1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Du R, Zhang J, Lukas RV, Tripathi S, Ahrendsen JT, Curran MA, Dmello C, Zhang P, Stupp R, Rao G, Heimberger AB. Is modulation of immune checkpoints on glioblastoma-infiltrating myeloid cells a viable therapeutic strategy? Neuro Oncol 2025; 27:33-49. [PMID: 39427326 PMCID: PMC11726257 DOI: 10.1093/neuonc/noae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with immunosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implications, we aim to prioritize agents in this category of therapeutics for glioblastoma.
Collapse
Affiliation(s)
- Ruochen Du
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianzhong Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shashwat Tripathi
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA (J.T.A.)
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A Curran
- Department of Immunology, MD Anderson Cancer Center, the University of Texas, Houston, Texas, USA
| | - Crismita Dmello
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peng Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer 2025; 24:5. [PMID: 39780248 PMCID: PMC11707952 DOI: 10.1186/s12943-024-02208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy. Myeloid-derived suppressor cells (MDSCs), due to their potent immunosuppressive capabilities, emerged as major negative regulators within the TME, facilitating tumor immune evasion by modulating various immune cells. In addition to their immunosuppressive functions, MDSCs also promote tumor growth and metastasis through non-immunological mechanisms, such as angiogenesis and the formation of pre-metastatic niches. Consequently, MDSCs in the TME are key regulators of cancer immune responses and potential therapeutic targets in cancer treatment. This review describes the origins and phenotypes of MDSCs, their biological roles in tumor progression, and regulatory mechanisms, with a focus on current therapeutic approaches targeting tumor-associated MDSCs. Furthermore, the synergistic effects of targeting MDSCs in combination with immunotherapy are explored, aiming to provide new insights and directions for cancer therapy.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
4
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
5
|
Lin QX, Song WW, Xie WX, Deng YT, Gong YN, Liu YR, Tian Y, Zhao WY, Tian L, Gu DN. Sequential treatment of anti-PD-L1 therapy prior to anti-VEGFR2 therapy contributes to more significant clinical benefits in non-small cell lung cancer. Neoplasia 2025; 59:101077. [PMID: 39561585 PMCID: PMC11617296 DOI: 10.1016/j.neo.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Anti-angiogenic therapy and immune checkpoint blockade therapy are currently important treatments for non-small cell lung cancer. However, the combined use of the two therapies is controversial, and few studies have investigated the effects of different time sequences of the two therapies on treatment outcomes. METHODS The tumor-bearing mouse model was established and the mice were divided into four groups, including AA-ICB sequence group, ICB-AA sequence group, synchronization group and the control group. Immunohistochemistry was used to assess tumor microvessels and PD-L1 expression. Selected immune cell populations were evaluated using flow cytometry. Meta-analysis and clinical information were used to elucidate the clinical effects of administration sequence. RESULTS We found that anti-PD-L1 treatment followed by anti-VEGFR2 therapy exerts the best inhibitory effect on tumor growth. Different sequences of anti-angiogenic therapy and immune checkpoint blockade therapy resulted in different proportions of tumor microvessels and immune cell populations in the tumor microenvironment. We further revealed that the administration of anti-PD-L1 before anti-VEGFR brought more normalized tumor blood vessels and CD8+T cell infiltration and reduced immunosuppressive cells in the tumor microenvironment. Subsequent re-transplantation experiments confirmed the long-term benefits of this treatment strategy. The meta-analysis reinforced that immunotherapy prior to anti-angiogenic therapy or combination therapy have better therapeutic effects in advanced non-small cell lung cancer. CONCLUSION Our study demonstrated that the therapeutic effect of anti-angiogenic treatment after immune checkpoint therapy was superior to that of concurrent therapy, whereas anti-angiogenic therapy followed by immunotherapy did not bring more significant clinical benefits than independent monotherapy.
Collapse
Affiliation(s)
- Qiao-Xin Lin
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Wen Song
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Xia Xie
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Ting Deng
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan-Na Gong
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Ru Liu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dian-Na Gu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Jing S, Zhao L, Zhao L, Gao Y, He T. TRIP13: A promising cancer immunotherapy target. CANCER INNOVATION 2024; 3:e147. [PMID: 39398261 PMCID: PMC11467489 DOI: 10.1002/cai2.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 10/15/2024]
Abstract
The tumor microenvironment (TME) facilitates tumor development through intricate intercellular signaling, thereby supporting tumor growth and suppressing the immune response. Thyroid hormone receptor interactor 13 (TRIP13), an AAA+ ATPase, modulates the conformation of client macromolecules, consequently influencing cellular signaling pathways. TRIP13 has been implicated in processes such as proliferation, invasion, migration, and metastasis during tumor progression. Recent studies have revealed that TRIP13 also plays a role in immune response suppression within the TME. Thus, inhibiting these functions of TRIP13 could potentially enhance immune responses and improve the efficacy of immune checkpoint inhibition. This review summarizes the recent research progress of TRIP13 and discusses the potential of targeting TRIP13 to improve immune-based therapies for patients with cancer.
Collapse
Affiliation(s)
- Shengnan Jing
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Liya Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Liwen Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| |
Collapse
|
7
|
Abdalla AM, Miao Y, Ming N, Ouyang C. ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors. Immunol Cell Biol 2024; 102:907-923. [PMID: 39417304 DOI: 10.1111/imcb.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8+ T cells engage in complex communication via adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8+ T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8+ T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.
Collapse
Affiliation(s)
- Ahmed Me Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Department of Phase 1 Clinical and Research Ward, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ning Ming
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Han M, Niu H, Duan F, Wang Z, Zhang Z, Ren H. Research status and development trends of omics in neuroblastoma a bibliometric and visualization analysis. Front Oncol 2024; 14:1383805. [PMID: 39450262 PMCID: PMC11499224 DOI: 10.3389/fonc.2024.1383805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background Neuroblastoma (NB), a prevalent extracranial solid tumor in children, stems from the neural crest. Omics technologies are extensively employed in NB, and We analyzed published articles on NB omics to understand the research trends and hot topics in NB omics. Method We collected all articles related to NB omics published from 2005 to 2023 from the Web of Science Core Collection database. Subsequently, we conducted analyses using VOSviewer, CiteSpace, Bibliometrix, and the Bibliometric online analysis platform (https://bibliometric.com/ ). Results We included a total of 514 articles in our analysis. The increasing number of publications in this field since 2020 indicates growing attention to NB omics, gradually entering a mature development stage. These articles span 50 countries and 1,000 institutions, involving 3,669 authors and 292 journals. The United States has the highest publication output and collaboration with other countries, with Germany being the most frequent collaborator. Capital Medical University and the German Cancer Research Center are the institutions with the highest publication count. The Journal of Proteome Research and the Journal of Biological Chemistry are the most prolific journal and most co-cited journal, respectively. Wang, W, and Maris, JM are the scholars with the highest publication count and co-citations in this field. "Neuroblastoma" and "Expression" are the most frequent keywords, while "classification," "Metabolism," "Cancer," and "Diagnosis" are recent key terms. The article titled "Neuroblastoma" by John M. Maris is the most cited reference in this analysis. Conclusion The continuous growth in NB omics research underscores its increasing significance in the scientific community. Omics technologies have facilitated the identification of potential biomarkers, advancements in personalized medicine, and the development of novel therapeutic strategies. Despite these advancements, the field faces significant challenges, including tumor heterogeneity, data standardization issues, and the translation of research findings into clinical practice.
Collapse
Affiliation(s)
| | - Huizhong Niu
- First Department of General Surgery, Hebei Children’s Hospital,
Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
10
|
Ghebremedhin A, Athavale D, Zhang Y, Yao X, Balch C, Song S. Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment. Cancers (Basel) 2024; 16:3410. [PMID: 39410029 PMCID: PMC11475569 DOI: 10.3390/cancers16193410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive functions, in the tumor microenvironment (TME). This review also delves into the intricate signaling mechanisms underlying the polarization of diverse macrophage phenotypes, and their plasticity. We also review the development of promising therapeutic approaches to target these populations in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their contributions to tumorigenesis and metastasis, has sparked significant interest among researchers regarding the therapeutic potential of TAM depletion or phenotypic modulation.
Collapse
Affiliation(s)
| | - Dipti Athavale
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Yanting Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Xiaodan Yao
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Curt Balch
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Shumei Song
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
- MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ 08103, USA
- Departments of Surgery, Cooper University Hospital, 1 Cooper Plaza, Camden, NJ 08103, USA
| |
Collapse
|
11
|
Xue D, Hu S, Zheng R, Luo H, Ren X. Tumor-infiltrating B cells: Their dual mechanistic roles in the tumor microenvironment. Biomed Pharmacother 2024; 179:117436. [PMID: 39270540 DOI: 10.1016/j.biopha.2024.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
The occurrence and development of tumors are closely associated with abnormalities in the immune system's structure and function, with tumor immunotherapy being intricately linked to the tumor microenvironment (TME). Early studies on lymphocytes within the TME primarily concentrated on T cells. However, as research has advanced, the multifaceted roles of tumor-infiltrating B cells (TIL-Bs) in tumor immunity, encompassing both anti-tumor and pro-tumor effects, have garnered increasing attention. This paper explored the composition of the TME and the biological characteristics of TIL-Bs, investigating the dual roles within the TME to offer new insights and strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Demin Xue
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaozhen Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huidan Luo
- Department of Pulmonology, Hechi Hospital of Traditional Chinese Medicine, Guangxi 547000, China
| | - Xi Ren
- Department of Oncology II, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Zheng F, Wang Z, Dong Q, Li S, Xiong S, Yuan Y, Xu S, Fu B. Prognostic Significance and Immune Landscape of an Efferocytosis-Related Gene Signature in Bladder Cancer. Biochem Genet 2024:10.1007/s10528-024-10924-0. [PMID: 39313721 DOI: 10.1007/s10528-024-10924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Bladder cancer poses a significant global health challenge, underscoring the imperative for precise prognostic instruments to advance patient care. Against the backdrop of efferocytosis's increasingly recognized role in cancer, this research endeavors to develop and authenticate a prognostic signature intricately linked to efferocytosis in bladder cancer. LASSO-COX regression analysis crafted an efferocytosis-related genes risk prognostic model, followed by the construction of a column chart. External validation sets confirmed the predictive accuracy of both the model and chart. Clinical, tumor microenvironment, drug sensitivity, and immunotherapy analyses were employed to comprehensively assess efferocytosis-related scores. The expression of TGFB3 key genes was validated via RT-PCR and western blotting. Further validation included Transwell, Wound healing, Colony formation, and EDU assays. We formulated and validated an efferocytosis-related genes risk model in bladder cancer, comprising 13 core genes. The risk model demonstrated autonomous prognostic significance in both univariate and multivariate Cox analyses. Following the multivariate analysis, we devised a nomogram. Moreover, by utilizing individual risk scores derived from this risk model, we successfully stratified patients into two discernible risk cohorts, unveiling noteworthy variances in immune infiltration profiles and responsiveness to immunotherapy. Notably, the model's key gene TGFB3 was validated through comprehensive experimental investigations, including Transwell assays for migration and invasion and Wound healing assays for motility on the T24 and BIU cell lines. This study has furnished innovative perspectives on an efferocytosis-related prognostic signature, elucidating the prognosis and immune milieu intricacies in patients with bladder cancer.
Collapse
Affiliation(s)
- Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Zhipeng Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Qianxi Dong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| |
Collapse
|
13
|
Campanelli R, Carolei A, Catarsi P, Abbà C, Boveri E, Paulli M, Gentile R, Morosini M, Albertini R, Mantovani S, Massa M, Barosi G, Rosti V. Circulating Polymorphonuclear Myeloid-Derived Suppressor Cells (PMN-MDSCs) Have a Biological Role in Patients with Primary Myelofibrosis. Cancers (Basel) 2024; 16:2556. [PMID: 39061196 PMCID: PMC11275082 DOI: 10.3390/cancers16142556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by a chronic inflammatory state that plays a relevant role in the disease pathogenesis (as proven by high levels of inflammatory cytokines with prognostic significance and by a persistent oxidative stress) and by extensive neoangiogenesis in bone marrow (BM) and spleen. Myeloid-derived suppressor cells (MDSCs) are immature cells that expand in patients with cancer, sepsis or chronic inflammation, favoring tumor onset and progression mainly through the decrease in immune surveillance and the promotion of neoangiogenesis. In this paper, we evaluated the presence of circulating MDSCs in PMF patients, the plasmatic factors involved in their mobilization/expansion and the correlations with laboratory, genetic and clinical parameters. The data indicated that MDSCs could have a relevant role in PMF as a new pathogenic mechanism contributing to explaining the phenotypic diversity observed during the clinical course of the disease, or a potential new target for personalized treatment.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Carlotta Abbà
- General Medicine 2-Center for Systemic Amyloidosis and High-Complexity Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, 27100 Pavia, Italy
| | - Raffaele Gentile
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Morosini
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Riccardo Albertini
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Margherita Massa
- General Medicine 2-Center for Systemic Amyloidosis and High-Complexity Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| |
Collapse
|
14
|
Hu M, Deng F, Song X, Zhao H, Yan F. The crosstalk between immune cells and tumor pyroptosis: advancing cancer immunotherapy strategies. J Exp Clin Cancer Res 2024; 43:190. [PMID: 38987821 PMCID: PMC11234789 DOI: 10.1186/s13046-024-03115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Pyroptosis is a cell death process characterized by cell swelling until membrane rupture and release of intracellular contents. As an effective tumor treatment strategy, inducing tumor cell pyroptosis has received widespread attention. In this process, the immune components within the tumor microenvironment play a key regulatory role. By regulating and altering the functions of immune cells such as cytotoxic T lymphocytes, natural killer cells, tumor-associated macrophages, and neutrophils, tumor cell pyroptosis can be induced. This article provides a comprehensive review of the molecular mechanisms of cell pyroptosis, the impact of the tumor immune microenvironment on tumor cell pyroptosis, and its mechanisms. It aims to gain an in-depth understanding of the communication between the tumor immune microenvironment and tumor cells, and to provide theoretical support for the development of new tumor immunotherapies.
Collapse
Affiliation(s)
- Mengyuan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Fengying Deng
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Xinlei Song
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China
| | - Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650031, Yunnan, China.
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Chenggong District, 1168 Chunrong West Road, Yunhua Street, Kunming, 650500, Yunnan, China.
| |
Collapse
|
15
|
He N, Zhao W, Tian W, Wu Y, Xu J, Lu Y, Chen X, Zhao H. A cellular senescence-related signature for predicting prognosis, immunotherapy response, and candidate drugs in patients treated with transarterial chemoembolization (TACE). Discov Oncol 2024; 15:271. [PMID: 38976093 PMCID: PMC11231123 DOI: 10.1007/s12672-024-01116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Cellular senescence is essential to TME development, progression, and remodeling. Few studies have examined cellular senescence in HCC after TACE. Investigating the relationship between cellular senescence, post-TACE prognosis, the TME, and immune treatment responses is crucial. METHODS We analyzed the GSE104580 dataset to identify DEGs. A cellular senescence-related signature was developed using LASSO Cox regression in the GSE14520 dataset and validated in the ICGC dataset. High- and low-risk subgroups were compared using GSVA and GSEA. Correlation studies were conducted to explore the relationship between the prognostic model, immune infiltration, immunotherapy response, and drug sensitivity. RESULTS A cellular senescence-related signature comprising FOXM1, CDK1, CHEK1, and SERPINE1 was created and validated. High-risk patients showed significantly lower OS than low-risk patients. High-risk patients had carcinogenetic pathways activated, immunosuppressive cells infiltrated, and immunomodulatory genes overexpressed. They also showed higher sensitivity to EPZ004777_1237 and MK-2206_1053 and potential benefits from GSK-3 inhibitor IX, nortriptyline, lestaurtinib, and JNK-9L. CONCLUSIONS This study constructed a cellular senescence-related signature that could be used to predict HCC patients' responses to and prognosis after TACE treatment, aiding in the development of personalized treatment plans.
Collapse
Affiliation(s)
- Ning He
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Zhao
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wenlong Tian
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Wu
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, China
| | - Yunyan Lu
- Department of Gynecology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xudong Chen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Hui Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
16
|
Roberts BK, Li DI, Somerville C, Matta B, Jha V, Steinke A, Brune Z, Blanc L, Soffer SZ, Barnes BJ. IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation. Sci Rep 2024; 14:15557. [PMID: 38969706 PMCID: PMC11226449 DOI: 10.1038/s41598-024-66168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dan Iris Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Carter Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Vaishali Jha
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | | - Zarina Brune
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Samuel Z Soffer
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Pediatric Surgery, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
17
|
Xing Z, Li X, He ZNT, Fang X, Liang H, Kuang C, Li A, Yang Q. IDO1 Inhibitor RY103 Suppresses Trp-GCN2-Mediated Angiogenesis and Counters Immunosuppression in Glioblastoma. Pharmaceutics 2024; 16:870. [PMID: 39065567 PMCID: PMC11279595 DOI: 10.3390/pharmaceutics16070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is characterized by strong immunosuppression and excessive angiogenesis. Based on existing reports, it can be speculated that the resistance to anti-angiogenic drug vascular endothelial growth factor A (VEGFA) antibody correlates to the induction of novel immune checkpoint indoleamine 2,3-dioxygenase 1 (IDO1), while IDO1 has also been suggested to be related to tumor angiogenesis. Herein, we aim to clarify the potential role of IDO1 in glioma angiogenesis and the mechanism behind it. Bioinformatic analyses showed that the expressions of IDO1 and angiogenesis markers VEGFA and CD34 were positively correlated and increased with pathological grade in glioma. IDO1-overexpression-derived-tryptophan depletion activated the general control nonderepressible 2 (GCN2) pathway and upregulated VEGFA in glioma cells. The tube formation ability of angiogenesis model cells could be inhibited by IDO1 inhibitors and influenced by the activity and expression of IDO1 in condition medium. A significant increase in serum VEGFA concentration and tumor CD34 expression was observed in IDO1-overexpressing GL261 subcutaneous glioma-bearing mice. IDO1 inhibitor RY103 showed positive anti-tumor efficacy, including the anti-angiogenesis effect and upregulation of natural killer cells in GL261 glioma-bearing mice. As expected, the combination of RY103 and anti-angiogenesis agent sunitinib was proved to be a better therapeutic strategy than either monotherapy.
Collapse
Affiliation(s)
- Zikang Xing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xuewen Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China;
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Songhu Road 2005, Shanghai 200438, China; (Z.X.); (X.L.); (Z.N.T.H.); (X.F.); (H.L.)
| |
Collapse
|
18
|
Zhang Q, Yao Y, Yu Z, Zhou T, Zhang Q, Li H, Zhang J, Wei S, Zhang T, Wang H. Bioinformatics Analysis and Experimental Verification Define Different Angiogenesis Subtypes in Endometrial Carcinoma and Identify a Prognostic Signature. ACS OMEGA 2024; 9:26519-26539. [PMID: 38911819 PMCID: PMC11190931 DOI: 10.1021/acsomega.4c03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Increasing evidence indicates that peripheral blood vessels play a pivotal role in regulating tumor growth with the presence of new blood vessels facilitating tumor growth and metastasis. Nevertheless, the impact of specific molecule-mediated angiogenesis on the tumor immune microenvironment (TIME) and individual prognosis of uterine corpus endometrial carcinoma (UCEC) remains uncertain. The transcriptome information on 217 prognostic angiogenesis-related genes was integrated, and the angiogenesis patterns of 506 UCEC patients in The Cancer Genome Atlas (TCGA) cohort were comprehensively evaluated. We identified five angiogenic subtypes, namely, EC1, EC2, EC3, EC4, and EC5, which differed significantly in terms of prognosis, clinicopathological features, cancer hallmarks, genomic mutations, TIME patterns, and immunotherapy responses. Additionally, an angiogenesis-related prognostic risk score (APRS) was constructed to enable an individualized comprehensive evaluation. In multiple cohorts, APRS demonstrated a powerful predictive ability for the prognosis of UCEC patients. Likewise, APRS was confirmed to be associated with clinicopathological features, genomic mutations, cancer hallmarks, and TIME patterns in UCEC patients. The predictability of APRS for immune checkpoint inhibitor (ICI) therapy was also salient. Subsequently, the expression levels of four angiogenesis-related hub genes were verified by qRT-PCR, immunohistochemistry, and single-cell sequencing data analysis. The effects of four representative genes on angiogenesis were validated by Wound-Healing and Transwell assays, tube formation assay in vitro, and tumor xenograft model in vivo. This study proffered a new classification of UCEC patients based on angiogenesis. The established APRS may contribute to individualized prognosis prediction and immunotherapy selections that are better suited for UCEC patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuwei Yao
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhicheng Yu
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of USTC, Hefei 230001, China
| | - Ting Zhou
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haojia Li
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sitian Wei
- Department
of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tangansu Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongbo Wang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Zhang M, Sun Q, Han Z, Qin X, Gao T, Xu Y, Han S, Zhang Y, Liang Q, Guo Z, Liu J. Construction of a novel disulfidptosis-related lncRNAs signature for prognosis prediction and anti-tumor immunity in laryngeal squamous cell carcinoma. Heliyon 2024; 10:e30877. [PMID: 38774325 PMCID: PMC11107247 DOI: 10.1016/j.heliyon.2024.e30877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Disulfidptosis, an innovative type of controlled cellular death linked to metabolic dysfunction, has garnered attention. However, there is limited knowledge regarding the involvement of disulfidptosisrelated lnRNAs (DRlncRNAs) in laryngeal squamous cell carcinoma (LSCC). The objective of our team in this study seeks to establish a DRlncRNAs signature, investigate their prognostic value in LSCC, and explore their associations with immune cell subpopulations, biological signaling pathways, and exploring implications for drug sensitivity. We accessed LSCC patients' RNA-seq data and pertinent clinical data for subsequent further analysis from The Cancer Genome Atlas (TCGA) portal. A literature search was conducted focusing on disulfidptosis-related genes. Pearson correlation coefficients were calculated to identify DRlncRNAs. Differential expression analysis of lncRNAs was performed. Utilizing univariate Cox regression analysis, we identified disulfidptosis-associated prognostic lncRNAs. The LASSO-Cox regression analysis was employed to refine this set of lncRNAs and construct a disulfidptosis-related lncRNAs signature. Various statistical techniques were employed to appraise model predictive performance. Subsequently, risk groups were stratified based on the risk score derived from the DRlncRNAs signature. The superiority of the risk score in prognostication over traditional clinicopathological features in LSCC patients was demonstrated. Evident distinctions emerged between risk groups, particularly in immune cell subpopulations like activated mast cells, eosinophils, and activated NK cells. Finally, the low-risk group demonstrated reduced IC50 values for specific chemotherapeutics like cisplatin and gemcitabine. The in vitro experiments indicated differential behavior of our DRlncRNAs. The DRlncRNAs signature can serve as a robust biomarker with the ability to predict both prognosis and therapeutic responses among patients with LSCC.
Collapse
Affiliation(s)
- Min Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan, 410000, PR China
| | - Qing Sun
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Zhijin Han
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xuemei Qin
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Tianle Gao
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Yinwei Xu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Shuhui Han
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Yujie Zhang
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| | - Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, PR China
| |
Collapse
|
20
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Ding D, Liang R, Li T, Lan T, Li Y, Huang S, He G, Ren J, Li W, Zheng Z, Chen T, Fang J, Huang L, Shuai X, Wei B. Nanodrug modified with engineered cell membrane targets CDKs to activate aPD-L1 immunotherapy against liver metastasis of immune-desert colon cancer. J Control Release 2024; 369:309-324. [PMID: 38554771 DOI: 10.1016/j.jconrel.2024.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Immunotherapy based on the PD-1/PD-L1 axis blockade has no benefit for patients diagnosed with colon cancer liver metastasis (CCLM) for the microsatellite stable/proficient mismatch repair (MSS/pMMR)) subtype, which is known as an immune-desert cancer featuring poor immunogenicity and insufficient CD8+ T cell infiltration in the tumor microenvironment. Here, a multifunctional nanodrug carrying a cyclin-dependent kinase (CDK)1/2/5/9 inhibitor and PD-L1 antibody is prepared to boost the immune checkpoint blockade (ICB)-based immunotherapy against MSS/pMMR CCLM via reversing the immunosuppressive tumor microenvironment. To enhance the MSS/pMMR CCLM-targeting efficacy, we modify the nanodrug with PD-L1 knockout cell membrane of this colon cancer subtype. First, CDKs inhibitor delivered by nanodrug down-regulates phosphorylated retinoblastoma and phosphorylated RNA polymerase II and meanwhile arrests the G2/M cell cycle in CCLM to promote immunogenic signal release, stimulate dendritic cell maturation, and enhance CD8+ T cell infiltration. Moreover, CDKi suppresses the secretion of immunosuppressive cytokines in tumor-associated myeloid cells sensitizing ICB therapy in CCLM. Notably, the great efficacy to activate immune responses is demonstrated in the patient-derived xenograft model and the patient-derived organoid model as well, revealing a clinical application potential. Overall, our study represents a promising therapeutic approach for targeting liver metastasis, remolding the tumor immune microenvironment (TIME), and enhancing the response of MSS/pMMR CCLM to boost ICB immunotherapy.
Collapse
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rongpu Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tan Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tianyun Lan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yiquan Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shengxin Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Guanhui He
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiannan Ren
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lijun Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Ji P, He J. Prognostic value of pretreatment systemic immune-inflammation index in patients with endometrial cancer: a meta-analysis. Biomark Med 2024; 18:345-356. [PMID: 38623927 PMCID: PMC11218804 DOI: 10.2217/bmm-2023-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Background: The present work focused on evaluating the systemic immune-inflammation index (SII) for its role in predicting endometrial cancer (EC) patient prognosis by meta-analysis. Methods: SII's role in predicting the prognosis of EC patients was analyzed by calculating combined hazard ratios (HRs) and 95% CIs. Results: As revealed by combined analysis, an increased SII predicted poor overall survival (HR = 2.01; 95% CI = 1.58-2.57; p < 0.001) as well as inferior progression-free survival (HR = 1.87; 95% CI = 1.36-2.58; p < 0.001) of EC. Conclusion: An increased SII score significantly predicted poor overall survival and progression-free survival in subjects with EC. The SII is suitable for predicting short- and long-term prognoses of patients with EC.
Collapse
Affiliation(s)
- Pengtian Ji
- Department of Oncological Radiotherapy, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, 313000, China
| | - Junjun He
- Clinical Laboratory, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| |
Collapse
|
23
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
24
|
Chen Y, Liu H, Sun Y. Effect of acute inflammatory reaction induced by biopsy on tumor microenvironment. J Cancer Res Clin Oncol 2024; 150:177. [PMID: 38578317 PMCID: PMC10997701 DOI: 10.1007/s00432-024-05704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 04/06/2024]
Abstract
When it comes to the diagnosis of solid tumors, biopsy is always the gold standard. However, traumatic and inflammatory stimuli are so closely related to tumor initiation and development that the acute inflammatory response induced by biopsy can give rise to changes in the tumor microenvironment, including recruitment of immunosuppressive cells (M2 macrophages, Treg cells, Tumor-associated neutrophils) and secretion of inflammation-associated cytokines, to create immunosuppressive conditions that enable the increase of circulating tumor cells in the peripheral circulation and promote the metastatic spread of tumors after surgery. In this review, we discuss dynamic changes and inhibitory characteristics of biopsy on tumor microenvironment. By investigating its mechanism of action and summarizing the current therapeutic strategies for biopsy-induced tumor immunosuppressive microenvironment, the future of using biopsy-induced inflammation to improve the therapeutic effects and prognosis of patients is prospected.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hualian Liu
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Yadong Sun
- Department of General Practice, Unit 94587 of the Chinese People's Liberation Army, Lianyungang, China
| |
Collapse
|
25
|
Filippi A, Aurelian J, Mocanu MM. Analysis of the Gene Networks and Pathways Correlated with Tissue Differentiation in Prostate Cancer. Int J Mol Sci 2024; 25:3626. [PMID: 38612439 PMCID: PMC11011430 DOI: 10.3390/ijms25073626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent non-cutaneous cancer in men. Early PCa detection has been made possible by the adoption of screening methods based on the serum prostate-specific antigen and Gleason score (GS). The aim of this study was to correlate gene expression with the differentiation level of prostate adenocarcinomas, as indicated by GS. We used data from The Cancer Genome Atlas (TCGA) and included 497 prostate cancer patients, 52 of which also had normal tissue sample sequencing data. Gene ontology analysis revealed that higher GSs were associated with greater responses to DNA damage, telomere lengthening, and cell division. Positive correlation was found with transcription factor activator of the adenovirus gene E2 (E2F) and avian myelocytomatosis viral homolog (MYC) targets, G2M checkpoints, DNA repair, and mitotic spindles. Immune cell deconvolution revealed high M0 macrophage counts and an increase in M2 macrophages dependent on the GS. The molecular pathways most correlated with GSs were cell cycle, RNA transport, and calcium signaling (depleted). A combinatorial approach identified a set of eight genes able to differentiate by k-Nearest Neighbors (kNN) between normal tissues, low-Gleason tissues, and high-Gleason tissues with high accuracy. In conclusion, our study could be a step forward to better understanding the link between gene expression and PCa progression and aggressiveness.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Justin Aurelian
- Department of Specific Disciplines, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
26
|
Frederico SC, Sharma N, Darling C, Taori S, Dubinsky AC, Zhang X, Raphael I, Kohanbash G. Myeloid cells as potential targets for immunotherapy in pediatric gliomas. Front Pediatr 2024; 12:1346493. [PMID: 38523840 PMCID: PMC10960498 DOI: 10.3389/fped.2024.1346493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) including pediatric glioblastoma (pGBM) are highly aggressive pediatric central nervous system (CNS) malignancies. pGBM comprises approximately 3% of all pediatric CNS malignancies and has a 5-year survival rate of approximately 20%. Surgical resection and chemoradiation are often the standard of care for pGBM and pHGG, however, even with these interventions, survival for children diagnosed with pGBM and pHGG remains poor. Due to shortcomings associated with the standard of care, many efforts have been made to create novel immunotherapeutic approaches targeted to these malignancies. These efforts include the use of vaccines, cell-based therapies, and immune-checkpoint inhibitors. However, it is believed that in many pediatric glioma patients an immunosuppressive tumor microenvironment (TME) possess barriers that limit the efficacy of immune-based therapies. One of these barriers includes the presence of immunosuppressive myeloid cells. In this review we will discuss the various types of myeloid cells present in the glioma TME, including macrophages and microglia, myeloid-derived suppressor cells, and dendritic cells, as well as the specific mechanisms these cells can employ to enable immunosuppression. Finally, we will highlight therapeutic strategies targeted to these cells that are aimed at impeding myeloid-cell derived immunosuppression.
Collapse
Affiliation(s)
- Stephen C. Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nikhil Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Corbin Darling
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Suchet Taori
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY, United States
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
28
|
Ng WH, Soo KC, Huynh H. Vinorelbine Improves the Efficacy of Sorafenib against Hepatocellular Carcinoma: A Promising Therapeutic Approach. Int J Mol Sci 2024; 25:1563. [PMID: 38338842 PMCID: PMC10855313 DOI: 10.3390/ijms25031563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading global cause of cancer-related mortality. Despite the widespread adoption of sorafenib as the standard HCC treatment, its efficacy is constrained, frequently encountering resistance. To augment the effectiveness of sorafenib, this study investigated the synergy of sorafenib and vinorelbine using 22 HCC patient-derived xenograft (PDX) models. In this study, mice bearing HCC tumors were treated with the vehicle, sorafenib (15 mg/kg), vinorelbine (3 mg/kg), and sorafenib-vinorelbine combination (Sora/Vino). Rigorous monitoring of the tumor growth and side effects coupled with comprehensive histological and molecular analyses was conducted. The overall survival (OS) of mice bearing HCC orthotopic tumors was also assessed. Our data showed a notable 86.4% response rate to Sora/Vino, surpassing rates of 31.8% for sorafenib and 9.1% for vinorelbine monotherapies. Sora/Vino significantly inhibited tumor growth, prolonged OS of mice bearing HCC orthotopic tumors (p < 0.01), attenuated tumor cell proliferation and angiogenesis, and enhanced necrosis and apoptosis. The combination therapy effectively suppressed the focal adhesion kinase (FAK) pathway, which is a pivotal player in cell proliferation, tumor angiogenesis, survival, and metastasis. The noteworthy antitumor activity in 22 HCC PDX models positions Sora/Vino as a promising candidate for early-phase clinical trials, leveraging the established use of sorafenib and vinorelbine in HCC and other cancers.
Collapse
Affiliation(s)
- Wai Har Ng
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Khee Chee Soo
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| |
Collapse
|
29
|
Yin T, Li X, Li Y, Zang X, Liu L, Du M. Macrophage plasticity and function in cancer and pregnancy. Front Immunol 2024; 14:1333549. [PMID: 38274812 PMCID: PMC10808357 DOI: 10.3389/fimmu.2023.1333549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the soil of life, the composition and shaping process of the immune microenvironment of the uterus is worth exploring. Macrophages, indispensable constituents of the innate immune system, are essential mediators of inflammation and tissue remodeling as well. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in both physiological and pathological settings. Macrophages display remarkable plasticity and switch from one phenotype to another. Intrinsic plasticity enables tissue macrophages to perform a variety of functions in response to changing tissue contexts, such as cancer and pregnancy. The remarkable diversity and plasticity make macrophages particularly intriguing cells given their dichotomous role in either attacking or protecting tumors and semi-allogeneic fetuses, which of both are characterized functionally by immunomodulation and neovascularization. Here, we reviewed and compared novel perspectives on macrophage biology of these two settings, including origin, phenotype, differentiation, and essential roles in corresponding microenvironments, as informed by recent studies on the heterogeneity of macrophage identity and function, as well as their mechanisms that might offer opportunities for new therapeutic strategies on malignancy and pregnancy complications.
Collapse
Affiliation(s)
- Tingxuan Yin
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinyi Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lu Liu
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
30
|
Zhang W, Zhang M, Sun M, Hu M, Yu M, Sun J, Zhang X, Du B. Metabolomics-transcriptomics joint analysis: unveiling the dysregulated cell death network and developing a diagnostic model for high-grade neuroblastoma. Front Immunol 2024; 14:1345734. [PMID: 38239355 PMCID: PMC10794662 DOI: 10.3389/fimmu.2023.1345734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
High-grade neuroblastoma (HG-NB) exhibits a significantly diminished survival rate in comparison to low-grade neuroblastoma (LG-NB), primarily attributed to the mechanism of HG-NB is unclear and the lacking effective therapeutic targets and diagnostic model. Therefore, the current investigation aims to study the dysregulated network between HG-NB and LG-NB based on transcriptomics and metabolomics joint analysis. Meanwhile, a risk diagnostic model to distinguish HG-NB and LG-NB was also developed. Metabolomics analysis was conducted using plasma samples obtained from 48 HG-NB patients and 36 LG-NB patients. A total of 39 metabolites exhibited alterations, with 20 showing an increase and 19 displaying a decrease in HG-NB. Additionally, transcriptomics analysis was performed on NB tissue samples collected from 31 HG-NB patients and 20 LG-NB patients. Results showed that a significant alteration was observed in a total of 1,199 mRNAs in HG-NB, among which 893 were upregulated while the remaining 306 were downregulated. In particular, the joint analysis of both omics data revealed three aberrant pathways, namely the cAMP signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway, which were found to be associated with cell death. Notably, a diagnostic model for HG-NB risk classification was developed based on the genes MGST1, SERPINE1, and ERBB3 with an area under the receiver operating characteristic curve of 0.915. In the validation set, the sensitivity and specificity were determined to be 75.0% and 80.0%, respectively.
Collapse
Affiliation(s)
- Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Meng Sun
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Muchun Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jushan Sun
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bang Du
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Möckel D, Bartneck M, Niemietz P, Wagner M, Ehling J, Rama E, Weiler M, Gremse F, Eulberg D, Pola R, Pechar M, Etrych T, Storm G, Kiessling F, Tacke F, Lammers T. CCL2 chemokine inhibition primes the tumor vasculature for improved nanomedicine delivery and efficacy. J Control Release 2024; 365:358-368. [PMID: 38016488 DOI: 10.1016/j.jconrel.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Diana Möckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Patricia Niemietz
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Maike Wagner
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Elena Rama
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Marek Weiler
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Gremse-IT GmbH, Aachen, Germany
| | | | - Robert Pola
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Michal Pechar
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Tomas Etrych
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, the Netherlands; Department of Biomaterials, Science and Technology, University of Twente, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
| |
Collapse
|
32
|
Brackman LC, Jung MS, Green EH, Joshi N, Revetta FL, McClain MS, Markham NO, Piazuelo MB, Scott Algood HM. IL-17 signaling protects against Helicobacter pylori-induced gastric cancer. Gut Microbes 2024; 16:2430421. [PMID: 39588838 PMCID: PMC11639209 DOI: 10.1080/19490976.2024.2430421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Helicobacter pylori infection is the predominant risk factor for the development of gastric cancer. Risk is enhanced by specific H. pylori virulence factors, diet, and the inflammatory response. Chronic activation of T helper (Th) 1 and Th17 pathways contributes to prolonged inflammation; yet, higher expression of IL-17 receptor (IL-17RA) is a favorable prognostic marker for survival after gastric cancer diagnosis. The protective impact of IL-17RA signaling is not understood. To investigate if IL-17RA signaling protects during H. pylori-induced carcinogenesis, the transgenic InsGAStg/tg mouse, which is prone to H. pylori-induced gastric cancer, was utilized. InsGAStg/tg mice and InsGAStg/tgIl17ra-/- mice were infected with a cag type 4 secretion system (T4SS) positive H. pylori strain for up to 6 months. Six weeks post-infection, IL-17RA deficiency led to increased bacterial burden, increased gastritis, and development of lymphoid follicles. Increased inflammation was associated with heightened cellular proliferation and earlier loss of parietal and chief cells in InsGAStg/tgIl17ra-/- mice. Gastric cancers developed more frequently by 3- and 6-months post-infection in H. pylori-infected InsGAStg/tgIl17ra-/- mice compared to InsGAStg/tg mice. Chronic inflammation was exacerbated with IL-17RA deficiency, characterized by elevated Th1/Th17 cytokines, increased B cell infiltration, and enhanced IgA production, despite reduced expression of the polymeric immunoglobulin receptor. Further, paragastric lymph nodes of InsGAStg/tgIl17ra-/- mice were enlarged relative to controls and displayed altered gene expression profiles. Increased inflammation was accompanied by a significant increase in Cybb expression, which encodes NADPH oxidase 2, suggesting that increased oxidative damage may occur in the absence of IL-17RA. Further, there is increased phosphorylation of histone 2AX in IL-17RA deficient mice, indicating that the DNA damage response is highly activated. These data suggest that IL-17RA signaling activates a protective pathway to prevent excessive inflammation which otherwise can lead to increased oxidative stress, DNA damage, and drive gastric carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Lee C. Brackman
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew S. Jung
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily H. Green
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhita Joshi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- School of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Frank L. Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O. Markham
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holly M. Scott Algood
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
33
|
Huynh H, Ng WH, Soo KC. Everolimus Acts in Synergy with Vinorelbine to Suppress the Growth of Hepatocellular Carcinoma. Int J Mol Sci 2023; 25:17. [PMID: 38203186 PMCID: PMC10779360 DOI: 10.3390/ijms25010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a challenging cancer to treat, as traditional chemotherapies have shown limited effectiveness. The mammalian target of rapamycin/sirolimus (mTOR) and microtubules are prominent druggable targets for HCC. In this study, we demonstrated that co-targeting mTOR using mTOR inhibitors (everolimus and sirolimus) along with the microtubule inhibitor vinorelbine yielded results superior to those of the monotherapies in HCC PDX models. Our research showed that the vinorelbine arrests cells at the mitotic phase, induces apoptosis, and normalizes tumor blood vessels but upregulates survivin and activates the mTOR/p70S6K/4EBP1 pathway. The addition of the everolimus significantly improved the tumor response to the vinorelbine, leading to improved overall survival (OS) in most tested orthotopic HCC PDX models. The mechanistic investigation revealed that this marked antitumor effect was accompanied by the downregulations of mTOR targets (p-p70S6K, p-4EBP1, and p-S6K); several key cell-cycle regulators; and the antiapoptotic protein survivin. These effects did not compromise the normalization of the blood vessels observed in response to the vinorelbine in the vinorelbine-sensitive PDX models or to the everolimus in the everolimus-sensitive PDX models. The combination of the everolimus and vinorelbine (everolimus/vinorelbine) also promoted apoptosis with minimal toxicity. Given the cost-effectiveness and established effectiveness of everolimus, and especially sirolimus, this strategy warrants further investigation in early-phase clinical trials.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Wai Har Ng
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Khee Chee Soo
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| |
Collapse
|
34
|
Nip C, Wang L, Liu C. CD200/CD200R: Bidirectional Role in Cancer Progression and Immunotherapy. Biomedicines 2023; 11:3326. [PMID: 38137547 PMCID: PMC10741515 DOI: 10.3390/biomedicines11123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
As an immune checkpoint molecule, CD200 serves a foundational role in regulating immune homeostasis and promoting self-tolerance. While CD200 expression occurs in various immune cell subsets and normal tissues, its aberrant expression patterns in hematologic malignancies and solid tumors have been linked to immune evasion and cancer progression under pathological conditions, particularly through interactions with its cognate receptor, CD200R. Through this CD200/CD200R signaling pathway, CD200 exerts its immunosuppressive effects by inhibiting natural killer (NK) cell activation, cytotoxic T cell functions, and M1-polarized macrophage activity, while also facilitating expansion of myeloid-derived suppressor cells (MDSCs) and Tregs. Moreover, CD200/CD200R expression has been linked to epithelial-to-mesenchymal transition and distant metastasis, further illustrating its role in cancer progression. Conversely, CD200 has also been shown to exert anti-tumor effects in certain cancer types, such as breast carcinoma and melanoma, indicating that CD200 may exert bidirectional effects on cancer progression depending on the specific tumor microenvironment (TME). Regardless, modulating the CD200/CD200R axis has garnered clinical interest as a potential immunotherapeutic strategy for cancer therapy, as demonstrated by early-phase clinical trials. However, further research is necessary to fully understand the complex interactions of CD200 in the tumor microenvironment and to optimize its therapeutic potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA
| |
Collapse
|
35
|
Kong Y, Wang X, Xu H, Liu S, Qie R. A Mendelian randomization study on the causal association of circulating cytokines with colorectal cancer. PLoS One 2023; 18:e0296017. [PMID: 38096329 PMCID: PMC10721084 DOI: 10.1371/journal.pone.0296017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Circulating cytokines have been associated with colorectal cancer (CRC). However, their causal correlation remains undetermined. This investigation uses genetic data to evaluate the mechanism that links circulating cytokines and CRC via Mendelian Randomization (MR). METHODS A two-sample MR evaluation was carried out to investigate the mechanism associating circulating cytokines and CRC in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental SNPs that were significantly related to the circulating cytokines were selected. Multiple MR analysis approaches were carried out, including Simple Mode, inverse variance weighted (IVW), MR-Egger, Weighted Mode, Weighted Median, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS The evidence supporting the association of genetically predicted circulating levels with the increased risk of CRC was revealed; these included vascular endothelial growth factor (OR = 1.352, 95% CI: 1.019-1.315, P = 0.024), interleukin-12p70 (OR = 1.273, 95% CI: 1.133-1.430, P = 4.68×10-5), interleukin-13 (OR = 1.149, 95% CI: 1.012-1.299, P = 0.028), interleukin-10 (OR = 1.230, 95% CI: 1.013-1.493, P = 0.037), and interleukin-7 (OR = 1.191, 95% CI: 1.023-1.386 P = 0.024). Additionally, MR analysis negative causal association between macrophage colony stimulating factor and CRC (OR = 0.854, 95% CI: 0.764-0.955, P = 0.005). The data from Simple Mode, Weighted Median, MR-Egger, and Weighted Mode analyses were consistent with the IVW estimates. Furthermore, the sensitivity analysis indicated that the presence of no horizontal pleiotropy to bias the causal estimates. CONCLUSION This investigation identified a causal association between circulating cytokines levels risk of CRC and may provide a deeper understanding of the pathogenesis of CRC, as well as offer promising leads for the development of novel therapeutic targets for CRC.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyun Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
36
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
37
|
Kim E. Tumor Immune Microenvironment as a New Therapeutic Target for Hepatocellular Carcinoma Development. Dev Reprod 2023; 27:167-174. [PMID: 38292233 PMCID: PMC10824567 DOI: 10.12717/dr.2023.27.4.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/15/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
Development of hepatocellular carcinoma (HCC) is driven by a multistep and long-term process. Because current therapeutic strategies are limited for HCC patients, there are increasing demands for understanding of immunotherapy, which has made technological and conceptual innovations in the treatment of cancer. Here, I discuss HCC immunotherapy in the view of interaction between liver resident cells and immune cells.
Collapse
Affiliation(s)
- Eunjeong Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life
Sciences, Kyungpook National University, Daegu
41566, Korea
| |
Collapse
|
38
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
39
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
40
|
Djureinovic D, Weiss SA, Krykbaeva I, Qu R, Vathiotis I, Moutafi M, Zhang L, Perdigoto AL, Wei W, Anderson G, Damsky W, Hurwitz M, Johnson B, Schoenfeld D, Mahajan A, Hsu F, Miller-Jensen K, Kluger Y, Sznol M, Kaech SM, Bosenberg M, Jilaveanu LB, Kluger HM. A bedside to bench study of anti-PD-1, anti-CD40, and anti-CSF1R indicates that more is not necessarily better. Mol Cancer 2023; 22:182. [PMID: 37964379 PMCID: PMC10644655 DOI: 10.1186/s12943-023-01884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Stimulating inflammatory tumor associated macrophages can overcome resistance to PD-(L)1 blockade. We previously conducted a phase I trial of cabiralizumab (anti-CSF1R), sotigalimab (CD40-agonist) and nivolumab. Our current purpose was to study the activity and cellular effects of this three-drug regimen in anti-PD-1-resistant melanoma. METHODS We employed a Simon's two-stage design and analyzed circulating immune cells from patients treated with this regimen for treatment-related changes. We assessed various dose levels of anti-CSF1R in murine melanoma models and studied the cellular and molecular effects. RESULTS Thirteen patients were enrolled in the first stage. We observed one (7.7%) confirmed and one (7.7%) unconfirmed partial response, 5 patients had stable disease (38.5%) and 6 disease progression (42.6%). We elected not to proceed to the second stage. CyTOF analysis revealed a reduction in non-classical monocytes. Patients with prolonged stable disease or partial response who remained on study for longer had increased markers of antigen presentation after treatment compared to patients whose disease progressed rapidly. In a murine model, higher anti-CSF1R doses resulted in increased tumor growth and worse survival. Using single-cell RNA-sequencing, we identified a suppressive monocyte/macrophage population in murine tumors exposed to higher doses. CONCLUSIONS Higher anti-CSF1R doses are inferior to lower doses in a preclinical model, inducing a suppressive macrophage population, and potentially explaining the disappointing results observed in patients. While it is impossible to directly infer human doses from murine studies, careful intra-species evaluation can provide important insight. Cabiralizumab dose optimization is necessary for this patient population with limited treatment options. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03502330.
Collapse
Affiliation(s)
- Dijana Djureinovic
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Sarah A Weiss
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Irina Krykbaeva
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Ioannis Vathiotis
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Zhang
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Ana L Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Gail Anderson
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Hurwitz
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Barbara Johnson
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - David Schoenfeld
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA, USA
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia B Jilaveanu
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, 333 Cedar Street, WWW211B, New Haven, CT, 06520, USA.
| |
Collapse
|
41
|
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T, Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, Zhang LL, Nie YT, Zhu YJ, Yi XY, Zeng LB, Li JQ, Huang XT, Ji HB, Kozlakidis Z, Zhong L, Heeschen C, Zheng XQ, Chen C, Zhang P, Wang H. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell 2023; 41:1927-1944.e9. [PMID: 37738973 DOI: 10.1016/j.ccell.2023.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Although polymorphic microbiomes have emerged as hallmarks of cancer, far less is known about the role of the intratumor mycobiome as living microorganisms in cancer progression. Here, using fungi-enriched DNA extraction and deep shotgun metagenomic sequencing, we have identified enriched tumor-resident Aspergillus sydowii in patients with lung adenocarcinoma (LUAD). By three different syngeneic lung cancer mice models, we find that A. sydowii promotes lung tumor progression via IL-1β-mediated expansion and activation of MDSCs, resulting in suppressed activity of cytotoxic T lymphocyte cells and accumulation of PD-1+ CD8+ T cells. This is mediated by IL-1β secretion via β-glucan/Dectin-1/CARD9 pathway. Analysis of human samples confirms that enriched A. sydowii is associated with immunosuppression and poor patient outcome. Our findings suggest that intratumor mycobiome, albeit at low biomass, promotes lung cancer progression and could be targeted at the strain level to improve patients with LUAD outcome.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Cheng-Xiang Yi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lu-Qi Wei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Cong-Cong Hu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Lu Wang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yuan-Yuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yun Zou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yi-Kai Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Le-Le Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ya-Ting Nie
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Jing Zhu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Xin-Yao Yi
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Ling-Bing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Jing-Quan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Tian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330052, China
| | - Hong-Bin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Christopher Heeschen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing 211135, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
42
|
You HM, Wang L, Meng HW, Huang C, Fang GY, Li J. Pyroptosis: shedding light on the mechanisms and links with cancers. Front Immunol 2023; 14:1290885. [PMID: 38016064 PMCID: PMC10651733 DOI: 10.3389/fimmu.2023.1290885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Pyroptosis, a novel form of programmed cell death (PCD) discovered after apoptosis and necrosis, is characterized by cell swelling, cytomembrane perforation and lysis, chromatin DNA fragmentation, and the release of intracellular proinflammatory contents, such as Interleukin (IL) 8, IL-1β, ATP, IL-1α, and high mobility group box 1 (HMGB1). Our understanding of pyroptosis has increased over time with an increase in research on the subject: gasdermin-mediated lytic PCD usually, but not always, requires cleavage by caspases. Moreover, new evidence suggests that pyroptosis induction in tumor cells results in a strong inflammatory response and significant cancer regression, which has stimulated great interest among scientists for its potential application in clinical cancer therapy. It's worth noting that the side effects of chemotherapy and radiotherapy can be triggered by pyroptosis. Thus, the intelligent use of pyroptosis, the double-edged sword for tumors, will enable us to understand the genesis and development of cancers and provide potential methods to develop novel anticancer drugs based on pyroptosis. Hence, in this review, we systematically summarize the molecular mechanisms of pyroptosis and provide the latest available evidence supporting the antitumor properties of pyroptosis, and provide a summary of the various antitumor medicines targeting pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Hong-mei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Hong-wu Meng
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
43
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
44
|
Xu YF, Wang GY, Zhang MY, Yang JG. Hub genes and their key effects on prognosis of Burkitt lymphoma. World J Clin Oncol 2023; 14:357-372. [PMID: 37970111 PMCID: PMC10631346 DOI: 10.5306/wjco.v14.i10.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Burkitt lymphoma (BL) is an exceptionally aggressive malignant neoplasm that arises from either the germinal center or post-germinal center B cells. Patients with BL often present with rapid tumor growth and require high-intensity multi-drug therapy combined with adequate intrathecal chemotherapy prophylaxis, however, a standard treatment program for BL has not yet been established. It is important to identify biomarkers for predicting the prognosis of BLs and discriminating patients who might benefit from the therapy. Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets. AIM To identify hub genes and perform gene ontology (GO) and survival analysis in BL. METHODS Gene expression profiles and clinical traits of BL patients were collected from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression modules, and the cytoHubba tool was used to find the hub genes. Then, the hub genes were analyzed using GO and Kyoto Encyclopedia of Genes and Genomes analysis. Additionally, a Protein-Protein Interaction network and a Genetic Interaction network were constructed. Prognostic candidate genes were identified through overall survival analysis. Finally, a nomogram was established to assess the predictive value of hub genes, and drug-gene interactions were also constructed. RESULTS In this study, we obtained 8 modules through WGCNA analysis, and there was a significant correlation between the yellow module and age. Then we identified 10 hub genes (SRC, TLR4, CD40, STAT3, SELL, CXCL10, IL2RA, IL10RA, CCR7 and FCGR2B) by cytoHubba tool. Within these hubs, two genes were found to be associated with OS (CXCL10, P = 0.029 and IL2RA, P = 0.0066) by survival analysis. Additionally, we combined these two hub genes and age to build a nomogram. Moreover, the drugs related to IL2RA and CXCL10 might have a potential therapeutic role in relapsed and refractory BL. CONCLUSION From WGCNA and survival analysis, we identified CXCL10 and IL2RA that might be prognostic markers for BL.
Collapse
Affiliation(s)
- Yan-Feng Xu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guan-Yun Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ming-Yu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ji-Gang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
45
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
46
|
Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, Garg S, Gorain B. Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer. BIOMATERIALS ADVANCES 2023; 153:213556. [PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Vilashini Saravanan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Amanda Tan Yee Mun
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
47
|
Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, Ma J, Zheng W, Zhang X, Lu Z, Gao L, Hu Y. Anlotinib reduces the suppressive capacity of monocytic myeloid-derived suppressor cells and potentiates the immune microenvironment normalization window in a mouse lung cancer model. Anticancer Drugs 2023; 34:1018-1024. [PMID: 36473020 DOI: 10.1097/cad.0000000000001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By exploring the effects of an antiangiogenic small molecule drug named anlotinib on the levels of myeloid-derived suppressor cells (MDSCs) in a mouse xenograft model of lung cancer, the role of anti-angiogenesis in remodeling the immune microenvironment was discussed. In addition, the impact of anlotinib on the normalization of the immune microenvironment and time window was examined, providing a theoretical basis for the optimization of clinical strategies applying anlotinib combined with PD-1 inhibitors. On the basis of the LLC mouse xenograft model, MDSCs and MDSCs + immune microenvironment were examined in tissues, respectively, according to different samples. The former observation included the control (group A) and anlotinib monotherapy (group B) groups; the latter also included the control (group C) and anlotinib monotherapy (group D) groups. The levels of MDSCs in peripheral blood at different time points were analyzed by flow cytometry, and the levels of MDSCs in tissue samples at different time points were evaluated by immunofluorescence and immunohistochemistry. The volumes of subcutaneous xenografts were significantly smaller in the anlotinib treatment group compared with the control group ( P < 0.005). Flow cytometry showed that compared with the control group, the intratumoral percentages of total MDSCs ( P < 0.01) and mononuclear-MDSCs ( P < 0.05) were significantly decreased on days 3 and 17 after anlotinib treatment in peripheral blood samples; however, there was no significant difference in granulocytic-MDSCs changes between the experimental and control groups. Immunofluorescence showed that the levels of MDSCs in both the experimental and control groups reached the lowest points 10 days after drug administration, and were significantly lower in the experimental group than in the control group ( P < 0.05). Anlotinib reduces the levels of MDSCs in the mouse xenograft model of lung cancer, with the characteristics of time window. This study provides a basis for further exploring strategies for anti-angiogenic treatment combined with immunotherapy in lung cancer based on time-window dosing.
Collapse
Affiliation(s)
- XiangFei Zhao
- Department of Oncology, 5th medical center of Chinese PLA General Hospital
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
49
|
Li K, Zeng X, Liu P, Zeng X, Lv J, Qiu S, Zhang P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J Inflamm Res 2023; 16:4301-4315. [PMID: 37791117 PMCID: PMC10544098 DOI: 10.2147/jir.s428358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates in the head or neck tissues, is characterized by high rates of recurrence and metastasis. Inflammation is important in HNSCC prognosis. Inflammatory cells and their secreted factors contribute to the various stages of HNSCC development through multiple mechanisms. In this review, the mechanisms through which inflammatory factors, signaling pathways, and cells contribute to the initiation and progression of HNSCC have been discussed in detail. Furthermore, the diagnostic and therapeutic potential of targeting inflammation in HNSCC has been discussed to gain new insights into improving patient prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, People’s Republic of China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
50
|
Wang S, Wang Y, Zhuang J, Wu Y, Shi W, Wang L. Prognostic significance of index (LANR) composed of preoperative lymphocytes, albumin, and neutrophils in patients with stage IB-IIA cervical cancer. PLoS One 2023; 18:e0290905. [PMID: 37729271 PMCID: PMC10511094 DOI: 10.1371/journal.pone.0290905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the role of preoperative lymphocytes, albumin, neutrophils, and LANR in the prognosis of patients with stage IB-IIA cervical cancer (CC). METHODS We made a retrospective analysis of the clinical information and related materials of 202 patients with stage IB-IIA primary cervical cancer who had undergone a radical hysterectomy in the Department of Gynecology at the Affiliated Hospital of Jiangnan University between January 2017 and December 2018. The definition of LANR was as follows: LANR, lymphocyte × albumin / neutrophil. The receiver operating characteristic curve (ROC) was generated to determine the best cut-off values for these parameters, as well as the sensitivity and specificity of LANR in predicting recurrence and survival. The Kaplan-Meier method was employed to draw survival curves in our survival analysis. Univariate analysis, multifactorial analysis, and subgroup analysis were used to evaluate the prognostic significance of LANR in overall and progression-free survival. RESULTS The median follow-up time of the study was 55 months. In overall survival, the area under the curve for LANR was 0.704 (95% CI: 0.590-0.818, p<0.05). And in progression-free survival, the area under the curve for LANR was 0.745 (95% CI: 0.662-0.828, p<0.05). Univariate and multivariate analyses showed that the value of LANR was associated with both overall survival and progression-free survival (p< 0.05). Kaplan-Meier analysis demonstrated that OS (p< 0.001) and PFS (p< 0.001) in patients with high LANR levels were significantly higher than those with low LANR levels. CONCLUSIONS Our findings suggested that LANR might serve as a clinically reliable and effective independent prognostic indicator in patients with stage IB-IIA cervical cancer.
Collapse
Affiliation(s)
- Shan Wang
- Obstetrics, Gynecology and Reproduction Research, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yuan Wang
- Obstetrics, Gynecology and Reproduction Research, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiaru Zhuang
- Obstetrics, Gynecology and Reproduction Research, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yibo Wu
- Obstetrics, Gynecology and Reproduction Research, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Weifeng Shi
- Department of General surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Lei Wang
- Department of General surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|