1
|
Zhang J, Sheng X, Ding Q, Wang Y, Zhao J, Zhang J. Subretinal fibrosis secondary to neovascular age-related macular degeneration: mechanisms and potential therapeutic targets. Neural Regen Res 2025; 20:378-393. [PMID: 38819041 PMCID: PMC11317958 DOI: 10.4103/nrr.nrr-d-23-01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration. It causes local damage to photoreceptors, retinal pigment epithelium, and choroidal vessels, which leads to permanent central vision loss of patients with neovascular age-related macular degeneration. The pathogenesis of subretinal fibrosis is complex, and the underlying mechanisms are largely unknown. Therefore, there are no effective treatment options. A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments. The current article reviews several aspects of subretinal fibrosis, including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis; multimodal imaging techniques for subretinal fibrosis; animal models for studying subretinal fibrosis; cellular and non-cellular constituents of subretinal fibrosis; pathophysiological mechanisms involved in subretinal fibrosis, such as aging, infiltration of macrophages, different sources of mesenchymal transition to myofibroblast, and activation of complement system and immune cells; and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis, such as vascular endothelial growth factor, connective tissue growth factor, fibroblast growth factor 2, platelet-derived growth factor and platelet-derived growth factor receptor-β, transforming growth factor-β signaling pathway, Wnt signaling pathway, and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10. This review will improve the understanding of the pathogenesis of subretinal fibrosis, allow the discovery of molecular targets, and explore potential treatments for the management of subretinal fibrosis.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Xia Sheng
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Quanju Ding
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Yujun Wang
- Department of Urology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
2
|
Xu S, Li J, Long K, Wang W. Reactive Oxygen Species Responsive Supramolecular Prodrug Eyedrops for the Treatment of Choroidal Neovascularization. NANO LETTERS 2024. [PMID: 39466057 DOI: 10.1021/acs.nanolett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Choroidal neovascularization (CNV) represents a hallmark of neovascular fundus diseases, including age-related macular degeneration and diabetic retinopathy. Traditional eyedrops have encountered formidable challenges in treating CNV, primarily due to their extremely poor intraocular bioavailability and potential adverse off-target effects. Herein, an ocular-permeable supramolecular prodrug eyedrop (Di-DAS/P-PCD) has been developed for the on-demand delivery of antiangiogenic agents in the oxidative microenvironment of CNV. The eyedrop nanoformulation is composed of cell-penetrating peptide-modified PEGylated cyclodextrin (P-PCD) and reactive oxygen species (ROS)-sensitive antiangiogenic dasatinib prodrug Di-DAS. In a laser-induced CNV mouse model, daily instillation of Di-DAS/P-PCD has achieved remarkable penetration into the choroid and significantly suppressed CNV growth while exhibiting a good biocompatibility profile. Our results highlight the potential of the supramolecular prodrug eyedrops as a versatile approach for the targeted treatment of CNV and other neovascular eye disorders.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Xu S, Li J, Long K, Liang X, Wang W. Light-Activated Anti-Vascular Combination Therapy against Choroidal Neovascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404218. [PMID: 39206706 PMCID: PMC11516295 DOI: 10.1002/advs.202404218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Choroidal neovascularization (CNV) underlies the crux of many angiogenic eye disorders. Although medications that target vascular endothelial growth factor (VEGF) are approved for treating CNV, their effectiveness in destroying new blood vessels is limited, and invasive intravitreal administration is required. Additionally, other drugs that destroy established neovessels, such as combretastatin A-4, may have systemic side effects that limit their therapeutic benefits. To overcome these shortcomings, a two-pronged anti-vascular approach is presented for CNV treatment using a photoactivatable nanoparticle system that can release a VEGF receptor inhibitor and a vascular disrupting agent when irradiated with 690 nm light. The nanoparticles can be injected intravenously to enable anti-angiogenic and vascular disrupting combination therapy for CNV through light irradiation to the eyes. This approach can potentiate therapeutic effects while maintaining a favorable biosafety profile for choroidal vascular diseases.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Jia Li
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Xiaoling Liang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhou510060China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| |
Collapse
|
4
|
Stark AK, Penn JS. Prostanoid signaling in retinal vascular diseases. Prostaglandins Other Lipid Mediat 2024; 174:106864. [PMID: 38955261 DOI: 10.1016/j.prostaglandins.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.
Collapse
Affiliation(s)
- Amy K Stark
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - John S Penn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Lee D, Tomita Y, Miwa Y, Kunimi H, Nakai A, Shoda C, Negishi K, Kurihara T. Recent Insights into Roles of Hypoxia-Inducible Factors in Retinal Diseases. Int J Mol Sci 2024; 25:10140. [PMID: 39337623 PMCID: PMC11432567 DOI: 10.3390/ijms251810140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcriptional factors that function as strong regulators of oxygen homeostasis and cellular metabolisms. The maintenance of cellular oxygen levels is critical as either insufficient or excessive oxygen affects development and physiologic and pathologic conditions. In the eye, retinas have a high metabolic demand for oxygen. Retinal ischemia can cause visual impairment in various sight-threating disorders including age-related macular degeneration, diabetic retinopathy, and some types of glaucoma. Therefore, understanding the potential roles of HIFs in the retina is highly important for managing disease development and progression. This review focuses on the physiologic and pathologic roles of HIFs as regulators of oxygen homeostasis and cellular metabolism in the retina, drawing on recent evidence. Our summary will promote comprehensive approaches to targeting HIFs for therapeutic purposes in retinal diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Laboratory of Chorioretinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Laboratory of Chorioretinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Aichi Animal Eye Clinic, Aichi 464-0027, Japan
| | - Hiromitsu Kunimi
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Kwon YS, Han Z. Advanced nanomedicines for the treatment of age-related macular degeneration. NANOSCALE 2024; 16:16769-16790. [PMID: 39177654 DOI: 10.1039/d4nr01917b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The critical and unmet medical need for novel therapeutic advancements in the treatment of age-related macular degeneration (AMD) cannot be overstated, particularly given the aging global population and the increasing prevalence of this condition. Current AMD therapy involves intravitreal treatments that require monthly or bimonthly injections to maintain optimal efficacy. This underscores the necessity for improved approaches, prompting recent research into developing advanced drug delivery systems to prolong the intervals between treatments. Nanoparticle-based therapeutic approaches have enabled the controlled release of drugs, targeted delivery of therapeutic materials, and development of smart solutions for the harsh microenvironment of diseased tissues, offering a new perspective on ocular disease treatment. This review emphasizes the latest pre-clinical treatment options in ocular drug delivery to the retina and explores the advantages of nanoparticle-based therapeutic approaches, with a focus on AMD, the leading cause of irreversible blindness in the elderly.
Collapse
Affiliation(s)
- Yong-Su Kwon
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | - Zongchao Han
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Dong X, Song Y, Liu Y, Kou X, Yang T, Shi SX, He K, Li Y, Li Z, Yao X, Guo J, Cui B, Wu Z, Lei Y, Du M, Chen M, Xu H, Liu Q, Shi FD, Wang X, Yan H. Natural killer cells promote neutrophil extracellular traps and restrain macular degeneration in mice. Sci Transl Med 2024; 16:eadi6626. [PMID: 39141700 DOI: 10.1126/scitranslmed.adi6626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Neovascular age-related macular degeneration (nvAMD) is the leading cause of blindness in the elderly population. Although it is known that nvAMD is associated with focal inflammation, understanding of the precise immune components governing this process remains limited. Here, we identified natural killer (NK) cells as a prominent lymphocyte population infiltrating the perivascular space of choroidal neovascularization (CNV) lesions in patients with nvAMD and in mouse models. Olink proteomic analysis and single-cell RNA sequencing combined with knockout studies demonstrated the involvement of C-C chemokine receptor 5 (CCR5) in NK cell recruitment and extravasation at the CNV sites of mice. Depletion of NK cells or inhibition of activating receptor NK group 2, member D (NKG2D) inhibited the formation of neutrophil extracellular traps, increased vascular leakage, and exacerbated pathological angiogenesis, indicating that NK cells restrain pathogenesis in this mouse model. Age is the strongest risk factor for AMD, and we show that NK cells from aged human donors exhibited a less cytotoxic phenotype. NK cells from old mice exhibited compromised protective effects in the CNV mouse model. In addition, interleukin-2 complex-mediated expansion of NK cells improved CNV formation in mice. Collectively, our study highlights NK cells as a potential therapeutic target for patients with nvAMD.
Collapse
Affiliation(s)
- Xue Dong
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yinting Song
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuming Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuejing Kou
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianjing Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Samuel X Shi
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70122, USA
| | - Kai He
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiming Li
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ziqi Li
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xueming Yao
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ju Guo
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bohao Cui
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yi Lei
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mei Du
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaohong Wang
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hua Yan
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wang S, Liu Y, Xu D, Pei K, Jiang H, Gong L, Zeng W, Liu Y, Wu S. Effects of Topic Delivery of an Inhibitor of Serine Racemase on Laser-Induced Choroidal Vasculopathy. Transl Vis Sci Technol 2024; 13:24. [PMID: 39136959 PMCID: PMC11323986 DOI: 10.1167/tvst.13.8.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose Intravitreal injection of anti-VEGF antibodies remains the primary therapy for exudative age-related macular degeneration (exAMD), although its efficacy is limited. Previous research has demonstrated that both a loss-of-function mutation of srr and the intravenous injection of a serine racemase inhibitor, L-aspartic acid β-hydroxamate (L-ABH), significantly inhibit laser-induced choroidal neovascularization (CNV) in mice. Given that L-ABH is a small molecule, this study investigated the effects of L-ABH administered via eye drops on CNV, aiming to develop a noninvasive treatment strategy for exAMD. Methods CNV models in mice and rhesus macaques were established through laser photocoagulation. Seven monkeys were randomly assigned to receive either saline solution or L-ABH eye drops. Intraperitoneal or intravenous injection of fluorescein characterized CNV in both mice and monkeys. Fluorescein fundus angiography was used to assess leakage, whereas optical coherence tomography measured retinal thickness in the monkeys. Results L-ABH eye drops significantly reduced fluorescein leakage in laser-injured mice (P < 0.001 compared to saline). In laser-injured rhesus macaques, the average percent changes in leakage areas treated with L-ABH were 2.5% ± 25.8% (P = 0.004) and 1.5% ± 75.7% (P = 0.023 compared to saline solution) on day 14 and day 28, respectively. However, L-ABH eye drops did not significantly affect the number of grade IV laser spots or retinal thickness, whereas bevacizumab did. Conclusions This study demonstrates the potential efficacy of an SRR inhibitor in two animal models of laser-induced CNV. Translational Relevance This represents the first investigation into the effects of topical delivery of an SRR inhibitor on CNV.
Collapse
Affiliation(s)
- Simin Wang
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dehuan Xu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kaifan Pei
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyan Jiang
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Li Gong
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech., Ltd., Ya'an, Sichuan Province, China
| | - Wen Zeng
- PriMed Non-human Primate Research Center of Sichuan PriMed Shines Bio-tech., Ltd., Ya'an, Sichuan Province, China
| | - Yimei Liu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shengzhou Wu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science; Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Preya UH, Sayed S, Nguyen NL, Kim JT. Potential role of CTSS in AMDImmune modulatory and anti-angiogenic effects of cathepsin S knockdown in ARPE-19 cells. Exp Eye Res 2024; 245:109981. [PMID: 38914301 DOI: 10.1016/j.exer.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
We aimed to determine the role of cathepsin S (CTSS) in modulating oxidative stress-induced immune and inflammatory reactions and angiogenesis in age-related macular degeneration. Human retinal pigment epithelium cells line ARPE-19 (immature) were maintained and treated with H2O2. The expression of CTSS, inflammatory cytokines, and complement factors induced by oxidative stress was compared between cells incubated without (control) and with CTSS knockdown (using small interfering ribonucleic acid; siRNA). To evaluate the role of CTSS in angiogenesis, we assayed tube formation using human umbilical vein endothelial cells and conditioned medium from ARPE-19 cells. We also used a mouse model of laser-induced choroidal neovascularization. CTSS levels were higher in ARPE-19 cells treated with H2O2 than in control cells. Oxidative stress-induced CTSS resulted in significantly elevated transcription of nuclear factor kappa B-dependent inflammatory cytokines, complement factors C3a and C5a, membrane attack complex (C5b-9), and C3a and C5a receptors. siRNA-mediated knockdown of CTSS reduced the number of inflammatory signals. Furthermore, oxidative stress-induced CTSS regulated the expression of peroxisome proliferator-activated receptor γ and vascular endothelial growth factor A/Akt serine/threonine kinase family signaling, which led to angiogenesis. Tube formation assays and mouse models of choroidal neovascularization revealed that CTSS knockdown ameliorated angiogenesis in vitro and in vivo. The present findings suggest that CTSS modulates the complement pathway, inflammatory reactions, and neovascularization, and that CTSS knockdown induces potent immunomodulatory effects. Hence, it could be a promising target for the prevention and treatment of early- and late-stage age-related macular degeneration.
Collapse
Affiliation(s)
- Umma Hafsa Preya
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Shithima Sayed
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Ngoc Lan Nguyen
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jee Taek Kim
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea; Chung-Ang University Hospital, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Lee Y, Kim D, Chung PED, Lee M, Kim N, Chang J, Lee BC. Pre-Clinical Studies of a Novel Bispecific Fusion Protein Targeting C3b and VEGF in Neovascular and Nonexudative AMD Models. Ophthalmol Ther 2024; 13:2227-2242. [PMID: 38907092 PMCID: PMC11246403 DOI: 10.1007/s40123-024-00982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION KNP-301 is a bi-specific fragment crystallizable region (Fc) fusion protein, which inhibits both C3b and vascular endothelial growth factor (VEGF) simultaneously for patients with late-stage age-related macular degeneration (AMD). The present study evaluated in vitro potency, in vivo efficacy, intravitreal pharmacokinetics (IVT PK), and injectability of KNP-301. METHODS C3b and VEGF binding of KNP-301 were assessed by surface plasmon resonance (SPR) and enzyme-linked immunosorbent assay (ELISA), and cellular bioassays. A laser-induced choroidal neovascularization (CNV) model and a sodium iodate-induced nonexudative AMD model were used to test the in vivo efficacy of mouse surrogate of KNP-301. Utilizing fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT) scans, the reduction in disease lesions were analyzed in a CNV mouse model. In the nonexudative AMD mouse model, outer nuclear layer (ONL) was assessed by immunofluorescence staining. Lastly, intravitreal pharmacokinetic study was conducted with New Zealand white rabbits via IVT administration of KNP-301 and injectability of KNP-301 was examined by a viscosity test at high concentrations. RESULTS KNP-301 bound C3b selectively, which resulted in a blockade of the alternative pathway, not the classical pathway. KNP-301 also acted as a VEGF trap, impeding VEGF-mediate signaling. Our dual-blockade strategy was effective in both neovascular and nonexudative AMD models. Moreover, KNP-301 had an advantage of potentially less frequent dosing due to the long half-life in the intravitreal chamber. Our viscosity assessment confirmed that KNP-301 meets the criteria of the IVT injection. CONCLUSIONS Unlike current therapies, KNP-301 is expected to cover patients with late-stage AMD of both neovascular and nonexudative AMD, and its long-term PK profile at the intravitreal chamber would allow convenience in the dosing interval of patients.
Collapse
Affiliation(s)
- Yeri Lee
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Donggeon Kim
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Philip E D Chung
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Minkyeong Lee
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Nahmju Kim
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Jihoon Chang
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Byoung Chul Lee
- KANAPH Therapeutics Inc., 3, Itaewon-ro 55ga-gil, Yongsan-gu, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Lima Barrientos J, Rojas Huerta A, Perez Mendoza A, Abreu Lopez BA, Salolin Vargas VP, Garcia Gonzalez OY, Saldaña Ruiz MA, Diarte E, Torijano Sarria AJ. The Relationship Between Gut Microbiome and Ophthalmologic Diseases: A Comprehensive Review. Cureus 2024; 16:e66808. [PMID: 39280427 PMCID: PMC11392598 DOI: 10.7759/cureus.66808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiome has been studied in recent years due to its association with various pathological pathways involved in different diseases, caused by its structure, function, and diversity alteration. The knowledge of this mechanism has generated interest in the investigation of its relationship with ophthalmologic diseases. Recent studies infer the existence of a gut-eye microbiota axis, influenced by the intestinal barrier, the blood-retina barrier, and the immune privilege of the eye. A common denominator among ophthalmologic diseases that have been related to this axis is inflammation, which is perpetuated by dysbiosis, causing an alteration of the intestinal barrier leading to increased permeability and, in turn, the release of components such as lipopolysaccharides (LPS), trimethylamine oxide (TMAO), and bacterial translocation. Some theories explain that depending on how the microbiome is composed, a different type of T cells will be activated, while others say that some bacteria can pre-activate T cells that mimic ocular structures and intestinal permeability that allow leakage of metabolites into the circulation. In addition, therapies such as probiotics, diet, and fecal microbiota transplantation (FMT) have been shown to favor the presence of a balanced population of microorganisms that limit inflammation and, in turn, generate a beneficial effect in these eye pathologies. This review aims to analyze how the intestinal microbiome influences various ocular pathologies based on microbial composition and pathological mechanisms, which may provide a better understanding of the diseases and their therapeutic potential.
Collapse
Affiliation(s)
| | - Anahi Rojas Huerta
- General Practice, Benemérita Universidad Autónoma de Puebla, Puebla, MEX
| | | | | | | | | | | | - Edna Diarte
- Medicine, Universidad Autónoma de Sinaloa, Culiacan, MEX
| | | |
Collapse
|
12
|
Chen X, Qin X, Bai W, Ren J, Yu Y, Nie H, Li X, Liu Z, Huang J, Li J, Yao J, Jiang Q. Kavain Alleviates Choroidal Neovascularization Via Decreasing the Activity of the HIF-1α/VEGF-A/VEGFR2 Signaling Pathway and Inhibiting Inflammation. Adv Pharm Bull 2024; 14:469-482. [PMID: 39206403 PMCID: PMC11347728 DOI: 10.34172/apb.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) is a prevalent cause of blindness in the elderly. Standard treatment includes anti-vascular endothelial growth factor (anti-VEGF) drugs, such as aflibercept. However, anti-VEGF drugs may have limited efficacy and cause drug resistance. This study explores whether Kavain, an anti-inflammatory molecule from Piper methysticum, can treat choroidal neovascularization (CNV). Methods Various experiments were conducted to assess the Kavain's toxicity. The impact of Kavain on in vitro cultured endothelial cells was examined through 5-ethynyl-20-deoxyuridine (EdU) assays, transwell migration assays, and tube formation assays. The therapeutic effects of Kavain on CNV were investigated using a laser-induced CNV mice model. To elucidate the mechanism of Kavain, network pharmacology analysis, molecular docking, and western blots were performed. Results Kavain exhibited no apparent toxicity both in vitro and in vivo. Kavain significantly decreased endothelial cell viability, proliferation, migration, and tube formation ability in a dose-dependent manner compared to the hypoxia groups (P<0.05). Kavain alleviated CNV in the laser-induced CNV mouse model compared to the control groups (P<0.05). These effects were statistically significantly enhanced in the Kavain plus aflibercept groups (P<0.05). Following Kavain administration, the expression levels of various inflammatory factors were markedly reduced in retinal pigment epithelium (RPE)/choroid complexes (P<0.05). Mechanistically, Kavain decreased the activity of the hypoxia-inducible factor 1α (HIF-1α)/VEGF-A/ VEGF receptor 2 (VEGFR2) signaling pathway. Conclusion Our study is the first to demonstrate Kavain's potential as a promising treatment for nAMD, owing to its dual effects of anti-inflammation and anti-angiogenesis.
Collapse
Affiliation(s)
- Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, 225001, China
| | - Xun Qin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junsong Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiling Nie
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhangyu Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayu Huang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
13
|
Tahmasebi Sarvestani M, Chidlow G, Wood JP, Casson RJ. Effects of slit lamp-delivered retinal laser photobiomodulation in a rat model of choroidal neovascularization. Exp Eye Res 2024; 244:109909. [PMID: 38710357 DOI: 10.1016/j.exer.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Neovascular age-related macular degeneration, also known as exudative or wet age-related macular degeneration, is the leading cause of blindness in the developed world. Photobiomodulation has the potential to target the up-stream hypoxic and pro-inflammatory drivers of choroidal neovascularization. This study investigated whether photobiomodulation attenuates characteristic pathological features of choroidal neovascularization in a rodent model. Experimental choroidal neovascularization was induced in Brown Norway rats with laser photocoagulation. A custom-designed, slit-lamp-mounted, 670 nm laser was used to administer retinal photobiomodulation every 3 days, beginning 6 days prior to choroidal neovascularization induction and continuing until the animals were killed 14 days later. The effect of photobiomodulation on the size of choroidal neovascular membranes was determined using isolectin-B4 immunohistochemistry and spectral domain-optical coherence tomography. Vascular leakage was determined with fluorescein angiography. The effect of treatment on levels of vascular endothelial growth factor expression was quantified with enzyme-linked immunosorbent assay. Treatment with photobiomodulation was associated with choroidal neovascular membranes that were smaller, had less fluorescein leakage, and a diminished presence of inflammatory cells as compared to sham eyes. These effects were not associated with a statistically significant difference in the level of vascular endothelial growth factor when compared to sham eyes. The data shown herein indicate that photobiomodulation attenuates pathological features of choroidal neovascularization in a rodent model by mechanisms that may be independent of vascular endothelial growth factor.
Collapse
Affiliation(s)
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
| | - John P Wood
- Ophthalmic Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Ni B, Yang Z, Zhou T, Zhou H, Zhou Y, Lin S, Xu H, Lin X, Yi W, He C, Liu X. Therapeutic intervention in neuroinflammation for neovascular ocular diseases through targeting the cGAS-STING-necroptosis pathway. J Neuroinflammation 2024; 21:164. [PMID: 38918759 PMCID: PMC11197344 DOI: 10.1186/s12974-024-03155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The microglia-mediated neuroinflammation have been shown to play a crucial role in the ocular pathological angiogenesis process, but specific immunotherapies for neovascular ocular diseases are still lacking. This study proposed that targeting GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) might be a novel immunotherapy for these angiogenesis diseases. We found a significant upregulation of CGAS and STING genes in the RNA-seq data derived from retinal tissues of the patients with proliferative diabetic retinopathy. In experimental models of ocular angiogenesis including laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), the cGAS-STING pathway was activated as angiogenesis progressed. Either genetic deletion or pharmacological inhibition of STING resulted in a remarkable suppression of neovascularization in both models. Furthermore, cGAS-STING signaling was specifically activated in myeloid cells, triggering the subsequent RIP1-RIP3-MLKL pathway activation and leading to necroptosis-mediated inflammation. Notably, targeted inhibition of the cGAS-STING pathway with C-176 or SN-011 could significantly suppress pathological angiogenesis in CNV and OIR. Additionally, the combination of C-176 or SN-011 with anti-VEGF therapy led to least angiogenesis, markedly enhancing the anti-angiogenic effectiveness. Together, our findings provide compelling evidence for the importance of the cGAS-STING-necroptosis axis in pathological angiogenesis, highlighting its potential as a promising immunotherapeutic target for treating neovascular ocular diseases.
Collapse
Affiliation(s)
- Biyan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ziqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Hong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yang Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shiya Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Huiyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaojing Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Ma Y, Zhang Y, Zhang HY, Zhao Y, Li XM, Jiang YF, Yao MD, Jiang Q, Yan B. Dual anti-angiogenic and anti-inflammatory action of tRNA-Cys-5-0007 in ocular vascular disease. J Transl Med 2024; 22:562. [PMID: 38867291 PMCID: PMC11167814 DOI: 10.1186/s12967-024-05338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-β1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.
Collapse
Affiliation(s)
- Yan Ma
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Hui-Ying Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Ya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Yi-Fei Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Mu-Di Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
16
|
Hector M, Langmann T, Wolf A. Translocator protein (18 kDa) (Tspo) in the retina and implications for ocular diseases. Prog Retin Eye Res 2024; 100:101249. [PMID: 38430990 DOI: 10.1016/j.preteyeres.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Translocator protein (18 kDa) (Tspo), formerly known as peripheral benzodiazepine receptor is a highly conserved transmembrane protein primarily located in the outer mitochondrial membrane. In the central nervous system (CNS), especially in glia cells, Tspo is upregulated upon inflammation. Consequently, Tspo was used as a tool for diagnostic in vivo imaging of neuroinflammation in the brain and as a potential therapeutic target. Several synthetic Tspo ligands have been explored as immunomodulatory and neuroprotective therapy approaches. Although the function of Tspo and how its ligands exert these beneficial effects is not fully clear, it became a research topic of interest, especially in ocular diseases in the past few years. This review summarizes state-of-the-art knowledge of Tspo expression and its proposed functions in different cells of the retina including microglia, retinal pigment epithelium and Müller cells. Tspo is involved in cytokine signaling, oxidative stress and reactive oxygen species production, calcium signaling, neurosteroid synthesis, energy metabolism, and cholesterol efflux. We also highlight recent developments in preclinical models targeting Tspo and summarize the relevance of Tspo biology for ocular and retinal diseases. We conclude that glial upregulation of Tspo in different ocular pathologies and the use of Tspo ligands as promising therapeutic approaches in preclinical studies underline the importance of Tspo as a potential disease-modifying protein.
Collapse
Affiliation(s)
- Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Tong M, Bai Y, Han X, Kong L, Ren L, Zhang L, Li X, Yao J, Yan B. Single-cell profiling transcriptomic reveals cellular heterogeneity and cellular crosstalk in choroidal neovascularization model. Exp Eye Res 2024; 242:109877. [PMID: 38537669 DOI: 10.1016/j.exer.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Choroidal neovascularization (CNV) is a hallmark of neovascular age-related macular degeneration (nAMD) and a major contributor to vision loss in nAMD cases. However, the identification of specific cell types associated with nAMD remains challenging. Herein, we performed single-cell sequencing to comprehensively explore the cellular diversity and understand the foundational components of the retinal pigment epithelium (RPE)/choroid complex. We unveiled 10 distinct cell types within the RPE/choroid complex. Notably, we observed significant heterogeneity within endothelial cells (ECs), fibroblasts, and macrophages, underscoring the intricate nature of the cellular composition in the RPE/choroid complex. Within the EC category, four distinct clusters were identified and EC cluster 0 was tightly associated with choroidal neovascularization. We identified five clusters of fibroblasts actively involved in the pathogenesis of nAMD, influencing fibrotic responses, angiogenic effects, and photoreceptor function. Additionally, three clusters of macrophages were identified, suggesting their potential roles in regulating the progression of nAMD through immunomodulation and inflammation regulation. Through CellChat analysis, we constructed a complex cell-cell communication network, revealing the role of EC clusters in interacting with fibroblasts and macrophages in the context of nAMD. These interactions were found to govern angiogenic effects, fibrotic responses, and inflammatory processes. In summary, this study reveals noteworthy cellular heterogeneity in the RPE/choroid complex and provides valuable insights into the pathogenesis of CNV. These findings will open up potential avenues for deep understanding and targeted therapeutic interventions in nAMD.
Collapse
Affiliation(s)
- Ming Tong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ling Ren
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Linyu Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
18
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
19
|
Zhang Y, Chu B, Fan Q, Song X, Xu Q, Qu Y. M2-type macrophage-targeted delivery of IKKβ siRNA induces M2-to-M1 repolarization for CNV gene therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102740. [PMID: 38458368 DOI: 10.1016/j.nano.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Choroidal Neovascularization (CNV) is capable of inciting recurrent hemorrhage in the macular region, severely impairing patients' visual acuity. During the onset of CNV, infiltrating M2 macrophages play a crucial role in promoting angiogenesis. To control this disease, our study utilizes the RNA interference (RNAi)-based gene therapy to reprogram M2 macrophages to the M1 phenotype in CNV lesions. We synthesize the mannose-modified siRNA-loaded liposome specifically targeting M2 macrophages to inhibit the inhibitory kappa B kinase β (IKKβ) gene involved in the polarization of macrophages, consequently modulating macrophage polarization state. In vitro and in vivo, the mannose-modified IKKβ siRNA-loaded liposome (siIKKβ-ML) has been proven to effectively target M2 macrophages to repolarize them to M1 phenotype, and inhibit the progression of CNV. Collectively, our findings elucidate that siIKKβ-ML holds the potential to control CNV by reprogramming the macrophage phenotype, indicating a promising therapeutic avenue for CNV management.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Baorui Chu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Fan
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xian Song
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Xu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi Qu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan 250012, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China.
| |
Collapse
|
20
|
Wu Y, Wang J, Pan T, Lei J, Fan Y, Wang J, Xu C, Gu Q, Wang X, Xiao T, Liu Q, Xie P, Hu Z. Human lens epithelial-secreted exosomes attenuate ocular angiogenesis via inhibiting microglial activation. Exp Eye Res 2024; 241:109837. [PMID: 38382576 DOI: 10.1016/j.exer.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
The lens is an avascular tissue, where epithelial cells (LECs) are the primary living cells. The role of LECs-derived exosomes (LEC-exos) is largely unknown. In our study, we determined the anti-angiogenic role of LEC-exos, manifested as regressed retinal neovascularization (NV) using the oxygen-induced retinopathy (OIR), and reduced choroidal NV size and pathological vascular leakage using the laser-induced choroidal neovascularization (laser-induced CNV). Furthermore, the activation and accumulation of microglia were also restricted by LEC-exos. Based on Luminex multiplex assays, the expressions of chemokines such as SCYB16/CXCL16, MCP-1/CCL2, I-TAC/CXCL11, and MIP 3beta/CCL19 were decreased after treatment with LEC-exos. Transwell assays showed that LEC-exos restricted the migration of the mouse microglia cell line (BV2 cells). After incubation with LEC-exos-treated BV2 cells, human umbilical vein endothelial cells (hUVECs) were collected for further evaluation using tube formation, Transwell assays, and 5-ethynyl-2'-deoxyuridine (EDU) assays. Using in vitro experiments, the pro-angiogenic effect of microglia was restricted by LEC-exos. Hence, it was investigated that LEC-exos attenuated ocular NV, which might attribute to the inhibition of microglial activation and accumulation.
Collapse
Affiliation(s)
- Yan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiagui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Department of Ophthalmology, Luhe People's Hospital of Nanjing, Nanjing, 211599, Jiangsu, China
| | - Ting Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jie Lei
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Changlin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xingxing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tianhao Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
21
|
Liu D, Du J, Xie H, Tian H, Lu L, Zhang C, Xu GT, Zhang J. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration. J Neuroinflammation 2024; 21:75. [PMID: 38532410 DOI: 10.1186/s12974-024-03068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a β-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFβ1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of β-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active β-catenin labeling. In vitro, Wnt5a/ROR1, active β-catenin, and some other Wnt signaling molecules were upregulated in the TGFβ1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active β-catenin, as well as the EMT in TGFβ1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS Our study reveals a reciprocal activation between Wnt5a and β-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
22
|
Chobisa D, Muniyandi A, Sishtla K, Corson TW, Yeo Y. Long-Acting Microparticle Formulation of Griseofulvin for Ocular Neovascularization Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306479. [PMID: 37940612 PMCID: PMC10939919 DOI: 10.1002/smll.202306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss in older adults. nAMD is treated with biologics targeting vascular endothelial growth factor; however, many patients do not respond to the current therapy. Here, a small molecule drug, griseofulvin (GRF), is used due to its inhibitory effect on ferrochelatase, an enzyme important for choroidal neovascularization (CNV). For local and sustained delivery to the eyes, GRF is encapsulated in microparticles based on poly(lactide-co-glycolide) (PLGA), a biodegradable polymer with a track record in long-acting formulations. The GRF-loaded PLGA microparticles (GRF MPs) are designed for intravitreal application, considering constraints in size, drug loading content, and drug release kinetics. Magnesium hydroxide is co-encapsulated to enable sustained GRF release over >30 days in phosphate-buffered saline with Tween 80. Incubated in cell culture medium over 30 days, the GRF MPs and the released drug show antiangiogenic effects in retinal endothelial cells. A single intravitreal injection of MPs containing 0.18 µg GRF releases the drug over 6 weeks in vivo to inhibit the progression of laser-induced CNV in mice with no abnormality in the fundus and retina. Intravitreally administered GRF MPs prove effective in preventing CNV, providing proof-of-concept toward a novel, cost-effective nAMD therapy.
Collapse
Affiliation(s)
- Dhawal Chobisa
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Integrated Product Development Organization, Innovation Plaza Dr. Reddy's Laboratories, Hyderabad, 500050, India
| | - Anbukkarasi Muniyandi
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Timothy W Corson
- Departments of Pharmacology & Toxicology and Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 West Stadium Avenue, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|
23
|
Shen J, Chen L, Lv X, Liu N, Miao Y, Zhang Q, Xiao Z, Li M, Yang Y, Liu Z, Chen Q. Emerging Co-Assembled and Sustained Released Natural Medicinal Nanoparticles for Multitarget Therapy of Choroidal Neovascularization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314095. [PMID: 38344832 DOI: 10.1002/adma.202314095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Age-related macular degeneration (AMD) disease has become a worldwide senile disease, and frequent intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the mainstream treatment in the clinic, which is associated with sight-threatening complications. Herein, nintedanib, an inhibitor of angiogenesis, and lutein, a potent antioxidant, can co-assemble into nanoparticles through multiple noncovalent interactions. Interestingly, the co-assembled lutein/nintedanib nanoparticles (L/N NPs) exhibit significantly improved stability and achieve long-term sustained release of two drugs for at least two months in mice. Interestingly, in rabbit eyeball with a more complete barrier system, the L/N NPs still successfully distribute in the retina and choroid for a month. In the laser-induced mouse choroidal neovascularization model, the L/N NPs after a minimally invasive subconjunctival administration can successfully inhibit angiogenesis and achieve comparable and even better therapeutic results to that of standard intravitreal injection of anti-VEGF. Therefore, the subconjunctival injection of L/N NPs with long-term sustained drug release behavior represents a promising and innovative strategy for AMD treatment. Such minimally invasive administration together with the ability to effectively inhibit angiogenesis reduce inflammation and counteract oxidative stress and holds great potential for improving patient outcomes and quality of life in those suffering from this debilitating eye condition.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Linfu Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xinying Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Nanhui Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yu Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhisheng Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Maoyi Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yang Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Wu X, Yang X, Dai X, Chen X, Shen M, Dai J, Yuan F, Wang L, Yuan Y, Feng Y. 5-Aza-2'-Deoxycytidine Ameliorates Choroidal Neovascularization by Inhibiting the Wnt/β-Catenin Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 38345554 PMCID: PMC10866157 DOI: 10.1167/iovs.65.2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Choroidal neovascularization (CNV) can constitute the final pathology of many ocular diseases and result in severe vision loss. Studies have demonstrated that DNA methylation is critical in retinal development, aging, and disorders. The current work investigated the effects and underlying mechanism of 5-Aza-2'-deoxycytidine (5-aza-dC), a suppressor of DNA methylation, in the pathological progression of CNV. Methods The DNA methylation profiles of retinal pigment epithelial (RPE)/choroidal complexes in normal and laser-induced CNV mice were assessed by Arraystar Mouse RefSeq Promoter Arrays. The CNV area and blood flow density and intensity were observed by optical coherence tomography angiography, and fluorescence leakage was examined by fundus fluorescein angiography in CNV mice with systemic administration of 5-aza-dC. The effects of 5-aza-dC on the biological functions of bEnd.3 cells were estimated by related assays. Notum gene promoter methylation was measured using bisulfite sequencing PCR. Methyltransferases and Wnt signaling-related genes were detected in animal and cell culture experiments by real-time PCR and immunoblot. Results Methyltransferases were upregulated, but Notum (a secretion inhibitor of Wnt signaling) was downregulated in the RPE/choroidal complexes of mice with experimental CNV. Intraperitoneal injection of 5-aza-dC inactivated the Wnt pathway and ameliorated the lesion area and the intensity and density of blood flow, as well as the degree of leakage in CNV. In vitro, vascular endothelial growth factor A (VEGFA) stimulation promoted methyltransferases expression and suppressed Notum expression, consequently activating Wnt signaling, whereas exogenous 5-aza-dC reversed VEGFA-induced hyperpermeability, proliferation, migration, and tube formation in bEnd.3 cells via demethylation of Notum promoter. Conclusions We observed that 5-aza-dC attenuates the growth of CNV by inhibiting the Wnt signaling pathway via promoter demethylation of the Wnt antagonist Notum. These findings provide a theoretical basis for methylation-based treatment with the Notum gene as a potential target for CNV treatment.
Collapse
Affiliation(s)
- Xinyuan Wu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Liu YS, Pan JQ, Pan XB, Kong FS, Zhang JQ, Wei ZY, Xu ZH, Rao JH, Wang JH, Chen JH. Comparative Analysis of Molecular Landscape in Mouse Models and Patients Reveals Conserved Inflammation Pathways in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38175639 PMCID: PMC10774692 DOI: 10.1167/iovs.65.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose The purpose of this study was to identify key genes and their regulatory networks that are conserved in mouse models of age-related macular degeneration (AMD) and human AMD. Methods Retinal RNA-Seq was performed in laser-induced choroidal neovascularization (CNV) mice at day 3 and day 7 after photocoagulation. Mass spectrometry-based proteomic analysis was performed with retinas collected at day 3. Retinal RNA-Seq data was further compared among mouse models of laser-induced CNV and NaIO3-induced retinal degeneration (RD) and a large AMD cohort. Results Retinal RNA-Seq revealed upregulated genes and pathways related to innate immunity and inflammation in mice with CNV, with more profound changes at the early stage (day 3). Proteomic analysis further validated these differentially expressed genes and their networks in retinal inflammation during CNV. Notably, the most evident overlap in the retina of mice with laser-induced CNV and NaIO3-induced RD was the upregulation of inflammation-related genes, pointing to a common vital role of retinal inflammation in the early stage for both mouse AMD models. Further comparative transcriptomic analysis of the mouse AMD models and human AMD identified 48 conserved genes mainly involved in inflammation response. Among them, B2M, C3, and SERPING1 were upregulated in all stages of human AMD and the mouse AMD models compared to controls. Conclusions Our study demonstrates conserved molecular changes related to retinal inflammation in mouse AMD models and human AMD and provides new insight into the translational application of these mouse models in studying AMD mechanisms and treatments.
Collapse
Affiliation(s)
- Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jia-Qi Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xu-Bin Pan
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Fan-Sheng Kong
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jing-Qian Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhou-Heng Xu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jun-Hua Rao
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ji-Hong Wang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Jiangnan University & Xinshijie Hospital Ophthalmic Research Center, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Bhutto IA, McLeod DS, Thomson BR, Lutty GA, Edwards MM. Visualization of choroidal vasculature in pigmented mouse eyes from experimental models of AMD. Exp Eye Res 2024; 238:109741. [PMID: 38056552 PMCID: PMC10872330 DOI: 10.1016/j.exer.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.
Collapse
Affiliation(s)
- Imran A Bhutto
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Scott McLeod
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg SOM, Chicago, IL, USA
| | - Gerard A Lutty
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Han N, Xu X, Liu Y, Luo G. AAV2-antiVEGFscFv gene therapy for retinal neovascularization. Mol Ther Methods Clin Dev 2023; 31:101145. [PMID: 38027065 PMCID: PMC10679950 DOI: 10.1016/j.omtm.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Retinal neovascularization (NV) may lead to irreversible vision impairment, the main treatment for which is the inhibition of vascular endothelial growth factor (VEGF). Existing drugs show limited clinical benefits because of their high prices and short half-lives, which increase the financial burden and medical risks to patients. Gene therapy on the basis of adeno-associated viruses is a promising approach to overcome these limitations because of the nonintegrative nature, low immunogenicity, and potential long-term gene expression of adeno-associated viruses. In this study, we constructed a novel recombinant adeno-associated virus with the single-chain fragment variable (scFv) fragment of the anti-VEGF antibody, AAV2-antiVEGFscFv, consisting of the VH and VL structural domains of IgG. AAV2-antiVEGFscFv effectively inhibited NV, retinal leakage, and retinal detachment in oxygen-induced retinopathy (OIR) mice, Tet/opsin/VEGF double-transgenic mice, and VEGF-induced rabbit NV models. AAV2-antiVEGFscFv also significantly suppressed VEGF-induced inflammation. Furthermore, we showed that AAV2-antiVEGFscFv could be sustainably expressed for a prolonged period and exhibited low immunotoxicity in vivo. This study indicates that AAV2-antiVEGFscFv could be a potential approach for NV treatment and provides strong support for preclinical research.
Collapse
Affiliation(s)
- Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Ltd., Nanjing 210061, China
| |
Collapse
|
28
|
Krimpenfort LT, Garcia-Collado M, van Leeuwen T, Locri F, Luik AL, Queiro-Palou A, Kanatani S, André H, Uhlén P, Jakobsson L. Anatomy of the complete mouse eye vasculature explored by light-sheet fluorescence microscopy exposes subvascular-specific remodeling in development and pathology. Exp Eye Res 2023; 237:109674. [PMID: 37838300 DOI: 10.1016/j.exer.2023.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Eye development and function rely on precise establishment, regression and maintenance of its many sub-vasculatures. These crucial vascular properties have been extensively investigated in eye development and disease utilizing genetic and experimental mouse models. However, due to technical limitations, individual studies have often restricted their focus to one specific sub-vasculature. Here, we apply a workflow that allows for visualization of complete vasculatures of mouse eyes of various developmental stages. Through tissue depigmentation, immunostaining, clearing and light-sheet fluorescence microscopy (LSFM) entire vasculatures of the retina, vitreous (hyaloids) and uvea were simultaneously imaged at high resolution. In silico dissection provided detailed information on their 3D architecture and interconnections. By this method we describe successive remodeling of the postnatal iris vasculature, involving sprouting and pruning, following its disconnection from the embryonic feeding hyaloid vasculature. In addition, we demonstrate examples of conventional and LSFM-mediated analysis of choroidal neovascularization after laser-induced wounding, showing added value of the presented workflow in analysis of modelled eye disease. These advancements in visualization and analysis of the respective eye vasculatures in development and complex eye disease open for novel observations of their functional interplay at a whole-organ level.
Collapse
Affiliation(s)
- Luc Thomas Krimpenfort
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Maria Garcia-Collado
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Tom van Leeuwen
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 77, Stockholm, Sweden
| | - Anna-Liisa Luik
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Antonio Queiro-Palou
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 77, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
29
|
Shibasaki Y, Afanasyev S, Fernández-Montero A, Ding Y, Watanabe S, Takizawa F, Lamas J, Fontenla-Iglesias F, Leiro JM, Krasnov A, Boudinot P, Sunyer JO. Cold-blooded vertebrates evolved organized germinal center-like structures. Sci Immunol 2023; 8:eadf1627. [PMID: 37910630 PMCID: PMC11152321 DOI: 10.1126/sciimmunol.adf1627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Germinal centers (GCs) or analogous secondary lymphoid microstructures (SLMs) are thought to have evolved in endothermic species. However, living representatives of their ectothermic ancestors can mount potent secondary antibody responses upon infection or immunization, despite the apparent lack of SLMs in these cold-blooded vertebrates. How and where adaptive immune responses are induced in ectothermic species in the absence of GCs or analogous SLMs remain poorly understood. Here, we infected a teleost fish (trout) with the parasite Ichthyophthirius multifiliis (Ich) and identified the formation of large aggregates of highly proliferating IgM+ B cells and CD4+ T cells, contiguous to splenic melanomacrophage centers (MMCs). Most of these MMC-associated lymphoid aggregates (M-LAs) contained numerous antigen (Ag)-specific B cells. Analysis of the IgM heavy chain CDR3 repertoire of microdissected splenic M-LAs and non-M-LA areas revealed that the most frequent B cell clones induced after Ich infection were highly shared only within the M-LAs of infected animals. These M-LAs represented highly polyclonal SLMs in which Ag-specific B cell clonal expansion occurred. M-LA-associated B cells expressed high levels of activation-induced cytidine deaminase and underwent significant apoptosis, and somatic hypermutation of Igμ genes occurred prevalently in these cells. Our findings demonstrate that ectotherms evolved organized SLMs with GC-like roles. Moreover, our results also point to primordially conserved mechanisms by which M-LAs and mammalian polyclonal GCs develop and function.
Collapse
Affiliation(s)
- Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Sergei Afanasyev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Laboratory of Neurophysiology and Behavioral Pathology, Torez 44, Saint-Petersburg 194223, Russia
| | - Alvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shota Watanabe
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Jesús Lamas
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Francisco Fontenla-Iglesias
- Department of Functional Biology, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - José Manuel Leiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | | | - Pierre Boudinot
- Universite Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Xu S, Cui K, Long K, Li J, Fan N, Lam W, Liang X, Wang W. Red Light-Triggered Anti-Angiogenic and Photodynamic Combination Therapy of Age-Related Macular Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301985. [PMID: 37705491 PMCID: PMC10625062 DOI: 10.1002/advs.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Indexed: 09/15/2023]
Abstract
Choroidal neovascularization (CNV) is the key pathological event of wet age-related macular degeneration (wAMD) leading to irreversible vision loss. Currently, anti-angiogenic therapy with anti-vascular endothelial growth factor (VEGF) agents has become the standard treatment for wAMD, while it is still subject to several limitations, including the safety concerns of monthly intravitreal administration and insufficient efficacy for neovascular occlusion. Combined therapy with photodynamic therapy (PDT) and anti-angiogenic agents has emerged as a novel treatment paradigm. Herein, a novel and less-invasive approach is reported to achieve anti-angiogenic and photodynamic combination therapy of wAMD by intravenous administration of a photoactivatable nanosystem (Di-DAS-VER NPs). The nanosystem is self-assembled by reactive oxygen species (ROS)-sensitive dasatinib (DAS) prodrug and photosensitizer verteporfin (VER). After red-light irradiation to the diseased eyes, intraocular release of anti-angiogenic DAS is observed, together with selective neo-vessels occlusion by VER-generated ROS. Notably, Di-DAS-VER NPs demonstrates promising therapeutic efficacy against CNV with minimized systemic toxicity. The study enables an efficient intravenous wAMD therapy by integrating a photoactivation process with combinational therapeutics into one simple nanosystem.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineLaboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongSARChina
| | - Kaixuan Cui
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceSun Yat‐sen UniversityGuangzhou510060China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineLaboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongSARChina
| | - Jia Li
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineLaboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongSARChina
| | - Ni Fan
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineLaboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongSARChina
| | - Wai‐Ching Lam
- Department of OphthalmologyVancouver General HospitalVancouverBCV5Z 0A6Canada
| | - Xiaoling Liang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceSun Yat‐sen UniversityGuangzhou510060China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineLaboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongSARChina
| |
Collapse
|
31
|
Usui Y, Iwanishi H, Sumioka T, Ichikawa K, Miyajima M, Usui-Kusumoto K, Reinach PS, Okada Y, Saika S. Engineered Knockout of TRPA1 Inhibits Laser-Induced Choroidal Neovascularization Along With Associated TGFβ1 Expression and Neutrophil Infiltration. J Transl Med 2023; 103:100256. [PMID: 37797886 DOI: 10.1016/j.labinv.2023.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
We examined the effects of gene ablation and chemical inhibition of transient receptor potential ankyrin 1 (TRPA1) on the growth of experimental argon laser-induced choroidal neovascularization (CNV) in mice. CNV was induced in the eyes of 6- to 8-week-old TRPA1-null (knockout [KO]) and wild-type (WT) mice by argon laser irradiation. Gene expression analysis was performed in laser-injured tissues at days 1 and 3. CNV growth was evaluated at day 14. Reciprocal bone marrow transplantation was performed between each genotype to identify the components responsible for either recipient tissue or bone marrow-derived inflammatory cells. Our results show that laser irradiation successfully induced CNV growth at the site of laser injury. The size of induced CNV was significantly smaller in KO mice than in WT mice at day 14, as determined by angiography with fluorescein isothiocyanate-dextran. Invasion of neutrophils, but not macrophages, was suppressed in association with suppression of the expression of transforming growth factor β1 and interleukin 6 in laser-irradiated KO tissue. Bone marrow transplantation indicated that the genotype of the recipient mouse, but not of inflammatory cells, is attributable to the KO phenotype. Systemic administration of a TRPA1 antagonist also reduced the CNV in a WT mouse. In conclusion, TRPA1 signaling in local cells is involved in growth of laser-induced CNV. The phenotype was not attributable to vascular endothelial cells and inflammatory cells. Blocking TRPA1 signal may therefore be a potential treatment strategy for CNV-related ocular diseases.
Collapse
Affiliation(s)
- Yuta Usui
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Keiko Usui-Kusumoto
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Peter Sol Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University School, Wenzhou, People's Republic of China
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
32
|
Zeng J, Wang Y, Zhu M, Wu M, Zhou Y, Wang Q, Xu Y, Lin F, Wang J, Li Y, Liang S, Wang Z, Xie L, Liu X. Neutrophil extracellular traps boost laser-induced mouse choroidal neovascularization through the activation of the choroidal endothelial cell TLR4/HIF-1α pathway. FEBS J 2023; 290:5395-5410. [PMID: 37552110 DOI: 10.1111/febs.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Choroidal neovascularization (CNV) is characterized by the infiltration of immune cells, particularly neutrophils. Neutrophil extracellular trap (NET) facilitates the angiogenesis of pulmonary endothelial cells via activating Toll-like receptor 4 (TLR4). TLR4 promotes the expression of transcription factor hypoxia inducible factor-1α (HIF-1α), which promotes inflammation and angiogenesis via the up-regulation of metalloproteinase-9 (MMP-9) and interleukin-1β (IL-1β). In the present study, we aimed to identify the formation of NET and its role in CNV. Our results showed that NET levels were increased in a mouse laser-induced CNV model via oxidative stress, whereas the inhibition of NET alleviated CNV. In vitro, NET activated the TLR4/HIF-1α pathway in human choroidal endothelial cells (HCECs). Additionally, NET increased the transcription and expression of MMP-9 and IL-1β in HCECs via activating the TLR4/HIF-1α pathway. Meanwhile, NET promoted the inflammatory response accompanied by the proliferation, migration and tube formation of HCECs in a MMP-9- and IL-1β-dependent manner. In conclusion, NET was up-regulated in CNV and promoted the formation of CNV via activating the TLR4/HIF-1α pathway in choroidal endothelial cells. Our data uncovered the novel role of NET in promoting the formation of CNV. The underlying mechanism of NET could be targeted to delay the process of CNV.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Manhui Zhu
- Department of Pathology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Min Wu
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, China
| | - Qiaoyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqian Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Lin
- Medical College, Nantong University, China
| | - Jiaqi Wang
- Medical College, Nantong University, China
| | - Yuxuan Li
- Medical College, Nantong University, China
| | | | - Ziyu Wang
- Medical College, Nantong University, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, China
| |
Collapse
|
33
|
Xiao J, Zhang JY, Luo W, He PC, Skondra D. The Emerging Role of Gut Microbiota in Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1627-1637. [PMID: 37156326 DOI: 10.1016/j.ajpath.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative retinal disease that is a leading cause of blindness globally. Although multiple risk factors have been identified regarding disease incidence and progression, including smoking, genetics, and diet, the understanding of AMD pathogenesis remains unclear. As such, primary prevention is lacking, and current treatments have limited efficacy. More recently, the gut microbiome has emerged as an influential player in various ocular pathologies. As mediators of metabolism and immune regulation, perturbations in gut microbiota may impart significant effects distally on the neuroretina and its adjacent tissues, termed the gut-retina axis. In this review, key studies over the past several decades are summarized, both in humans and in animal models, which shed insight on the relationships between the gut microbiome and retinal biology and their implications for AMD. The literature linking gut dysbiosis with AMD is examined, along with preclinical animal models and techniques apt for studying the role of gut microbiota in AMD pathogenesis, which include interactions with systemic inflammation, immune regulation, chorioretinal gene expression, and diet. As understanding of the gut-retina axis continues to advance, so too will the possibility for more accessible and effective prevention and therapy of this vision-threatening condition.
Collapse
Affiliation(s)
- Jason Xiao
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Jason Y Zhang
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Wendy Luo
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - P Cody He
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|
34
|
Xu N, Sun T, Wang Y, Tong X, Lu S, Yang F, Wang J, Bo Q, Sun J, Sun X. Dynamic changes in macrophage morphology during the progression of choroidal neovascularization in a laser-induced choroidal neovascularization mouse model. BMC Ophthalmol 2023; 23:401. [PMID: 37803306 PMCID: PMC10559478 DOI: 10.1186/s12886-023-03141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (AMD) is responsible for the majority of severe vision loss cases and is mainly caused by choroidal neovascularization (CNV). This condition persists or recurs in a subset of patients and regresses after 5 or more years of anti-vascular endothelial growth factor (VEGF) treatment. The precise mechanisms of CNV continue to be elucidated. According to our previous studies, macrophages play a critical role in CNV. Herein, we aimed to determine the morphological changes in macrophages in CNV to help us understand the dynamic changes. METHODS Mice were subjected to laser injury to induce CNV, and lesion expansion and macrophage transformation were examined by immunofluorescence and confocal analysis. Several strategies were used to verify the dynamic changes in macrophages. Immunofluorescence and confocal assays were performed on choroidal flat mounts to evaluate the morphology and phenotype of macrophages in different CNV phases, and the results were further verified by western blotting and RT-PCR. RESULTS The location of infiltrated macrophages changed after laser injury in the CNV mouse model, and macrophage morphology also dynamically changed. Branching macrophages gradually shifted to become round with the progression of CNV, which was certified to be an M2 phenotypic shift. CONCLUSIONS Dynamic changes in macrophage morphology were observed during CNV formation, and the round-shaped M2 phenotype could promote neovascularization. In general, the changes in morphology we observed in this study can help us to understand the critical role of macrophages in CNV progression and exploit a potential treatment option for CNV indicated by a shift in macrophage polarity.
Collapse
Affiliation(s)
- Nana Xu
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Tao Sun
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Yulan Wang
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Xiaowei Tong
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Shiheng Lu
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Fan Yang
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Jing Wang
- Shanghai Eye Diseases Prevention & Treatment Center/ Shanghai Eye Hospital, Shanghai, China
| | - Qiyu Bo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
35
|
Wu T, Liu C, Kannan RM. Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration. Pharmaceutics 2023; 15:2428. [PMID: 37896188 PMCID: PMC10609940 DOI: 10.3390/pharmaceutics15102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries. Successful systemic delivery of peptide-based therapeutics must overcome obstacles such as degradation by proteinases in circulation and off-target binding. In this work, we present a novel dendrimer-integrin-binding peptide (D-ALG) synthesized with a noncleavable, "clickable" linker. In vitro, D-ALG protected the peptide payload from enzymatic degradation for up to 1.5 h (~90% of the compound remained intact) in a high concentration of proteinase (2 mg/mL) whereas ~90% of free ALG-1001 was degraded in the same period. Further, dendrimer conjugation preserved the antiangiogenic activity of ALG-1001 in vitro with significant reductions in endothelial vessel network formation compared to untreated controls. In vivo, direct intravitreal injections of ALG-1001 and D-ALG produced reductions in the CNV lesion area but in systemically dosed animals, only D-ALG produced significant reductions of CNV lesion area at 14 days. Imaging data suggested that the difference in efficacy may be due to more D-ALG remaining in the target area than ALG-1001 after administration. The results presented here offer a clinically relevant route for peptide therapeutics by addressing the major obstacles that these therapies face in delivery.
Collapse
Affiliation(s)
| | | | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (T.W.); (C.L.)
| |
Collapse
|
36
|
Zhang Y, Huang J, Liang Y, Huang J, Fu Y, Chen N, Lu B, Zhao C. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy 2023; 19:2668-2681. [PMID: 37266932 PMCID: PMC10472852 DOI: 10.1080/15548627.2023.2220540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly, and there is currently no clinical treatment targeting the primary impairment of AMD. The earliest clinical hallmark of AMD is drusen, which are yellowish spots mainly composed of lipid droplets (LDs) accumulated under the retinal pigment epithelium (RPE). However, the potential pathogenic role of this excessive LD accumulation in AMD is yet to be determined, partially due to a lack of chemical tools to manipulate LDs specifically. Here, we employed our recently developed Lipid Droplets·AuTophagy Tethering Compounds (LD∙ATTECs) to degrade LDs and to evaluate its consequence on the AMD-like phenotypes in apoe-/- (apolipoprotein E; B6/JGpt-Apoeem1Cd82/Gpt) mouse model. apoe-/- mice fed with high-fat diet (apoe-/--HFD) exhibited excessive LD accumulation in the retina, particularly with AMD-like phenotypes including RPE degeneration, Bruch's membrane (BrM) thickening, drusen-like deposits, and photoreceptor dysfunction. LD·ATTEC treatment significantly cleared LDs in RPE/choroidal tissues without perturbing lipid synthesis-related proteins and rescued RPE degeneration and photoreceptor dysfunction in apoe-/--HFD mice. This observation implied a causal relationship between LD accumulation and AMD-relevant phenotypes. Mechanically, the apoe-/--HFD mice exhibited elevated oxidative stress and inflammatory signals, both of which were mitigated by the LD·ATTEC treatment. Collectively, this study demonstrated that LD accumulation was a trigger for the process of AMD and provided entry points for the treatment of the initial insult of AMD by degrading LDs.Abbreviations: AMD: age-related macular degeneration; APOE: apolipoprotein E; ATTECs: autophagy-tethering compounds; BODIPY: boron-dipyrromethene; BrM: Bruch's membrane; ERG: electroretinogram; HFD: high-fat diet; LD·ATTECs: Lipid Droplets·AuTophagy Tethering Compounds; LDs: lipid droplets; OA: oleic acid; OPL: outer plexiform layer; ROS: reactive oxygen species; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Yuelu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiancheng Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ningxie Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Fan Q, Li H, Wang X, Tham YC, Teo KYC, Yasuda M, Lim WK, Kwan YP, Teo JX, Chen CJ, Chen LJ, Ahn J, Davila S, Miyake M, Tan P, Park KH, Pang CP, Khor CC, Wong TY, Yanagi Y, Cheung CMG, Cheng CY. Contribution of common and rare variants to Asian neovascular age-related macular degeneration subtypes. Nat Commun 2023; 14:5574. [PMID: 37696869 PMCID: PMC10495468 DOI: 10.1038/s41467-023-41256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD), along with its clinical subtype known as polypoidal choroidal vasculopathy (PCV), are among the leading causes of vision loss in elderly Asians. In a genome-wide association study (GWAS) comprising 3,128 nAMD (1,555 PCV and 1,573 typical nAMD), and 5,493 controls of East Asian ancestry, we identify twelve loci, of which four are novel ([Formula: see text]). Substantial genetic sharing between PCV and typical nAMD is noted (rg = 0.666), whereas collagen extracellular matrix and fibrosis-related pathways are more pronounced for PCV. Whole-exome sequencing in 259 PCV patients revealed functional rare variants burden in collagen type I alpha 1 chain gene (COL1A1; [Formula: see text]) and potential enrichment of functional rare mutations at AMD-associated loci. At the GATA binding protein 5 (GATA5) locus, the most significant GWAS novel loci, the expressions of genes including laminin subunit alpha 5 (Lama5), mitochondrial ribosome associated GTPase 2 (Mtg2), and collagen type IX alpha 3 chain (Col9A3), are significantly induced during retinal angiogenesis and subretinal fibrosis in murine models. Furthermore, retinoic acid increased the expression of LAMA5 and MTG2 in vitro. Taken together, our data provide insights into the genetic basis of AMD pathogenesis in the Asian population.
Collapse
Affiliation(s)
- Qiao Fan
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaomeng Wang
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Center for Vision Research, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yih-Chung Tham
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Genome Variation Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuet Ping Kwan
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Ching-Jou Chen
- Center for Vision Research, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sonia Davila
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Patrick Tan
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chiea Chuan Khor
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yasuo Yanagi
- Department of Ophthalmology and Microtechnology, Yokohama City University, Yokohama, Japan
| | - Chui Ming Gemmy Cheung
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Yu Cheng
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Salas A, Badia A, Fontrodona L, Zapata M, García-Arumí J, Duarri A. Neovascular Progression and Retinal Dysfunction in the Laser-Induced Choroidal Neovascularization Mouse Model. Biomedicines 2023; 11:2445. [PMID: 37760886 PMCID: PMC10525599 DOI: 10.3390/biomedicines11092445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The mouse model of laser-induced choroidal neovascularization (LI-CNV) has been widely used to study neovascular age-related macular degeneration; however, it still lacks a comprehensive characterization. Here, CNV was induced in the eyes of 12-week-old C57BL/6J male mice by argon laser irradiation. We studied the CNV lesion progression of an LI-CNV mouse cohort by using multimodal imaging (color fundus, optical coherence tomography (OCT), and fluorescence angiography, focal electroretinography features for 14 days, and related cytokines, angiogenic factors, and reactive gliosis for 5 days. CNV lesions involving the rupture of the Bruch's membrane were confirmed using funduscopy and OCT after laser photocoagulation. During the initial stage, from the CNV induction until day 7, CNV lesions presented leakage observed by using fluorescence angiography and a typical hyperreflective area with cell infiltration, subretinal leakage, and degeneration of photoreceptors observed through OCT. This correlated with decreased retinal responses to light. Moreover, inflammatory and angiogenic markers were reduced to basal levels in the first 5 days of CNV progression. In contrast, reactive gliosis and the VEGF expression in retinal sections were sustained, with infiltration of endothelial cells in the subretinal space. In the second stage, between days 7 and 14 post-induction, we observed stabilization of the CNV lesions, a hyperfluorescent area corresponding to the formation of fibrosis, and a partial rescue of retinal function. These findings suggest that the LI-CNV lesion development goes through an acute phase during the first seven days following induction, and then the CNV lesion stabilizes. According to these results, this model is suitable for screening anti-inflammatory and anti-angiogenic drugs in the early stages of LI-CNV. At the same time, it is more convenient for screening anti-fibrotic compounds in the later stages.
Collapse
Affiliation(s)
- Anna Salas
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Anna Badia
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Laura Fontrodona
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Miguel Zapata
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Department of Ophthalmology, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Department of Ophthalmology, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| |
Collapse
|
39
|
Jakobsen TS, Fabian-Jessing BK, Hansen S, Bek T, Askou AL, Corydon TJ. Porcine models of choroidal neovascularization: A systematic review. Exp Eye Res 2023; 234:109590. [PMID: 37474015 DOI: 10.1016/j.exer.2023.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Animal models of choroidal neovascularization (CNV) are extensively used in translational studies of CNV formation and to evaluate angiostatic treatment strategies. However, the current paucity of large animal models compared with rodent models constitutes a knowledge gap regarding the clinical translation of findings. Ocular anatomical and physiological similarities to humans suggest the pig as a relevant model animal. Thus, a systematic survey of porcine CNV models was performed to identify pertinent model parameters and suggest avenues for model standardization and optimization. A systematic search was performed in PubMed and EMBASE on November 28, 2022 for porcine models of CNV. Following inclusion by two investigators, data from the articles were extracted according to a predefined protocol. A total of 14 articles, representing 19 independent porcine CNV models were included. The included models were almost equally divided between laser-induced (53%) and surgically-induced (47%) models. Different specified breeds of domestic pigs (71%) were most commonly used in the studies. All studies used normal animals. Female pigs were reported used in 43% of the studies, while 43% did not report on sex of the animals. Younger pigs were typically used. The surgical models reported consistent CNV induction following mechanical Bruch's membrane rupture. The laser models used variants of the infrared diode laser (40%) or the frequency-doubled Nd:YAG laser (50%). Both lasers enabled successful CNV induction with reported induction rates ranging from 60 to 100%. Collateral damage to the neuroretina was reported for the infrared diode laser. CNV evaluation varied across studies with fluorescein angiography (50%) as the most used in vivo method and retinal sections (71%) as the most used ex vivo method. In interventional studies, quantification of lesions was in general performed between 7 and 14 days. The field of porcine CNV models is relatively small and heterogeneous and almost equally divided between surgically-induced and laser-induced models. Both methods have allowed successful modeling of CNV formation with induction rates comparable to those of non-human primates. However, the field would benefit from standardization of model parameters and reporting. This includes laser parameters and validation of CNV formation as well as methods of CNV evaluation and statistical analysis.
Collapse
Affiliation(s)
- Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Bjørn K Fabian-Jessing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Silja Hansen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| |
Collapse
|
40
|
Huang K, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-Responsive Graphene Oxide Quantum Dot-Based Nano-in-Micro Drug Delivery System for Combinatorial Therapy of Choroidal Neovascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207335. [PMID: 36871144 DOI: 10.1002/smll.202207335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Age-related macular degeneration (AMD), especially wet AMD with choroidal neovascularization (CNV), commonly causes blindness in older patients and disruption of the choroid followed by second-wave injuries, including chronic inflammation, oxidative stress, and excessive matrix metalloproteinase 9 (MMP9) expression. Increased macrophage infiltrate in parallel with microglial activation and MMP9 overexpression on CNV lesions is shown to contribute to the inflammatory process and then enhance pathological ocular angiogenesis. Graphene oxide quantum dots (GOQDs), as natural antioxidants, exert anti-inflammatory effects and minocycline is a specific macrophage/microglial inhibitor that can suppress both macrophage/microglial activation and MMP9 activity. Herein, an MMP9-responsive GOQD-based minocycline-loaded nano-in-micro drug delivery system (C18PGM) is developed by chemically bonding GOQDs to an octadecyl-modified peptide sequence (C18-GVFHQTVS, C18P) that can be specifically cleaved by MMP9. Using a laser-induced CNV mouse model, the prepared C18PGM shows significant MMP9 inhibitory activity and anti-inflammatory action followed by antiangiogenic effects. Moreover, C18PGM combined with antivascular endothelial growth factor antibody bevacizumab markedly increases the antiangiogenesis effect by interfering with the "inflammation-MMP9-angiogenesis" cascade. The prepared C18PGM shows a good safety profile and no obvious ophthalmic or systemic side effects. The results taken together suggest that C18PGM is an effective and novel strategy for combinatorial therapy of CNV.
Collapse
Affiliation(s)
- Keke Huang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Xin Liu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Ziru Lv
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Di Zhang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Yuling Zhou
- Department of ophthalmology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, P. R. China
| | - Zhiqing Lin
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Juan Guo
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
41
|
Jones MK, Orozco LD, Qin H, Truong T, Caplazi P, Elstrott J, Modrusan Z, Chaney SY, Jeanne M. Integration of human stem cell-derived in vitro systems and mouse preclinical models identifies complex pathophysiologic mechanisms in retinal dystrophy. Front Cell Dev Biol 2023; 11:1252547. [PMID: 37691820 PMCID: PMC10483287 DOI: 10.3389/fcell.2023.1252547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Rare DRAM2 coding variants cause retinal dystrophy with early macular involvement via unknown mechanisms. We found that DRAM2 is ubiquitously expressed in the human eye and expression changes were observed in eyes with more common maculopathy such as Age-related Macular Degeneration (AMD). To gain insights into pathogenicity of DRAM2-related retinopathy, we used a combination of in vitro and in vivo models. We found that DRAM2 loss in human pluripotent stem cell (hPSC)-derived retinal organoids caused the presence of additional mesenchymal cells. Interestingly, Dram2 loss in mice also caused increased proliferation of cells from the choroid in vitro and exacerbated choroidal neovascular lesions in vivo. Furthermore, we observed that DRAM2 loss in human retinal pigment epithelial (RPE) cells resulted in increased susceptibility to stress-induced cell death in vitro and that Dram2 loss in mice caused age-related photoreceptor degeneration. This highlights the complexity of DRAM2 function, as its loss in choroidal cells provided a proliferative advantage, whereas its loss in post-mitotic cells, such as photoreceptor and RPE cells, increased degeneration susceptibility. Different models such as human pluripotent stem cell-derived systems and mice can be leveraged to study and model human retinal dystrophies; however, cell type and species-specific expression must be taken into account when selecting relevant systems.
Collapse
Affiliation(s)
- Melissa K. Jones
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
- Product Development Clinical Science Ophthalmology, Genentech Inc., South San Francisco, CA, United States
| | - Luz D. Orozco
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States
| | - Han Qin
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| | - Tom Truong
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, United States
| | - Justin Elstrott
- Department of Translational Imaging, Genentech Inc., South San Francisco, CA, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next-Generation Sequencing, Genentech Inc., South San Francisco, CA, United States
| | - Shawnta Y. Chaney
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Marion Jeanne
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
42
|
Bai W, Ren JS, Xia M, Zhao Y, Ding JJ, Chen X, Jiang Q. Targeting FSCN1 with an oral small-molecule inhibitor for treating ocular neovascularization. J Transl Med 2023; 21:555. [PMID: 37596693 PMCID: PMC10436462 DOI: 10.1186/s12967-023-04225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Ocular neovascularization is a leading cause of blindness and visual impairment. While intravitreal anti-VEGF agents can be effective, they do have several drawbacks, such as endophthalmitis and drug resistance. Additional studies are necessary to explore alternative therapeutic targets. METHODS Bioinformatics analysis and quantitative RT-PCR were used to detect and verify the FSCN1 expression levels in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) mice model. Transwell, wound scratching, tube formation, three-dimensional bead sprouting assay, rhodamine-phalloidin staining, Isolectin B4 staining and immunofluorescent staining were conducted to detect the role of FSCN1 and its oral inhibitor NP-G2-044 in vivo and vitro. HPLC-MS/MS analysis, cell apoptosis assay, MTT assay, H&E and tunnel staining, visual electrophysiology testing, visual cliff test and light/dark transition test were conducted to assess the pharmacokinetic and security of NP-G2-044 in vivo and vitro. Co-Immunoprecipitation, qRT-PCR and western blot were conducted to reveal the mechanism of FSCN1 and NP-G2-044 mediated pathological ocular neovascularization. RESULTS We discovered that Fascin homologue 1 (FSCN1) is vital for angiogenesis both in vitro and in vivo, and that it is highly expressed in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV). We found that NP-G2-044, a small-molecule inhibitor of FSCN1 with oral activity, can impede the sprouting, migration, and filopodia formation of cultured endothelial cells. Oral NP-G2-044 can effectively and safely curb the development of OIR and CNV, and increase efficacy while overcoming anti-VEGF resistance in combination with intravitreal aflibercept (Eylea) injection. CONCLUSION Collectively, FSCN1 inhibition could serve as a promising therapeutic approach to block ocular neovascularization.
Collapse
Affiliation(s)
- Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jun-Song Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Min Xia
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya Zhao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jing-Juan Ding
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Usui Y, Iwanishi H, Sumioka T, Ichikawa K, Miyajima M, Usui-Kusumoto K, Reinach PS, Okada Y, Saika S. WITHDRAWN: Engineered knockout of TRPA1 inhibits laser-induced choroidal neovascularization along with associated TGFb1 expression and neutrophil infiltration. J Transl Med 2023:100232. [PMID: 37567390 DOI: 10.1016/j.labinv.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Affiliation(s)
- Yuta Usui
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Keiko Usui-Kusumoto
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Peter Sol Reinach
- Ophthalmology and Optometry, Wenzhou Medical University School, Wenzhou, China
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
44
|
Hu S, Chen Y, Xie D, Xu K, Fu Y, Chi W, Liu H, Huang J. Nme 2 Cas9-mediated therapeutic editing in inhibiting angiogenesis after wet age-related macular degeneration onset. Clin Transl Med 2023; 13:e1383. [PMID: 37598400 PMCID: PMC10440058 DOI: 10.1002/ctm2.1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), particularly wet AMD characterised by choroidal neovascularization (CNV), is a leading cause of vision loss in the elderly. The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway contributes to CNV pathogenesis. Previous gene editing research indicated that disrupting these genes in retinal pigment epithelial cells could have a preventive effect on CNV progression. However, no studies have yet been conducted using gene editing to disrupt VEGF signalling after CNV induction for therapeutic validation, which is critical to the clinical application of wet AMD gene editing therapies. METHOD Here, we employed the single-adeno-associated virus-mediated Nme2 Cas9 to disrupt key molecules in VEGF signalling, Hif1α, Vegfa and Vegfr2 after inducing CNV and estimated their therapeutic effects. RESULTS We found that Nme2 Cas9 made efficient editing in target genes up to 71.8% post 11 days in vivo. And only Nme2 Cas9-Vegfa treatment during the early stage of CNV development reduced the CNV lesion area by 49.5%, compared to the negative control, while Nme2 Cas9-Hif1α or Nme2 Cas9-Vegfr2 treatment did not show therapeutic effect. Besides, no off-target effects were observed in Nme2 Cas9-mediated gene editing in vivo. CONCLUSIONS This study provides proof-of-concept possibility of employing Nme2 Cas9 for potential anti-angiogenesis therapy in wet AMD.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kan Xu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yunzhao Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wei Chi
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Reproductive Medicine of Guangdong ProvinceSchool of Life Sciences and the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Reproductive Medicine of Guangdong ProvinceSchool of Life Sciences and the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
45
|
Puranen J, Korhonen S, Haugas M, Lingasamy P, Teesalu T, Subrizi A, Urtti A, Ruponen M, Reinisalo M. Intravitreal CendR peptides target laser-induced choroidal neovascularization sites in mice. J Control Release 2023; 360:810-817. [PMID: 37473807 DOI: 10.1016/j.jconrel.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Choroidal neovascularization (CNV) is a common ocular pathology that may be associated in a variety of eye diseases. Although intravitreal injection treatment of anti-vascular endothelial growth factor (anti-VEGF) drugs shows significant clinical benefits in CNV treatment, the limitations of the current therapy need to be addressed. The aim of our study was to investigate the potential utility of three C-end Rule (CendR) peptides (RPARPAR, PL3, iRGD) for CNV targeting and to evaluate the efficacy of peptides for treating experimental CNV in mice. We observed that the CendR peptides localize to the CNV lesion sites after intravitreal injection and were mainly found in the outer nuclear cell layer (ONL) of the mouse retina. Interestingly, experimental therapy with tenascin-C (TNC-C) and neuropilin-1 (NRP-1)-targeting PL3 peptide, reduced angiogenesis and decreased vascular leakage. The results suggest that PL3 and potentially other CendR peptides could serve as affinity targeting ligands and therapeutics for ocular diseases that involve pathological CNV.
Collapse
Affiliation(s)
- Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland.
| | - Sonja Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Maarja Haugas
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Prakash Lingasamy
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California Santa Barbara, Santa Barbara 93106, USA
| | - Astrid Subrizi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| |
Collapse
|
46
|
Cui K, Tang X, Hu A, Fan M, Wu P, Lu X, Lin J, Yang F, Zhao X, Huang J, Yu S, Xu Y, Liang X. Therapeutic Benefit of Melatonin in Choroidal Neovascularization During Aging Through the Regulation of Senescent Macrophage/Microglia Polarization. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37578424 PMCID: PMC10431207 DOI: 10.1167/iovs.64.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose This study aimed to investigate the age-dependent anti-angiogenic capability of melatonin in choroidal neovascularization (CNV) and to explore the underlying molecular mechanisms. Methods In the present study, a laser-induced CNV model was established in both young (three months of age) and old (18 months of age) mice, and the size of CNV lesions and vascular leakage was detected by morphological and imaging examination. Next, Western blot and immunostaining were used to observe the levels of M2 markers, senescence-related markers, and molecules involved in IL-10/STAT3 pathway. Additionally, colivelin was used to study the effect of IL-10/STAT3 pathway activation on the expression of M2 markers and senescence-related markers by Western blot and immunostaining. Finally, the effects of colivelin on melatonin-induced reduction of CNV size and vascular leakage in mice at different ages were assessed using morphological and imaging examination. Results Our results revealed that aging promoted M2 macrophage/microglia polarization, and aggravated CNV and vascular leakage. Melatonin significantly inhibited the M2 polarization of senescent macrophage/microglia and reduced the CNV area and vascular leakage. Moreover, melatonin markedly suppressed IL-10/STAT3 pathway activation in the macrophage/microglia of old mice, and STAT3 activator colivelin reversed the suppressive effect of melatonin on M2 polarization of senescent macrophage/microglia and laser-induced CNV in old mice. Conclusions Our data demonstrated that melatonin significantly prevented the M2 polarization of senescent macrophage/microglia by inhibiting the IL-10/STAT3 pathway, and eventually attenuated senescence-associated CNV. These findings suggested that melatonin could serve as a promising therapeutic agent to treat CNV and other age-related ocular diseases.
Collapse
Affiliation(s)
- Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
47
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
48
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
49
|
Kang MJ, Roh KH, Lee JS, Lee JH, Park S, Lim DW. Vascular Endothelial Growth Factor Receptor 1 Targeting Fusion Polypeptides with Stimuli-Responsiveness for Anti-angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384534 DOI: 10.1021/acsami.3c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Genetically engineered fusion polypeptides have been investigated to introduce unique bio-functionality and improve some therapeutic activity for anti-angiogenesis. We report herein that stimuli-responsive, vascular endothelial growth factor receptor 1 (VEGFR1) targeting fusion polypeptides composed of a VEGFR1 (fms-like tyrosine kinase-1 (Flt1)) antagonist, an anti-Flt1 peptide, and a thermally responsive elastin-based polypeptide (EBP) were rationally designed at the genetic level, biosynthesized, and purified by inverse transition cycling to develop potential anti-angiogenic fusion polypeptides to treat neovascular diseases. A series of hydrophilic EBPs with different block lengths were fused with an anti-Flt1 peptide, forming anti-Flt1-EBPs, and the effect of EBP block length on their physicochemical properties was examined. While the anti-Flt1 peptide decreased phase-transition temperatures of anti-Flt1-EBPs, compared with EBP blocks, anti-Flt1-EBPs were soluble under physiological conditions. The anti-Flt1-EBPs dose dependently inhibited the binding of VEGFR1 against vascular endothelial growth factor (VEGF) as well as tube-like network formation of human umbilical vein endothelial cells under VEGF-triggered angiogenesis in vitro because of the specific binding between anti-Flt1-EBPs and VEGFR1. Furthermore, the anti-Flt1-EBPs suppressed laser-induced choroidal neovascularization in a wet age-related macular degeneration mouse model in vivo. Our results indicate that anti-Flt1-EBPs as VEGFR1-targeting fusion polypeptides have great potential for efficacious anti-angiogenesis to treat retinal-, corneal-, and choroidal neovascularization.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Kug-Hwan Roh
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - SaeGwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
50
|
Sokol L, Cuypers A, Truong ACK, Bouché A, Brepoels K, Souffreau J, Rohlenova K, Vinckier S, Schoonjans L, Eelen G, Dewerchin M, de Rooij LPMH, Carmeliet P. Prioritization and functional validation of target genes from single-cell transcriptomics studies. Commun Biol 2023; 6:648. [PMID: 37330599 PMCID: PMC10276815 DOI: 10.1038/s42003-023-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/01/2023] [Indexed: 06/19/2023] Open
Abstract
Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.
Collapse
Affiliation(s)
- Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|