability under hypoxic conditions among tested hydrogel samples (87.6% ± 15.9%). Overall, the developed hydrogels in this study showed promise for potential application in brain tissue engineering.
Collapse
Affiliation(s)
- Mahyar Haki
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nadia Shafaei
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
11
|
Li X, Sim D, Wang Y, Feng S, Longo B, Li G, Andreassen C, Hasturk O, Stout A, Yuen JSK, Cai Y, Sanders E, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, Kaplan DL. Fiber-based biomaterial scaffolds for cell support towards the production of cultivated meat. Acta Biomater 2025; 191:292-307. [PMID: 39522627 DOI: 10.1016/j.actbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The in vitro production of animal-derived foods via cellular agriculture is emerging as a key solution to global food security challenges. Here, the potential for fiber-based scaffolds, including silk and cotton, in the cultivation of muscle cells for tissue formation was pursued. Mechanical properties and cytocompatibility with the mouse myoblast cell line C2C12 and immortalized bovine muscle satellite cells (iBSCs) were assessed, as well as pre-digestion options for the materials due to their resilience within the human digestive track. The fibers supported cell adhesion, proliferation, and guided muscle cell orientation, facilitating myotube formation per differentiation. A progressive increase in biomass was also documented. Interestingly, iBSC proliferation was enhanced with coatings of recombinant proteins while C2C12 cells showed minimal response. Thus, both cotton and silk yarns were suitable as fiber-based scaffolds towards cell supportive goals, suggesting an alternative path toward structured protein-rich foods via this initial stage of textile engineering for food. Biomass prediction models were generated, enabling forecasts of cell growth and maturation across various scaffold conditions and cell types. This capability enhances the precision of the cultivation process towards an engineering approach, building on the inherent benefits of hierarchical muscle tissue structure, but here via textile engineering with these initial muscle-coated edible fibers. Further, the approach offers to reduce costs by optimizing cultivation time and media needs. These approaches are part of a foundation for future scalable and sustainable cultivated meat production. STATEMENT OF SIGNIFICANCE: This research investigates the use of one-dimensional fiber-based scaffolds for cultivated meat production, contributing to advancements in cellular agriculture. It introduces a method to measure changes in biomass and scaffold degradation throughout the cultivation process. Additionally, our development of biomass prediction models improves the precision and predictability of cultivated meat production. This research not only aids in scaling up cultivated meats but also enhances the use of textile engineering techniques in tissue engineering, paving the way for producing complex, three-dimensional meat structures more sustainably.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Davin Sim
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Shuo Feng
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brooke Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Christel Andreassen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Andrew Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yixin Cai
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ella Sanders
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Sonja Hatz
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Timothy Olsen
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Thomas Herget
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| |
Collapse
|
12
|
Alkazemi H, Chai J, Allardyce BJ, Lokmic-Tomkins Z, O'Connor AJ, Heath DE. Glycerol-plasticized silk fibroin vascular grafts mimic key mechanical properties of native blood vessels. J Biomed Mater Res A 2025; 113:e37802. [PMID: 39311545 DOI: 10.1002/jbm.a.37802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 12/26/2024]
Abstract
Cardiovascular diseases are a major global health challenge. Blood vessel disease and dysfunction are major contributors to this healthcare burden, and the development of tissue-engineered vascular grafts (TEVGs) is required, particularly for the replacement of small-diameter vessels. Silk fibroin (SF) is a widely used biomaterial for TEVG fabrication due to its high strength and biocompatibility. However, the stiffness of SF is much higher than that of native blood vessels (NBVs), which limits its application for vascular tissue engineering. In this study, SF was plasticized with glycerol to produce TEVGs exhibiting similar stiffness and ultimate tensile strength to those of NBVs. The electrospun SF/glycerol TEVGs exhibited mechanical properties comparable to NBVs and supported the in vitro proliferation of essential vascular cells-endothelial and smooth muscle cells. After 5 days of culture, the TEVGs exhibited an endothelial monolayer in the lumen, demonstrating their potential for functional vascular tissue regeneration. Our study demonstrates the feasibility of producing TEVGs from SF with tailored mechanical properties, paving the way for more functional and durable TEVGs for future clinical applications.
Collapse
Affiliation(s)
- Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jaydon Chai
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin J Allardyce
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Zerina Lokmic-Tomkins
- Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Power L, Shuhmaher R, Houtz P, Chen J, Rudolph S, Yuen J, Machour M, Levy E, Wu L, Levenberg S, Whalen M, Chen Y, Kaplan DL. 3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury. J Biomed Mater Res A 2025; 113:e37816. [PMID: 39440483 DOI: 10.1002/jbm.a.37816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.
Collapse
Affiliation(s)
- Liam Power
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Rita Shuhmaher
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philip Houtz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jinpeng Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - John Yuen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Emily Levy
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
14
|
Sun J, Ru M, Du M, Wang L, Yan S, Zhang Q. Silk-based biomaterials for promoting spinal cord regeneration: A review. Int J Biol Macromol 2025; 286:138384. [PMID: 39645128 DOI: 10.1016/j.ijbiomac.2024.138384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The management of neurological disorders is profoundly complicated by spinal cord injury (SCI), which leads to the impairment of motor and sensory functions. A major challenge in the treatment of SCI is the formation of a dysfunctional pathological microenvironment characterized by an excessive inflammatory response, deposition of inhibitory molecules, glial scarring, and vascular dysfunction. A thorough understanding of the pathological and physiological changes following SCI is essential to elucidate the mechanisms underlying functional recovery and to develop effective therapeutic interventions. Recent research indicates that the adverse microenvironment associated with SCI can be modified through the implantation of functional biomaterials at the injury site, thereby facilitating axonal regeneration, myelin repair, and functional recovery. Silk fibroin, in particular, has demonstrated remarkable efficacy in SCI reconstruction due to its superior biocompatibility, biodegradability, and tunable mechanical properties. This review provides an overview of the pathological microenvironmental dysfunctions following SCI and explores the potential advantages of silk fibroin in enhancing axonal regeneration and neural circuit formation in SCI repair. The benefits and challenges associated with silk fibroin and its derivatives in facilitating effective SCI repair are examined. This review aims to offer significant insights into the application of silk-based biomaterials for SCI treatment.
Collapse
Affiliation(s)
- Jingjing Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mengjie Du
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China..
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China..
| |
Collapse
|
15
|
Ding J, Cheng Z, Ma Y, Zhang T, Du L, Jiang X, Zhu M, Li W, Xu B. Engineering Injectable and Highly Interconnected Porous Silk Fibroin Microspheres for Tissue Regeneration. Adv Healthc Mater 2025; 14:e2402932. [PMID: 39498746 DOI: 10.1002/adhm.202402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 11/07/2024]
Abstract
Injectable porous microspheres represent a promising therapeutic platform for cell delivery, drug delivery, and tissue regeneration. Yet, the engineering of silk fibroin microspheres with a highly interconnected porous structure remains an unsolved challenge. In this study, a simple and efficient method is developed that does not require the use of organic solvents to prepare silk fibroin microspheres with a predictable structure. Through extensive screening, the addition of glucose is found to direct the formation of a highly interconnected porous structure from the interior to the surface of silk fibroin microspheres. Compared to silk fibroin microspheres (SF microspheres) produced through a combination of electro-spray, cryopreservation, and freeze drying, silk fibroin-glucose microspheres (SF-Glu microspheres) demonstrates enhanced capabilities in promoting cell adhesion and proliferation in vitro. Both SF-Glu and SF microspheres exhibit the capacity to maintain the sustained release kinetics of the loaded model drug. Furthermore, SF-Glu microspheres facilitate the recruitment of endogenous cells, capillary migration, and macrophage phenotype switch following subcutaneous injection in the rats. This study opens a new avenue for the construction of porous silk fibroin microspheres, which could lead to a broader range of applications in regenerative medicine.
Collapse
Affiliation(s)
- Ji Ding
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Zhaojun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Clinical Research Academy of Chinese Medicine Guangzhou, Guangzhou, Guangdong Province, 510260, China
- Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou, 510260, China
| | - Yulong Ma
- Department of Stomatology, Chifeng Municipal Hospital, Chifeng, Inner Mongolia, 024000, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xiaobing Jiang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Wen Li
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| |
Collapse
|
16
|
Lawrence BD, Karpecki PM, Infanger DW, Levy B. Silk-Derived Protein-4 Versus Vehicle Control in Treating Patients With Moderate to Severe Dry Eye Disease: A Randomized Clinical Trial. Am J Ophthalmol 2025; 269:315-326. [PMID: 39218389 DOI: 10.1016/j.ajo.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE In this study the safety and efficacy of silk-derived protein 4 (SDP-4), also known as amlisimod, eye drops against a vehicle control formulation in patients with moderate to severe dry eye disease (DED) was assessed. SDP-4 is a novel, naturally derived, anti-inflammatory wetting agent that enhances coating on the ocular surface. DESIGN Exploratory Phase 2, 12- and 8-week, serial cohort, multicenter, double-masked, randomized, vehicle-controlled study. METHODS In the first cohort (N = 305), patients were randomized 1:1:1:1 to SDP-4 (0.1%, 1%, 3% wt./wt.) or vehicle control and dosed 2 times per day (BID), while in the second cohort patients were randomized 1:1 with 1% wt./wt. SDP-4, the best performing formulation from the first cohort, or vehicle control BID (N = 151). Diagnosed DED patients were treated in the United States between April 2019 and May 2021. The first cohort of subjects had moderate to severe baseline symptoms, while the second cohort had moderate baseline symptoms to study the impact of baseline symptoms on SDP-4 performance. Key sign and symptom end points were mean change from baseline in TBUT and total SANDE score (0-100 visual analog scale) throughout the study. RESULTS SDP-4 (1%) significantly increased TBUT vs the vehicle control (P < .05) at days 28 and 56 in the first cohort, and patient symptomatology from baseline was reduced by 46% based on subject reported SANDE VAS scores at day 84. Patients with more severe baseline DED symptoms experienced a significantly greater amount of relief than when compared to patients with moderate DED (P < .05). All treatment groups were well tolerated with a 2.6% total discontinuation rate. CONCLUSIONS To the best of our knowledge, this was the first-in-human use of SDP-4 in a clinical trial. SDP-4 is a first-in-class protein ingredient that offers a safe and multi-modal treatment approach for alleviating severe DED symptoms within a novel formulation.
Collapse
Affiliation(s)
- Brian D Lawrence
- From the Silk Technologies, Ltd. (B.D.L., D.W.I.), Maple Grove, Minnesota, USA.
| | | | - David W Infanger
- From the Silk Technologies, Ltd. (B.D.L., D.W.I.), Maple Grove, Minnesota, USA
| | - Brian Levy
- University of Rochester Medical Center (B.L.), Rochester, New York, USA
| |
Collapse
|
17
|
Chen M, Qiao Y, Yu L, Wang W, Wang W, Sun H, Xu Y, Bai J, Zhou J, Geng D. A microenvironment responsive polyetheretherketone implant with antibacterial and osteoimmunomodulatory properties facilitates osseointegration. Bioact Mater 2025; 43:273-291. [PMID: 39399839 PMCID: PMC11470486 DOI: 10.1016/j.bioactmat.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Failure of intraosseous prostheses is primarily attributed to implant loosening and infections. Current primary therapeutic modalities, such as antibiotics and local debridement, not only face challenges in thoroughly eliminating obstinate adhered bacteria but also encounter difficulties in ameliorating undue inflammatory reactions and regenerating impaired peri-implant bone tissues. Polyetheretherketone (PEEK) has excellent mechanical and physicochemical characteristics and has been used extensively as a medical biomaterial. However, the limited bactericidal and osseointegrative activities of bioinert PEEK restrict its clinical application. Herein, a microenvironment responsive coating with immobilised immunomodulatory magnesium ions (Mg2+) and disinfectant cerium oxide nanoparticles (CNPs) is designed via ion coordination mediated by polydopamine (PDA) and electrospinning based on collagen structure-bionic silk fibroin (SF). By utilising the pH responsiveness of SF, CNPs exhibit potent antibacterial effects in an acidic environment (pH 5.0) caused by local bacterial infection. Due to the chelation interaction with PDA and the constraint of SF, Mg2+ is slowly released, ameliorating the local immune microenvironment and boosting osteogenesis by upregulating M2 phenotype macrophages. Bioinformatics analysis indicates that the inflammation is suppressed via the NF-κB signaling pathway. Overall, this SF-based coating maximizes the synergistic effect of CNPs and Mg2+, offering enhanced antibacterial and osteoimmunomodulatory bioactivity for successful implantation.
Collapse
Affiliation(s)
- Miao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Haifu Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Wei Y, Yu Q, Zhan Y, Wu H, Sun Q. Piezoelectric hydrogels for accelerating healing of diverse wound types. Biomater Sci 2024. [PMID: 39714223 DOI: 10.1039/d4bm01347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The skin, as the body's largest organ, plays a crucial role in protecting against mechanical forces and infections, maintaining fluid balance, and regulating body temperature. Therefore, skin wounds can significantly threaten human health and cause a heavy economic burden on society. Recently, bioelectric fields and electrical stimulation (ES) have been recognized as a promising pathway for modulating tissue engineering and regeneration of wounded skin. However, conventional hydrogel dressing lacks electrical generation capabilities and usually requires external stimuli to initiate the cell regeneration process, and the role of ES in different stages of healing is not fully understood. Therefore, to endow hydrogel-based wound dressings with piezoelectric properties, which can accelerate wound healing and potentially suppress infection via introducing ES, piezoelectric hydrogels (PHs) have emerged recently, combining the advantages of both piezoelectric nanomaterials and hydrogels beneficial for wound healing. Given the scarcity of systematic literature on the application of PHs in wound healing, this paper systematically discusses the principles of the piezoelectric effects, the design and fabrication of PHs, their piezoelectric properties, the way PHs trigger ES and the mechanisms by which they promote wound healing. Additionally, it summarizes the recent applications of PHs in various types of wounds, including traumatic wounds, pressure injuries, diabetic wounds, and infected wounds. Finally, the paper proposes future directions and challenges for the development of PH wound dressings for wound healing.
Collapse
Affiliation(s)
- Yanxing Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiwei Yu
- The First Clinical College, Changsha Medical University, Changsha, Hunan, 410005, China
| | - Yuxi Zhan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Hao Wu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
19
|
Chakraborty J, Roy C, Kalogeropoulou M, Mota C, Ghosh S, Moroni L. Protocol for developing shape-morphing 4D bioprinted magnetic constructs to promote articular cartilage regeneration using silk fibroin-gelatin bioink. STAR Protoc 2024; 5:103332. [PMID: 39446581 PMCID: PMC11539150 DOI: 10.1016/j.xpro.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
External magnetic fields can regulate cellular responses. Here, we present a protocol to fabricate magnetic constructs by 4D bioprinting with shape-morphing properties using silk fibroin-gelatin bioinks for articular cartilage regeneration. We illustrate the steps for magnetic bioink formulation, bioprinting, and chondrogenic induction of human bone marrow mesenchymal stem/stromal cells. We detail the steps to actuate the constructs using an external magnetic field and then characterize chondrogenesis. Magnetic field actuation may be helpful for mechanically activating constructs for articular cartilage regeneration. For complete details on the use and execution of this protocol, please refer to Chakraborty et al.1.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chandrashish Roy
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Maria Kalogeropoulou
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, the Netherlands
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, the Netherlands.
| |
Collapse
|
20
|
Yan Y, Deng W, Xie D, Hu J. Silk Fibroin Hydrogel for Pulse Waveform Precise and Continuous Perception. Adv Healthc Mater 2024:e2403637. [PMID: 39707661 DOI: 10.1002/adhm.202403637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/23/2024]
Abstract
Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering. However, hydrogels should overcome intrinsic issues such as poor mechanical strength, easy dehydration and freezing, weak adhesiveness and self-recovery, severely limiting their precision and reliability in practical applications. Here, silk fibroin hydrogels are developed as resistive sensors for pulse waveform monitoring. The silk fibroin hydrogel is simultaneously transparent, extremely stretchable, extra tough, adhesive, printable, and environmentally endurable. The silk fibroin hydrogel is also conductive with high sensitivity, short self-healing time, highly repeatable and reliable response, meeting the requirements for wearable sensors for continuous monitoring. The sensors with silk fibroin hydrogel present high-quality and stable waveforms of radical and brachial pulses with high precision and rich features, providing physiological signals of blood pressure and cardiac function. The sensors are promising for personalized health management, daily monitoring and timely diagnosis.
Collapse
Affiliation(s)
- Yingmei Yan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Du Xie
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Werlang CA, Sahoo JK, Cárcarmo-Oyarce G, Stevens C, Uzun D, Putnik R, Hasturk O, Choi J, Kaplan DL, Ribbeck K. Selective Biofilm Inhibition through Mucin-Inspired Engineering of Silk Glycopolymers. J Am Chem Soc 2024; 146:34661-34668. [PMID: 39651958 DOI: 10.1021/jacs.4c12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Mucins are key components of innate immune defense and possess remarkable abilities to manage pathogenic microbes while supporting beneficial ones and maintaining microbial homeostasis at mucosal surfaces. Their unique properties have garnered significant interest in developing mucin-inspired materials as novel therapeutic strategies for selectively controlling pathogens without disrupting the overall microbial ecology. However, natural mucin production is challenging to scale, driving the need for simpler materials that reproduce mucin's bioactivity. In this work, we generated silk-based glycopolymers with different monosaccharides (GalNAc, GlcNAc, NeuNAc, GlcN, and GalN) and different grafting densities. Using the oral cavity as a model system, we treated in vitro cultures of pathogenic Streptococcus mutans and commensal Streptococcus sanguinis with our glycopolymers, finding that silk-tethered GalNAc uniquely prevented biofilm formation without affecting overall bacterial growth of either species. This relatively simple material reproduced mucin's virulence-neutralizing effects while maintaining biocompatibility. These mucin-inspired materials represent a valuable tool for preventing infection-related harm and offer a strategy for the domestication of pathogens in other environments.
Collapse
Affiliation(s)
- Caroline Andrea Werlang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Gerado Cárcarmo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Corey Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Deniz Uzun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rachel Putnik
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Onur Hasturk
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Jaewon Choi
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - David L Kaplan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Lv Q, Li Q, Cao P, Wei C, Li Y, Wang Z, Wang L. Designing Silk Biomaterials toward Better Future Healthcare: The Development and Application of Silk-Based Implantable Electronic Devices in Clinical Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411946. [PMID: 39686818 DOI: 10.1002/adma.202411946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Indexed: 12/18/2024]
Abstract
Implantable medical electronic devices (IMEDs) have attracted great attention and shown versatility for solving clinical problems ranging from real-time monitoring of physiological/ pathological states to electrical stimulation therapy and from monitoring brain cell activity to deep brain stimulation. The ongoing challenge is to select appropriate materials in target device configuration for biomedical applications. Currently, silk-based biomaterials have been developed for the design of diagnostic and therapeutic electronic devices due to their excellent properties and abundant active sites in the structure. Herein, the aim is to summarize the structural characteristics, physicochemical properties, and bioactivities of natural silk biomaterials as well as their derived materials, with a particular focus on the silk-based implantable biomedical electronic devices, such as implantable devices for invasive brain-computer interfaces, neural recording, and in vivo electrostimulation. In addition, future opportunities and challenges are also envisioned, hoping to spark the interests of researchers in interdisciplinary fields such as biomaterials, clinical medicine, and electronics.
Collapse
Affiliation(s)
- Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Cao
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunyu Wei
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyu Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
23
|
Bhattacharjee A, Rudolph S, Kaplan DL. Thermoplastic Molding of Silk-Curcumin Sustainable Composite Materials with Antibacterial Properties. ACS APPLIED BIO MATERIALS 2024; 7:8272-8280. [PMID: 39601507 DOI: 10.1021/acsabm.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Silk fibroin (SF) is a natural protein generated from the Bombyx mori silkworm cocoons. It is useful for many different material applications. Versatile aqueous process engineering options can be used to support the morphological and structural modifications of silk materials related to tailored physical, chemical, and biological properties. Conventional solution-based processing methods, while effective, present process control limitations, thus, thermoplastic molding of regenerated SF-based composites was pursued to fabricate dense, functionalized plastics consisting of silk and curcumin. Curcumin, the active compound in turmeric (Curcuma longa) was incorporated into SF during the high-temperature processing, with the objective to investigate composite thermoplastics with enhanced biological properties from the curcumin due to the protective role of silk during processing. The results showed that a significantly higher amount of curcumin (∼25-fold) could be added into thermoplastic molded silk materials compared with the solution route, attributed to the hydrophobicity and low solubility of curcumin in solution-based routes. The curcumin-incorporated silk thermoplastics provided stability in acidic environments like the human gut, and slow curcumin (∼2% over 8 days) release from the materials. The protective silk-curcumin materials supported improved cytocompatibility with immortalized human colorectal adenocarcinoma (Caco-2) cells at high doses. The intestinal epithelial barrier integrity based on zonula occluden 1 (ZO-1) testing showed that the higher amount of curcumin in the thermoplastic molded silk had no negative effects on the intestinal barrier. The functionalized silk-based plastics also displayed microwave stability and antibacterial efficacy against both Gram-positive S. aureus and Gram-negative E. coli. These silk-based sustainable plastics, functionalized with curcumin, offer potential utility for a range of consumer and medical devices.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- Department of Biomedical Engineering Tufts University, Medford, Massachusetts 02155, United States
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sara Rudolph
- Department of Biomedical Engineering Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
Zhang Y, Savvidou M, Liaudanskaya V, Singh P, Fu Y, Nasreen A, Coe M, Kelly M, Snapper D, Wagner C, Gill J, Symes A, Patra A, Kaplan DL, Beheshti A, Georgakoudi I. Synergistic label-free fluorescence imaging and miRNA studies reveal dynamic human neuron-glial metabolic interactions following injury. SCIENCE ADVANCES 2024; 10:eadp1980. [PMID: 39661671 PMCID: PMC11633737 DOI: 10.1126/sciadv.adp1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Neuron-glial cell interactions following traumatic brain injury (TBI) determine the propagation of damage and long-term neurodegeneration. Spatiotemporally heterogeneous cytosolic and mitochondrial metabolic pathways are involved, leading to challenges in developing effective diagnostics and treatments. An engineered three-dimensional brain tissue model comprising human neurons, astrocytes, and microglia is used in combination with label-free, two-photon imaging and microRNA studies to characterize metabolic interactions between glial and neuronal cells over 72 hours following impact injury. We interpret multiparametric, quantitative, optical metabolic assessments in the context of microRNA gene set analysis and identify distinct metabolic changes in neurons and glial cells. Glycolysis, nicotinamide adenine dinucleotide phosphate (reduced form) and glutathione synthesis, fatty acid synthesis, and oxidation are mobilized within glial cells to mitigate the impacts of initial enhancements in oxidative phosphorylation and fatty acid oxidation within neurons, which lack robust antioxidant defenses. This platform enables enhanced understanding of mechanisms that may be targeted to improve TBI diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Maria Savvidou
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Pramesh Singh
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Yuhang Fu
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Amreen Nasreen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Marly Coe
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Marilyn Kelly
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Dustin Snapper
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Chelsea Wagner
- School of Nursing, Johns Hopkins University, 525 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jessica Gill
- School of Nursing, Johns Hopkins University, 525 N. Wolfe Street, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, 525 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aviva Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Dartmouth Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon NH 03766, USA
| |
Collapse
|
25
|
Zhu J, Du Y, Backman LJ, Chen J, Ouyang H, Zhang W. Cellular Interactions and Biological Effects of Silk Fibroin: Implications for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409739. [PMID: 39668424 DOI: 10.1002/smll.202409739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Silk fibroin (SF), the core structural protein derived from Bombyx mori silk, is extensively employed in tissue engineering and regenerative medicine due to its exceptional mechanical properties, favorable biocompatibility, tunable biodegradability, and versatile processing capabilities. Despite these advantages, current research predominantly focuses on SF biomaterials as structural scaffolds or drug carriers, often overlooking their potential role in modulating cellular behavior and tissue regeneration. This review aims to present a comprehensive overview of the inherent biological effects of SF biomaterials, independent of any exogenous biomolecules, and their implications for various tissue regeneration. It will cover in vitro cellular interactions of SF with various cell types, including stem cells and functional tissue cells such as osteoblasts, chondrocytes, keratinocytes, endothelial cells, fibroblasts, and epithelial cells. Moreover, it will summarize in vivo immune responses, cellular responses, and tissue regeneration following SF implantation, specifically focusing on vascular, bone, skin, cartilage, ocular, and tendon/ligament regeneration. Furthermore, it will address current limitations and future perspectives in the design of bioactive SF biomaterials. A comprehensive understanding of these cellular interactions and the biological effects of SF is crucial for predicting regenerative outcomes with precision and for designing SF-based biomaterials tailored to specific properties, enabling broader applications in regenerative medicine.
Collapse
Affiliation(s)
- Jialin Zhu
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Yan Du
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, 90187, Sweden
| | - Jialin Chen
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| | - Hongwei Ouyang
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Zhang
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| |
Collapse
|
26
|
Braxton T, Lim K, Alcala-Orozco C, Joukhdar H, Rnjak-Kovacina J, Iqbal N, Woodfield T, Wood D, Brockett C, Yang X. Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7606-7618. [PMID: 39589862 PMCID: PMC11632666 DOI: 10.1021/acsbiomaterials.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Osteochondral tissue damage is a serious concern, with even minor cartilage damage dramatically increasing an individual's risk of osteoarthritis. Therefore, there is a need for an early intervention for osteochondral tissue regeneration. 3D printing is an exciting method for developing novel scaffolds, especially for creating biological scaffolds for osteochondral tissue engineering. However, many 3D printing techniques rely on creating a lattice structure, which often demonstrates poor cell bridging between filaments due to its large pore size, reducing regenerative speed and capacity. To tackle this issue, a novel biphasic scaffold was developed by a combination of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene-terephthalate) (PEGT/PBT) lattice infilled with a porous silk scaffold (derived from Bombyx mori silk fibroin) to make up a bone phase, which continued to a seamless silk top layer, representing a cartilage phase. Compression testing showed scaffolds had Young's modulus, ultimate compressive strength, and fatigue resistance that would allow for their theoretical survival during implantation and joint articulation without stress-shielding mechanosensitive cells. Fluorescent microscopy showed biphasic scaffolds could support the attachment and spreading of human mesenchymal stem cells from bone marrow (hMSC-BM). These promising results highlight the potential utilization of this novel scaffold for osteochondral tissue regeneration as well as highlighting the potential of infilling silk materials within 3D printed scaffolds to further increase their versatility.
Collapse
Affiliation(s)
- T. Braxton
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | - K. Lim
- CReaTE
Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - C. Alcala-Orozco
- CReaTE
Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - H. Joukhdar
- Graduate
School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - J. Rnjak-Kovacina
- Graduate
School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - N. Iqbal
- Chemical
and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - T. Woodfield
- CReaTE
Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8140, New Zealand
| | - D. Wood
- Biomaterials
and Tissue Engineering Group, Department of Oral Biology, University of Leeds, WTBB, St. James’s University
Hospital, Leeds LS9 7TF, U.K.
| | - C. Brockett
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | - X.B. Yang
- Biomaterials
and Tissue Engineering Group, Department of Oral Biology, University of Leeds, WTBB, St. James’s University
Hospital, Leeds LS9 7TF, U.K.
| |
Collapse
|
27
|
Wang B, Hasturk O, Kumarasinghe U, Rudolph S, Staii C, Chen Y, Kaplan DL. Temporary Nanoencapsulation of Human Intestinal Organoids Using Silk Ionomers. Adv Healthc Mater 2024:e2403176. [PMID: 39648539 DOI: 10.1002/adhm.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Indexed: 12/10/2024]
Abstract
Human intestinal organoids (HIOs) are vital for modeling intestinal development, disease, and therapeutic tissue regeneration. However, their susceptibility to stress, immunological attack, and environmental fluctuations limits their utility in research and therapeutic applications. This study evaluated the effectiveness of temporary silk protein-based layer-by-layer (LbL) nanoencapsulation technique to enhance the viability and functions of HIOs against common biomedical stressors, without compromising their native functions. Cell viability and differentiation capacity are assessed, finding that nanoencapsulation significantly improved HIO survival under the various environmental perturbations studied without compromising cellular functionality. Post-stress exposures, the encapsulated HIOs still successfully differentiated into essential intestinal cell types such as enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Moreover, the silk nanocoatings effectively protected against environmental stressors such as ultraviolet (UV) light exposure, protease degradation, antibody binding, and cytokine-induced inflammation. This nanoencapsulation technique shows promise for advancing HIO applications in disease modeling, drug testing, and potential transplantation therapies.
Collapse
Affiliation(s)
- Brooke Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Ying Chen
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| |
Collapse
|
28
|
Rahman M, Kabir M, Li K, Li Y, Chen S, Wu S. Electrospun zeolitic imidazole framework-8 loaded silk fibroin/polycaprolactone nanofibrous scaffolds for biomedical application. J Mech Behav Biomed Mater 2024; 160:106769. [PMID: 39418744 DOI: 10.1016/j.jmbbm.2024.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The development of electrospun nanofibrous scaffolds (NFSs) have aroused much attraction in the field of biomedical engineering, due to their small fiber diameter, high specific surface area, and excellent extracellular matrix comparability. The main focus of this study is to design and fabricate novel zeolitic imidazole framework-8 (ZIF-8)-loaded silk fibrin/polycaprolactone (SF/PCL) nanofiber composite scaffolds by using the electrospinning strategy. Firstly, ZIF-8 was synthesized and characterized, which showed remarkable features in terms of shape, size, chemical and physical properties. Then, three different amounts of ZIF-8 were encapsulated into SF/PCL nanofibers during electrospinning, to investigate how the addition of ZIF-8 affected the morphology, and structure, as well as physical, mechanical, and biological properties of the nanofiber composite scaffolds. It was found that the addition of ZIF-8 didn't change the nanofibrous morphology of the composite scaffold, and no bead-like structure were found for the SF/PCL composite scaffolds loading with or without ZIF-8. The appropriate addition of ZIF-8 could significantly increase the mechanical properties of SF/PCL NFSs. The SF/PCL NFS containing 5% ZIF-8 showed high ultimate stress and initial modulus, which were 40.31 ± 2.31 MPa, and 569.19 ± 21.38 MPa, respectively. Furthermore, the MTT assay indicated that the pure SF/PCL scaffold and one with 1% ZIF-8 exhibited nearly identical cell compatibility toward human dermal fibroblast (HDF) cells, but some obvious cytotoxicity was observed with the increase of ZIF-8 content. However, the incorporation of ZIF-8 into SF/PCL NFSs was found to have excellent antibacterial rate against both E. coli and S. aureus. In all, the incorporation of 1% ZIF-8 could impart the SF/PCL NFS with balanced bio-function, making it a promising candidate for diverse biomedical applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Mahbubur Rahman
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China; Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mohashin Kabir
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China; Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Kun Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Yiran Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
| | - Shaohua Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
29
|
Lu H, Jian M, Liang X, Wang Y, Niu J, Zhang Y. Strong Silkworm Silk Fibers through CNT-Feeding and Forced Reeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408385. [PMID: 39400397 DOI: 10.1002/adma.202408385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Indexed: 10/15/2024]
Abstract
High-performance silk fibers, with their eco-friendly degradability and renewability, have long captivated researchers as an alternative to synthetic fibers. Spider dragline silk, renowned for its exceptional strength (>1 GPa), has an extremely low yield, hindering its widespread use. While domesticated silkworms (Bombyx mori) can produce silk fibers industrially, their moderate strength (≈0.5 GPa) pales in comparison to the formidable spider dragline silk. In this study, naturally produced strong silkworm silk fibers are reported with a tensile strength of ≈1.2 GPa achieved through combining feeding carbon nanotubes (CNTs) to silkworms and in situ forced reeling for alignment. Molecular dynamics simulations confirm the interaction between the CNTs and silk fibroin, while the forced reeling process aligns these reinforcing fillers and the silk fibroin β-sheet nanocrystals along the fiber axis. Structural analysis reveals a significant enhancement in the content and alignment of β-sheet nanocrystals within the silk fibers, accounting for their superior mechanical properties, including tensile strength of ≈1.2 GPa and Young's modulus of 24.4 GPa, surpassing various types of silkworm silk and spider silk. This advancement addresses the historical trade-off between the strength and scalability of silk, potentially paving the way for eco-friendly, biodegradable, and renewable alternatives to synthetic fibers in a variety of applications.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Muqiang Jian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yida Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiali Niu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Ghosh A, Bera AK, Singh V, Basu S, Pati F. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. BIOMATERIALS ADVANCES 2024; 165:214007. [PMID: 39216318 DOI: 10.1016/j.bioadv.2024.214007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corneal scarring is a common cause of blindness, affecting millions globally each year. A huge gap between the demand and supply of donor tissue currently limits corneal transplantation, the only definitive therapy for patients with corneal scarring. To overcome this challenge, researchers have harnessed the efficacy of 3D bioprinting to fabricate artificial corneal stromal constructs. With all the different bioinks available, the decellularized corneal matrix-based bioprinted construct can fulfill the required biological functionality but is limited by the lack of mechanical stiffness. Additionally, from a biophysical standpoint, it is necessary for an ideal corneal substitute to mimic the anisotropy of the cornea from the central optic zone to the surrounding periphery. In this study, we enhanced the mechanical robustness of decellularized cornea matrix (DCM) hydrogel by blending it with another natural polymer, sonicated silk fibroin solution in a defined ratio. Although hybrid hydrogel has an increased complex modulus than DCM hydrogel, it has a lower in vitro degradation rate and increased opaqueness due to the presence of crystalline beta-sheet conformation within the hydrogel. Therefore, we used this multi-material bioink-based approach to fabricate a corneal stromal equivalent where the outer peripheral corneal rim was printed with a mechanically robust polymeric blend of DCM and sonicated silk fibroin and the central optic zone was printed with only DCM. The bioprinted corneal stroma thus maintained its structural integrity and did not break when lifted with forceps. The two different bioinks were encapsulated with human limbus-derived mesenchymal stem cells (hLMSC) individually and 3D bioprinted in different patterns (concentric and parallel) to attain a native-like structure in terms of architecture and transparency. Thus, the bilayer cornea constructs maintained high cell viability and expressed keratocyte core proteins indicating optimal functionality. This approach helped to gain insight into bioprinting corneas with heterogeneous mechanical property without disturbing the structural clarity of the central optic zone.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Vivek Singh
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Sayan Basu
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
31
|
Nettey-Oppong EE, Muhammad R, Ali A, Jeong HW, Seok YS, Kim SW, Choi SH. The Impact of Temperature and Pressure on the Structural Stability of Solvated Solid-State Conformations of Bombyx mori Silk Fibroins: Insights from Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5686. [PMID: 39685120 DOI: 10.3390/ma17235686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Bombyx mori silk fibroin is a promising biopolymer with notable mechanical strength, biocompatibility, and potential for diverse biomedical applications, such as tissue engineering scaffolds, and drug delivery. These properties are intrinsically linked to the structural characteristics of silk fibroin, making it essential to understand its molecular stability under varying environmental conditions. This study employed molecular dynamics simulations to examine the structural stability of silk I and silk II conformations of silk fibroin under changes in temperature (298 K to 378 K) and pressure (0.1 MPa to 700 MPa). Key parameters, including Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and Radius of Gyration (Rg) were analyzed, along with non-bonded interactions such as van der Waals and electrostatic potential energy. Our findings demonstrate that both temperature and pressure exert a destabilizing effect on silk fibroin, with silk I exhibiting a higher susceptibility to destabilization compared to silk II. Additionally, pressure elevated the van der Waals energy in silk I, while temperature led to a reduction. In contrast, electrostatic potential energy remained unaffected by these environmental conditions, highlighting stable long-range interactions throughout the study. Silk II's tightly packed β-sheet structure offers greater resilience to environmental changes, while the more flexible α-helices in silk I make it more susceptible to structural perturbations. These findings provide valuable insights into the atomic-level behavior of silk fibroin, contributing to a deeper understanding of its potential for applications in environments where mechanical or thermal stress is a factor. The study underscores the importance of computational approaches in exploring protein stability and supports the continued development of silk fibroin for biomedical and engineering applications.
Collapse
Affiliation(s)
| | - Riaz Muhammad
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ahmed Ali
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Hyun-Woo Jeong
- Department of Biomedical Engineering, Eulji University, Seongnam 13135, Republic of Korea
| | - Young-Seek Seok
- Gangwon-do Agricultural Product Registered Seed Station, Chuncheon 24410, Republic of Korea
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Seung Ho Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| |
Collapse
|
32
|
de Lartigue C, Belda Marín C, Fitzpatrick V, Esposito A, Casale S, Landoulsi J, Guénin E, Egles C. Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration. Int J Mol Sci 2024; 25:12377. [PMID: 39596442 PMCID: PMC11594453 DOI: 10.3390/ijms252212377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Tissue regeneration can be achieved by providing endogenous cells with a biomaterial scaffold that supports their adhesion and proliferation, as well as the synthesis and deposition of an extracellular matrix (ECM). In this work, silk fibroin protein foams were formed by lyophilization to generate tissue engineering scaffolds. Three types of medically relevant nanoparticles (NPs) (iron oxide, gold and silver) were added to this biomaterial to assess the ability of silk foams to be functionalized with these NPs. The structural and mechanical properties of the foams with and without the NPs were suitable for tissue support. The in vitro cytocompatibility of the scaffolds was confirmed according to the ISO 10993 guidelines. The biocompatibility of the scaffolds was investigated by assessing inflammation and endogenous cell colonization in a mouse subcutaneous model These in vivo experiments demonstrated a loss of acute inflammation and the absence of chronic inflammation in the grafted animals. The obtained results show that silk foams are good candidates for supporting soft tissue regeneration with the additional possibility of functionalization with NPs.
Collapse
Affiliation(s)
- Claire de Lartigue
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères Surfaces (PBS) UMR 6270, 55 Rue Saint-Germain, 27000 Évreux, France;
| | - Cristina Belda Marín
- Alliance Sorbonne Université, Université de Technologie de Compiègne (UTC), TIMR EA 4297 UTC/ESCOM, CS 60319, 60203 Compiègne, France; (C.B.M.); (E.G.)
- Laboratoire de Réactivité de Surface (UMR CNRS 7197), Sorbonne Université, 75252 Paris, France; (S.C.); (J.L.)
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Alliance Sorbonne Université, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique et Bioingénierie (BMBI), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne, France
| | - Antonella Esposito
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux UMR 6634, 76000 Rouen, France;
| | - Sandra Casale
- Laboratoire de Réactivité de Surface (UMR CNRS 7197), Sorbonne Université, 75252 Paris, France; (S.C.); (J.L.)
| | - Jessem Landoulsi
- Laboratoire de Réactivité de Surface (UMR CNRS 7197), Sorbonne Université, 75252 Paris, France; (S.C.); (J.L.)
| | - Erwan Guénin
- Alliance Sorbonne Université, Université de Technologie de Compiègne (UTC), TIMR EA 4297 UTC/ESCOM, CS 60319, 60203 Compiègne, France; (C.B.M.); (E.G.)
| | - Christophe Egles
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères Surfaces (PBS) UMR 6270, 55 Rue Saint-Germain, 27000 Évreux, France;
| |
Collapse
|
33
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024; 69:3444-3466. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
34
|
Wong K, Tan XH, Li J, Hui JHP, Goh JCH. An In Vitro Macrophage Response Study of Silk Fibroin and Silk Fibroin/Nano-Hydroxyapatite Scaffolds for Tissue Regeneration Application. ACS Biomater Sci Eng 2024; 10:7073-7085. [PMID: 39381957 DOI: 10.1021/acsbiomaterials.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, silk fibroin (SF) has been incorporated with low crystallinity nanohydroxyapatite (nHA) as a scaffold for various tissue regeneration applications due to the mechanical strength of SF and osteoconductive properties of nHA. However, currently, there is a lack of understanding of the immune response toward the degradation products of SF with nHA composite after implantation. It is known that particulate fragments from the degradation of a biomaterial can trigger an immune response. As the scaffold is made of degradable materials, the degradation products may contribute to the inflammation. Therefore, in this study, the effects of the enzymatic degradation of the SF/nHA scaffold on macrophage response were investigated in comparison to the control SF scaffold. Since the degradation products of a scaffold can influence macrophage polarization, it can be hypothesized that as the SF and SF/nHA scaffolds were degraded in vitro using protease XIV solution, the degradation products can contribute to the polarization of THP-1-derived macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The results demonstrated that the initial (day 1) degradation products of the SF/nHA scaffold elicited a pro-inflammatory response, while the latter (day 24) degradation products of the SF/nHA scaffold elicited an anti-inflammatory response. Moreover, the degradation products from the SF scaffold elicited a higher anti-inflammatory response due to the faster degradation of the SF scaffold and a higher amino acid concentration in the degradation solution. Hence, this paper can help elucidate the contributory effects of the degradation products of SF and SF/nHA scaffolds on macrophage response and provide greater insights into designing silk-based biomaterials with tunable degradation rates that can modulate macrophage response for future tissue regeneration applications.
Collapse
Affiliation(s)
- Kallista Wong
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Xuan Hao Tan
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Hoi Po Hui
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| |
Collapse
|
35
|
Amirian J, Wychowaniec JK, D′este M, Vernengo AJ, Metlova A, Sizovs A, Brangule A, Bandere D. Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels. Biomacromolecules 2024; 25:7078-7097. [PMID: 39401165 PMCID: PMC11558566 DOI: 10.1021/acs.biomac.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/12/2024]
Abstract
Composite biomaterials with excellent biocompatibility and biodegradability are crucial in tissue engineering. In this work, a composite protein and polysaccharide photo-cross-linkable hydrogel was prepared using silk fibroin methacrylate (SFMA) and hyaluronic acid methacrylate (HAMA). SFMA was obtained by the methacrylation of degummed SF with glycidyl methacrylate (GMA), while HA was methacrylated by 2-aminoethyl methacrylate hydrochloride (AEMA). We investigated the effect of the addition of 1 wt % HAMA to 5, 10, and 20 wt % SFMA, which resulted in an increase in both static and cycling mechanical strengths. All composite hydrogels gelled under UV light in <30 s, allowing for rapid stabilization and stiffness increases. The biocompatibility of the hydrogels was confirmed by direct and indirect contact methods and by evaluation against the NIH3T3 and MC3T3 cell lines with a live-dead assay by confocal imaging. The range of obtained mechanical properties from developed composite and UV-cross-linkable hydrogels sets the basis as possible future biomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Jhaleh Amirian
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | | | - Matteo D′este
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Andrea J. Vernengo
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Anastasija Metlova
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Antons Sizovs
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Agnese Brangule
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | - Dace Bandere
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| |
Collapse
|
36
|
Chen Y, Murphy EJ, Cao Z, Buckley C, Cortese Y, Chee BS, Scheibel T. Electrospinning Recombinant Spider Silk Fibroin-Reinforced PLGA Membranes: A Biocompatible Scaffold for Wound Healing Applications. ACS Biomater Sci Eng 2024; 10:7144-7154. [PMID: 39435963 DOI: 10.1021/acsbiomaterials.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Polylactide-polyglycolide (PLGA) is one of the most attractive polymeric biomaterials used to fabricate medical devices for drug delivery and tissue engineering applications. Nevertheless, the utilization of PLGA in load-bearing applications is restricted due to its inadequate mechanical properties. This study examines the potential of recombinant silk fibroin (eADF4), a readily producible biomaterial, as a reinforcing agent for PLGA. The PLGA/eADF4 composite membranes were developed by using the process of electrospinning. The spinnability of the electrospinning solutions and the physicochemical, mechanical, and thermal properties of the composite membranes were characterized. The addition of eADF4 increased the viscosity of the electrospinning solutions and enhanced both the mechanical characteristics and the thermal stability of the composites. This study demonstrates that PLGA membranes reinforced with recombinant spider silk fibroin are noncytotoxic, significantly enhance cell migration and wound closure, and do not trigger an inflammatory response, making them ideal candidates for advanced wound healing applications.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Emma J Murphy
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Zhi Cao
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Ciara Buckley
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Yvonne Cortese
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Bor Shin Chee
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone N37HD68, Ireland
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, Bayreuth 95447, Germany
| |
Collapse
|
37
|
Ryu J, Choi J, Lee J, Kim SH. Orientation Distribution of Crystalline β-Sheet Domains in Bombyx mori Silk Fiber Studied with Vibrational Sum Frequency Generation Spectroscopy. Biomacromolecules 2024; 25:7178-7190. [PMID: 39413299 DOI: 10.1021/acs.biomac.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Silk fibers have good biocompatibility and mechanical properties, which make them attractive in biomaterial applications as well as textile industries. It is believed that the superior mechanical property is associated with the crystalline β-sheet structure in the fiber; but a deeper understanding of the structure-property relationship is still needed for full exploitation of its physical properties. Especially, accurate information on hydrogen-bonding interactions within β-sheet domains at the nanoscale and their spatial distributions at the mesoscale are critically needed. In this study, we demonstrate the selective detection of crystalline β-sheet domains in Bombyx mori silk fiber using sum frequency generation (SFG) spectroscopy and its use to determine the angular distribution of the β-sheet crystallites with respect to the fiber axis. Numerical simulations of the SFG signal of the amide-I band were carried out using tensors based on the B2 symmetry of the D2 point group and compared with experimental data. This comparison found that the crystalline β-sheet domains are aligned along the fiber axis with a standard deviation of ∼27° and parallel to the fiber surface with a standard deviation of ∼5°. It was also found that the amide bands in the SFG spectra cannot be fully explained with the assumption that the crystalline β-sheet vibrations can be described with the D2 point group. Being able to monitor the amide group vibrations sensitive to both interchain hydrogen bonding and crystallite orientations, SFG analysis has a potential to unveil the structure-mechanical property relationship that may not be readily assessable with other characterization techniques.
Collapse
Affiliation(s)
- Jihyeong Ryu
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Juseok Choi
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jongcheol Lee
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seong H Kim
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Zhou H, Tang Y, Han M, Chen Q, Chen J, Liu W. Synthesis of melanin-like amino acid surfactant with enzymatic hydrolysates from silk degumming water. J Biotechnol 2024; 394:85-91. [PMID: 39178917 DOI: 10.1016/j.jbiotec.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m-1. Furthermore, it demonstrated good foaming ability and foam stability, with the initial foam volume of 37 mL and the foam half-life time of more than 25 min. The product owned a good emulsification ability in the oil-water emulsion with delamination time of 297 s and 291 s for emulsion formed by soybean oil and liquid paraffin, respectively. The wetting time of the canvas sheet was only 134 s. Consequently, the product showed low surface tension, good foaming, emulsifying, and wetting properties.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiadong Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
39
|
Lee TY, Choi J, Lee S, Jeon H, Kim S. Recording and Revealing 2.5D Nanopatterned Hidden Information on Silk Protein Bioresists. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403169. [PMID: 38973079 DOI: 10.1002/smll.202403169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Nanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron-beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high-energy electron beams (e-beams) for high-resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL-based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High-resolution EBL nanopatterning is achievable, even at low-energy e-beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material-containing silk allows for fluorescence amplification. Furthermore, this post-exposure cross-linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial-based nanodevices for biomedical applications can be envisioned.
Collapse
Affiliation(s)
- Tae-Yun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Inter-university Semiconductor Research Centre, Seoul National University, Seoul, 08826, Republic of Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohoon Lee
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heonsu Jeon
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Inter-university Semiconductor Research Centre, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
40
|
Basu P, Banerjee A, Okoro PD, Masoumi A, Kanjilal B, Akbari M, Martins‐Green M, Armstrong DG, Noshadi I. Integration of Functional Polymers and Biosensors to Enhance Wound Healing. Adv Healthc Mater 2024; 13:e2401461. [PMID: 39235365 PMCID: PMC11582501 DOI: 10.1002/adhm.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Biosensors have led to breakthroughs in the treatment of chronic wounds. Since the discovery of the oxygen electrode by Clarke, biosensors have evolved into the design of smart bandages that dispense drugs to treat wounds in response to physiological factors, such as pH or glucose concentration, which indicate pathogenic tendencies. Aptamer-based biosensors have helped identify and characterize pathogenic bacteria in wounds that often form antibiotic-resistant biofilms. Several functional polymers have served as indispensable parts of the fabrication of these biosensors. Beginning with natural polymers such as alginate, chitosan, and silk-based fibroin, which are biodegradable and absorptive, advances have been made in formulating biocompatible synthetic polymers such as polyurethane and polyethylene glycol designed to reduce non-specific binding of proteins and cells, making biosensors less painful or cumbersome for patient use. Recently, polycaprolactone has been developed, which offers ductility and a large surface-area-to-volume ratio. There is still room for advances in the fabrication and use of biosensors for wound healing and in this review, the trend in developing biosensors from biomarker detection to smart dressings to the incorporation of machine learning in designing customized wound patches while making application easier is highlighted and can be used for a long time.
Collapse
Affiliation(s)
- Proma Basu
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Aihik Banerjee
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Prince David Okoro
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | | | - Baishali Kanjilal
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Mohsen Akbari
- Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Manuela Martins‐Green
- Department of Molecular Cellular and Systems BiologyUniversity of California, RiversideRiversideCA92521USA
| | - David G. Armstrong
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Iman Noshadi
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| |
Collapse
|
41
|
Gao J, Boos AM, Kopp A, Isella B, Drinic A, Heim A, Christer T, Beier JP, Robering JW. Comparison of adipose derived stromal cells cultured on fibroin scaffolds fabricated by salt-leaching and by freeze-thawing. BIOMATERIALS ADVANCES 2024; 164:213992. [PMID: 39146605 DOI: 10.1016/j.bioadv.2024.213992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Fibroin, the main structural protein of Bombyx mori silk, is known for its mechanical properties, its biocompatibility and degradation characteristics in vivo. Various studies investigate its uses as cell carrier and/or material for surgical implants. Multiple protocols have been established to isolate fibroin from silk fibers and to produce scaffolds and films from fibroin solution. There is only limited literature available on how fibroin scaffolds manufactured by different methods compare to each other in terms of performance as cell carriers. This study compares the behaviour of human adipose derived stromal cells (ADSC) seeded on fibroin scaffolds produced by (i) salt-leaching and (ii) freeze-thawing. One type of freeze-thawing scaffold (poresize ≪ 315 μm) and three types of salt-leaching scaffolds (poresize ranging from 315 μm to 1000 μm) were used for this comparison. Measuring the DNA concentration on the seeded scaffolds as well as the seeded cells metabolic activity, we were able to determine freeze-thawed scaffolds to be superior for cell-seeding. ADSC seeded on salt-leaching scaffolds displayed a stronger downregulation of serum deprivation response gene than cells seeded on freeze-thaw scaffolds. In sum, our findings show that salt-leaching scaffolds offering different pore sizes differed much less among each other than salt-leaching from freeze-thawing scaffolds in terms of cell accommodation. Our work underlines the importance of physicochemical scaffold properties directly linked to different manufacturing methods and their influence on the cell seeding capacity of silk fibroin based carriers.
Collapse
Affiliation(s)
- J Gao
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - A M Boos
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - A Kopp
- Fibrothelium GmbH, Aachen, Germany
| | - B Isella
- Fibrothelium GmbH, Aachen, Germany
| | - A Drinic
- Fibrothelium GmbH, Aachen, Germany
| | - A Heim
- Fibrothelium GmbH, Aachen, Germany
| | - T Christer
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany; Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - J P Beier
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - J W Robering
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany; Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
42
|
You X, Song X, Wu Y, Han M, Liu W. Biomimetic conjugation inspired from pheomelanin via thiol-quinone addition for enzymatic functionalization of fibroin. J Biosci Bioeng 2024; 138:382-390. [PMID: 39168731 DOI: 10.1016/j.jbiosc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Fibroin has been extensively applied in the medicine, therapy, cosmetic, and food fields. Functional modification is a common route way to expand the application potential. Tyrosinase is versatile for enzymatic functionalization of fibroin by oxidizing tyrosine residues into dopaquinone. However, grafting of functional molecules to the protein-bound dopaquinone suffers from self-crosslinking due to competitive aryl coupling or addition with other nucleophile in protein. Herein, bioinspired from pheomelanin synthesis, a new approach with superior grafting efficiency and reaction rate for enzymatic grafting of protein was developed. The high reactivity of Michael addition between thiol and dopaquinone was utilized to promote the efficiency for grafting of PEG onto fibroin. The grafting of PEG with thiol group was superior to that with amine group. It demonstrated a superior efficacy for thiol group over amino group on enzymatic functionalization. This research firstly established an effective biomimetic approach for enzymatic functionalization of protein without the unexpected self-crosslinking. It could emerged to serve as the strategy of protein functionalization.
Collapse
Affiliation(s)
- Xue You
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao Song
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yinna Wu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
43
|
Shao J, Liu Y, Hou Z, Zhang T, Dai F, Cheng L. Flat silk cocoons: A candidate material for fabricating lightweight and impact-resistant composites. Int J Biol Macromol 2024; 280:136109. [PMID: 39343278 DOI: 10.1016/j.ijbiomac.2024.136109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The utilization of silk cocoons in the production of lightweight and tough composites has been gaining increasing attention. However, the limited applications of normal silk cocoons (NSC) are attributed to their small size and irregular shape. To overcome this deficiency, flat silk cocoons (FSC) with a similar structure and controllable size were prepared. Next, we systematically characterized and compared the microstructures, morphologies, compositions, thermal properties, and mechanical properties of FSC with NSC. Subsequently, FSC was successfully utilized to fabricate a novel silk fibroin fiber reinforced sericin matrix composite (HPFSC) using a hot pressing method, followed by the analysis of its microstructure evolution, mechanical properties, failure modes, and theoretical modeling. This composite has outstanding mechanical properties including hardness, modulus, and strength. HPFSC has a relatively low density of ~1.3 g/cm3, whose absorbed impact energy can reach a maximum value of 11.1 J/mm, exceeding that of most engineering materials, such as aluminum alloy, ceramics, glass, and carbon fiber composites. The exceptional performance of HPFSC can be attributed to the reduced porosity, enhanced bonding between silk fibroin fibers facilitated by sericin, and their structural transformation. This study offers valuable guidance for the fabrication of lightweight and impact-resistant composites using flat silk cocoons.
Collapse
Affiliation(s)
- Jiaxing Shao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Yulong Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Zhihui Hou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Tonghua Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
| | - Lan Cheng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
44
|
Zhang D, Zhao L, Cui X, Li X, Qian Z, Zhou X, Ma Z, Takriff MS, Li Z, Niu Y, Ma G, Ding G, Wang Z. Silkworm cocoon bionic design in wound dressings: A novel hydrogel with self-healing and antimicrobial properties. Int J Biol Macromol 2024; 280:136114. [PMID: 39343273 DOI: 10.1016/j.ijbiomac.2024.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hydrogels with rapid wound-healing capabilities and antimicrobial effects are gaining significant interest in related fields. Nonetheless, developing a multifunctional hydrogel wound dressing with injectable self-assembling, self-healing, antimicrobial properties, and efficient skin wound-healing capabilities remained a formidable challenge. In this experiment, we drew inspiration from silkworm cocoons' natural formation and protective mechanisms, employing a novel physical cross-linking method to create an injectable and self-healing quaternary hydrogel successfully. The hydrogel is based on a matrix of silk fibroin/silk sericin (SF/SS), with 1,2-dimyristoyl-sn-glycero-3-phosphate sodium salt (DMPG) serving as a physical cross-linking agent to form the hydrogel network structure, and the incorporation of silver nanoparticles (AgNPs) further enhances its antimicrobial capabilities. Our biomimetic hydrogel, which replicated the chemical properties of silkworm cocoons, demonstrated excellent hydrophilicity with a water contact angle that ranged from 37 to 52°. Its tensile and compressive resistance was approximately four times greater than that of a pure SF hydrogel, and its swelling performance was about three times higher than that of a pure SF hydrogel. Furthermore, the hydrogel exhibited an impressive bacterial inhibition rate of over 98 % in bacterial growth and inhibition experiments, which provided a solid foundation for accelerating wound healing. Likewise, experiments with mice and histological analyses revealed that on day 7, the expression of TNF-α and IL-1β in the wound tissues treated with the SF/SS/AgNPs hydrogel was significantly reduced by >25 % compared to the blank control group. This reduction indicates that the hydrogel could decrease the production of inflammatory cytokines, potentially aiding in the acceleration of wound healing and mitigation of inflammation-related adverse reactions. By day 14, the wounds were healed mainly, with the wound area reduced by 17 % compared to that of the blank group. This demonstrates the significant potential of this cocoon-mimetic hydrogel in accelerating wound healing and providing wound protection.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, PR China; Gansu Tech Innovation Center of Animal Cell, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China
| | - Xiaohu Cui
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Xinpeng Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zhisong Qian
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Xueyan Zhou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, PR China; Gansu Tech Innovation Center of Animal Cell, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China
| | - Mohd Sobri Takriff
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Zhiqiang Li
- Department of Medicine Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Ying Niu
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, PR China
| | - Guilan Ma
- Lanzhou Minhai Bioengineering Co., Ltd, Lanzhou, Gansu 730030, PR China
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, PR China; Gansu Tech Innovation Center of Animal Cell, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China.
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou, Gansu 730030, PR China; Gansu Tech Innovation Center of Animal Cell, Northwest Minzu University, Lanzhou 730030, PR China; Gannan Research Institute of Yak Milk, Hezuo, Gansu 747000, PR China.
| |
Collapse
|
45
|
Shibata M, Okahisa Y. Tough gelatine hydrogels reinforced with silk fibroin nanofiber. Heliyon 2024; 10:e39101. [PMID: 39640684 PMCID: PMC11620089 DOI: 10.1016/j.heliyon.2024.e39101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Gelatine hydrogels exhibit potential as biomaterials such as wound-healing materials, artificial organs, scaffolds for cell culture and drug delivery systems because of their good biocompatibility. However, their practical applications are limited by their poor mechanical properties and high degradability. In this study, mechanically fibrillated silk fibroin (fibroin nanofibers; FNF) was used to reinforce gelatine hydrogels. The resulting gelatine hydrogels with FNF exhibited enhanced toughness compared to those reinforced with conventional aqueous regenerated fibroin (RF), which were prepared by treatment with a highly concentrated LiBr solvent or a neat gelatine hydrogel while retaining their softness. The average pore size of the gelatine hydrogel was 2.2 μm, while the gelatine hydrogel containing 25 % FNF expanded to 6.7 μm. A web-like network was formed between the pores. The addition of FNF increased the relative β-sheet contents in the hydrogels to 60.3 %, suggesting that this may have caused structural changes such as increased crystallinity for gelatine-derived proteins. Furthermore, the addition of FNF inhibited the rapid enzymatic degradation of gelatine hydrogels. FNF, which can be easily prepared in water, is a safe material for both the environment and living organisms and holds promise as a biomaterial in the future.
Collapse
Affiliation(s)
- Maho Shibata
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yoko Okahisa
- Fibre Science and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
46
|
Jiang X, Jian Y, Zhang Y, Zhong J, Li Q, Wang X, Jia X, Wu X, Zhao K, Yao Y. Dual-Mode Release of IL-4 and TCP from a PGA-SF Core-Shell Electrospinning Scaffold for Enhanced Bone Regeneration through Synergistic Immunoregulation and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58148-58167. [PMID: 39279657 DOI: 10.1021/acsami.4c08996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The successful filling of bone defects remains challenging due to the incongruity between bone graft materials and the dynamic process of bone healing. Developing multifunctional materials matching the dynamic process of bone healing offers a viable solution to the current dilemma. Lines of evidence have shown that engineering osteoimmunomodulatory biomaterials can modulate the function of immune cells and thus promote bone regeneration. Herein, we utilized silk fibroin (SF) and polyglycolic acid (PGA) to create a PGA-SF core-shell fibrous scaffold, incorporating interleukin-4 (IL-4) and tricalcium phosphate (TCP) as a codelivery system (PGA/TCP-SF/IL-4), aiming to achieve an initial rapid release of IL-4 and sustained release of TCP. The PGA/TCP-SF/IL-4 scaffold mimicked the native bone structure and showed superior tenacity in the wetting regime. In vitro studies demonstrated that the PGA/TCP-SF/IL-4 scaffold significantly reduced the inflammatory response by upregulating the M2 macrophages, created a favorable microenvironment for osteogenesis, and facilitated osteogenic differentiation and mineralization. Implantation of the PGA/TCP-SF/IL-4 scaffold into the rat skull defect model notably increased the formation of new bones. IL-4 and TCP acted synergistically in attenuating inflammation and enhancing osteogenic differentiation. Overall, this multifunctional scaffold comprehensively considers the various demands in the bone defect region, which might have a significant potential for application in bone reconstruction.
Collapse
Affiliation(s)
- Xiao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Yutao Jian
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Yuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Qiulan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Xiaodong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| |
Collapse
|
47
|
Wigham C, Fink TD, Sorci M, O'Reilly P, Park S, Kim J, Varude VR, Zha RH. Phosphate-Driven Interfacial Self-Assembly of Silk Fibroin for Continuous Noncovalent Growth of Nanothin Defect-Free Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58121-58134. [PMID: 39413432 DOI: 10.1021/acsami.4c07528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Silk fibroin is a fiber-forming protein derived from the thread of Bombyx mori silkworm cocoons. This biocompatible protein, under the kosmotropic influence of potassium phosphate, can undergo supramolecular self-assembly driven by a random coil to β-sheet secondary structure transition. By leveraging concurrent nonspecific adsorption and self-assembly of silk fibroin, we demonstrate an interfacial phenomenon that yields adherent, defect-free nanothin protein coatings that grow continuously in time, without observable saturation in mass deposition. This noncovalent growth of silk fibroin coatings is a departure from traditionally studied protein adsorption phenomena, which generally yield adsorbed layers that saturate in mass with time and often do not completely cover the surface. Here, we explore the fundamental mechanisms of coating growth by examining the effects of coating solution parameters that promote or inhibit silk fibroin self-assembly. Results show a strong dependence of coating kinetics and structure on solution pH, salt species, and salt concentration. Moreover, coating growth was observed to occur in two stages: an early stage driven by protein-surface interactions and a late stage driven by protein-protein interactions. To describe this phenomenon, we developed a kinetic adsorption model with Langmuir-like behavior at early times and a constant steady-state growth rate at later times. Structural analysis by FTIR and photoinduced force microscopy show that small β-sheet-rich structures serve as anchoring sites for absorbing protein nanoaggregates, which is critical for coating formation. Additionally, β-sheets are preferentially located at the interface between protein nanoaggregates in the coating, suggesting their role in forming stable, robust coatings.
Collapse
Affiliation(s)
- Caleb Wigham
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tanner D Fink
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mirco Sorci
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Sung Park
- Molecular Vista, San Jose, California 95119, United States
| | - Jeongae Kim
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Vrushali R Varude
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
48
|
Numata K, Kaplan DL. Silk Proteins: Designs from Nature with Multipurpose Utility and Infinite Future Possibilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411256. [PMID: 39468893 DOI: 10.1002/adma.202411256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Indexed: 10/30/2024]
Abstract
This is a Perspective on nature as a story-teller, where inputs of evolution drove the remarkable protein designs found in silks. This selection process has resulted in silk materials with novel chemistry and properties to support organism survival in nature, yet with newfound utility in everything from comic books and automobiles to medicine. With growing global concerns related to environmental health, silks also serve as an invaluable instructional guide to the future of sustainable material designs.
Collapse
Affiliation(s)
- Keiji Numata
- Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 6158510, Japan
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Colby, Medford, MA, 2155, USA
| |
Collapse
|
49
|
Puthiya Veettil J, Sasikumar Lolitha D, Ramesan RM, Parameswaran R, Payanam Ramachandra U. A Nontoxic and Biocompatible Method for Augmenting Mechanical Strength of Acellular Matrix by Silk Fibroin Impregnation. ACS APPLIED BIO MATERIALS 2024; 7:6665-6681. [PMID: 39300902 DOI: 10.1021/acsabm.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Biological scaffolds are plagued by poor biomechanical properties and untimely degradation. These limitations have yet to be addressed without compromising their biocompatibility. It is desirable to avoid inflammation and have degradation with concomitant host collagen deposition or even site-appropriate in situ regeneration for the successful outcome of an implanted biological scaffold. This work aims to achieve this by utilizing a biocompatible method to modify acellular scaffolds by impregnating alkaline-catalyzed citric acid (CA) cross-linking between the extracellular matrix proteins and silk fibroin (SF)/SF-gelatin (SFG) blends. Combinatorial detergent decellularization was employed to prepare a decellularized porcine liver scaffold (DPL). After proving the decellularization efficiency, the scaffold underwent modification by vacuum impregnation with CA containing SF (SF100DPL) and SFG blends (SFG5050DPL and SFG3070DPL) following pre-cross-linking, drying, and post-cross-linking. The subsequent strength augmentation was demonstrated by significant improvement in tensile strength from 2.4 ± 0.4 MPa (DPL) to, 3.8 ± 0.7 MPa (SF100DPL), 3.4 ± 0.7 MPa (SFG5050DPL), and 3.5 ± 0.2 MPa (SFG3070DPL); Young's modulus from 8.7 ± 1.8 MPa (DPL) to 20 ± 1.9 MPa (SF100DPL), 13.3 ± 2.6 MPa (SFG5050DPL), and 16 ± 1.2 MPa (SFG3070DPL); and suture retention strength from 0.9 ± 0.08 MPa (DPL) to 2.3 ± 0.2 MPa (SF100DPL), 2.8 ± 1.2 MPa (SFG5050DPL), and 2.6 ± 0.9 MPa (SFG3070DPL). The degradation resistance of the modified scaffolds was also markedly improved. Being cytocompatible, its ability to incite tolerable inflammatory and immune responses was confirmed by rat subcutaneous implantation for 14, 30, and 90 days, in terms of inflammatory cell infiltration, neoangiogenesis, and in vitro cytokine release to assess B-cell and T-cell activation. Such ECM composite scaffolds with appropriate strength and biocompatibility offer great promise in soft tissue repair applications such as skin grafting.
Collapse
Affiliation(s)
- Jesna Puthiya Veettil
- Division of In-vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Devika Sasikumar Lolitha
- Division of In-vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Rekha Mannemcherril Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Umashankar Payanam Ramachandra
- Division of In-vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
50
|
Hemalatha T, Aarthy M, Sundarapandiyan A, Ayyadurai N. Bioengineered Silk Fibroin Hydrogel Reinforced with Collagen-Like Protein Chimeras for Improved Wound Healing. Macromol Biosci 2024:e2400346. [PMID: 39422581 DOI: 10.1002/mabi.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
The study investigates the potentials of the rapid crosslinking hydrogel concoction comprising of natural silk fibroin (SF) and recombinant tailorable collagen-like protein with binding domains for wound repair. The formation of dityrosine crosslinks between the tyrosine moieties augments the formation of stable hydrogels, in the presence of the cytocompatible photo-initiator riboflavin and visible light. This uniquely engineered PASCH (Photo-activated silk fibroin and tailor-made collagen-like protein hydrogel) confers the key advantage of improved biological properties over the control hydrogels comprising only of SF. The physico-chemical characterization of the hydrogels with respect to crosslinking, modulus, and thermal stability delineates the ascendancy of PASCH 7:3 over other combinations. Furthermore, the hybrid protein hydrogel proves to be a favorable cellular matrix as it enhances cell adhesion, elongation, growth, and proliferation in vitro. Time-lapse microscopy studies reveal an enhanced wound closure in human endothelial cell monolayer (EA.hy926), while the gene expression studies portray the dynamic interplay of cytokines and growth factors in the wound milieu facilitating the repair and regeneration of cells, sculpted by the proteins. The results demonstrate the improved physical and biological properties of fabricated PASCH, depicting their synergism, and implying their competency for use in tissue engineering applications.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Ashokraj Sundarapandiyan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| |
Collapse
|