1
|
Su H, Chan KWY. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo. ACS NANO 2024; 18:33775-33791. [PMID: 39642940 DOI: 10.1021/acsnano.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.
Collapse
Affiliation(s)
- Haoyun Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Allouche-Arnon H, Montrazi ET, Subramani B, Fisler M, Spigel I, Frydman L, Mehlman T, Brandis A, Harris T, Bar-Shir A. A Genetically Engineered Reporter System Designed for 2H-MRI Allows Quantitative In Vivo Mapping of Transgene Expression. J Am Chem Soc 2024; 146:31624-31632. [PMID: 39527270 PMCID: PMC11583250 DOI: 10.1021/jacs.4c09572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The ability to obtain quantitative spatial information on subcellular processes of deep tissues in vivo has been a long-standing challenge for molecular magnetic resonance imaging (MRI) approaches. This challenge remains even more so for quantifying readouts of genetically engineered MRI reporters. Here, we set to overcome this challenge with a molecular system designed to obtain quantitative 2H-MRI maps of a gene reporter. To this end, we synthesized deuterated thymidine, d3-thy, with three magnetically equivalent deuterons at its methyl group (-CD3), showing a singlet peak with a characteristic 2H-NMR frequency (δ = 1.7 ppm). The upfield 3.0 ppm offset from the chemical shift of the HDO signal (δ = 4.7 ppm) allows for spectrally resolving the two 2H NMR signals and quantifying the concentration of d3-thy based on the known concentration of a tissue's HDO. Following systemic administration of d3-thy, its accumulation as d3-thy monophosphate in cells expressing the human thymidine kinase 1 (hTK1) transgene was mapped with 2H-MRI. The data obtained in vivo show the ability to use the d3-thy/hTK1 pair as a reporter probe/reporter gene system to quantitatively map transgene expression with MRI. Relying on a structurally unmodified reporter probe (d3-thy) to image the expression of unmutated human protein (hTK1) shows the potential of molecular imaging with 2H-MRI to monitor gene reporters and other relevant biological targets.
Collapse
Affiliation(s)
- Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elton T. Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Balamurugan Subramani
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Fisler
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Spigel
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Tevie Mehlman
- Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Talia Harris
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Grady CJ, Castellanos Franco EA, Schossau J, Ashbaugh RC, Pelled G, Gilad AA. A putative design for the electromagnetic activation of split proteins for molecular and cellular manipulation. Front Bioeng Biotechnol 2024; 12:1355915. [PMID: 38605993 PMCID: PMC11007078 DOI: 10.3389/fbioe.2024.1355915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.
Collapse
Affiliation(s)
- Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Jory Schossau
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ryan C. Ashbaugh
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Fillion AJ, Bricco AR, Lee HD, Korenchan D, Farrar CT, Gilad AA. Development of a synthetic biosensor for chemical exchange MRI utilizing in silico optimized peptides. NMR IN BIOMEDICINE 2023; 36:e5007. [PMID: 37469121 PMCID: PMC11075521 DOI: 10.1002/nbm.5007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide, was designed to be 198 amino acids. SuperCESTide was expressed in E. coli and purified with size exclusion chromatography. The magnetic transfer ratio asymmetry generated by superCESTide was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine) and human protamine. These data show that novel peptides with sequences optimized in silico for CEST contrast that utilize a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Collapse
Affiliation(s)
- Adam J. Fillion
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - David Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Longo DL, Carella A, Corrado A, Pirotta E, Mohanta Z, Singh A, Stabinska J, Liu G, McMahon MT. A snapshot of the vast array of diamagnetic CEST MRI contrast agents. NMR IN BIOMEDICINE 2023; 36:e4715. [PMID: 35187749 PMCID: PMC9724179 DOI: 10.1002/nbm.4715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/11/2023]
Abstract
Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.
Collapse
Affiliation(s)
- Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Elisa Pirotta
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Zinia Mohanta
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aruna Singh
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julia Stabinska
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T. McMahon
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Gilad AA, Bar-Shir A, Bricco AR, Mohanta Z, McMahon MT. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology. NMR IN BIOMEDICINE 2023; 36:e4712. [PMID: 35150021 PMCID: PMC10642350 DOI: 10.1002/nbm.4712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.
Collapse
Affiliation(s)
- Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Zinia Mohanta
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Bulte JWM, Wang C, Shakeri-Zadeh A. In Vivo Cellular Magnetic Imaging: Labeled vs. Unlabeled Cells. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207626. [PMID: 36589903 PMCID: PMC9798832 DOI: 10.1002/adfm.202207626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Superparamagnetic iron oxide (SPIO)-labeling of cells has been applied for magnetic resonance imaging (MRI) cell tracking for over 30 years, having resulted in a dozen or so clinical trials. SPIO nanoparticles are biodegradable and can be broken down into elemental iron, and hence the tolerance of cells to magnetic labeling has been overall high. Over the years, however, single reports have accumulated demonstrating that the proliferation, migration, adhesion and differentiation of magnetically labeled cells may differ from unlabeled cells, with inhibition of chondrocytic differentiation of labeled human mesenchymal stem cells (hMSCs) as a notable example. This historical perspective provides an overview of some of the drawbacks that can be encountered with magnetic labeling. Now that magnetic particle imaging (MPI) cell tracking is emerging as a new in vivo cellular imaging modality, there has been a renaissance in the formulation of SPIO nanoparticles this time optimized for MPI. Lessons learned from the occasional past pitfalls encountered with SPIO-labeling of cells for MRI may expedite possible future clinical translation of (combined) MRI/MPI cell tracking.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chao Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ali Shakeri-Zadeh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Cohen D, Allouche‐Arnon H, Bar‐Shir A. MRI reporter genes in the era of gene transfer. Clin Transl Med 2022; 12:e1135. [PMID: 36471476 PMCID: PMC9722966 DOI: 10.1002/ctm2.1135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dan Cohen
- Department of Nuclear MedicineTel‐Aviv Sourasky Medical CenterTel AvivIsrael
| | - Hyla Allouche‐Arnon
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovotIsrael
| | - Amnon Bar‐Shir
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
9
|
Pandey S, Ghosh R, Ghosh A. Preparation of Hydrothermal Carbon Quantum Dots as a Contrast Amplifying Technique for the diaCEST MRI Contrast Agents. ACS OMEGA 2022; 7:33934-33941. [PMID: 36188278 PMCID: PMC9520682 DOI: 10.1021/acsomega.2c02911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The discovery of exogenous contrast agents (CAs) is one of the key factors behind the success and widespread acceptability of MRI as an imaging tool. To the long list of CAs, the newest addition is the chemical exchange saturation transfer (CEST)-based CAs. Among them, the diaCEST CAs are the safer metal-free option constituted by a large pool of organic and macromolecules, but the tradeoff comes in terms of smaller natural offset. Another major challenge for the CEST CAs is that they need to operate in the tens of millimolar concentration range to produce any meaningful contrast. The quest for high efficiency diaCEST agents has led to a number of strategies such as use of hydrogen bonding, use of equivalent protons, and use of diatropic ring current. Here, we present carbon quantum dot formation using hydrothermal treatment as a new strategy to amplify diaCEST contrast efficiency. We show that while the well-known analgesic drug lidocaine hydrochloride when repurposed as a diaCEST CA produces no contrast at the physiological pH and temperature, the carbon dots prepared from it elevate the physiological contrast to a sizable 11%. Also, the maximum efficiency at an acidic pH gets amplified by a factor of 2 to 46%. The study showed that the enhancement in CEST efficiency is reproducible and the pH response of these carbon dots is tunable through variation in synthesis conditions such as temperature, duration, and precursor concentration.
Collapse
|
10
|
Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat Biotechnol 2022; 40:1143-1149. [PMID: 35102291 DOI: 10.1038/s41587-021-01162-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Imaging of gene-expression patterns in live animals is difficult to achieve with fluorescent proteins because tissues are opaque to visible light. Imaging of transgene expression with magnetic resonance imaging (MRI), which penetrates to deep tissues, has been limited by single reporter visualization capabilities. Moreover, the low-throughput capacity of MRI limits large-scale mutagenesis strategies to improve existing reporters. Here we develop an MRI system, called GeneREFORM, comprising orthogonal reporters for two-color imaging of transgene expression in deep tissues. Starting from two promiscuous deoxyribonucleoside kinases, we computationally designed highly active, orthogonal enzymes ('reporter genes') that specifically phosphorylate two MRI-detectable synthetic deoxyribonucleosides ('reporter probes'). Systemically administered reporter probes exclusively accumulate in cells expressing the designed reporter genes, and their distribution is displayed as pseudo-colored MRI maps based on dynamic proton exchange for noninvasive visualization of transgene expression. We envision that future extensions of GeneREFORM will pave the way to multiplexed deep-tissue mapping of gene expression in live animals.
Collapse
|
11
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
12
|
Chakraborty S, Peruncheralathan S, Ghosh A. Paracetamol and other acetanilide analogs as inter-molecular hydrogen bonding assisted diamagnetic CEST MRI contrast agents. RSC Adv 2021; 11:6526-6534. [PMID: 35423188 PMCID: PMC8694904 DOI: 10.1039/d0ra10410h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paracetamol and a few other acetanilide derivatives are reported as a special class of diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI contrast agents, that exhibit contrast only when the molecules form inter-molecular hydrogen bonding mediated molecular chains or sheets. Without the protection of the hydrogen bonding their contrast producing labile proton exchanges too quickly with the solvent to produce any appreciable contrast. Through a number of variable temperature experiments we demonstrate that under the conditions when the hydrogen bond network breaks and the high exchange returns back, the contrast drops quickly. The well-known analgesic drug paracetamol shows 12% contrast at a concentration of 15 mM at physiological conditions. With the proven safety track-record for human consumption and appreciable physiological contrast, paracetamol shows promise as a diaCEST agent for in vivo studies.
Collapse
Affiliation(s)
- Subhayan Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| |
Collapse
|
13
|
Liu G, van Zijl PC. CEST (Chemical Exchange Saturation Transfer) MR Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Chakraborty S, Das M, Srinivasan A, Ghosh A. Tetrakis-( N-methyl-4-pyridinium)-porphyrin as a diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agent. NEW J CHEM 2021. [DOI: 10.1039/d0nj04869k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Easily synthesizable tetrakis-(N-methyl-4-pyridinium)-porphyrin as a diaCEST agent that shows nearly pH independent good contrast in a wide range of pH.
Collapse
Affiliation(s)
- Subhayan Chakraborty
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - Mainak Das
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - A. Srinivasan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - Arindam Ghosh
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| |
Collapse
|
15
|
Perlman O, Ito H, Gilad AA, McMahon MT, Chiocca EA, Nakashima H, Farrar CT. Redesigned reporter gene for improved proton exchange-based molecular MRI contrast. Sci Rep 2020; 10:20664. [PMID: 33244130 PMCID: PMC7692519 DOI: 10.1038/s41598-020-77576-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Reporter gene imaging allows for non-invasive monitoring of molecular processes in living cells, providing insights on the mechanisms underlying pathology and therapy. A lysine-rich protein (LRP) chemical exchange saturation transfer (CEST) MRI reporter gene has previously been developed and used to image tumor cells, cardiac viral gene transfer, and oncolytic virotherapy. However, the highly repetitive nature of the LRP reporter gene sequence leads to DNA recombination events and the expression of a range of truncated LRP protein fragments, thereby greatly limiting the CEST sensitivity. Here we report the use of a redesigned LRP reporter (rdLRP), aimed to provide excellent stability and CEST sensitivity. The rdLRP contains no DNA repeats or GC rich regions and 30% less positively charged amino-acids. RT-PCR of cell lysates transfected with rdLRP demonstrated a stable reporter gene with a single distinct band corresponding to full-length DNA. A distinct increase in CEST-MRI contrast was obtained in cell lysates of rdLRP transfected cells and in in vivo LRP expressing mouse brain tumors ([Formula: see text], n = 10).
Collapse
Affiliation(s)
- Or Perlman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Hirotaka Ito
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Assaf A Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E Antonio Chiocca
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hiroshi Nakashima
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian T Farrar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
16
|
Yuan Y, Zhang J, Qi X, Li S, Liu G, Siddhanta S, Barman I, Song X, McMahon MT, Bulte JWM. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. NATURE MATERIALS 2019; 18:1376-1383. [PMID: 31636420 PMCID: PMC6872935 DOI: 10.1038/s41563-019-0503-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/10/2019] [Indexed: 05/15/2023]
Abstract
Among the strategies used for enhancement of tumour retention of imaging agents or anticancer drugs is the rational design of probes that undergo a tumour-specific enzymatic reaction preventing them from being pumped out of the cell. Here, the anticancer agent olsalazine (Olsa) was conjugated to the cell-penetrating peptide RVRR. Taking advantage of a biologically compatible condensation reaction, single Olsa-RVRR molecules were self-assembled into large intracellular nanoparticles by the tumour-associated enzyme furin. Both Olsa-RVRR and Olsa nanoparticles were readily detected with chemical exchange saturation transfer magnetic resonance imaging by virtue of exchangeable Olsa hydroxyl protons. In vivo studies using HCT116 and LoVo murine xenografts showed that the OlsaCEST signal and anti-tumour therapeutic effect were 6.5- and 5.2-fold increased, respectively, compared to Olsa without RVRR, with an excellent 'theranostic correlation' (R2 = 0.97) between the imaging signal and therapeutic response (normalized tumour size). This furin-targeted, magnetic resonance imaging-detectable platform has potential for imaging tumour aggressiveness, drug accumulation and therapeutic response.
Collapse
Affiliation(s)
- Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoliang Qi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuoguo Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Song
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Zhang X, Yuan Y, Li S, Zeng Q, Guo Q, Liu N, Yang M, Yang Y, Liu M, McMahon MT, Zhou X. Free-base porphyrins as CEST MRI contrast agents with highly upfield shifted labile protons. Magn Reson Med 2019; 82:577-585. [PMID: 30968442 PMCID: PMC7294594 DOI: 10.1002/mrm.27753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE CEST has become a preeminent technology for the rapid detection and grading of tumors, securing its widespread use in both laboratory and clinical research. However, many existing CEST MRI agents exhibit a sensitivity limitation due to small chemical shifts between their exchangeable protons and water. We propose a new group of CEST MRI agents, free-base porphyrins and chlorin, with large exchangeable proton chemical shifts from water for enhanced detection. METHODS To test these newly identified CEST agents, we acquired a series of Z-spectra at multiple pH values and saturation field strengths to determine their CEST properties. The data were analyzed using the quantifying exchange using saturation power method to quantify exchange rates. After identifying several promising candidates, a porphyrin solution was injected into tumor-bearing mice, and MR images were acquired to assess detection feasibility in vivo. RESULTS Based on the Z-spectra, the inner nitrogen protons in free-base porphyrins and chlorin resonate from -8 to -13.5 ppm from water, far shifted from the majority of endogenous metabolites (0-4 ppm) and Nuclear Overhauser enhancements (-1 to -3.5 ppm) and far removed from the salicylates, imidazoles, and anthranillates (5-12 ppm). The exchange rates are sufficiently slow to intermediate (500-9000 s-1 ) to allow robust detection and were sensitive to substituents on the porphyrin ring. CONCLUSION These results highlight the capabilities of free-base porphyrins and chlorin as highly upfield CEST MRI agents and provide a new scaffold that can be integrated into a variety of diagnostic or theranostic agents for biomedical applications.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Sha Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Na Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Zhang J, Yuan Y, Gao M, Han Z, Chu C, Li Y, van Zijl PCM, Ying M, Bulte JWM, Liu G. Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angew Chem Int Ed Engl 2019; 58:9871-9875. [PMID: 31162873 PMCID: PMC6897491 DOI: 10.1002/anie.201904722] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/22/2022]
Abstract
While carbon dots (C-dots) have been extensively investigated pertaining to their fluorescent, phosphorescent, electrochemiluminescent, optoelectronic, and catalytic features, their inherent chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) properties are unknown. By virtue of their hydrophilicity and abundant exchangeable protons of hydroxyl, amine, and amide anchored on the surface, we report here that C-dots can be adapted as effective diamagnetic CEST (diaCEST) MRI contrast agents. As a proof-of-concept demonstration, human glioma cells were labeled with liposomes with or without encapsulated C-dots and implanted in mouse brain. In vivo CEST MRI was able to clearly differentiate labeled cells from non-labeled cells. The present findings may encourage new applications of C-dots for in vivo imaging in deep tissues, which is currently not possible using conventional fluorescent (near-infrared) C-dots.
Collapse
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Minling Gao
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- F.M Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (USA)
| | - Mingyao Ying
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- F.M Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (USA)
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- F.M Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (USA)
| |
Collapse
|
19
|
Zhang J, Yuan Y, Gao M, Han Z, Chu C, Li Y, van Zijl PCM, Ying M, Bulte JWM, Liu G. Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Minling Gao
- Department of NeurologyThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- F.M Kirby Research Center for Functional Brain ImagingKennedy Krieger Institute Baltimore MD USA
| | - Mingyao Ying
- Department of NeurologyThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- F.M Kirby Research Center for Functional Brain ImagingKennedy Krieger Institute Baltimore MD USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- F.M Kirby Research Center for Functional Brain ImagingKennedy Krieger Institute Baltimore MD USA
| |
Collapse
|
20
|
Abstract
GEST NMR provides dynamic information on host–guest systems. It allows signal amplification of low concentrated complexes, detection of intermolecular interactions and quantification of guest exchange rates.
Collapse
Affiliation(s)
- Liat Avram
- Faculty of Chemistry
- Weizmann Institute of Science
- 7610001 Rehovot
- Israel
| | - Amnon Bar-Shir
- Faculty of Chemistry
- Weizmann Institute of Science
- 7610001 Rehovot
- Israel
| |
Collapse
|
21
|
Bulte JWM, Daldrup-Link HE. Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology 2018; 289:604-615. [PMID: 30299232 PMCID: PMC6276076 DOI: 10.1148/radiol.2018180449] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/29/2022]
Abstract
Cell therapy has provided unprecedented opportunities for tissue repair and cancer therapy. Imaging tools for in vivo tracking of therapeutic cells have entered the clinic to evaluate therapeutic cell delivery and retention in patients. Thus far, clinical cell tracking studies have been a mere proof of principle of the feasibility of cell detection. This review centers around the main clinical queries associated with cell therapy: Have cells been delivered correctly at the targeted site of injection? Are cells still alive, and, if so, how many? Are cells being rejected by the host, and, if so, how severe is the immune response? For stem cell therapeutics, have cells differentiated into downstream cell lineages? Is there cell proliferation including tumor formation? At present, clinical cell tracking trials have only provided information on immediate cell delivery and short-term cell retention. The next big question is if these cell tracking tools can improve the clinical management of the patients and, if so, by how much, for how many, and for whom; in addition, it must be determined whether tracking therapeutic cells in every patient is needed. To become clinically relevant, it must now be demonstrated how cell tracking techniques can inform patient treatment and affect clinical outcomes.
Collapse
Affiliation(s)
- Jeff W. M. Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Departments of Chemical & Biomolecular Engineering, Biomedical Engineering, and Oncology, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205 (J.W.M.B.); and Departments of Radiology, Molecular Imaging Program at Stanford (MIPS) and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (H.E.D.L.)
| | - Heike E. Daldrup-Link
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Departments of Chemical & Biomolecular Engineering, Biomedical Engineering, and Oncology, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205 (J.W.M.B.); and Departments of Radiology, Molecular Imaging Program at Stanford (MIPS) and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (H.E.D.L.)
| |
Collapse
|
22
|
Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci Rep 2018; 8:4638. [PMID: 29545551 PMCID: PMC5854573 DOI: 10.1038/s41598-018-22993-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
Research into gene therapy for heart failure has gained renewed interest as a result of improved safety and availability of adeno-associated viral vectors (AAV). While magnetic resonance imaging (MRI) is standard for functional assessment of gene therapy outcomes, quantitation of gene transfer/expression relies upon tissue biopsy, fluorescence or nuclear imaging. Imaging of gene expression through the use of genetically encoded chemical exchange saturation transfer (CEST)-MRI reporter genes could be combined with clinical cardiac MRI methods to comprehensively probe therapeutic gene expression and subsequent outcomes. The CEST-MRI reporter gene Lysine Rich Protein (LRP) was cloned into an AAV9 vector and either administered systemically via tail vein injection or directly injected into the left ventricular free wall of mice. Longitudinal in vivo CEST-MRI performed at days 15 and 45 after direct injection or at 1, 60 and 90 days after systemic injection revealed robust CEST contrast in myocardium that was later confirmed to express LRP by immunostaining. Ventricular structure and function were not impacted by expression of LRP in either study arm. The ability to quantify and link therapeutic gene expression to functional outcomes can provide rich data for further development of gene therapy for heart failure.
Collapse
|
23
|
|
24
|
Arena F, Irrera P, Consolino L, Colombo Serra S, Zaiss M, Longo DL. Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:1-9. [PMID: 29272735 DOI: 10.1016/j.jmr.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/14/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.
Collapse
Affiliation(s)
- Francesca Arena
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino, Italy
| | - Pietro Irrera
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino, Italy
| | - Lorena Consolino
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino, Italy
| | | | - Moritz Zaiss
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Livio Longo
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto di Biostrutture e Bioimmagini, Torino, Italy.
| |
Collapse
|
25
|
Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell Mol Life Sci 2017; 74:4455-4469. [PMID: 28674728 DOI: 10.1007/s00018-017-2584-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
Abstract
Cell fate is a concept used to describe the differentiation and development of a cell in its organismal context over time. It is important in the field of regenerative medicine, where stem cell therapy holds much promise but is limited by our ability to assess its efficacy, which is mainly due to the inability to monitor what happens to the cells upon engraftment to the damaged tissue. Currently, several imaging modalities can be used to track cells in the clinical setting; however, they do not satisfy many of the criteria necessary to accurately assess several aspects of cell fate. In recent years, reporter genes have become a popular option for tracking transplanted cells, via various imaging modalities in small mammalian animal models. This review article examines the reporter gene strategies used in imaging modalities such as MRI, SPECT/PET, Optoacoustic and Bioluminescence Imaging. Strengths and limitations of the use of reporter genes in each modality are discussed.
Collapse
Affiliation(s)
- Piotr Jurgielewicz
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stefan Harmsen
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Suite 1511, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Gilad AA, Shapiro MG. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging. Mol Imaging Biol 2017; 19:373-378. [PMID: 28213833 PMCID: PMC6058969 DOI: 10.1007/s11307-017-1062-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.
Collapse
Affiliation(s)
- Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Heritage Medical Research Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
27
|
Bar-Shir A, Alon L, Korrer MJ, Lim HS, Yadav NN, Kato Y, Pathak AP, Bulte JWM, Gilad AA. Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magn Reson Med 2017; 79:1010-1019. [PMID: 28480589 DOI: 10.1002/mrm.26708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetically encoded reporters can assist in visualizing biological processes in live organisms and have been proposed for longitudinal and noninvasive tracking of therapeutic cells in deep tissue. Cells can be labeled in situ or ex vivo and followed in live subjects over time. Nevertheless, a major challenge for reporter systems is to identify the cell population that actually expresses an active reporter. METHODS We have used a nucleoside analog, pyrrolo-2'-deoxycytidine, as an imaging probe for the putative reporter gene, Drosophila melanogaster 2'-deoxynucleoside kinase. Bioengineered cells were imaged in vivo in animal models of brain tumor and immunotherapy using chemical exchange saturation transfer MRI. The number of transduced cells was quantified by flow cytometry based on the optical properties of the probe. RESULTS We performed a comparative analysis of six different cell lines and demonstrate utility in a mouse model of immunotherapy. The proposed technology can be used to quantify the number of labeled cells in a given region, and moreover is sensitive enough to detect less than 10,000 cells. CONCLUSION This unique technology that enables efficient selection of labeled cells followed by in vivo monitoring with both optical and MRI. Magn Reson Med 79:1010-1019, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lina Alon
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Korrer
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hong Seo Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yoshinori Kato
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arvind P Pathak
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Ngen EJ, Bar-Shir A, Jablonska A, Liu G, Song X, Ansari R, Bulte JWM, Janowski M, Pearl M, Walczak P, Gilad AA. Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Mol Pharm 2016; 13:3043-53. [PMID: 27398883 DOI: 10.1021/acs.molpharmaceut.6b00130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain tumors are among the most lethal types of tumors. Therapeutic response variability and failure in patients have been attributed to several factors, including inadequate drug delivery to tumors due to the blood-brain barrier (BBB). Consequently, drug delivery strategies are being developed for the local and targeted delivery of drugs to brain tumors. These drug delivery strategies could benefit from new approaches to monitor the delivery of drugs to tumors. Here, we evaluated the feasibility of imaging 4-[bis(2-chloroethyl)amino]-l-phenylalanine (melphalan), a clinically used DNA alkylating agent, using chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), for theranostic applications. We evaluated the physicochemical parameters that affect melphalan's CEST contrast and demonstrated the feasibility of imaging the unmodified drug by saturating its exchangeable amine protons. Melphalan generated a CEST signal despite its reactivity in an aqueous milieu. The maximum CEST signal was observed at pH 6.2. This CEST contrast trend was then used to monitor therapeutic responses to melphalan in vitro. Upon cell death, the decrease in cellular pH from ∼7.4 to ∼6.4 caused an amplification of the melphalan CEST signal. This is contrary to what has been reported for other CEST contrast agents used for imaging cell death, where a decrease in the cellular pH following cell death results in a decrease in the CEST signal. Ultimately, this method could be used to noninvasively monitor melphalan delivery to brain tumors and also to validate therapeutic responses to melphalan clinically.
Collapse
Affiliation(s)
- Ethel J Ngen
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Amnon Bar-Shir
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Anna Jablonska
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Guanshu Liu
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | - Xiaolei Song
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | | | - Jeff W M Bulte
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | - Miroslaw Janowski
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,NeuroRepair Department, Mossakowski Medical Research Centre, PAS , 02106 Warsaw, Poland.,Department of Neurosurgery, Mossakowski Medical Research Centre, PAS , 02106 Warsaw, Poland
| | - Monica Pearl
- Division of Interventional Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Department of Radiology, Children's National Medical Center , Washington, D.C. 20010, United States
| | - Piotr Walczak
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Assaf A Gilad
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| |
Collapse
|
29
|
Pumphrey AL, Ye S, Yang Z, Simkin J, Gensel JC, Abdel-Latif A, Vandsburger MH. Cardiac Chemical Exchange Saturation Transfer MR Imaging Tracking of Cell Survival or Rejection in Mouse Models of Cell Therapy. Radiology 2016; 282:131-138. [PMID: 27420900 DOI: 10.1148/radiol.2016152766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To examine whether cardiac chemical exchange saturation transfer (CEST) imaging can be serially and noninvasively used to probe cell survival or rejection after intramyocardial implantation in mice. Materials and Methods Experiments were compliant with the National Institutes of Health Guidelines on the Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee. One million C2C12 cells labeled with either europium (Eu) 10-(2-hydroxypropyl)-1,4,7-tetraazacyclododecane-1,4,7-triacetic acid (HP-DO3A) or saline via the hypotonic swelling technique were implanted into the anterior-lateral left ventricular wall in C57BL/6J (allogeneic model, n = 17) and C3H (syngeneic model, n = 13) mice. Imaging (frequency offsets of ±15 parts per million) was performed 1, 10, and 20 days after implantation, with the asymmetrical magnetization transfer ratio (MTRasym) calculated from image pairs. Histologic examination was performed at the conclusion of imaging. Changes in MTRasym over time and between mice were assessed by using two-way repeated-measures analysis of variance. Results MTRasym was significantly higher in C3H and C57BL/6J mice in grafts of Eu-HP-DO3A-labeled cells (40.2% ± 5.0 vs 37.8% ± 7.0, respectively) compared with surrounding tissue (-0.67% ± 1.7 vs -1.8% ± 5.3, respectively; P < .001) and saline-labeled grafts (-0.4% ± 6.0 vs -1.2% ± 3.6, respectively; P < .001) at day 1. In C3H mice, MTRasym remained increased (31.3% ± 9.2 on day 10, 28.7% ± 5.2 on day 20; P < .001 vs septum) in areas of in Eu-HP-DO3A-labeled cell grafts. In C57BL/6J mice, corresponding MTRasym values (11.3% ± 8.1 on day 10, 5.1% ± 9.4 on day 20; P < .001 vs day 1) were similar to surrounding myocardium by day 20 (P = .409). Histologic findings confirmed cell rejection in C57BL/6J mice. Estimation of graft area was similar with cardiac CEST imaging and histologic examination (R2 = 0.89). Conclusion Cardiac CEST imaging can be used to image cell survival and rejection in preclinical models of cell therapy. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ashley L Pumphrey
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| | - Shaojing Ye
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| | - Zhengshi Yang
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| | - Jennifer Simkin
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| | - John C Gensel
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| | - Ahmed Abdel-Latif
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| | - Moriel H Vandsburger
- From the Saha Cardiovascular Research Center (A.L.P., S.Y., Z.Y., A.A.L., M.H.V.) and Spinal Cord and Brain Injury Research Center (J.S., J.C.G.), University of Kentucky, 741 S Limestone St, BBSRB 355, Lexington, KY 40536
| |
Collapse
|
30
|
Sinharay S, Pagel MD. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:95-115. [PMID: 27049630 PMCID: PMC4911245 DOI: 10.1146/annurev-anchem-071015-041514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.
Collapse
Affiliation(s)
- Sanhita Sinharay
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85724;
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85724;
- Department of Medical Imaging, University of Arizona, Tucson, Arizona 85724;
| |
Collapse
|
31
|
Pumphrey A, Yang Z, Ye S, Powell DK, Thalman S, Watt DS, Abdel-Latif A, Unrine J, Thompson K, Fornwalt B, Ferrauto G, Vandsburger M. Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging. NMR IN BIOMEDICINE 2016; 29:74-83. [PMID: 26684053 PMCID: PMC4907269 DOI: 10.1002/nbm.3451] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 05/03/2023]
Abstract
An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20 mM Eu-HPDO3A, 20 mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10(-3) ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10(-5) ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15 ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine.
Collapse
Affiliation(s)
- Ashley Pumphrey
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Zhengshi Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Shaojing Ye
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - David K. Powell
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Scott Thalman
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - David S. Watt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Brandon Fornwalt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Geisinger Health System, Danville, PA, USA
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Moriel Vandsburger
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
32
|
Bar-Shir A, Liang Y, Chan KWY, Gilad AA, Bulte JWM. Supercharged green fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. Chem Commun (Camb) 2015; 51:4869-71. [PMID: 25697683 DOI: 10.1039/c4cc10195b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Superpositively charged mutants of green fluorescent protein (GFP) demonstrated a dramatically improved chemical exchange saturation transfer (CEST) MRI contrast compared to their wild type counterparts. The mutants +36 GFP and +48 GFP were successfully expressed in mammalian cells and retained part of their fluorescence, making them a new potential bimodal reporter gene.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
33
|
Andrzejewska A, Nowakowski A, Janowski M, Bulte JWM, Gilad AA, Walczak P, Lukomska B. Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine 2015; 10:5543-59. [PMID: 26366076 PMCID: PMC4562754 DOI: 10.2147/ijn.s83557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Nowakowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff WM Bulte
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Assaf A Gilad
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Abstract
Molecular imaging plays an important role in the era of personalized medicine, especially with recent advances in magnetic resonance (MR) probes. While the first generation of these probes focused on maximizing contrast enhancement, a second generation of probes has been developed to improve the accumulation within specific tissues or pathologies, and the newest generation of agents is also designed to report on changes in physiological status and has been termed "smart" agents. This represents a paradigm switch from the previously commercialized gadolinium and iron oxide probes to probes with new capabilities, and leads to new challenges as scanner hardware needs to be adapted for detecting these probes. In this chapter, we highlight the unique features for all five different categories of MR probes, including the emerging chemical exchange saturation transfer, (19)F, and hyperpolarized probes, and describe the key physical properties and features motivating their design. As part of this comparison, the strengths and weaknesses of each category are discussed.
Collapse
Affiliation(s)
- Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Kannie W Y Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Bar-Shir A, Bulte JWM, Gilad AA. Molecular engineering of nonmetallic biosensors for CEST MRI. ACS Chem Biol 2015; 10:1160-70. [PMID: 25730583 PMCID: PMC11329289 DOI: 10.1021/cb500923v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent advancements in molecular and synthetic biology, combined with synthetic chemistry and biotechnology, have opened up new opportunities to engineer novel platforms that can monitor complex biological processes with various noninvasive imaging modalities. After decades of using gadolinium- or iron-based metallic sensors for MRI, the recently developed chemical exchange saturation transfer (CEST) contrast mechanism has created an opportunity for rational design, in silico, of nonmetallic biosensors for MRI. These biomolecules are either naturally occurring compounds (amino acids, sugars, nucleosides, native proteins) or can be artificially engineered (synthetic probes or recombinant proteins). They can be administered either as exogenous agents or can be genetically (over)expressed. Moreover, they can be precisely engineered to achieve the desired biochemical properties for fine tuning optimized imaging schemes. The availability of these agents marks the dawn of a new scientific era for molecular and cellular MRI.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- †Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- ‡Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeff W M Bulte
- †Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- ‡Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- §F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
- ∥Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- #Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Assaf A Gilad
- †Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- ‡Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- §F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
36
|
Minn I, Bar-Shir A, Yarlagadda K, Bulte JWM, Fisher PB, Wang H, Gilad AA, Pomper MG. Tumor-specific expression and detection of a CEST reporter gene. Magn Reson Med 2015; 74:544-9. [PMID: 25919119 DOI: 10.1002/mrm.25748] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop an imaging tool that enables the detection of malignant tissue with enhanced specificity using the exquisite spatial resolution of MRI. METHODS Two mammalian gene expression vectors were created for the expression of the lysine-rich protein (LRP) under the control of the cytomegalovirus (CMV) promoter and the progression elevated gene-3 promoter (PEG-3 promoter) for constitutive and tumor-specific expression of LRP, respectively. Using those vectors, stable cell lines of rat 9L glioma, 9L(CMV-LRP) and 9L(PEG-LRP) , were established and tested for CEST contrast in vitro and in vivo. RESULTS 9L(PEG-LRP) cells showed increased CEST contrast compared with 9L cells in vitro. Both 9L(CMV-LRP) and 9L(PEG-LRP) cells were capable of generating tumors in the brains of mice, with a similar growth rate to tumors derived from wild-type 9L cells. An increase in CEST contrast was clearly visible in tumors derived from both 9L(CMV-LRP) and 9L(PEG-LRP) cells at 3.4 ppm. CONCLUSION The PEG-3 promoter:LRP system can be used as a cancer-specific, molecular-genetic imaging reporter system in vivo. Because of the ubiquity of MR imaging in clinical practice, sensors of this class can be used to translate molecular-genetic imaging rapidly.
Collapse
Affiliation(s)
- Il Minn
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amnon Bar-Shir
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Keerthi Yarlagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JWM. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 2015; 8:323-36. [PMID: 26035841 PMCID: PMC4381332 DOI: 10.1242/dmm.018499] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deepak K Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amnon Bar-Shir
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Assaf A Gilad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA. Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Oskolkov N, Bar-Shir A, Chan KW, Song X, van Zijl PC, Bulte JW, Gilad AA, McMahon MT. Biophysical Characterization of Human Protamine-1 as a Responsive CEST MR Contrast Agent. ACS Macro Lett 2015; 4:34-38. [PMID: 25642384 PMCID: PMC4307908 DOI: 10.1021/mz500681y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
![]()
The protamines are a low-molecular-weight,
arginine-rich family
of nuclear proteins that protect chromosomal DNA in germ cells by
packing it densely using electrostatic interactions. Human protamine-1
(hPRM1) has been developed as a magnetic resonance imaging (MRI) chemical
exchange saturation transfer (CEST) reporter gene, based on a sequence
that is approximately 50% arginine, which has a side chain with rapidly
exchanging protons. In this study, we have synthesized hPRM1 and determined
how its CEST MRI contrast varies as a function of pH, phosphorylation
state, and upon noncovalent interaction with nucleic acids and heparin
(as antagonist). CEST contrast was found to be highly sensitive to
phosphorylation on serine residues, intra- and intermolecular disulfide
bridge formation, and the binding of negatively charged nucleotides
and heparin. In addition, the nucleotide binding constants (Keq) for the protamines were determined through
plotting the molar concentration of heparin versus CEST contrast and
compared between hPRM1 and salmon protamine. Taken together, these
findings are important for explaining the CEST contrast of existing
arginine-rich probes as well as serving as a guideline for designing
new genetic or synthetic probes.
Collapse
Affiliation(s)
- Nikita Oskolkov
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
| | - Amnon Bar-Shir
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- Cellular
Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, Maryland United States
| | - Kannie W.Y. Chan
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
- Cellular
Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, Maryland United States
| | - Xiaolei Song
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
| | - Peter C.M. van Zijl
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
| | - Jeff W.M. Bulte
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
- Cellular
Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, Maryland United States
| | - Assaf A. Gilad
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
- Cellular
Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, Maryland United States
| | - Michael T. McMahon
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland United States
| |
Collapse
|
39
|
Huang D, Li S, Dai Z, Shen Z, Yan G, Wu R. Novel gradient echo sequence‑based amide proton transfer magnetic resonance imaging in hyperacute cerebral infarction. Mol Med Rep 2015; 11:3279-84. [PMID: 25571956 PMCID: PMC4368135 DOI: 10.3892/mmr.2015.3165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022] Open
Abstract
In the progression of ischemia, pH is important and is essential in elucidating the association between metabolic disruption, lactate formation, acidosis and tissue damage. Chemical exchange-dependent saturation transfer (CEST) imaging can be used to detect tissue pH and, in particular, a specific form of CEST magnetic resonance imaging (MRI), termed amide proton transfer (APT) MRI, which is sensitive to pH and can detect ischemic lesions, even prior to diffusion abnormalities. The critical parameter governing the ability of CEST to detect pH is the sequence. In the present study, a novel strategy was used, based on the gradient echo sequence (GRE), which involved the insertion of a magnetization transfer pulse in each repetition time (TR) and minimizing the TR for in vivo APT imaging. The proposed GRE-APT MRI method was initially verified using a tissue-like pH phantom and optimized MRI parameters for APT imaging. In order to assess the range of acute cerebral infarction, rats (n=4) were subjected to middle cerebral artery occlusion (MCAO) and MRI scanning at 7 telsa (T). Hyperacute ischemic tissue damage was characterized using multiparametric imaging techniques, including diffusion, APT and T2-Weighted MRI. By using a magnetization transfer pulse and minimizing TR, GRE-APT provided high spatial resolution and a homogeneous signal, with clearly distinguished cerebral anatomy. The GRE-APT and diffusion MRI were significantly correlated with lactate content and the area of cerebral infarction in the APT and apparent diffusion coefficient (ADC) maps matched consistently during the hyperacute period. In addition, compared with the infarction area observed on the ADC MRI map, the APT map contained tissue, which had not yet been irreversibly damaged. Therefore, GRE-APT MRI waa able to detect ischemic lactic acidosis with sensitivity and spatiotemporal resolution, suggesting the potential use of pH MRI as a surrogate imaging marker of impaired tissue metabolism for the diagnosis and prognosis of hyperacute stroke.
Collapse
Affiliation(s)
- Dexiao Huang
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Shenkai Li
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Gen Yan
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
40
|
Naumova AV, Modo M, Moore A, Murry CE, Frank JA. Clinical imaging in regenerative medicine. Nat Biotechnol 2014; 32:804-18. [PMID: 25093889 PMCID: PMC4164232 DOI: 10.1038/nbt.2993] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023]
Abstract
In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring.
Collapse
Affiliation(s)
- Anna V Naumova
- 1] Department of Radiology, University of Washington, Seattle, Washington, USA. [2] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [3] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Michel Modo
- 1] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2] Centre for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [3] Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [4] Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Charles E Murry
- 1] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [3] Department of Pathology, University of Washington, Seattle, Washington, USA. [4] Department of Bioengineering, University of Washington, Seattle, Washington, USA. [5] Department of Medicine/Cardiology, University of Washington, Seattle, Washington, USA
| | - Joseph A Frank
- 1] Radiology and Imaging Sciences, Clinical, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institutes of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Molecular neuroimaging of post-injury plasticity. J Mol Neurosci 2014; 54:630-8. [PMID: 24909382 DOI: 10.1007/s12031-014-0347-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
Nerve injury induces long-term changes in neuronal activity in the primary somatosensory cortex (S1), which has often been implicated as the origin of sensory dysfunction. However, the cellular mechanisms underlying this phenomenon remain unclear. C-fos is an immediate early gene, which has been shown to play an instrumental role in plasticity. By developing a new platform to image real-time changes in gene expression in vivo, we investigated whether injury modulates the levels of c-fos in layer V of S1, since previous studies have suggested that these neurons are particularly susceptible to injury. The yellow fluorescent protein, ZsYellow1, under the regulation of the c-fos promoter, was expressed throughout the rat brain. A fiber-based confocal microscope that enabled deep brain imaging was utilized, and local field potentials were collected simultaneously. In the weeks following limb denervation in adult rats (n=10), sensory stimulation of the intact limb induced significant increases in c-fos gene expression in cells located in S1, both contralateral (affected, 27.6±3 cells) and ipsilateral (8.6±3 cells) to the injury, compared to controls (n=10, 13.4±3 and 1.0±1, respectively, p value<0.05). Thus, we demonstrated that injury activates cellular mechanisms that are involved in reshaping neuronal connections, and this may translate to neurorehabilitative potential.
Collapse
|