1
|
Oh H, Yaghjyan L, Heng YJ, Rosner B, Mahoney MB, Murthy D, Baker GM, Tamimi RM. Associations of Early-Life and Adult Anthropometric Measures with the Expression of Stem Cell Markers CD44, CD24, and ALDH1A1 in Women with Benign Breast Biopsies. Cancer Epidemiol Biomarkers Prev 2024; 33:933-943. [PMID: 38652503 PMCID: PMC11216865 DOI: 10.1158/1055-9965.epi-23-1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND According to the stem cell hypothesis, breast carcinogenesis may be related to the breast stem cell pool size. However, little is known about associations of breast cancer risk factors, such as anthropometric measures, with the expression of stem cell markers in noncancerous breast tissue. METHODS The analysis included 414 women with biopsy-confirmed benign breast disease in the Nurses' Health Study and Nurses' Health Study II. Birthweight, weight at age 18, current weight, and current height were reported via self-administered questionnaires. IHC staining of stem cell markers (CD44, CD24, and aldehyde dehydrogenase family 1 member A1) in histopathologically normal epithelial and stromal breast tissue was quantified using an automated computational image analysis system. Linear regression was used to examine the associations of early-life and adult anthropometric measures with log-transformed stem cell marker expression, adjusting for potential confounders. RESULTS Birthweight [≥10.0 vs. <5.5 lbs: β (95% confidence interval) = 4.29 (1.02, 7.56); P trend = 0.001 in the stroma] and adult height [≥67.0 vs. <63.0 inch: 0.86 (0.14, 1.58); P trend = 0.02 in the epithelium and stroma combined] were positively associated with CD44 expression. Childhood body fatness was inversely associated (P trend = 0.03) whereas adult height was positively associated with CD24 expression in combined stroma and epithelium (P trend = 0.03). CONCLUSIONS Our data suggest that anthropometric measures, such as birthweight, adult height, and childhood body fatness, may be associated with the stem cell expression among women with benign breast disease. IMPACT Anthropometric measures, such as birthweight, height, and childhood body fatness, may have long-term impacts on stem cell population in the breast.
Collapse
Affiliation(s)
- Hannah Oh
- Department of Health Policy and Management, Korea University, Seoul, South Korea
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Korea University, Seoul, South Korea
| | - Lusine Yaghjyan
- University of Florida, College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, Gainesville, FL, USA
| | - Yujing J. Heng
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt B. Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabrielle M. Baker
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rulla M. Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Yaghjyan L, Heng YJ, Baker GM, Murthy D, Mahoney MB, Rosner B, Tamimi RM. Associations of stem cell markers CD44, CD24 and ALDH1A1 with mammographic breast density in women with benign breast biopsies. Br J Cancer 2024; 131:325-333. [PMID: 38849477 PMCID: PMC11263693 DOI: 10.1038/s41416-024-02743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND We examined associations of CD44, CD24 and ALDH1A1 breast stem cell markers with mammographic breast density (MBD), a well-established breast cancer (BCa) risk factor. METHODS We included 218 cancer-free women with biopsy-confirmed benign breast disease within the Nurses' Health Study (NHS) and NHSII. The data on BCa risk factors were obtained from biennial questionnaires. Immunohistochemistry (IHC) was done on tissue microarrays. For each core, the IHC expression was assessed using a semi-automated platform and expressed as percent of positively stained cells for each marker out of the total cell count. MBD was assessed with computer-assisted techniques. Generalised linear regression was used to examine the associations of each marker with square root-transformed percent density (PD), absolute dense and non-dense areas (NDA), adjusted for BCa risk factors. RESULTS Stromal CD44 and ALDH1A1 expression was positively associated with PD (≥ 10% vs. <10% β = 0.56, 95% confidence interval [CI] [0.06; 1.07] and β = 0.81 [0.27; 1.34], respectively) and inversely associated with NDA (β per 10% increase = -0.17 [-0.34; -0.01] and β for ≥10% vs. <10% = -1.17 [-2.07; -0.28], respectively). Epithelial CD24 expression was inversely associated with PD (β per 10% increase = -0.14 [-0.28; -0.01]. Stromal and epithelial CD24 expression was positively associated with NDA (β per 10% increase = 0.35 [0.2 × 10-2; 0.70] and β per 10% increase = 0.34 [0.11; 0.57], respectively). CONCLUSION Expression of stem cell markers is associated with MBD.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- University of Florida, College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, Gainesville, FL, USA.
| | - Yujing J Heng
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt B Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Thang NX, Han DW, Park C, Lee H, La H, Yoo S, Lee H, Uhm SJ, Song H, Do JT, Park KS, Choi Y, Hong K. INO80 function is required for mouse mammary gland development, but mutation alone may be insufficient for breast cancer. Front Cell Dev Biol 2023; 11:1253274. [PMID: 38020889 PMCID: PMC10646318 DOI: 10.3389/fcell.2023.1253274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis.
Collapse
Affiliation(s)
- Nguyen Xuan Thang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Heeji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sik Park
- Department of Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
5
|
Liu C, Zhang Y, Gao X, Wang G. Identification of cell subpopulations associated with disease phenotypes from scRNA-seq data using PACSI. BMC Biol 2023; 21:159. [PMID: 37468850 PMCID: PMC10354926 DOI: 10.1186/s12915-023-01658-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has revolutionized the transcriptomics field by advancing analyses from tissue-level to cell-level resolution. Despite the great advances in the development of computational methods for various steps of scRNA-seq analyses, one major bottleneck of the existing technologies remains in identifying the molecular relationship between disease phenotype and cell subpopulations, where "disease phenotype" refers to the clinical characteristics of each patient sample, and subpopulation refer to groups of single cells, which often do not correspond to clusters identified by standard single-cell clustering analysis. Here, we present PACSI, a method aimed at distinguishing cell subpopulations associated with disease phenotypes at the single-cell level. RESULTS PACSI takes advantage of the topological properties of biological networks to introduce a proximity-based measure that quantifies the correlation between each cell and the disease phenotype of interest. Applied to simulated data and four case studies, PACSI accurately identified cells associated with disease phenotypes such as diagnosis, prognosis, and response to immunotherapy. In addition, we demonstrated that PACSI can also be applied to spatial transcriptomics data and successfully label spots that are associated with poor survival of breast carcinoma. CONCLUSIONS PACSI is an efficient method to identify cell subpopulations associated with disease phenotypes. Our research shows that it has a broad range of applications in revealing mechanistic and clinical insights of diseases.
Collapse
Affiliation(s)
- Chonghui Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yan Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
6
|
Edmunds G, Beck S, Kale KU, Spasic I, O'Neill D, Brodbelt D, Smalley MJ. Associations Between Dog Breed and Clinical Features of Mammary Epithelial Neoplasia in Bitches: an Epidemiological Study of Submissions to a Single Diagnostic Pathology Centre Between 2008-2021. J Mammary Gland Biol Neoplasia 2023; 28:6. [PMID: 36961631 PMCID: PMC10039094 DOI: 10.1007/s10911-023-09531-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
Mammary cancer is one of the most common neoplasms of dogs, primarily bitches. While studies have been carried out identifying differing risk of mammary neoplasia in different dog breeds, few studies have reported associations between dog breeds and clinical features such as number of neoplastic lesions found in an individual case or the likelihood of lesions being benign or malignant. Such epidemiological studies are essential as a foundation for exploring potential genetic drivers of mammary tumour behaviour. Here, we have examined associations between breed, age and neuter status and the odds of a diagnosis of a mammary epithelial-origin neoplastic lesion (as opposed to any other histopathological diagnosis from a biopsied lesion) as well as the odds of a bitch presenting with either a single mammary lesion or multiple lesions, and the odds that those lesions are benign or malignant. The study population consisted of 129,258 samples from bitches, including 13,401 mammary epithelial neoplasms, submitted for histological assessment to a single histopathology laboratory between 2008 and 2021.In multivariable analysis, breed, age and neuter status were all significantly associated with the odds of a diagnosis of a mammary epithelial-origin neoplastic lesion. Smaller breeds were more likely to receive such a diagnosis. In cases diagnosed with a mammary epithelial neoplasm, these three factors were also significantly associated with the odds of diagnosis with a malignant lesion and of diagnosis with multiple lesions. Notably, while neutered animals were less likely to have a mammary epithelial neoplasm diagnosed, and were less likely to have multiple neoplasms, they were more likely to have malignant disease. Exploration of the patterns of risk of developing malignant disease, or multiple lesions, across individual breeds showed no breed with increased odds of both outcomes. Breeds with altered odds compared to the Crossbreed baseline were either at increased risk of malignant disease and decreased risk of multiple lesions, or vice versa, or they were at significantly altered odds of one outcome with no change in the other outcome. Our analysis supports the hypothesis that age, neuter status and intrinsic biological and genetic factors all combine to influence the biological heterogeneity of canine mammary neoplasia.
Collapse
Affiliation(s)
- Grace Edmunds
- Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Sam Beck
- VPG Histopathology (Formerly Bridge), Horner Court, Horfield, Bristol, BS7 0BJ, UK
- Present Address: Independent Anatomic Pathology Ltd, Bath, UK
| | - Kedar Umakant Kale
- School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 4AG, UK
| | - Irena Spasic
- School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 4AG, UK
| | - Dan O'Neill
- The Royal Veterinary College, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - David Brodbelt
- The Royal Veterinary College, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Matthew J Smalley
- School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, UK.
| |
Collapse
|
7
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Yaghjyan L, Heng YJ, Baker GM, Bret-Mounet V, Murthy D, Mahoney MB, Mu Y, Rosner B, Tamimi RM. Reliability of CD44, CD24, and ALDH1A1 immunohistochemical staining: Pathologist assessment compared to quantitative image analysis. Front Med (Lausanne) 2022; 9:1040061. [PMID: 36590957 PMCID: PMC9794585 DOI: 10.3389/fmed.2022.1040061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background The data on the expression of stem cell markers CD44, CD24, and ALDH1A1 in the breast tissue of cancer-free women is very limited and no previous studies have explored the agreement between pathologist and computational assessments of these markers. We compared the immunohistochemical (IHC) expression assessment for CD44, CD24, and ALDH1A1 by an expert pathologist with the automated image analysis results and assessed the homogeneity of the markers across multiple cores pertaining to each woman. Methods We included 81 cancer-free women (399 cores) with biopsy-confirmed benign breast disease in the Nurses' Health Study (NHS) and NHSII cohorts. IHC was conducted with commercial antibodies [CD44 (Dako, Santa Clara, CA, USA) 1:25 dilution; CD24 (Invitrogen, Waltham, MA, USA) 1:200 dilution and ALDH1A1 (Abcam, Cambridge, United Kingdom) 1:300 dilution]. For each core, the percent positivity was quantified by the pathologist and Definiens Tissue Studio. Correlations between pathologist and computational scores were evaluated with Spearman correlation (for categorical positivity: 0, >0-<1, 1-10, >10-50, and >50%) and sensitivity/specificity (for binary positivity defined with 1 and 10% cut-offs), using the pathologist scores as the gold standard. Expression homogeneity was examined with intra-class correlation (ICC). Analyses were stratified by core [normal terminal duct-lobular units (TDLUs), benign lesions] and tissue type (epithelium, stroma). Results Spearman correlation between pathologist and Definiens ranged between 0.40-0.64 for stroma and 0.66-0.68 for epithelium in normal TDLUs cores and between 0.24-0.60 for stroma and 0.61-0.64 for epithelium in benign lesions. For stroma, sensitivity and specificity ranged between 0.92-0.95 and 0.24-0.60, respectively, with 1% cut-off and between 0.43-0.88 and 0.73-0.85, respectively, with 10% cut-off. For epithelium, 10% cut-off resulted in better estimates for both sensitivity and specificity. ICC between the cores was strongest for CD44 for both stroma and epithelium in normal TDLUs cores and benign lesions (range 0.74-0.80). ICC for CD24 and ALDH1A ranged between 0.42-0.63 and 0.44-0.55, respectively. Conclusion Our findings show that computational assessments for CD44, CD24, and ALDH1A1 exhibit variable correlations with manual assessment. These findings support the use of computational platforms for IHC evaluation of stem cell markers in large-scale epidemiologic studies. Pilot studies maybe also needed to determine appropriate cut-offs for defining staining positivity.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States,*Correspondence: Lusine Yaghjyan,
| | - Yujing J. Heng
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gabrielle M. Baker
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Vanessa Bret-Mounet
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Matt B. Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Yi Mu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Rulla M. Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
Lu Y, Zhang X. Radiochemotherapy-induced DNA repair promotes the biogenesis of gastric cancer stem cells. Stem Cell Res Ther 2022; 13:481. [PMID: 36153608 PMCID: PMC9509583 DOI: 10.1186/s13287-022-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Clinically, metastasis and recurrence occurred after routine radiochemotherapy in dozens of cases of gastric cancer, mainly attributed to the role of cancer stem cells (CSCs). Actually, radiochemotherapy could induce DNA damages, leading to activation of DNA repair which might be associated with acquisition of stem cell phenotype. Hitherto, the contribution made by active DNA repair to stemness induction has not been extensively explored. METHODS Cisplatin/doxorubicin treatment and X-ray exposure were conducted in gastric cancer cell lines and gastric cancer cells derived from solid tumors to model clinical therapy. Quantitative real-time PCR, Western blot, and tumorsphere/tumor formation assay were further used to characterize CSCs and assess activation of DNA repair. RNA-seq was performed to identify which DNA repair genes were crucial for CSC traits induction, followed by the investigation of underlying mechanism and functional significance via in vitro and in vivo experiments. RESULTS Here, we report a mechanism through which gastric cancer cells in response to radiochemotherapy were reprogrammed into gastric cancer stem cell-like cells. In this mechanism, radiochemotherapy triggers DNA damage response accompanied by elevated levels of EID3, a typical DNA repair gene, which interacts with NAMPT to promote stemness via upregulating Wnt signaling pathway, manifested by enhanced tumorsphere/tumor formation in gastric cancer. In addition to involvement of EID3 in stemness acquisition, it also shows impacts on proliferation, cell cycle, apoptosis and therapy resistance to maintain the characteristics of CSC populations. CONCLUSION Our study indicates that gastric cancer cells can be endowed with stemness traits via EID3-NAMPT-Wnt/β-catenin axis in response to radiochemotherapy. Blocking this axis (i.e., targeting EID3) along with radiochemotherapy might represent a potential strategy to sensitize CSCs to radiochemotherapy and further reinforce the anti-tumor effects of conventional treatments.
Collapse
Affiliation(s)
- Yu Lu
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
10
|
Identification, Culture and Targeting of Cancer Stem Cells. Life (Basel) 2022; 12:life12020184. [PMID: 35207472 PMCID: PMC8879966 DOI: 10.3390/life12020184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance, tumor progression, and metastasis are features that are frequently seen in cancer that have been associated with cancer stem cells (CSCs). These cells are a promising target in the future of cancer therapy but remain largely unknown. Deregulation of pathways that govern stemness in non-tumorigenic stem cells (SCs), such as Notch, Wnt, and Hedgehog pathways, has been described in CSC pathogenesis, but it is necessary to conduct further studies to discover potential new therapeutic targets. In addition, some markers for the identification and characterization of CSCs have been suggested, but the search for specific CSC markers in many cancer types is still under development. In addition, methods for CSC cultivation are also under development, with great heterogeneity existing in the protocols used. This review focuses on the most recent aspects of the identification, characterization, cultivation, and targeting of human CSCs, highlighting the advances achieved in the clinical implementation of therapies targeting CSCs and remarking those potential areas where more research is still required.
Collapse
|
11
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
12
|
Patuleia SIS, Suijkerbuijk KPM, van der Wall E, van Diest PJ, Moelans CB. Nipple Aspirate Fluid at a Glance. Cancers (Basel) 2021; 14:cancers14010159. [PMID: 35008326 PMCID: PMC8750428 DOI: 10.3390/cancers14010159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Nipple aspirate fluid (NAF) is a promising source of markers for detection of breast cancer. NAF can be acquired via the nipple by aspiration using a suction device, which is well tolerated by women. Future possible applications of biomarkers for breast cancer derived from NAF could be (1) as a detection tool to identify the initiation of the cancer development process, (2) as an additional tool next to imaging (mammography and breast magnetic resonance imaging) or (3) as a replacement tool for when imaging is not advisable for women, such as during pregnancy and breastfeeding. With this paper, we present a narrative review and perspectives of NAF research at a glance. Abstract Nipple aspirate fluid (NAF) is an intraductal mammary fluid that, because of its close proximity to and origin from the tissue from which breast cancer originates, is a promising source of biomarkers for early breast cancer detection. NAF can be non-invasively acquired via the nipple by aspiration using a suction device; using oxytocin nasal spray helps increase yield and tolerability. The aspiration procedure is generally experienced as more tolerable than the currently used breast imaging techniques mammography and breast magnetic resonance imaging. Future applications of NAF-derived biomarkers include their use as a tool in the detection of breast carcinogenesis at its earliest stage (before a tumor mass can be seen by imaging), or as a supporting diagnostic tool for imaging, such as when imaging is less reliable (to rule out false positives from imaging) or when imaging is not advisable (such as during pregnancy and breastfeeding). Ongoing clinical studies using NAF samples will likely shed light on NAF’s content and clinical potential. Here, we present a narrative review and perspectives of NAF research at a glance.
Collapse
Affiliation(s)
- Susana I. S. Patuleia
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Karijn P. M. Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
- Correspondence:
| |
Collapse
|
13
|
A reciprocal feedback loop between HIF-1α and HPIP controls phenotypic plasticity in breast cancer cells. Cancer Lett 2021; 526:12-28. [PMID: 34767928 DOI: 10.1016/j.canlet.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
While phenotypic plasticity is a critical factor contributing to tumor heterogeneity, molecular mechanisms underlying this process are largely unknown. Here we report that breast cancer cells display phenotypic diversity in response to hypoxia or normoxia microenvironments by operating a reciprocal positive feedback regulation of HPIP and HIF-1α. We show that under hypoxia, HIF-1α induces HPIP expression that establishes cell survival, and also promotes cell migration/invasion, EMT and metastatic phenotypes in breast cancer cells. Mechanistic studies revealed that HPIP interacts with SRP14, a component of signal recognition particle, and stimulates MMP9 synthesis under hypoxic stress. Whereas, in normoxia, HPIP stabilizes HIF-1α, causing the Warburg effect to support cell growth. Concurrently, mathematical modelling corroborates this reciprocal feedback loop in enabling cell-state transitions in cancer cells. Clinical data indicate that elevated levels of HPIP and HIF-1α correlate with unfavorable prognosis and shorter survival rates in breast cancer subjects. Together, this data shows a reciprocal positive feedback loop between HPIP and HIF-1α that was unknown hitherto. It unveils how the tumor microenvironment influences phenotypic plasticity that has an impact on tumor growth and metastasis and, further signifies considering this pathway as a potential therapeutic target in breast cancer.
Collapse
|
14
|
Jiang C, Zhou H, Sun H, He R, Song C, Cui T, Luan J, Fu J, Zhang Y, Jiao N, Wang H. Establishing an efficient salinomycin biosynthetic pathway in three heterologous Streptomyces hosts by constructing a 106-kb multioperon artificial gene cluster. Biotechnol Bioeng 2021; 118:4668-4677. [PMID: 34436784 DOI: 10.1002/bit.27928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022]
Abstract
Salinomycin is a promising anticancer drug for chemotherapy. A highly productive biosynthetic gene cluster will facilitate the creation of analogs with improved therapeutic activity and reduced side effects. In this study, we engineered an artificial 106-kb salinomycin gene cluster and achieved efficient heterologous expression in three hosts: Streptomyces coelicolor CH999, S. lividans K4-114, and S. albus J1074. The six-operon artificial gene cluster consists of 25 genes from the native gene cluster organized into five operons and five fatty acid β-oxidation genes into one operon. All operons are driven by strong constitutive promoters. For K4-114 and J1074 harboring the artificial gene cluster, salinomycin production in shake flask cultures was 14.3 mg L-1 and 19.3 mg L-1 , respectively. The production was 1.3-fold and 1.7-fold higher, respectively, than that of the native producer S. albus DSM41398. K4-114 and J1074 harboring the native gene cluster produced an undetectable amount of salinomycin and 0.5 mg L-1 , respectively. CH999 harboring the artificial gene cluster produced 10.3 mg L-1 of salinomycin, which was 92% of the production by DSM41398. The efficient heterologous expression system based on the 106-kb multioperon artificial gene cluster established in this study will facilitate structural diversification of salinomycin, which is valuable for drug development and structure-activity studies.
Collapse
Affiliation(s)
- Chanjuan Jiang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China.,State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Haibo Zhou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Hongluan Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruoting He
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Huang C, Hu CG, Ning ZK, Huang J, Zhu ZM. Identification of key genes controlling cancer stem cell characteristics in gastric cancer. World J Gastrointest Surg 2020; 12:442-459. [PMID: 33304447 PMCID: PMC7701879 DOI: 10.4240/wjgs.v12.i11.442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Self-renewal of gastric cancer stem cells (GCSCs) is considered to be the underlying cause of the metastasis, drug resistance, and recurrence of gastric cancer (GC).
AIM To characterize the expression of stem cell-related genes in GC.
METHODS RNA sequencing results and clinical data for gastric adenoma and adenocarcinoma samples were obtained from The Cancer Genome Atlas database, and the results of the GC mRNA expression-based stemness index (mRNAsi) were analyzed. Weighted gene coexpression network analysis was then used to find modules of interest and their key genes. Survival analysis of key genes was performed using the online tool Kaplan-Meier Plotter, and the online database Oncomine was used to assess the expression of key genes in GC.
RESULTS mRNAsi was significantly upregulated in GC tissues compared to normal gastric tissues (P < 0.0001). A total of 16 modules were obtained from the gene coexpression network; the brown module was most positively correlated with mRNAsi. Sixteen key genes (BUB1, BUB1B, NCAPH, KIF14, RACGAP1, RAD54L, TPX2, KIF15, KIF18B, CENPF, TTK, KIF4A, SGOL2, PLK4, XRCC2, and C1orf112) were identified in the brown module. The functional and pathway enrichment analyses showed that the key genes were significantly enriched in the spindle cellular component, the sister chromatid segregation biological process, the motor activity molecular function, and the cell cycle and homologous recombination pathways. Survival analysis and Oncomine analysis revealed that the prognosis of patients with GC and the expression of three genes (RAD54L, TPX2, and XRCC2) were consistently related.
CONCLUSION Sixteen key genes are primarily associated with stem cell self-renewal and cell proliferation characteristics. RAD54L, TPX2, and XRCC2 are the most likely therapeutic targets for inhibiting the stemness characteristics of GC cells.
Collapse
Affiliation(s)
- Chao Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ce-Gui Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Kun Ning
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zheng-Ming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
16
|
The mesenchymal property of mouse mammary anlagen repopulating cell population is associated with its stemness. Gene Expr Patterns 2020; 38:119151. [PMID: 33132190 DOI: 10.1016/j.gep.2020.119151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, mammary glands are derived from surface ectoderm and their morphogenesis is controlled by mammary stem cells (MaSCs) and epithelial-mesenchymal transition (EMT). Mammary anlagen stage (E13.5-15.5) is an important stage for fetal mice to achieve EMT dependent mammary morphogenesis. And the characteristics of mammary anlagen repopulating cell population (MaRC) should be identified for understanding its stemness at earlier embryonic stage. Here we quantify and characterize MaSCs proportion at mammary anlagen stage. Compared with adult mouse mammary gland, our data revealed that E14.5 mammary anlagen exhibit higher stem cell activities. Then we purified mammary anlagen cell populations depending on the expression levels of CD24 and CD49f in mouse mammary anlagen, and identified an unique MaRC population (Lin-CD24medCD49f+) by real-time PCR, transplantation and mammosphere forming assays. In addition, by comparing with adult MaSC (Lin-CD24+CD29hi) and differentiated mammary anlagen cells, we find that E14.5 mouse MaRC population exhibit gene expression programs related to mesenchymal properties. To further identify the cell types of E14.5 mouse MaRC population, the expressions of K8, K14, K18, e-cadherin, n-cadherin and vimentin in mammary anlagen Lin-CD24medCD49f + cells were detected by immunofluorescence assay. These findings verified that the undifferentiated E14.5 mouse MaRC population is a heterogeneous population with mesenchymal property, which is associated with cell stemness and mammary duct morphogenesis.
Collapse
|
17
|
Malczewska A, Kidd M, Matar S, Kos-Kudła B, Bodei L, Oberg K, Modlin IM. An Assessment of Circulating Chromogranin A as a Biomarker of Bronchopulmonary Neuroendocrine Neoplasia: A Systematic Review and Meta-Analysis. Neuroendocrinology 2020; 110:198-216. [PMID: 31266019 DOI: 10.1159/000500525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Management of bronchopulmonary neuroendocrine neoplasia (NEN; pulmonary carcinoids [PCs], small-cell lung cancer [SCLC], and large cell neuroendocrine carcinoma) is hampered by the paucity of biomarkers. Chromogranin A (CgA), the default neuroendocrine tumor biomarker, has undergone wide assessment in gastroenteropancreatic neuroendocrine tumors. OBJECTIVES To evaluate CgA in lung NEN, define its clinical utility as a biomarker, assess its diagnostic, prognostic, and predictive efficacy, as well as its accuracy in the identification of disease recurrence. METHODS A systematic review of PubMed was undertaken using the preferred reporting items for systematic reviews and meta-analyses guidelines. No language restrictions were applied. Overall, 33 original scientific papers and 3 case reports, which met inclusion criteria, were included in qualitative analysis, and meta-analysis thereafter. All studies, except 2, were retrospective. Meta-analysis statistical assessment by generic inverse variance methodology. RESULTS Ten different CgA assay types were reported, without consistency in the upper limit of normal (ULN). For PCs (n = 16 studies; median patient inclusion 21 [range 1-200, total: 591 patients]), the CgA diagnostic sensitivity was 34.5 ± 2.7% with a specificity of 93.8 ± 4.7. CgA metrics were not available separately for typical or atypical carcinoids. CgA >100 ng/mL (2.7 × ULN) and >600 ng/mL (ULN unspecified) were anecdotally prognostic for overall survival (n = 2 retrospective studies). No evidence was presented for predicting treatment response or identifying post-surgery residual disease. For SCLC (n = 19 studies; median patient inclusion 23 [range 5-251, total: 1,241 patients]), the mean diagnostic sensitivity was 59.9 ± 6.8% and specificity 79.4 ± 3.1. Extensive disease typically exhibited higher CgA levels (diagnostic accuracy: 61 ± 2.5%). An elevated CgA was prognostic for overall survival (n = 4 retrospective studies). No prospective studies evaluating predictive benefit or prognostic utility were identified. CONCLUSION The available data are scarce. An assessment of all published data showed that CgA exhibits major limitations as an effective and accurate biomarker for either PC or SCLC. Its utility especially for localized PC/limited SCLC (when surgery is potentially curative), is limited. The clinical value of CgA remains to be determined. This requires validated, well-constructed, multicenter, prospective, randomized studies. An assessment of all published data indicates that CgA does not exhibit the minimum required metrics to function as a clinically useful biomarker for lung NENs.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Somer Matar
- Wren Laboratories, Branford, Connecticut, USA
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Irvin M Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
18
|
Bigoni-Ordóñez GD, Czarnowski D, Parsons T, Madlambayan GJ, Villa-Diaz LG. Integrin α6 (CD49f), The Microenvironment and Cancer Stem Cells. Curr Stem Cell Res Ther 2019; 14:428-436. [PMID: 30280675 DOI: 10.2174/1574888x13666181002151330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.
Collapse
Affiliation(s)
- Gabriele D Bigoni-Ordóñez
- Division de Investigacion Basica, Instituto Nacional de Cancerologia, Secretaria de Salud, Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, UNAM, Mexico City, Mexico
| | - Daniel Czarnowski
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Tyler Parsons
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| |
Collapse
|
19
|
The use of autologous fat grafts in breast surgery: A literature review. Arch Plast Surg 2019; 46:498-510. [PMID: 31775202 PMCID: PMC6882697 DOI: 10.5999/aps.2019.00416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Autologous fat injection was first described roughly a century ago and has been used in surgery ever since. In addition to its use in many surgical fields, it is also frequently used for both aesthetic and reconstructive purposes in breast surgery. Since the application of fat grafting in breast surgery has steadily increased, studies investigating its reliability have simultaneously become increasingly common. Previous studies have reported that the use of fat grafting in breast surgery is reliable, but some pending questions remain about its routine use. In order to use fat grafts successfully in breast surgery, it is necessary to be familiar with the structure and content of adipose tissue, the efficacy of adipose stem cell-enriched fat grafts, the oncological safety of fat grafts, and the problems that may occur in the radiological follow-up of patients who undergo fat grafting procedures. In this literature review, we aim to discuss the use of fat grafts in breast surgery by investigating these common problems.
Collapse
|
20
|
Detection of Putative Stem-cell Markers in Invasive Ductal Carcinoma of the Breast by Immunohistochemistry: Does It Improve Prognostic/Predictive Assessments? Appl Immunohistochem Mol Morphol 2019; 26:760-768. [PMID: 28719381 PMCID: PMC6250294 DOI: 10.1097/pai.0000000000000513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Experimental evidences from the last 2 decades supports the existence of a special type of neoplastic cell with stem-like features [cancer stem cell (CSC)] and their role in the pathophysiology and therapeutic resistance of breast cancer. However, their clinical value in human breast cancer has not been fully determined. Materials and Methods: An immunohistochemistry panel of 10 putative CSC markers (CD34, C-KIT, CD10, SOX-2, OCT 3/4, p63, CD24, CD44, CD133, and ESA/EPCAM) was applied to 74 cases of breast cancer, followed in a Regional Cancer Center of Minas Gerais State, Brazil, from 2004 to 2006. Possible associations between CSC markers and classic variables of clinicopathologic relevance were investigated. Results: The most frequently positive CSC markers were CD44, CD24, CD133, and ESA (the others were present in <15% of the cases). Two CSC profiles were defined: CD24−/CD44+ (CSC-1) and CD133+/ESA+ (CSC-2). CSC-1 was significantly associated to patients older than 40 years, tumors of <2.0 cm in diameter, early clinical stages (P<0.05), and increased death risk of 4 times (P=0.03; 95% confidence interval, 1.09-14.41). CSC-2 was related to increased relapse risk of 3.75 times (P=0.04; 95% confidence interval, 1.02-13.69). Conclusion: The detection of the most frequently positive CSC markers by immunohistochemistry is of clinicopathologic and prognostic relevance.
Collapse
|
21
|
Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol 2019; 234:14535-14555. [PMID: 30723913 DOI: 10.1002/jcp.28160] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in transdifferentiation process in solid cancer development. Forthcoming evidence suggest that the stratified program transforms polarized, immotile epithelial cells to migratory mesenchymal cells associated with enhancement of breast cancer stemness, metastasis, and drug resistance. It involves primarily several signaling pathways, such as transforming growth factor-β (TGF-β), cadherin, notch, plasminogen activator protein inhibitor, urokinase plasminogen activator, and WNT/beta catenin pathways. However, current understanding on the crosstalk of multisignaling pathways and assemblies of key transcription factors remain to be explored. In this review, we focus on the crosstalk of signal transduction pathways linked to the current therapeutic and drug development strategies. We have also performed the computational modeling on indepth the structure and conformational dynamic studies of regulatory proteins and analyze molecular interactions with their associate factors to understand the complicated process of EMT in breast cancer progression and metastasis. Electrostatic potential surfaces have been analyzed that help in optimization of electrostatic interactions between the protein and its ligand. Therefore, understanding the biological implications underlying the EMT process through molecular biology with biocomputation and structural biology approaches will enable the development of new therapeutic strategies to sensitize tumors to conventional therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Sourya Bhattacharya
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Saugata Hazra
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Mintu Pal
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| |
Collapse
|
22
|
Hachim IY, López-Ozuna VM, Hachim MY, Lebrun JJ, Ali S. Prolactin hormone exerts anti-tumorigenic effects in HER-2 overexpressing breast cancer cells through regulation of stemness. Stem Cell Res 2019; 40:101538. [PMID: 31450192 DOI: 10.1016/j.scr.2019.101538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/18/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancers characterized by HER2 overexpression, belong to HER-2 enriched or luminal B subtypes, are frequently associated with higher incidence of tumor recurrence and therapeutic failure. These aggressive features have been attributed to the presence of cancer stem-like cell subpopulations known to have high tumor initiation, self -renewal capacities and high metastatic potential. Depleting these stem-like cells in these tumors therefore might help in improving therapeutic response and patient outcome. METHODS Here we used human breast cancer cells representative of HER2- enriched and luminal B subtypes as well as purified ALDH-positive stem-like cell subpopulation for in vitro cell viability, proliferation, tumorshpere formation analyses and gene expression studies. In addition, we used a pre-clinical xenograft HER2 mouse model (NOD/SCID mice) for in vivo tumorigenesis assessment. Furthermore, patient survival outcomes were evaluated using in silico bioinformatics analyses of publicly available datasets. RESULTS Our results indicate that prolactin (PRL) exerts anti-tumorigenic effects in HER-2 positive breast cancer cells. Importantly, PRL caused a significant reduction in ALDHhi stem-like subpopulation, as well as their viability and tumorsphere formation capacity. Molecularly we found PRL to suppress gene expression of markers involved in stemness, tumor initiation, drug resistance and poor patient outcome found to be enriched in the ALDHhi stem-like subpopulation. Furthermore, we show PRL to impede tumor growth of HER-2 xenografts and to suppress expression of Ki67 proliferative marker. Finally, we found PRL pathway gene signature to correlate with favorable patient outcomes in HER-2 and luminal B breast cancer patients. CONCLUSION Together these results emphasize an anti-tumorigenic role with a potential therapeutic value for PRL in HER-2 and luminal B breast cancer subtypes targeting the cancer stem-like cells.
Collapse
Affiliation(s)
- Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Vanessa M López-Ozuna
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, United Arab Emirates.
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
23
|
Liu ZB, Ezzedine NE, Eterovic AK, Ensor JE, Huang HJ, Albanell J, Choi DS, Lluch A, Liu Y, Rojo F, Wong H, Martínez-Dueñas E, Guerrero-Zotano Á, Shao ZM, Darcourt JG, Mills GB, Dave B, Chang JC. Detection of breast cancer stem cell gene mutations in circulating free DNA during the evolution of metastases. Breast Cancer Res Treat 2019; 178:251-261. [PMID: 31388936 DOI: 10.1007/s10549-019-05374-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Limited knowledge exists on the detection of breast cancer stem cell (BCSC)-related mutations in circulating free DNA (cfDNA) from patients with advanced cancers. Identification of new cancer biomarkers may allow for earlier detection of disease progression and treatment strategy modifications. METHODS We conducted a prospective study to determine the feasibility and prognostic utility of droplet digital polymerase chain reaction (ddPCR)-based BCSC gene mutation analysis of cfDNA in patients with breast cancer. RESULTS Detection of quantitative BCSC gene mutation in cfDNA by ddPCR mirrors disease progression and thus may represent a valuable and cost-effective measure of tumor burden. We have previously shown that hematological and neurological expressed 1-like (HN1L), ribosomal protein L39 (RPL39), and myeloid leukemia factor 2 (MLF2) are novel targets for BCSC self-renewal, and targeting these genetic alterations could be useful for personalized genomic-based therapy. CONCLUSION BCSC mutation detection in cfDNA may have important implications for diagnosis, prognosis, and serial monitoring.
Collapse
Affiliation(s)
- Zhe-Bin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, China
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nader E Ezzedine
- Department of Systems Biology and Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Agda K Eterovic
- Department of Systems Biology and Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joe E Ensor
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA
| | - Helen J Huang
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joan Albanell
- GEICAM (Spanish Breast Cancer Group), San Sebastián de los Reyes, 28703, Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029, Madrid, Spain
- Hospital del Mar, 08003, Barcelona, Spain
| | - Dong S Choi
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA
| | - Ana Lluch
- GEICAM (Spanish Breast Cancer Group), San Sebastián de los Reyes, 28703, Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029, Madrid, Spain
- Hospital Clínico Universitario de Valencia, 46010, Valencia, Spain
| | - Yi Liu
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA
| | - Federico Rojo
- GEICAM (Spanish Breast Cancer Group), San Sebastián de los Reyes, 28703, Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029, Madrid, Spain
- Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Helen Wong
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA
| | - Eduardo Martínez-Dueñas
- GEICAM (Spanish Breast Cancer Group), San Sebastián de los Reyes, 28703, Madrid, Spain
- Hospital Provincial de Castellón, 12002, Castellón, Spain
| | - Ángel Guerrero-Zotano
- GEICAM (Spanish Breast Cancer Group), San Sebastián de los Reyes, 28703, Madrid, Spain
- Instituto Valenciano de Oncología, 46009, Valencia, Spain
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jorge G Darcourt
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Systems Biology and Institute of Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bhuvanesh Dave
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA
| | - Jenny C Chang
- Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Houston Methodist Cancer Center, 6445 Main St P21-34, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Yaghjyan L, Esnakula AK, Scott CG, Wijayabahu AT, Jensen MR, Vachon CM. Associations of mammographic breast density with breast stem cell marker-defined breast cancer subtypes. Cancer Causes Control 2019; 30:1103-1111. [PMID: 31352658 DOI: 10.1007/s10552-019-01207-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/29/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE High mammographic breast density is a strong, well-established breast cancer risk factor. Whether stem cells may explain high breast cancer risk in dense breasts is unknown. We investigated the association between breast density and breast cancer risk by the status of stem cell markers CD44, CD24, and ALDH1A1 in the tumor. METHODS We included 223 women with primary invasive or in situ breast cancer and 399 age-matched controls from Mayo Clinic Mammography Study. Percent breast density (PD), absolute dense area (DA), and non-dense area (NDA) were assessed using computer-assisted thresholding technique. Immunohistochemical analysis of the markers was performed on tumor tissue microarrays according to a standard protocol. We used polytomous logistic regression to quantify the associations of breast density measures with breast cancer risk across marker-defined tumor subtypes. RESULTS Of the 223 cancers in the study, 182 were positive for CD44, 83 for CD24 and 52 for ALDH1A1. Associations of PD were not significantly different across t marker-defined subtypes (51% + vs. 11-25%: OR 2.83, 95% CI 1.49-5.37 for CD44+ vs. OR 1.87, 95% CI 0.47-7.51 for CD44-, p-heterogeneity = 0.66; OR 2.80, 95% CI 1.27-6.18 for CD24+ vs. OR 2.44, 95% CI 1.14-5.22 for CD24-, p-heterogeneity = 0.61; OR 3.04, 95% CI 1.14-8.10 for ALDH1A1+ vs. OR 2.57. 95% CI 1.30-5.08 for ALDH1A1-, p-heterogeneity = 0.94). Positive associations of DA and inverse associations of NDA with breast cancer risk were similar across marker-defined subtypes. CONCLUSIONS We found no evidence of differential associations of breast density with breast cancer risk by the status of stem cell markers. Further studies in larger study populations are warranted to confirm these associations.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Ashwini K Esnakula
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - Christopher G Scott
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Akemi T Wijayabahu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA
| | - Matthew R Jensen
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Celine M Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
25
|
Feng Z, Meng S, Zhou H, Xu Z, Tang Y, Li P, Liu C, Huang Y, Wu M. Functions and Potential Applications of Circular RNAs in Cancer Stem Cells. Front Oncol 2019; 9:500. [PMID: 31263676 PMCID: PMC6584801 DOI: 10.3389/fonc.2019.00500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were discovered in the 1970s, but they have drawn increasing attention in recent years. Currently, we know that circRNAs are not "wrongly spliced" during transcription but play important roles in the initiation and development of various diseases, including cancers. Recently, a growing number of studies have suggested that cancer stem cells (CSCs) may contribute to the origination and maintenance of cancers. This review briefly introduces the major functions of circRNAs, including interacting with other noncoding RNAs, competing with pre-mRNA splicing, binding with proteins to form a scaffold, promoting protein nuclear translocation and even translating proteins in a cap-independent manner. Furthermore, we describe the regulatory mechanism of circRNAs in CSC phenotypes and discuss the potential clinical applications of circRNAs in CSC-targeted therapy, including functioning as new biomarkers, acting as vaccines and breaking the therapeutic resistance of CSCs. Finally, we discuss the major limitations and challenges in the field, which will be beneficial for the future clinical use of circRNAs.
Collapse
Affiliation(s)
- Ziyang Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shujuan Meng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Hecheng Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zihao Xu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ying Tang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Peiyao Li
- The Xiangya Hospital, Central South University, Changsha, China
| | - Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yongkai Huang
- The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
26
|
Mammary Stem Cells in Domestic Animals: The Role of ROS. Antioxidants (Basel) 2018; 8:antiox8010006. [PMID: 30587765 PMCID: PMC6356801 DOI: 10.3390/antiox8010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as a natural byproduct of the normal metabolism of oxygen and play significant roles in cell signaling and homeostasis. Although ROS have been involved in pathological processes as diverse as cancer, cardiovascular disease, and aging, they may to exert an effect even in a physiological context. In the central nervous system, stem cells and hematopoietic stem cells are early progenitors that contain lower levels of ROS than their more mature progeny. These different concentrations have been reported to be crucial for maintaining stem cell function. Mammary gland remodeling has been proposed to be organized through the activation and regulation of cells with stemness, either considered real stem cells or primitive precursors. Given the state of oxidative stress in the mammary gland tissue induced by high milk production, in particular in highly productive dairy cows; several studies have focused on the relationship between adult mammary stem cells and the oxidative state of the gland. The oxidative state of the mammary gland appears to be involved in the initial development and metastasis of breast cancer through interference with mammary cancerous stem cells. This review summarizes some links between the mammary stem and oxidative state of the gland.
Collapse
|
27
|
Lang T, Ding X, Kong L, Zhou X, Zhang Z, Ju H, Ding S. NFATC2 is a novel therapeutic target for colorectal cancer stem cells. Onco Targets Ther 2018; 11:6911-6924. [PMID: 30410349 PMCID: PMC6199214 DOI: 10.2147/ott.s169129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Colorectal cancer stem cells (CRC-SCs) contribute to the initiation and progression of colorectal cancer (CRC). However, the underlying mechanisms for the propagation of CRC-SCs have remained elusive. Purpose The objective of this study was to study the role of NFATC2 in maintenance of the stemness in CRC-SCs. Method The expression levels of mRNA and protein were determined by qRT-PCR and western-blot, respectively. CRC-SCs were isolated by spheroid formation assay and flowcytometry. The sphere-forming and self-renewal abilities of CRC-SCs were determined by spheroid formation assay. The tumorigenicity of CRC-SCs was determined by cell-derived xenograft model. Gene manipulation was performed by lentivirus-mediated delivery system. Results We first found that NFATC2 is upregulated in primary CRC-SCs. Overexpression of NFATC2 promotes self-renewal and the expression of stem cell markers of CRC-SCs. Conversely, knockdown of NFATC2 attenuates stem cell-like properties of CRC-SCs. Mechanistic analysis indicated that NFATC2 upregulates the expression of AJUBA, downregulates the phosphorylation level of YAP, and therefore activates the transcriptional activities of YAP and promotes the stemness of CRC-SCs. Conclusion Our findings demonstrate NFATC2 as an oncogene that can promote the stemness of CRC-SCs. This work suggests a novel therapeutic strategy against CRC caused by aberrant expression of NFATC2.
Collapse
Affiliation(s)
- Tingyuan Lang
- Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education of China), Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China, ,
| | - Xiaojuan Ding
- Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education of China), Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China, ,
| | - Liangsheng Kong
- Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education of China), Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China, ,
| | - Xiaoyan Zhou
- Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education of China), Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China, ,
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Huangxian Ju
- Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education of China), Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China, , .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China,
| | - Shijia Ding
- Key Laboratory of Laboratory Medical Diagnostics (Ministry of Education of China), Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China, ,
| |
Collapse
|
28
|
Song J, Ding F, Li S, Li W, Li N, Xue K. CD24 and CD49f expressions of E14.5 mouse mammary anlagen cells define putative distribution of earlier embryonic mammary stem cell activities. Biochem Cell Biol 2018; 96:539-547. [DOI: 10.1139/bcb-2017-0177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cell biology offers promise for understanding the origins of the mammary gland. However, the distribution of mammary stem cell (MaSC) activities at earlier embryonic stages has not been fully identified. The markers for sorting adult MaSC, CD24, CD29, and CD49f have been applied to analyze fetal MaSCs. Here we explored mammary anlagen MaSCs by investigating the expression of CD24 and CD49f. According to the comparative analysis between adult mammary gland and fetal mammary anlagen, we found that fetal mouse mammary anlagen may possess a high percentage of potential MaSCs. Flow cytometry analysis revealed 2 distinct mammary anlagen populations: Lin–CD24med and Lin–CD24high. Sphere-forming and mammary repopulating assays confirmed that the stem cell activity of E14.5 mouse mammary anlagen was restricted to the Lin–CD24med cell population. Furthermore, CD24med mammary anlagen cells were separated into Lin–CD24medCD49f+ and Lin–CD24medCD49f– populations and identified, respectively. The results proved that the mammary anlagen Lin–CD24medCD49f+ cell population possesses more stem cell activities than the Lin–CD24medCD49f– cell population. However, a limited numbers of stem cells and large numbers of stromal cells were identified in mammary anlagen in the Lin–CD24med cell population.
Collapse
Affiliation(s)
- Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
- State Key Laboratories for AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Fangrong Ding
- National Animal Genetic Research Center, Beijing, P. R. China
| | - Song Li
- National Animal Genetic Research Center, Beijing, P. R. China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
| | - Ning Li
- State Key Laboratories for AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- National Animal Genetic Research Center, Beijing, P. R. China
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
| |
Collapse
|
29
|
Hong D, Fritz AJ, Zaidi SK, van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Epithelial-to-mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J Cell Physiol 2018; 233:9136-9144. [PMID: 29968906 DOI: 10.1002/jcp.26847] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer in women, and accounts for ~30% of new cancer cases and 15% of cancer-related deaths. Tumor relapse and metastasis are primary factors contributing to breast cancer-related deaths. Therefore, the challenge for breast cancer treatment is to sustain remission. A driving force behind tumor relapse is breast cancer heterogeneity (both intertumor, between different patients, and intratumor, within the same tumor). Understanding breast cancer heterogeneity is necessary to develop preventive interventions and targeted therapies. A recently emerging concept is that intratumor heterogeneity is driven by cancer stem cells (CSCs) that are capable of giving rise to a multitude of different cells within a tumor. Studies have highlighted linkage of CSC formation with epithelial-to-mesenchymal transition (EMT). In this review, we summarize the current understanding of breast cancer heterogeneity, links between EMT and CSCs, regulation of EMT by Runx transcription factors, and potential therapeutic strategies targeting these processes.
Collapse
Affiliation(s)
- Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
30
|
RXRα provokes tumor suppression through p53/p21/p16 and PI3K-AKT signaling pathways during stem cell differentiation and in cancer cells. Cell Death Dis 2018; 9:532. [PMID: 29748541 PMCID: PMC5945609 DOI: 10.1038/s41419-018-0610-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
The retinoid X receptor alpha (RXRα) is an important therapeutic target impacting diverse biological processes. Activation of RXRα is known to suppress cancer cell growth. However, the cellular mechanism has been elusive. In the present study, we addressed its role during stem cell differentiation and the underlying connections with carcinogenesis. RXRα was significantly upregulated following the differentiation of human mesenchymal stem cell (hMSC) toward the formation of endothelial cell (EC). However, overexpression of RXRα in hMSC provoked a senescence-like phenotype accompanied by the elevation of tumor suppressor p53, p21, and p16. Consistently, RXRα level was suppressed in cancer cells (~five times lower compared to differentiated hMSC), and its elevation could inhibit the proliferation, migration, and angiogenesis of cancer cells. We further demonstrated that these inhibitory effects were related to RXRα’s interaction with estrogen receptor α (ERα) as well as EGF and ANGPTL3 through modulating PI3K/AKT signaling pathway by AKT and FAK phosphorylation. Moreover, RXRα inhibited glycolytic metabolism in cancer cells, which might be underlying its inhibition of differentiation and carcinogenic features. These data suggest that RXRα acts as a suppressor rather than a driving force during stem cell differentiation, and unbalanced RXRα can trigger multiple yet connected signaling pathways in preventing carcinogenesis.
Collapse
|
31
|
Filipova A, Seifrtova M, Mokry J, Dvorak J, Rezacova M, Filip S, Diaz-Garcia D. Breast Cancer and Cancer Stem Cells: A Mini-Review. TUMORI JOURNAL 2018. [DOI: 10.1177/1636.17886] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alzbeta Filipova
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Martina Seifrtova
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Josef Dvorak
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Daniel Diaz-Garcia
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine, Hradec Králové
| |
Collapse
|
32
|
Martins FC, Botelho MF, Cabrita AM, de Oliveira CF. Influence of Normal Mammary Epithelium on Breast Cancer Progression: The Protective Role of Early Pregnancy. TUMORI JOURNAL 2018. [DOI: 10.1177/548.6522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Filipe Correia Martins
- Department of Gynecology, University Hospital of Coimbra
- CIMAGO (Oncobiology, Genetics and Environment Research Center), Coimbra Medical School
- Biophysics and Biomathematics Institute, IBILI, Coimbra Medical School
- Experimental Pathology Institute, Coimbra Medical School, Coimbra, Portugal
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA; Gulbenkian Program for Advanced Medical Education
| | - Maria Filomena Botelho
- CIMAGO (Oncobiology, Genetics and Environment Research Center), Coimbra Medical School
- Biophysics and Biomathematics Institute, IBILI, Coimbra Medical School
| | - António Manuel Cabrita
- CIMAGO (Oncobiology, Genetics and Environment Research Center), Coimbra Medical School
- Experimental Pathology Institute, Coimbra Medical School, Coimbra, Portugal
| | - Carlos Freire de Oliveira
- Department of Gynecology, University Hospital of Coimbra
- CIMAGO (Oncobiology, Genetics and Environment Research Center), Coimbra Medical School
| |
Collapse
|
33
|
Peroxisome Proliferator-Activated Receptor γ and PGC-1 α in Cancer: Dual Actions as Tumor Promoter and Suppressor. PPAR Res 2018; 2018:6727421. [PMID: 29599799 PMCID: PMC5828371 DOI: 10.1155/2018/6727421] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is part of a nuclear receptor superfamily that regulates gene expression involved in cell differentiation, proliferation, immune/inflammation response, and lipid metabolism. PPARγ coactivator-1α (PGC-1α), initially identified as a PPARγ-interacting protein, is an important regulator of diverse metabolic pathways, such as oxidative metabolism and energy homeostasis. The role of PGC-1α in diabetes, neurodegeneration, and cardiovascular disease is particularly well known. PGC-1α is also now known to play important roles in cancer, independent of the role of PPARγ in cancer. Though many researchers have studied the expression and clinical implications of PPARγ and PGC-1α in cancer, there are still many controversies about the role of PPARγ and PGC-1α in cancer. This review examines and summarizes some recent data on the role and action mechanisms of PPARγ and PGC-1α in cancer, respectively, particularly the recent progress in understanding the role of PPARγ in several cancers since our review was published in 2012.
Collapse
|
34
|
You Y, Zheng Q, Dong Y, Xie X, Wang Y, Wu S, Zhang L, Wang Y, Xue T, Wang Z, Chen R, Wang Y, Cui J, Ren Z. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells. Oncotarget 2017; 7:32221-31. [PMID: 27050147 PMCID: PMC5078009 DOI: 10.18632/oncotarget.8515] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Matrix stiffness as an important physical attribute of extracellular matrix exerts significant impacts on biological behaviors of cancer cells such as growth, proliferation, motility, metabolism and invasion. However, its influence on cancer stemness still remains elusive. Here, we explore whether matrix stiffness-mediated effects on stemness characteristics occur in HCC cells. As the substrate stiffness increased, HCC cells exhibited high proportion of cells with CD133(+)/EpCAM(+), high expression levels of CD133, EpCAM, Nanog and SOX2, greater self-renewing ability and oxaliplatin resistance. Simultaneously, their phosphorylation levels of Akt and mTOR, as well as p-4E-BP and SOX2 expressions were also obviously upregulated. Conversely, knockdown of integrin β1 partially attenuated higher stiffness-mediated stemness characteristics in HCC cells, and reversed the phosphorylation levels of Akt and mTOR, and expressions of p-4E-BP and SOX2, suggesting that integrin β1 may deliver higher stiffness signal into HCC cells and activate mTOR signaling pathway. Additionally, mTOR inhibitor suppressed the mTOR phosphorylation level and expression levels of p-4E-BP and SOX2 in HCC cells grown on higher stiffness substrate, as well as depressed their stemness properties significantly, favoring a regulating role of mTOR signaling pathway in matrix stiffness-mediated effects on stemness. In summary, matrix stiffness may be involved in the process of stemness regulation via activating integrin β1/Akt/mTOR/SOX2 signaling pathway. To the best of our knowledge, this study first reveals a novel regulating pathway to direct the stemness characteristics in HCC cells.
Collapse
Affiliation(s)
- Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yaohui Wang
- Department of Interventional Radiology, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yingcong Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital Subdivision, Fudan University, Shanghai 200052, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yanhong Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| |
Collapse
|
35
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
36
|
Lindoso RS, Collino F, Vieyra A. Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investig 2017; 4:75. [PMID: 29057247 DOI: 10.21037/sci.2017.08.08] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/27/2017] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment comprises a heterogeneous population of tumorigenic and non-tumorigenic cells. Cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) are components of this microenvironment and have been described as key regulators of different aspects of tumor physiology. They act differently on the tumor: CSCs are described as tumor initiators and are associated with tumor growth, drug resistance and metastasis; MSCs can integrate the tumor microenvironment after recruitment and interact with cancer cells to promote tumor modifications. Extracellular vesicles (EVs) have emerged as an important mechanism of cell communication under the physiological and pathological conditions. In cancer, secretion of EVs seems to be one of the main mechanisms by which stem cells interact with other tumor and non-tumor cells. The transfer of bioactive molecules (lipids, proteins and RNAs) compartmentalized into EVs triggers different responses in the target cells, regulating several processes in the tumor as angiogenesis, tumor invasiveness and immune escape. This review focuses on the role of CSCs and MSCs in modulating the tumor microenvironment through secretion of EVs, addressing different aspects of the multidirectional interactions among stem cells, tumor and tumor-associated cells.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Federica Collino
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, Grande Rio University, 25071-202 Duque de Caxias, Brazil
| |
Collapse
|
37
|
Zhao Q, Parris AB, Howard EW, Zhao M, Ma Z, Guo Z, Xing Y, Yang X. FGFR inhibitor, AZD4547, impedes the stemness of mammary epithelial cells in the premalignant tissues of MMTV-ErbB2 transgenic mice. Sci Rep 2017; 7:11306. [PMID: 28900173 PMCID: PMC5595825 DOI: 10.1038/s41598-017-11751-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023] Open
Abstract
The fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases (RTKs) regulates signaling pathways involved in cell proliferation and differentiation. Currently, the anti-tumor properties of FGFR inhibitors are being tested in preclinical and clinical studies. Nevertheless, reports on FGFR inhibitor-mediated breast cancer prevention are sparse. In this study, we investigated the anti-cancer benefits of AZD4547, an FGFR1-3 inhibitor, in ErbB2-overexpressing breast cancer models. AZD4547 (1-5 µM) demonstrated potent anti-proliferative effects, inhibition of stemness, and suppression of FGFR/RTK signaling in ErbB2-overexpressing human breast cancer cells. To study the in vivo effects of AZD4547 on mammary development, mammary epithelial cell (MEC) populations, and oncogenic signaling, MMTV-ErbB2 transgenic mice were administered AZD4547 (2-6 mg/kg/day) for 10 weeks during the 'risk window' for mammary tumor development. AZD4547 significantly inhibited ductal branching and MEC proliferation in vivo, which corroborated the in vitro anti-proliferative properties. AZD4547 also depleted CD24/CD49f-sorted MEC populations, as well as the CD61highCD49fhigh tumor-initiating cell-enriched population. Importantly, AZD4547 impaired stem cell-like characteristics in primary MECs and spontaneous tumor cells. Moreover, AZD4547 downregulated RTK, mTOR, and Wnt/β-catenin signaling pathways in premalignant mammary tissues. Collectively, our data provide critical preclinical evidence for AZD4547 as a potential breast cancer preventative and therapeutic agent.
Collapse
Affiliation(s)
- Qingxia Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA.,Basic Medical College of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Ming Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA.,College of Medicine, Henan University of Sciences and Technology, Luoyang, P.R. China
| | - Zhiying Guo
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Ying Xing
- Basic Medical College of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, USA. .,College of Medicine, Henan University of Sciences and Technology, Luoyang, P.R. China.
| |
Collapse
|
38
|
Subramani R, Lakshmanaswamy R. Pregnancy and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:81-111. [PMID: 29096898 DOI: 10.1016/bs.pmbts.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among women worldwide. The majority of breast cancers are sporadic and the etiology is not well understood. Several factors have been attributed to altering the risk of breast cancer. A full-term pregnancy is a crucial factor in altering the risk. Early full-term pregnancy has been shown to reduce the lifetime risk of breast cancer, while a later first full-term pregnancy increases breast cancer risk. Epidemiological and experimental data demonstrate that spontaneous or induced abortions do not significantly alter the risk of breast cancer. In this study, we briefly discuss the different types and stages of breast cancer, various risk factors, and potential mechanisms involved in early full-term pregnancy-induced protection against breast cancer. Understanding how early full-term pregnancy induces protection against breast cancer will help design innovative preventive and therapeutic strategies. This understanding can also help in the development of molecular biomarkers that can be of tremendous help in predicting the risk of breast cancer in the general population.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Paul L. Foster School of Medicine, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.
| |
Collapse
|
39
|
Yaghjyan L, Stoll E, Ghosh K, Scott CG, Jensen MR, Brandt KR, Visscher D, Vachon CM. Tissue-based associations of mammographic breast density with breast stem cell markers. Breast Cancer Res 2017; 19:100. [PMID: 28851411 PMCID: PMC5576318 DOI: 10.1186/s13058-017-0889-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic breast density is a well-established, strong breast cancer risk factor but the biology underlying this association remains unclear. Breast density may reflect underlying alterations in the size and activity of the breast stem cell pool. We examined, for the first time, associations of CD44, CD24, and aldehyde dehydrogenase family 1 member A1 (ALDH1A1) breast stem cell markers with breast density. Methods We included in this study 64 asymptomatic healthy women who previously volunteered for a unique biopsy study of normal breast tissue at the Mayo Clinic (2006-2008). Mammographically identified dense and non-dense areas were confirmed/localized by ultrasound and biopsied. Immunohistochemical analysis of the markers was performed according to a standard protocol and the staining was assessed by a single blinded pathologist. In core biopsy samples retrieved from areas of high vs. low density within the same woman, we compared staining extent and an expression score (the product of staining intensity and extent), using the signed rank test. All tests of statistical significance were two-sided. Results A total of 64, 28, and 10 women were available for CD44, CD24, and ALDH1A1 staining, respectively. For all three markers, we found higher levels of staining extent in dense as compared to non-dense tissue, though for CD24 and ALDH1A1 the difference did not reach statistical significance (CD44, 6.3% vs. 2.0%, p < 0.001; CD24, 8.0% vs. 5.6%, p = 0.10; and ALDH1A1, 0.5% vs. 0.3%, p = 0.12). The expression score for CD44 was significantly greater in dense as compared to non-dense tissue (9.8 vs.3.0, p < 0.001). Conclusions Our findings suggest an increased presence and/or activity of stem cells in dense as compared to non-dense breast tissue. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0889-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Ethan Stoll
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - Karthik Ghosh
- Division of General Internal Medicine, Mayo Clinic College of Medicine, 200 First St SW, Rochester, MN, 55902, USA
| | - Christopher G Scott
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Matthew R Jensen
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kathleen R Brandt
- Department of Radiology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Daniel Visscher
- Department of Anatomic Pathology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| | - Celine M Vachon
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
40
|
Dall G, Risbridger G, Britt K. Mammary stem cells and parity-induced breast cancer protection- new insights. J Steroid Biochem Mol Biol 2017; 170:54-60. [PMID: 26907964 DOI: 10.1016/j.jsbmb.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
Abstract
Parity (childbearing) significantly decreases a woman's risk of breast cancer and the protective effect is greater if the woman is younger and has more children. The mechanism/s of parity-induced protection are not known. Although several factors are postulated to play a role, we discuss how a reduction in the number of mammary stem cells (MaSCs) may lead to a reduction in breast cancer risk in parous women. Firstly we review the epidemiology linking childbearing to reduced breast cancer risk and discuss how additional births, a young age at first full term birth, and breastfeeding impact the protection. We then detail the mouse and human studies implicating MaSC in parity induced protection and the in-vivo work being performed in mice to directly investigate the effect of parity on MaSC. Finally we discuss the transplant and lineage tracing experiments assessing MaSC activity according to parity and the need to define if MaSC are indeed more carcinogen sensitive than mature mammary epithelial cells. Continuing and future studies attempting to define the parity induced mechanisms will aid in the development of preventative therapies.
Collapse
Affiliation(s)
- Genevieve Dall
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne 3002, Australia; Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd 3800, Australia
| | - Gail Risbridger
- Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd 3800, Australia
| | - Kara Britt
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne 3002, Australia; Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd 3800, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
41
|
Dall GV, Britt KL. Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Front Oncol 2017; 7:110. [PMID: 28603694 PMCID: PMC5445118 DOI: 10.3389/fonc.2017.00110] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
A woman has an increased risk of breast cancer if her lifelong estrogen exposure is increased due to an early menarche, a late menopause, and/or an absence of childbearing. For decades, it was presumed that the number of years of exposure drove the increased risk, however, recent epidemiological data have shown that early life exposure (young menarche) has a more significant effect on cancer risk than late menopause. Thus, rather than the overall exposure it seems that the timing of hormone exposure plays a major role in defining breast cancer risk. In support of this, it is also known that aberrant hormonal exposure prior to puberty can also increase breast cancer risk, yet the elevated estrogen levels during pregnancy decrease breast cancer risk. This suggests that the effects of estrogen on the mammary gland/breast are age-dependent. In this review article, we will discuss the existing epidemiological data linking hormone exposure and estrogen receptor-positive breast cancer risk including menarche, menopause, parity, and aberrant environmental hormone exposure. We will discuss the predominantly rodent generated experimental data that confirm the association with hormone exposure and breast cancer risk, confirming its use as a model system. We will review the work that has been done attempting to define the direct effects of estrogen on the breast, which are beginning to reveal the mechanism of increased cancer risk. We will then conclude with our views on the most pertinent questions to be addressed experimentally in order to explore the relationship between age, estrogen exposure, and breast cancer risk.
Collapse
Affiliation(s)
| | - Kara Louise Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Polireddy K, Dong R, McDonald PR, Wang T, Luke B, Chen P, Broward M, Roy A, Chen Q. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation. PLoS One 2016; 11:e0164811. [PMID: 27764163 PMCID: PMC5072586 DOI: 10.1371/journal.pone.0164811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs) that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS) assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT) in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition. Methods An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay. Results Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl) indoline (BSI, Compound #38) significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities. Conclusion This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and anti-CSC drug leads.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Peter R. McDonald
- High-Throughput Screening Core Facility, Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Tao Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Brendan Luke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
| | - Melinda Broward
- High-Throughput Screening Core Facility, Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Anuradha Roy
- High-Throughput Screening Core Facility, Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jang MH, Kang HJ, Jang KS, Paik SS, Kim WS. Clinicopathological analysis of CD44 and CD24 expression in invasive breast cancer. Oncol Lett 2016; 12:2728-2733. [PMID: 27698848 DOI: 10.3892/ol.2016.4987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2016] [Indexed: 11/05/2022] Open
Abstract
A subpopulation of breast cancer cells with cluster of differentiation (CD)44-positive and CD24-negative expression has been reported to have stem cell properties and to have a higher tumorigenic capacity than other cells. However, the clinicopathological characteristics of this subpopulation are not fully understood. In this study, we aimed to identify the correlations between the expression of CD44 and CD24 and clinicopathological parameters and overall survival. We studied specimens from 262 patients with invasive breast cancer. Immunohistochemical staining for CD44 and CD24 was performed using tissue microarrays. The clinicopathological factors were evaluated from the patients' medical records. In correlation analysis, CD44 expression was significantly associated with human epidermal growth factor receptor 2 (HER2)-negative status (P<0.001). Conversely, CD24 expression was significantly associated with HER2-positive status (P<0.001). CD44 and CD24 expression did not demonstrate any correlation with the age, tumor size, axillary lymph node metastasis status, tumor stage, histological grade, estrogen receptor status and progesterone receptor status of patients. Upon survival analysis, there was no statistical difference in overall survival according to the expression of CD44 and CD24. The results from this study suggest that CD44 and CD24 are clinically significant markers associated with breast tumorigenesis, but not sufficient factors in determining the prognosis of invasive breast cancer.
Collapse
Affiliation(s)
- Min Hye Jang
- Department of Pathology, Yeungnam University Hospital, Daegu 42415, Republic of Korea
| | - Hyun Jong Kang
- Department of Surgery, Konkuk University Hospital, Chungju 27376, Republic of Korea
| | - Ki Seok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| |
Collapse
|
44
|
Botesteanu DA, Lipkowitz S, Lee JM, Levy D. Mathematical models of breast and ovarian cancers. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:337-62. [PMID: 27259061 DOI: 10.1002/wsbm.1343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/06/2023]
Abstract
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dana-Adriana Botesteanu
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, USA.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Doron Levy
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, USA
| |
Collapse
|
45
|
Cai J, He B, Li X, Sun M, Lam AKY, Qiao B, Qiu W. Regulation of tumorigenesis in oral epithelial cells by defined reprogramming factors Oct4 and Sox2. Oncol Rep 2016; 36:651-8. [PMID: 27279579 PMCID: PMC4933556 DOI: 10.3892/or.2016.4851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/01/2016] [Indexed: 01/11/2023] Open
Abstract
Oct4 and Sox2 are pluripotent stem cell factors but the interplay between them in tumorigenesis is unclear. The aim of the present study was to investigate the roles of Oct4 and Sox2 in the reprogramming of oral cancer stem cells. One or both Oct4 and Sox2 were overexpressed in immortalized oral epithelial (hTERT+-OME) cells by lentivirus transduction. In addition, Oct4 and Sox2 proteins in two oral squamous cell carcinoma cell (OSCC) lines (Cal27 and primary cultured OSCC from a T2N2M0 patient) were individually or combinedly knocked down by shRNA. The results showed that the doubly transduced (Oct4+Sox2+) cells could trigger neoplasms in immunodeficient mice after lentivirus transduction, but single transduced (Oct4+ or Sox2+) cells had no tumor formation ability. The knockdown Sox2low and knockdown Oct4lowSox2low cells resulted in decreased tumor size in the immunodeficient mice but the single knockdown Oct4low cancer cells acquired more aggressive xenografts. Our findings suggest that Oct4+Sox2+ cells may be reprogrammed cancer stem cells inducing oral carcinogenesis.
Collapse
Affiliation(s)
- Jinghua Cai
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Baoxia He
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xinming Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Alfred King-Yin Lam
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weiliu Qiu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
46
|
Pittet-Cuénod B, Rüegg EM, Thomet C, Lomessy A, Modarressi A. Techniques de reconstruction mammaire et indications dans la prise en charge des femmes à haut risque. IMAGERIE DE LA FEMME 2016. [DOI: 10.1016/j.femme.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, Zhu X, Zeng YA. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet 2016; 12:e1006055. [PMID: 27203244 PMCID: PMC4874687 DOI: 10.1371/journal.pgen.1006055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering β-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active β-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties. Stem cell self-renewal has two essential elements, cell division and at least of one of the daughter cells retaining stem cell properties, so-called stemness. The interconnections between cell cycle and cell fate specification have been explored in embryonic stem cells. However, less is known about how cell cycle affects the cell fate decision in tissue stem cells. In this study, we explore the function of particular mitotic factors Ccny and Ccnyl1 in regulating the dividing tissue stem cells. The development of the mammary gland occurs mostly in postnatal pubertal stage. At the time, the robustly dividing stem/progenitor cells reside at the forefront of the mammary epithelium extension, underlining the mammary gland as a good model to study the interconnection of cell cycle and tissue stem cells. In this study, we show that in dividing mammary stem/progenitor cells, Ccny and Ccnyl1 enhance Wnt signaling activities in mitosis. The signaling enhancement in this time window is essential for the stem/progenitor cell property maintenance during division. Deletion of Ccnys results in diminishing their competitiveness and developmental potential.
Collapse
Affiliation(s)
- Liyong Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheguo Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XZ); (YAZ)
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XZ); (YAZ)
| |
Collapse
|
48
|
Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 2016; 18:19. [PMID: 26926363 PMCID: PMC4772689 DOI: 10.1186/s13058-016-0677-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Methods Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. Results When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell markers, which subsequently localized to the leading edges of the tissue outgrowths. Ductal elongation was preceded by leader cells that protruded from the tips of ducts and engaged with the extracellular matrix. Conclusions These 3D hydrogel scaffolds support the growth of complex mammary tissues from primary patient-derived cells. We anticipate that this culture system will empower future studies of human mammary gland development and biology. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0677-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ethan S Sokol
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Daniel H Miller
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anne Breggia
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA.
| | - Kevin C Spencer
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53711, USA.
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
49
|
Abstract
There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.
Collapse
|
50
|
Butner JD, Cristini V. A modeling approach to study the normal mammary gland growth process. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1444-7. [PMID: 26736541 DOI: 10.1109/embc.2015.7318641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Terminal end buds (TEBs) are bulb-like structures at the growing tips of elongating mammary ducts, and the growth of a TEB is a complex, organized biological process. In this paper, we present a hybrid continuum-discrete agent-based model to provide quantitative insight into the properties of cell symmetric and asymmetric division on the spatial and developing cell rearrangement within the TEB during ductal elongation. An interplay of endocrine-paracrine signaling and cell lineage has been implemented in the model. Our results show that higher symmetric division rates resulted in more progenitor cells remaining in the TEB, while lower rates resulted in more differentiated cells in the TEB. Moreover, pure proliferation alone was enough to result in ductal elongation in the absence of any cellular migration, a result consistent with current experimental data. This model can also serve as a platform to study how mutation-induced phenotypic changes contribute to developmental defects in mammary gland development.
Collapse
|