1
|
Geels SN, Murat C, Moshensky A, Othy S, Marangoni F. Protocol to quantify the activation dynamics of tumor-associated T cells in mice by functional intravital microscopy. STAR Protoc 2024; 5:103310. [PMID: 39306849 PMCID: PMC11459072 DOI: 10.1016/j.xpro.2024.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 10/11/2024] Open
Abstract
Tumor-associated T cells orchestrate cancer rejection after checkpoint blockade immunotherapy. T cell function depends on dynamic antigen recognition through the T cell receptor (TCR) resulting in T cell activation. Here, we present an approach to quantify the dynamics and magnitude of tumor-associated T cell activation at multiple time points in living mice using the genetically encoded calcium reporter Salsa6f and functional intravital microscopy (F-IVM). Our protocol allows researchers to measure the activation dynamics of various immune cells in vivo. For complete details on the use and execution of this protocol, please refer to Geels et al.1.
Collapse
Affiliation(s)
- Shannon N Geels
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Claire Murat
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA.
| | - Alexander Moshensky
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Mazzaglia C, Munir H, Lei IM, Gerigk M, Huang YYS, Shields JD. Modeling Structural Elements and Functional Responses to Lymphatic-Delivered Cues in a Murine Lymph Node on a Chip. Adv Healthc Mater 2024; 13:e2303720. [PMID: 38626388 DOI: 10.1002/adhm.202303720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Lymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures. When challenged, the eLN elicits both robust inflammatory responses and antigen-specific immune activation, showing that the system can differentiate between non specific and antigen-specific stimulation and can be monitored in real time. Beyond immune responses, this model also enables interrogation of changes in stromal cells, thus permitting investigations of all LN cellular components in homeostasis and different disease settings, such as cancer. Here, how LN behavior can be influenced by murine melanoma-derived factors is presented. In conclusion, the eLN model presents a promising platform for in vitro study of LN biology that will enhance understanding of stromal and immune responses in the murine LN, and in doing so will enable development of novel therapeutic strategies to improve LN responses in disease.
Collapse
Affiliation(s)
- Corrado Mazzaglia
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Hafsa Munir
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), 55131, Mainz, Germany
- Division of Dermal Oncoimmunology, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Iek Man Lei
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Magda Gerigk
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Jacqueline D Shields
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
- Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| |
Collapse
|
3
|
Deng D, Hao T, Lu L, Yang M, Zeng Z, Lovell JF, Liu Y, Jin H. Applications of Intravital Imaging in Cancer Immunotherapy. Bioengineering (Basel) 2024; 11:264. [PMID: 38534538 DOI: 10.3390/bioengineering11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Currently, immunotherapy is one of the most effective treatment strategies for cancer. However, the efficacy of any specific anti-tumor immunotherapy can vary based on the dynamic characteristics of immune cells, such as their rate of migration and cell-to-cell interactions. Therefore, understanding the dynamics among cells involved in the immune response can inform the optimization and improvement of existing immunotherapy strategies. In vivo imaging technologies use optical microscopy techniques to visualize the movement and behavior of cells in vivo, including cells involved in the immune response, thereby showing great potential for application in the field of cancer immunotherapy. In this review, we briefly introduce the technical aspects required for in vivo imaging, such as fluorescent protein labeling, the construction of transgenic mice, and various window chamber models. Then, we discuss the elucidation of new phenomena and mechanisms relating to tumor immunotherapy that has been made possible by the application of in vivo imaging technology. Specifically, in vivo imaging has supported the characterization of the movement of T cells during immune checkpoint inhibitor therapy and the kinetic analysis of dendritic cell migration in tumor vaccine therapy. Finally, we provide a perspective on the challenges and future research directions for the use of in vivo imaging technology in cancer immunotherapy.
Collapse
Affiliation(s)
- Deqiang Deng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianli Hao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muyang Yang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Zeng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Bucan A, Frendø M, Ngo MT, Sørensen JA, Hölmich LR. Surgical lymphedema models in the mice hindlimb-A systematic review and quality assessment. Microsurgery 2024; 44:e31088. [PMID: 37665032 DOI: 10.1002/micr.31088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Lymphedema constitutes a major unsolved problem in plastic surgery. To identify novel lymphedema treatments, preclinical studies are vital. The surgical mouse lymphedema model is popular and cost-effective; nonetheless, a synthesis and overview of the literature with evidence-based guidelines is needed. The aim of this review was to perform a systematic review to establish best practice and support future high-quality animal studies exploring lymphedema treatments. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching four databases (PubMed, Embase, Web of Science, and Scopus) from inception-September 2022. The Animals in Research Reporting In Vivo Experiments 2.0 (ARRIVE 2.0) guidelines were used to evaluate reporting quality. Studies claiming to surgically induce lymphedema in the hindlimb of mice were included. RESULTS Thirty-seven studies were included. Four main models were used. (1) Irradiation+surgery. (2) A variation of the surgery used by (1) + irradiation. (3) Surgery only (SPDF-model). (4) Surgery only (PLND-model). Remaining studies used other techniques. The most common measurement modality was the caliper. Mean quality coefficient was 0.57. Eighteen studies (49%) successfully induced sustained lymphedema. Combination of methods seemed to yield the best results, with an overrepresentation of irradiation, the removal of two lymph nodes, and the disruption of both the deep and superficial lymph vessels in the 18 studies. CONCLUSION Surgical mouse hindlimb lymphedema models are challenged by two related problems: (1) retaining lymphedema for an extended period, that is, establishing a (chronic) lymphedema model (2) distinguishing lymphedema from post-operative edema. Most studies failed to induce lymphedema and used error-prone measurements. We provide an overview of studies claiming to induce lymphedema and advocate improved research via five evidence-based recommendations to use: (1) a proven lymphedema model; (2) sufficient follow-up time, (3) validated measurement methods; (4) ARRIVE-guidelines; (5) contralateral hindlimb as control.
Collapse
Affiliation(s)
- Amar Bucan
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Martin Frendø
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR & Education, Copenhagen, Denmark
| | - Mikaella Ty Ngo
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jens Ahm Sørensen
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic Surgery, University of Copenhagen, Herlev and Gentofte Hospital, Copenhagen, Denmark
| |
Collapse
|
5
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
6
|
Birnbaum L, Sullivan EC, Do P, Uricoli B, Raikar SS, Porter CC, Henry CJ, Dreaden EC. Multicolor Light-Induced Immune Activation via Polymer Photocaged Cytokines. Biomacromolecules 2023; 24:1164-1172. [PMID: 36745712 PMCID: PMC10015458 DOI: 10.1021/acs.biomac.2c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Indexed: 02/08/2023]
Abstract
Cytokines act as potent, extracellular signals of the human immune system and can elicit striking treatment responses in patients with autoimmune disease, tissue damage, and cancer. Yet, despite their therapeutic potential, recombinant cytokine-mediated immune responses remain difficult to control as their administration is often systemic, whereas their intended sites of action are localized. To address the challenge of spatially and temporally constraining cytokine signals, we recently devised a strategy whereby recombinant cytokines are reversibly inactivated via chemical modification with photo-labile polymers that respond to visible LED light. Extending this approach to enable both in vivo and multicolor immune activation, here we describe a strategy whereby cytokines appended with heptamethine cyanine-polyethylene glycol are selectively re-activated ex vivo using tissue-penetrating near-infrared (NIR) light. We show that NIR LED light illumination of caged, pro-inflammatory cytokines restores cognate receptor signaling and potentiates the activity of T cell-engager cancer immunotherapies ex vivo. Using combinations of visible- and NIR-responsive cytokines, we further demonstrate multiwavelength optical control of T cell cytolysis ex vivo, as well as the ability to perform Boolean logic using multicolored light and orthogonally photocaged cytokine pairs as inputs and T cell activity as outputs. Together, this work demonstrates a novel approach to control extracellular immune cell signals using light, a strategy that in the future may improve our understanding of and ability to treat cancer and other diseases.
Collapse
Affiliation(s)
- Lacey
A. Birnbaum
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Emily C. Sullivan
- Molecular
and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30307, United States
| | - Priscilla Do
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Biaggio Uricoli
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Sunil S. Raikar
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Christopher C. Porter
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Curtis J. Henry
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Erik C. Dreaden
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
- Petit Institute
for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
8
|
Wagner LE, Melnyk O, Duffett BE, Linnemann AK. Mouse models and human islet transplantation sites for intravital imaging. Front Endocrinol (Lausanne) 2022; 13:992540. [PMID: 36277698 PMCID: PMC9579277 DOI: 10.3389/fendo.2022.992540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023] Open
Abstract
Human islet transplantations into rodent models are an essential tool to aid in the development and testing of islet and cellular-based therapies for diabetes prevention and treatment. Through the ability to evaluate human islets in an in vivo setting, these studies allow for experimental approaches to answer questions surrounding normal and disease pathophysiology that cannot be answered using other in vitro and in vivo techniques alone. Intravital microscopy enables imaging of tissues in living organisms with dynamic temporal resolution and can be employed to measure biological processes in transplanted human islets revealing how experimental variables can influence engraftment, and transplant survival and function. A key consideration in experimental design for transplant imaging is the surgical placement site, which is guided by the presence of vasculature to aid in functional engraftment of the islets and promote their survival. Here, we review transplantation sites and mouse models used to study beta cell biology in vivo using intravital microscopy and we highlight fundamental observations made possible using this methodology.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amelia K. Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Banerjee P, Roy S, Chakraborty S. Recent advancement of imaging strategies of the lymphatic system: Answer to the decades old questions. Microcirculation 2022; 29:e12780. [PMID: 35972391 DOI: 10.1111/micc.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
The role of the lymphatic system in maintaining tissue homeostasis and a number of different pathophysiological conditions has been well established. The complex and delicate structure of the lymphatics along with the limitations of conventional imaging techniques make lymphatic imaging particularly difficult. Thus, in-depth high-resolution imaging of lymphatic system is key to understanding the progression of lymphatic diseases and cancer metastases and would greatly benefit clinical decisions. In recent years, the advancement of imaging technologies and development of new tracers suitable for clinical applications has enabled imaging of the lymphatic system in both clinical and pre-clinical settings. In this current review, we have highlighted the advantages and disadvantages of different modern techniques such as near infra-red spectroscopy (NIRS), positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and fluorescence optical imaging, that has significantly impacted research in this field and has led to in-depth insights into progression of pathological states. This review also highlights the use of current imaging technologies, and tracers specific for immune cell markers to identify and track the immune cells in the lymphatic system that would help understand disease progression and remission in immune therapy regimen.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
10
|
Xu X, Shen Y, Lin L, Lin L, Li B. Multi-step deep neural network for identifying subfascial vessels in a dorsal skinfold window chamber model. BIOMEDICAL OPTICS EXPRESS 2022; 13:426-437. [PMID: 35154882 PMCID: PMC8803012 DOI: 10.1364/boe.446214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Automatic segmentation of blood vessels in the dorsal skinfold window chamber (DWSC) model is a prerequisite for the evaluation of vascular-targeted photodynamic therapy (V-PDT) biological response. Recently, deep learning methods have been widely applied in blood vessel segmentation, but they have difficulty precisely identifying the subfascial vessels. This study proposed a multi-step deep neural network, named the global attention-Xnet (GA-Xnet) model, to precisely segment subfascial vessels in the DSWC model. We first used Hough transform combined with a U-Net model to extract circular regions of interest for image processing. GA step was then employed to obtain global feature learning followed by coarse segmentation for the entire blood vessel image. Secondly, the coarse segmentation of blood vessel images from the GA step and the same number of retinal images from the DRIVE datasets were combined as the mixing sample, inputted into the Xnet step to learn the multiscale feature predicting fine segmentation maps of blood vessels. The data show that the accuracy, sensitivity, and specificity for the segmentation of multiscale blood vessels in the DSWC model are 96.00%, 86.27%, 96.47%, respectively. As a result, the subfascial vessels could be accurately identified, and the connectedness of the vessel skeleton is well preserved. These findings suggest that the proposed multi-step deep neural network helps evaluate the short-term vascular responses in V-PDT.
Collapse
Affiliation(s)
- Xuelin Xu
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
- School of Information Science and Engineering, Fujian University of Technology, Fuzhou, 350007, China
| | - Yi Shen
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Li Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Lisheng Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Buhong Li
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
11
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
12
|
Jones D, Wang Z, Chen IX, Zhang S, Banerji R, Lei PJ, Zhou H, Xiao V, Kwong C, van Wijnbergen JWM, Pereira ER, Vakoc BJ, Huang P, Nia HT, Padera TP. Solid stress impairs lymphocyte infiltration into lymph-node metastases. Nat Biomed Eng 2021; 5:1426-1436. [PMID: 34282290 PMCID: PMC8678215 DOI: 10.1038/s41551-021-00766-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Strong and durable anticancer immune responses are associated with the generation of activated cancer-specific T cells in the draining lymph nodes. However, cancer cells can colonize lymph nodes and drive tumour progression. Here, we show that lymphocytes fail to penetrate metastatic lesions in lymph nodes. In tissue from patients with breast, colon, and head and neck cancers, as well as in mice with spontaneously developing breast-cancer lymph-node metastases, we found that lymphocyte exclusion from nodal lesions is associated with the presence of solid stress caused by lesion growth, that solid stress induces reductions in the number of functional high endothelial venules in the nodes, and that relieving solid stress in the mice increased the presence of lymphocytes in lymph-node lesions by about 15-fold. Solid-stress-mediated impairment of lymphocyte infiltration into lymph-node metastases suggests a therapeutic route for overcoming T-cell exclusion during immunotherapy.
Collapse
Affiliation(s)
- Dennis Jones
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Zixiong Wang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ivy X Chen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hengbo Zhou
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Victoria Xiao
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Cecilia Kwong
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jan Willem M van Wijnbergen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin J Vakoc
- Harvard Medical School, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Pae J, Jacobsen JT, Victora GD. Imaging the different timescales of germinal center selection. Immunol Rev 2021; 306:234-243. [PMID: 34825386 DOI: 10.1111/imr.13039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
Germinal centers (GCs) are the site of antibody affinity maturation, a fundamental immunological process that increases the potency of antibodies and thereby their ability to protect against infection. GC biology is highly dynamic in both time and space, making it ideally suited for intravital imaging. Using multiphoton laser scanning microscopy (MPLSM), the field has gained insight into the molecular, cellular, and structural changes and movements that coordinate affinity maturation in real time in their native environment. On the other hand, several limitations of MPLSM have had to be overcome to allow full appreciation of GC events taking place across different timescales. Here, we review the technical advances afforded by intravital imaging and their contributions to our understanding of GC biology.
Collapse
Affiliation(s)
- Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, New York, USA
| | - Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, New York, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
14
|
Schienstock D, Mueller SN. Moving beyond velocity: Opportunities and challenges to quantify immune cell behavior. Immunol Rev 2021; 306:123-136. [PMID: 34786722 DOI: 10.1111/imr.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The analysis of cellular behavior using intravital multi-photon microscopy has contributed substantially to our understanding of the priming and effector phases of immune responses. Yet, many questions remain unanswered and unexplored. Though advancements in intravital imaging techniques and animal models continue to drive new discoveries, continued improvements in analysis methods are needed to extract detailed information about cellular behavior. Focusing on dendritic cell (DC) and T cell interactions as an exemplar, here we discuss key limitations for intravital imaging studies and review and explore alternative approaches to quantify immune cell behavior. We touch upon current developments in deep learning models, as well as established methods from unrelated fields such as ecology to detect and track objects over time. As developments in open-source software make it possible to process and interactively view larger datasets, the challenge for the field will be to determine how best to combine intravital imaging with multi-parameter imaging of larger tissue regions to discover new facets of leukocyte dynamics and how these contribute to immune responses.
Collapse
Affiliation(s)
- Dominik Schienstock
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
15
|
Vats R, Kaminski TW, Pradhan-Sundd T. Intravital Imaging of Hepatic Blood Biliary Barrier in Live Mice. Curr Protoc 2021; 1:e256. [PMID: 34610200 PMCID: PMC8500480 DOI: 10.1002/cpz1.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Understanding the kinetics and spatiotemporal interactions of living cells within the tissue environment requires real-time imaging. The introduction of two-photon microscopy has substantially boosted the power of live intravital imaging, making it possible to obtain information of individual cells in near-physiologic conditions within intact tissues nondestructively. Intravital imaging of the liver has proved useful in understanding its 3D structure, function, and dynamic cellular interactions. Recently we have shown that integrity of the blood-bile barrier in different physiologic and pathophysiologic conditions can be imaged in real time using intravital microscopy. Here we discuss the real-time intravital imaging method to visualize blood-bile barrier integrity in the murine liver. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Live imaging in the mouse liver Support Protocol: Monitoring vital signs of the mouse during live liver imaging Basic Protocol 2: Visualizing blood and bile transport using intravital microscopy.
Collapse
Affiliation(s)
- Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Jacobsen JT, Hu W, R Castro TB, Solem S, Galante A, Lin Z, Allon SJ, Mesin L, Bilate AM, Schiepers A, Shalek AK, Rudensky AY, Victora GD. Expression of Foxp3 by T follicular helper cells in end-stage germinal centers. Science 2021; 373:373/6552/eabe5146. [PMID: 34437125 DOI: 10.1126/science.abe5146] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3+ T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (TFH) cells. Ectopic expression of Foxp3 in TFH cells is sufficient to decrease GC size, implicating the natural up-regulation of Foxp3 by TFH cells as a potential regulator of GC lifetimes.
Collapse
Affiliation(s)
- Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| | - Wei Hu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Ludwig Center for Cancer Immunotherapy, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Sigrid Solem
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Alice Galante
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Zeran Lin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Samuel J Allon
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.,Department of Chemistry, MIT, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.,Department of Chemistry, MIT, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Immunology Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Ludwig Center for Cancer Immunotherapy, New York, NY, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Choo YW, Jeong J, Jung K. Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo. BMB Rep 2021. [PMID: 32475382 PMCID: PMC7396917 DOI: 10.5483/bmbrep.2020.53.7.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the real-time IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.
Collapse
Affiliation(s)
- Yeon Woong Choo
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Juhee Jeong
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
18
|
Dawson CA, Mueller SN, Lindeman GJ, Rios AC, Visvader JE. Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat Protoc 2021; 16:1907-1935. [PMID: 33627843 DOI: 10.1038/s41596-020-00473-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Multiphoton intravital imaging is essential for understanding cellular behavior and function in vivo. The adipose-rich environment of the mammary gland poses a unique challenge to in vivo microscopy due to light scattering that impedes high-resolution imaging. Here we provide a protocol for high-quality, six-color 3D intravital imaging of regions across the entire mouse mammary gland and associated tissues for several hours while maintaining tissue access for microdissection and labeling. An incision at the ventral midline and along the right hind leg creates a skin flap that is then secured to a raised platform skin side down. This allows for fluorescence-guided microdissection of connective tissue to provide unimpeded imaging of mammary ducts. A sealed imaging chamber over the skin flap creates a stable environment while maintaining access to large tissue regions for imaging with an upright microscope. We provide a strategy for imaging single cells and the tissue microenvironment utilizing multicolor Confetti lineage-tracing and additional dyes using custom-designed filters and sequential excitation with dual multiphoton lasers. Furthermore, we describe a strategy for simultaneous imaging and photomanipulation of single cells using the Olympus SIM scanner and provide steps for 3D video processing, visualization and high-dimensional analysis of single-cell behavior. We then provide steps for multiplexing intravital imaging with fixation, immunostaining, tissue clearing and 3D confocal imaging to associate cell behavior with protein expression. The skin-flap surgery and chamber preparation take 1.5 h, followed by up to 12 h of imaging. Applications range from basic filming in 1 d to 5 d for multiplexing and complex analysis.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Anne C Rios
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Fate Mapping of Cancer Cells in Metastatic Lymph Nodes Using Photoconvertible Proteins. Methods Mol Biol 2021. [PMID: 33704727 DOI: 10.1007/978-1-0716-1205-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The lymph node microenvironment is extremely dynamic and responds to immune stimuli in the host by reprogramming immune, stromal, and endothelial cells. In normal physiological conditions, the lymph node will initiate an appropriate immune response to clear external threats that the host may experience. However, in metastatic disease, cancer cells often colonize local lymph nodes, disrupt immune function, and even leave the lymph node to create additional metastases. Understanding how cancer cells enter, colonize, survive, proliferate, and interact with other cell types in the lymph node is challenging. Here, we describe the use of photoconvertible fluorescent proteins to label and trace the fate of cancer cells once they enter the lymph node.
Collapse
|
20
|
Liang Y, Walczak P. Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 2020; 349:109042. [PMID: 33340557 DOI: 10.1016/j.jneumeth.2020.109042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Visualizing and tracking cells over time in a living organism has been a much-coveted dream before the invention of intravital microscopy. The opaque nature of tissue was a major hurdle that was remedied by the multiphoton microscopy. With the advancement of optical imaging and fluorescent labeling tools, intravital high resolution imaging has become increasingly accessible over the past few years. Long-term intravital tracking of single cells (LIST) under multiphoton microscopy provides a unique opportunity to gain insight into the longitudinal changes in the morphology, migration, or function of cells or subcellular structures. It is particularly suitable for studying slow-evolving cellular and molecular events during normal development or disease progression, without losing the opportunity of catching fast events such as calcium signals. Here, we review the application of LIST under 2-photon microscopy in various fields of neurobiology and discuss challenges and new directions in labeling and imaging methods for LIST. Overall, this review provides an overview of current applications of LIST in mammals, which is an emerging field that will contribute to a better understanding of essential molecular and cellular events in health and disease.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Wu H, Estrella V, Beatty M, Abrahams D, El-Kenawi A, Russell S, Ibrahim-Hashim A, Longo DL, Reshetnyak YK, Moshnikova A, Andreev OA, Luddy K, Damaghi M, Kodumudi K, Pillai SR, Enriquez-Navas P, Pilon-Thomas S, Swietach P, Gillies RJ. T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat Commun 2020; 11:4113. [PMID: 32807791 PMCID: PMC7431837 DOI: 10.1038/s41467-020-17756-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/13/2020] [Indexed: 11/27/2022] Open
Abstract
The acidic pH of tumors profoundly inhibits effector functions of activated CD8 + T-cells. We hypothesize that this is a physiological process in immune regulation, and that it occurs within lymph nodes (LNs), which are likely acidic because of low convective flow and high glucose metabolism. Here we show by in vivo fluorescence and MR imaging, that LN paracortical zones are profoundly acidic. These acidic niches are absent in athymic Nu/Nu and lymphodepleted mice, implicating T-cells in the acidifying process. T-cell glycolysis is inhibited at the low pH observed in LNs. We show that this is due to acid inhibition of monocarboxylate transporters (MCTs), resulting in a negative feedback on glycolytic rate. Importantly, we demonstrate that this acid pH does not hinder initial activation of naïve T-cells by dendritic cells. Thus, we describe an acidic niche within the immune system, and demonstrate its physiological role in regulating T-cell activation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Veronica Estrella
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Matthew Beatty
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Dominique Abrahams
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Asmaa El-Kenawi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shonagh Russell
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, RI, 02881, USA
| | - Anna Moshnikova
- Department of Physics, University of Rhode Island, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, Kingston, RI, 02881, USA
| | - Kimberly Luddy
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mehdi Damaghi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Krithika Kodumudi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Smitha R Pillai
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Pedro Enriquez-Navas
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, England, UK.
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
22
|
De Niz M, Meehan GR, Tavares J. Intravital microscopy: Imaging host-parasite interactions in lymphoid organs. Cell Microbiol 2019; 21:e13117. [PMID: 31512335 DOI: 10.1111/cmi.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Intravital microscopy allows imaging of biological phenomena within living animals, including host-parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host-parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa-associated lymphoid tissue, and present a view into possible future applications.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Lab, University of Bern, Bern, Switzerland
| | - Gavin R Meehan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Di Martino JS, Mondal C, Bravo-Cordero JJ. Textures of the tumour microenvironment. Essays Biochem 2019; 63:619-629. [PMID: 31654075 PMCID: PMC6839695 DOI: 10.1042/ebc20190019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
In this review, we present recent findings on the dynamic nature of the tumour microenvironment (TME) and how intravital microscopy studies have defined TME components in a spatiotemporal manner. Intravital microscopy has shed light into the nature of the TME, revealing structural details of both tumour cells and other TME co-habitants in vivo, how these cells communicate with each other, and how they are organized in three-dimensional space to orchestrate tumour growth, invasion, dissemination and metastasis. We will review different imaging tools, imaging reporters and fate-mapping strategies that have begun to uncover the complexity of the TME in vivo.
Collapse
Affiliation(s)
- Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Modified Intravital Microscopy to Assess Vascular Health and T-Cell Motility. Methods Mol Biol 2019. [PMID: 30610608 DOI: 10.1007/978-1-4939-9036-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The ability to study the microcirculation in real time is key to elucidating how the immune system and the associated microvasculature interact and influence one another within the lymph node (LN). Here, we present a method for near in-situ imaging of the inguinal LN. In particular, this method is ideal for the assessment of overall vascular health that influences immune functions and for the evaluation of T-cell motility. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, quantification of vessel magnitude and vessel integrity. Modified intravital microscopy (M-IVM) of the LNs allows direct evaluation of microvascular functions as well as real-time imaging of the direct interface between immune cells, the LN, and the microcirculation. Importantly, M-IVM technique can be readily combined with many other vascular and immunological techniques such as fluorescent cell labeling and assessment of sticking and rolling time as descripted. Furthermore, it can be adapted to study vasculature of other than the inguinal LN. Overall, this chapter provides a dependable method for fundamental vascular immunological assessment of LNs that is decidedly useful in a diverse range of investigations.
Collapse
|
25
|
Martins AF, Clavijo Jordan V, Bochner F, Chirayil S, Paranawithana N, Zhang S, Lo ST, Wen X, Zhao P, Neeman M, Sherry AD. Imaging Insulin Secretion from Mouse Pancreas by MRI Is Improved by Use of a Zinc-Responsive MRI Sensor with Lower Affinity for Zn 2+ Ions. J Am Chem Soc 2018; 140:17456-17464. [PMID: 30484648 DOI: 10.1021/jacs.8b07607] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has been demonstrated that divalent zinc ions packaged with insulin in β-cell granules can be detected by MRI during glucose-stimulated insulin secretion using a gadolinium-based Zn2+-sensitive agent. This study was designed to evaluate whether a simpler agent design having single Zn2+-sensing moieties but with variable Zn2+ binding affinities might also detect insulin secretion from the pancreas. Using an implanted MR-compatible window designed to hold the pancreas in a fixed position for imaging, we now demonstrate that focally intense "hot spots" can be detected in the tail of the pancreas using these agents after administration of glucose to stimulate insulin secretion. Histological staining of the same tissue verified that the hot spots identified by imaging correspond to clusters of islets, perhaps reflecting first-responder islets that are most responsive to a sudden increase in glucose. A comparison of images obtained when using a high-affinity Zn2+ sensor versus a lower-affinity sensor showed that the lower-affinity sensors produced the best image contrast. An equilibrium model that considers all possible complexes formed between Zn2+, the GdL sensor, and HSA predicts that a GdL sensor with lower affinity for Zn2+ generates a lower background signal from endogenous Zn2+ prior to glucose-stimulated insulin secretion (GSIS) and that the weaker binding affinity agent is more responsive to a further increase in Zn2+ concentration near β-cells after GSIS. These model predictions are consistent with the in vivo imaging observations.
Collapse
Affiliation(s)
- André F Martins
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States.,Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Veronica Clavijo Jordan
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Filip Bochner
- Department of Biological Regulation , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Sara Chirayil
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Namini Paranawithana
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Shanrong Zhang
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Su-Tang Lo
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Xiaodong Wen
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| | - Piyu Zhao
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Michal Neeman
- Department of Biological Regulation , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - A Dean Sherry
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas 75080 , United States.,Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas 75390-8568 , United States
| |
Collapse
|
26
|
Firl DJ, Degn SE, Padera T, Carroll MC. Capturing change in clonal composition amongst single mouse germinal centers. eLife 2018; 7:33051. [PMID: 30066671 PMCID: PMC6070335 DOI: 10.7554/elife.33051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 07/01/2018] [Indexed: 01/09/2023] Open
Abstract
Understanding cellular processes occurring in vivo on time scales of days to weeks requires repeatedly interrogating the same tissue without perturbing homeostasis. We describe a novel setup for longitudinal intravital imaging of murine peripheral lymph nodes (LNs). The formation and evolution of single germinal centers (GCs) was visualized over days to weeks. Naïve B cells encounter antigen and form primary foci, which subsequently seed GCs. These experience widely varying rates of homogenizing selection, even within closely confined spatial proximity. The fluidity of GCs is greater than previously observed with large shifts in clonality over short time scales; and loss of GCs is a rare, observable event. The observation of contemporaneous, congruent shifts in clonal composition between GCs within the same animal suggests inter-GC trafficking of memory B cells. This tool refines approaches to resolving immune dynamics in peripheral LNs with high temporospatial resolution and minimal perturbation of homeostasis.
Collapse
Affiliation(s)
- Daniel J Firl
- Cleveland Clinic Lerner College of Medicine, Cleveland, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Soren E Degn
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Timothy Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States
| |
Collapse
|
27
|
Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses 2018; 10:v10060337. [PMID: 29925766 PMCID: PMC6024644 DOI: 10.3390/v10060337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.
Collapse
|
28
|
Meijer EFJ, Blatter C, Chen IX, Bouta E, Jones D, Pereira ER, Jung K, Vakoc BJ, Baish JW, Padera TP. Lymph node effective vascular permeability and chemotherapy uptake. Microcirculation 2018; 24. [PMID: 28510992 DOI: 10.1111/micc.12381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Lymph node metastases are a poor prognostic factor. Additionally, responses of lymph node metastasis to therapy can be different from the primary tumor. Investigating the physiologic lymph node blood vasculature might give insight into the ability of systemic drugs to penetrate the lymph node, and thus into the differential effect of therapy between lymph node metastasis and primary tumors. Here, we measured effective vascular permeability of lymph node blood vessels and attempted to increase chemotherapy penetration by increasing effective vascular permeability. METHODS We developed a novel three-dimensional method to measure effective vascular permeability in murine lymph nodes in vivo. VEGF-A was systemically administered to increase effective vascular permeability. Validated high-performance liquid chromatography protocols were used to measure chemotherapeutic drug concentrations in untreated and VEGF-A-treated lymph nodes, liver, spleen, brain, and blood. RESULTS VEGF-A-treated lymph node blood vessel effective vascular permeability (mean 3.83 × 10-7 cm/s) was significantly higher than untreated lymph nodes (mean 9.87 × 10-8 cm/s). No difference was found in lymph node drug accumulation in untreated versus VEGF-A-treated mice. CONCLUSIONS Lymph node effective vascular permeability can be increased (~fourfold) by VEGF-A. However, no significant increase in chemotherapy uptake was measured by pretreatment with VEGF-A.
Collapse
Affiliation(s)
- Eelco F J Meijer
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Cedric Blatter
- Harvard Medical School, Boston, MA, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy X Chen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Echoe Bouta
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Dennis Jones
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Keehoon Jung
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Benjamin J Vakoc
- Harvard Medical School, Boston, MA, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - James W Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, PA, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Abstract
Solid stress, distinct from both tissue stiffness and fluid pressure, is a mechanical stress that is often elevated in both murine and human tumors. The importance of solid stress in tumor biology has been recognized in initial studies: solid stress promotes tumor progression and lowers the efficacy of anticancer therapies by compressing blood vessels and contributing to hypoxia. However, robust, reproducible, and objective methods that go beyond demonstration and bulk measurements have not yet been established. We have developed three new techniques to rigorously measure and map solid stress in both human and murine tumors that are able to account for heterogeneity in the tumor microenvironment. We describe here these methods and their independent advantages: 2D spatial mapping of solid stress (planar-cut method), sensitive estimation of solid stress in small tumors (slicing method), and in situ solid-stress quantification (needle-biopsy method). Furthermore, the preservation of tissue morphology and structure allows for subsequent histological analyses in matched tumor sections, facilitating quantitative correlations between solid stress and markers of interest. The three procedures each require ∼2 h of experimental time per tumor. The required skill sets include basic experience in tumor resection and/or biopsy (in mice or humans), as well as in intravital imaging (e.g., ultrasonography).
Collapse
|