1
|
Qin H, Qi T, Xu J, Wang T, Zeng H, Yang J, Yu F. Integration of ubiquitination-related genes in predictive signatures for prognosis and immunotherapy response in sarcoma. Front Oncol 2024; 14:1446522. [PMID: 39469643 PMCID: PMC11513255 DOI: 10.3389/fonc.2024.1446522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Background Ubiquitination is one of the most prevalent and complex post-translational modifications of proteins in eukaryotes, playing a critical role in regulating various physiological and pathological processes. Targeting ubiquitination pathways, either through inhibition or activation, holds promise as a novel therapeutic approach for cancer treatment. However, the expression patterns, prognostic significance, and underlying mechanisms of ubiquitination-related genes (URGs) in sarcoma (SARC) remain unclear. Methods We analyzed URG expression patterns and prognostic implications in TCGA-SARC using public databases, identifying DEGs related to ubiquitination among SARC molecular subtypes. Functional enrichment analysis elucidated their biological significance. Prognostic signatures were developed using LASSO-Cox regression, and a predictive nomogram was constructed. External validation was performed using GEO datasets and clinical tissue samples. The association between URG risk scores and various clinical parameters, immune response, drug sensitivity, and RNA modification regulators was investigated. Integration of data from multiple sources and RT-qPCR confirmed upregulated expression of prognostic URGs in SARC. Single-cell RNA sequencing data analyzed URG distribution across immune cell types. Prediction analysis identified potential target genes of microRNAs and long non-coding RNAs. Results We identified five valuable genes (CALR, CASP3, BCL10, PSMD7, PSMD10) and constructed a prognostic model, simultaneously identifying two URG-related subtypes in SARC. The UEGs between subtypes in SARC are mainly enriched in pathways such as Cell cycle, focal adhesion, and ECM-receptor interaction. Analysis of URG risk scores reveals that patients with a low-risk score have better prognoses compared to those with high-risk scores. There is a significant correlation between DRG riskscore and clinical features, immune therapy response, drug sensitivity, and genes related to pan-RNA epigenetic modifications. High-risk SARC patients were identified as potential beneficiaries of immune checkpoint inhibitor therapy. We established regulatory axes in SARC, including CALR/hsa-miR-29c-3p/LINC00943, CASP3/hsa-miR-143-3p/LINC00944, and MIR503HG. RT-qPCR data further confirmed the upregulation of prognostic URGs in SARC. Finally, we validated the prognostic model's excellent predictive performance in predicting outcomes for SARC patients. Conclusion We discovered a significant correlation between aberrant expression of URGs and prognosis in SARC patients, identifying a prognostic model related to ubiquitination. This model provides a basis for individualized treatment and immunotherapy decisions for SARC patients.
Collapse
Affiliation(s)
- Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Tianbing Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Laghezza Masci V, Ovidi E, Tomassi W, De Vita D, Garzoli S. Exploring the Bioactive Potential of Taraxacum officinale F.H. Wigg Aerial Parts on MDA Breast Cancer Cells: Insights into Phytochemical Composition, Antioxidant Efficacy, and Gelatinase Inhibition within 3D Cellular Models. PLANTS (BASEL, SWITZERLAND) 2024; 13:2829. [PMID: 39409699 PMCID: PMC11482471 DOI: 10.3390/plants13192829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
In this work, aerial parts of Taraxacum officinale F.H. Wigg. produced in Umbria, Italy, were chemically investigated by solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) to describe their volatile profile. The results obtained showed the preponderant presence of monoterpenes, with limonene and 1,8-cineole as the main components. Further analyses by GC/MS after derivatization reaction were performed to characterize the non-volatile fraction highlighting the presence of fatty acids and di- and triterpenic compounds. T. officinale methanol and dichloromethane extracts, first analyzed by HRGC/MS, were investigated to evaluate the antioxidant activity, cytotoxicity, and antiproliferative properties of MDA cells on the breast cancer cell line and MCF 10A normal epithelial cells as well as the antioxidant activity by colorimetric assays. The impact on matrix metalloproteinases MMP-9 and MMP-2 was also explored in 3D cell systems to investigate the extracts' efficacy in reducing cell invasiveness. The extracts tested showed no cytotoxic activity with EC50 > 250 µg/mL on both cell lines. The DPPH assay revealed higher antioxidant activity in the MeOH extract compared with the DCM extract, while the FRAP assay showed a contrasting result, with the DCM extract exhibiting slightly greater antioxidant capacity. After treatment for 24 h with a non-cytotoxic concentration of 500 µg/mL of the tested extracts, gelatin zymography and Western blot analyses demonstrated that both MeOH and DCM extracts influenced the expression of MMP-9 and MMP-2 in MDA cells within the 3D cell model, leading to a significant decrease in the levels of these gelatinases, which are crucial markers of tumor invasiveness.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (V.L.M.); (E.O.); (W.T.)
| | - Elisa Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (V.L.M.); (E.O.); (W.T.)
| | - William Tomassi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (V.L.M.); (E.O.); (W.T.)
| | - Daniela De Vita
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Zakaria ZZ, Suleiman M, Benslimane FM, Al-Badr M, Sivaraman S, Korashy HM, Ahmad F, Uddin S, Mraiche F, Yalcin HC. Imatinib‑ and ponatinib‑mediated cardiotoxicity in zebrafish embryos and H9c2 cardiomyoblasts. Mol Med Rep 2024; 30:187. [PMID: 39219269 PMCID: PMC11350628 DOI: 10.3892/mmr.2024.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/26/2024] [Indexed: 09/04/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dose‑dependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dose‑dependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcription‑quantitative PCR (RT‑qPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dose‑dependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dose‑dependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dose‑dependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKI‑induced cardiotoxicities.
Collapse
Affiliation(s)
- Zain Z. Zakaria
- Vice President of Health and Medical Sciences Office, QU Health, Qatar University, Doha 2713, Qatar
| | - Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Mashael Al-Badr
- Department of Biology, College of Art and Science, Qatar University, Doha 2713, Qatar
- National Reference Laboratory, Ministry of Public Health, Doha 7744, Qatar
| | - Siveen Sivaraman
- Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | |
Collapse
|
4
|
Li J, Wei X, Dong Z, Fu Y, Ma Y, HailongWu. Research progress on anti-tumor mechanism of TAOK kinases. Cell Signal 2024; 124:111385. [PMID: 39265727 DOI: 10.1016/j.cellsig.2024.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Thousand and one amino-acid protein kinases(TAOKs), as a key member of the mitogen-activated protein kinase (MAPK) cascade, has recently attracted widespread attention in the field of anti-cancer research. There are three members of this subfamily: TAOK1, TAOK2, and TAOK3. Studies have shown that members of the TAOK family participate in regulating cell proliferation, apoptosis, migration, and invasion through various pathways, thereby playing an important role in tumorigenesis and progression. This review summarizes the functions of TAOK kinases in tumor cell signal transduction, cell cycle regulation, and the tumor microenvironment, with a particular emphasis on its potential as a target for anti-cancer drugs. Future research will further elucidate the specific mechanisms of action of TAOK kinase in different types of tumors and explore its clinical application prospects.
Collapse
Affiliation(s)
- Jilei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Xindong Wei
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Zhixin Dong
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China; Shanghai University of Chinese Traditional Medicine, 201203 Shanghai, China
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - Yujie Ma
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China
| | - HailongWu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093 Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine &Health Sciences, Pudong, 201318 Shanghai, China.
| |
Collapse
|
5
|
Wu L, Zhou Z, Yu Y, Cheng C, Zhou S, Yan Y, Yu B, Zhang Y, Liu Z. Phosphorylation-dependent deubiquitinase OTUD3 regulates YY1 stability and promotes colorectal cancer progression. Cell Death Dis 2024; 15:137. [PMID: 38351178 PMCID: PMC10864350 DOI: 10.1038/s41419-024-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Yin Yang 1 (YY1) is a key transcription factor that has been implicated in the development of several malignancies. The stability of YY1 is regulated by the ubiquitin-proteasome system. The role of deubiquitinases (DUBs) and their impact on YY1 remain to be fully elucidated. In this study, we screened for ubiquitin-specific proteases that interact with YY1, and identified OTUD3 as a DUB for YY1. Over-expressed OTUD3 inhibited YY1 degradation, thereby increasing YY1 protein levels, whereas OTUD3 knockdown or knockout promoted YY1 degradation, thereby decreasing the proliferation of colorectal cancer (CRC). Furthermore, PLK1 mediates OTUD3 S326 phosphorylation, which further enhances OTUD3 binding and deubiquitination of YY1. In CRC tissues, elevated the expression level of OTUD3 and YY1 were significantly associated with poor prognostic outcomes. These findings suggest that the OTUD3-YY1 pathway has therapeutic potential in CRC, and OTUD3 plays a critical role in regulating YY1.
Collapse
Affiliation(s)
- Liang Wu
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, 230001, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Yang Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Can Cheng
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, 230001, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuan Yan
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China
| | - Bofan Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China
| | - Yuwei Zhang
- Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, 450000, China
| | - Zhengyi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
6
|
Xing Y, Ba-Tu J, Dong C, Cao X, Li B, Jia X, Juan Y, Lv X, Zhang H, Qin N, Han W, Wang D, Qi X, Wang Y, Hao X, Zhang S, Du X, Wang H, Wang M. Phosphorylation of USP27X by GSK3β maintains the stability and oncogenic functions of CBX2. Cell Death Dis 2023; 14:782. [PMID: 38030604 PMCID: PMC10687032 DOI: 10.1038/s41419-023-06304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Chromobox protein homolog 2 (CBX2) exerts a multifaceted impact on the progression of aggressive cancers. The proteasome-dependent pathway is crucial for modulating CBX2 regulation, while the specific regulatory roles and mechanisms of deubiquitinating enzymes targeting CBX2 remain poorly understood. Mass spectrometry analysis identified ubiquitin-specific peptidase 27X (USP27X) as a deubiquitinating enzyme that targets CBX2. Overexpression of USP27X significantly enhances CBX2 levels by promoting deubiquitination, while deficiency of USP27X leads to CBX2 degradation, thereby inhibiting tumorigenesis. Furthermore, it has been revealed that glycogen synthase kinase 3 beta (GSK3β) can directly bind to and phosphorylate USP27X, thereby enhancing the interaction between USP27X and CBX2 and leading to further stabilization of the CBX2 protein. Clinically, the co-expression of high levels of USP27X and CBX2 in breast cancer tissues is indicative of a poor prognosis for patients with this disease. These findings collectively underscore the critical regulatory role played by USP27X in modulating CBX2, thereby establishing the GSK3β-USP27X-CBX2 axis as a pivotal driver of malignant progression in breast cancer.
Collapse
Affiliation(s)
- Yushu Xing
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jirimu Ba-Tu
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chongyang Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaodong Cao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bing Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xin Jia
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yu Juan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaojie Lv
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiwen Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Na Qin
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wuri Han
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Dongfeng Wang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiao Qi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yutong Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xulu Hao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shuang Zhang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaoli Du
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Huanyun Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Minjie Wang
- Medical Experimental Center of Basic Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
7
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Yang J, Kang H, Lyu L, Xiong W, Hu Y. A target map of clinical combination therapies in oncology: an analysis of clinicaltrials.gov. Discov Oncol 2023; 14:151. [PMID: 37603124 PMCID: PMC10441974 DOI: 10.1007/s12672-023-00758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Combination therapies have taken center stage for cancer treatment, however, there is a lack of a comprehensive portrait to quantitatively map the current clinical combination progress. This study aims to capture clinical combination therapies of the validated FDA-approved new oncology drugs by a macro data analysis and to summarize combination mechanisms and strategies in the context of the existing literature. A total of 72 new molecular entities or new therapeutic biological products for cancer treatment approved by the FDA from 2017 to 2021 were identified, and the data on their related 3334 trials were retrieved from the database of ClinicalTrials.gov. Moreover, these sampled clinical trials were refined by activity status and combination relevance and labeled with the relevant clinical arms and drug combinations, as well as drug targets and target pairs. Combination therapies are increasingly prevalent in clinical trials of new oncology drugs. From retrospective work, existing clinical combination therapies in oncology are driven by different patterns (i.e., rational design and industry trends). The former can be represented by mechanism-based or structure-based combinations, such as targeting different domains of HER2 protein or in-series co-targeting in RAF plus MEK inhibitors. The latter is an empirically driven strategy, including redundant combinations in hot targets, such as PD-1/PD-L1, PI3K, CDK4/6, and PARP. Because of an explosion in the number of clinical trials and the resultant shortage of available patients, it is essential to rationally design drug combinations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Heming Kang
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China
| | - Liyang Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China.
| |
Collapse
|
9
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Guan T, Li M, Song Y, Chen J, Tang J, Zhang C, Wen Y, Yang X, Huang L, Zhu Y, Wang H, Ding K, Zheng J, Zhang H, Liu T. Phosphorylation of USP29 by CDK1 Governs TWIST1 Stability and Oncogenic Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205873. [PMID: 36782089 PMCID: PMC10104637 DOI: 10.1002/advs.202205873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. TWIST1, a key transcriptional factor of epithelial-mesenchymal transition (EMT), contributes to self-renewal of cancer stem-like cells (CSCs), chemo-resistance, metastasis, and TNBC-related death. However, the mechanism by which TWIST1 is deregulated in TNBC remains elusive. Here, USP29 is identified as a bona fide deubiquitinase of TWIST1. The deubiquitination of TWIST1 catalyzed by USP29 is required for its stabilization and subsequent EMT and CSC functions in TNBC, thereby conferring chemotherapeutic resistance and metastasis. Furthermore, the results unexpectedly reveal that CDK1 functions as the direct USP29 activator. Mechanistically, CDK1-mediated phosphorylation of USP29 is essential for its deubiquitinase activity toward TWIST1 and TWIST1 driven-malignant phenotypes in TNBC, which could be markedly mitigated by the genetic ablation or pharmacological inhibition of CDK1. Moreover, the histological analyses show that CDK1 and USP29 are highly upregulated in TNBC samples, which positively correlate with the expression of TWIST1. Taken together, the findings reveal a previously unrecognized tumor-promoting function and clinical significance of the CDK1-USP29 axis through stabilizing TWIST1 and provide the preclinical evidence that targeting this axis is an appealing therapeutic strategy to conquer chemo-resistance and metastasis in TNBC.
Collapse
Affiliation(s)
- Tangming Guan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Yan Song
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jiayi Chen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Jiaxin Tang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease PreventionCollege of Life Sciences and OceanographyShenzhen UniversityShenzhen518055China
| | - Caishi Zhang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Yalei Wen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Lei Huang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| | - Hongxian Wang
- Department of Thyroid and Breast SurgeryShenzhen Nanshan People's Hospital & The 6th Affiliated Hospital of Shenzhen UniversityShenzhen518052China
| | - Ke Ding
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
- State Key Laboratory of Bioorganic and Nature Product ChemistryShanghai Institute of organic chemistryShanghai200032China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhou510006China
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease PreventionCollege of Life Sciences and OceanographyShenzhen UniversityShenzhen518055China
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhou510632China
| |
Collapse
|
11
|
Font J, Milliez P, Ouazar AB, Klok FA, Alexandre J. Atrial fibrillation, cancer and anticancer drugs. Arch Cardiovasc Dis 2023; 116:219-226. [PMID: 37002156 DOI: 10.1016/j.acvd.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Active cancer is associated with an increased risk of atrial fibrillation (AF), which varies depending on the pre-existing substrate (particularly in older patients), the cancer type and stage, and the anticancer therapeutics being taken. To date, studies have not been able to identify the individual contribution of each factor. During anticancer drug therapy, AF may occur with a frequency of ≈ 15-20% according to several factors, including the patient's baseline cardiovascular toxicity risk and the AF-detection strategies used. Many anticancer drugs have been associated with AF or AF reporting, both in terms of incident and recurrent AF, but robust data are lacking. Only bruton tyrosine kinase inhibitor associated AF (mainly ibrutinib) has a high level of evidence, with a ≈ 3-4-fold higher risk of AF. AF in patients with active cancer is associated with a twofold higher risk of systemic thromboembolism or stroke, and the "TBIP" (Thromboembolic risk, Bleeding risk, drug-drug Interactions, Patient preferences) structured approach must be used to evaluate the need for anticoagulation therapy. AF in patients with active cancer is also associated with a sixfold higher risk of heart failure, and optimal symptom control must be targeted, usually with rate-control drugs (beta-blockers), but a rhythm-control strategy may be proposed in patients remaining symptomatic despite optimal rate-control. AF is generally manageable, with the continuation of anticancer drugs (including ibrutinib); interruption of cancer drugs must be avoided whenever possible and weighed against the risk of cancer progression.
Collapse
Affiliation(s)
- Jonaz Font
- Normandie University, UNICAEN, Inserm U1086 Anticipe, avenue du Général-Harris, 14000 Caen, France; CHU de Caen-Normandie, Department of Cardiology, avenue de la Côte de Nacre, 14000 Caen, France
| | - Paul Milliez
- CHU de Caen-Normandie, Department of Cardiology, avenue de la Côte de Nacre, 14000 Caen, France; Normandie University, UNICAEN, Inserm U1237 PhIND, GIP Cyceron, boulevard Henri-Becquerel, 14000 Caen, France
| | | | - Frederikus A Klok
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, Netherlands
| | - Joachim Alexandre
- Normandie University, UNICAEN, Inserm U1086 Anticipe, avenue du Général-Harris, 14000 Caen, France; CHU de Caen-Normandie, PICARO Cardio-Oncology Program, Department of Pharmacology, avenue de la Côte de Nacre, 14000 Caen, France.
| |
Collapse
|
12
|
Pei M, Liu K, Qu X, Wang K, Chen Q, Zhang Y, Wang X, Wang Z, Li X, Chen F, Qin H, Zhang Y. Enzyme-catalyzed synthesis of selenium-doped manganese phosphate for synergistic therapy of drug-resistant colorectal cancer. J Nanobiotechnology 2023; 21:72. [PMID: 36859296 PMCID: PMC9976439 DOI: 10.1186/s12951-023-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The development of multidrug resistance (MDR) during postoperative chemotherapy for colorectal cancer substantially reduces therapeutic efficacy. Nanostructured drug delivery systems (NDDSs) with modifiable chemical properties are considered promising candidates as therapies for reversing MDR in colorectal cancer cells. Selenium-doped manganese phosphate (Se-MnP) nanoparticles (NPs) that can reverse drug resistance through sustained release of selenium have the potential to improve the chemotherapy effect of colorectal cancer. RESULTS Se-MnP NPs had an organic-inorganic hybrid composition and were assembled from smaller-scale nanoclusters. Se-MnP NPs induced excessive ROS production via Se-mediated activation of the STAT3/JNK pathway and a Fenton-like reaction due to the presence of manganese ions (Mn2+). Moreover, in vitro and in vivo studies demonstrated Se-MnP NPs were effective drug carriers of oxaliplatin (OX) and reversed multidrug resistance and induced caspase-mediated apoptosis in colorectal cancer cells. OX@Se-MnP NPs reversed MDR in colorectal cancer by down-regulating the expression of MDR-related ABC (ATP binding cassette) transporters proteins (e.g., ABCB1, ABCC1 and ABCG2). Finally, in vivo studies demonstrated that OX-loaded Se-MnP NPs significantly inhibited proliferation of OX-resistant HCT116 (HCT116/DR) tumor cells in nude mice. CONCLUSIONS OX@Se-MnP NPs with simple preparation and biomimetic chemical properties represent promising candidates for the treatment of colorectal cancer with MDR.
Collapse
Affiliation(s)
- Manman Pei
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kaiyuan Liu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xiao Qu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kairuo Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Qian Chen
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Yuanyuan Zhang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyue Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Zheng Wang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyao Li
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Feng Chen
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Huanlong Qin
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Yang Zhang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China. .,Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
13
|
Roopashri AN, Divyashree M, Savitha J. High-sensitivity profiling of glycoproteins from ovarian cancer sera using lectin-affinity and LC-ESI-Q-TOF-MS/MS. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
14
|
Holt BA, Lim HS, Sivakumar A, Phuengkham H, Su M, Tuttle M, Xu Y, Liakakos H, Qiu P, Kwong GA. Embracing enzyme promiscuity with activity-based compressed biosensing. CELL REPORTS METHODS 2023; 3:100372. [PMID: 36814844 PMCID: PMC9939361 DOI: 10.1016/j.crmeth.2022.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
The development of protease-activatable drugs and diagnostics requires identifying substrates specific to individual proteases. However, this process becomes increasingly difficult as the number of target proteases increases because most substrates are promiscuously cleaved by multiple proteases. We introduce a method-substrate libraries for compressed sensing of enzymes (SLICE)-for selecting libraries of promiscuous substrates that classify protease mixtures (1) without deconvolution of compressed signals and (2) without highly specific substrates. SLICE ranks substrate libraries using a compression score (C), which quantifies substrate orthogonality and protease coverage. This metric is predictive of classification accuracy across 140 in silico (Pearson r = 0.71) and 55 in vitro libraries (r = 0.55). Using SLICE, we select a two-substrate library to classify 28 samples containing 11 enzymes in plasma (area under the receiver operating characteristic curve [AUROC] = 0.93). We envision that SLICE will enable the selection of libraries that capture information from hundreds of enzymes using fewer substrates for applications like activity-based sensors for imaging and diagnostics.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Hong Seo Lim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Anirudh Sivakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Hathaichanok Phuengkham
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Melanie Su
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - McKenzie Tuttle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Yilin Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Haley Liakakos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Tech, Atlanta, GA 30332, USA
- Georgia ImmunoEngineering Consortium, Georgia Tech and Emory University, Atlanta, GA 30332, USA
- Emory School of Medicine, Atlanta, GA 30332, USA
- Emory Winship Cancer Institute, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
16
|
Nag JK, Appasamy P, Sedley S, Malka H, Rudina T, Bar-Shavit R. RNF43 induces the turnover of protease-activated receptor 2 in colon cancer. FASEB J 2023; 37:e22675. [PMID: 36468684 DOI: 10.1096/fj.202200858rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modification of G-protein coupled receptors (GPCRs) plays a central role in tissue hemostasis and cancer. The molecular mechanism of post-translational regulation of protease-activated receptors (PARs), a subgroup of GPCRs is yet understudied. Here we show that the cell-surface transmembrane E3 ubiquitin ligase ring finger 43 (RNF43) is a negative feedback regulator of PAR2 , impacting PAR2 -induced signaling and colon cancer growth. RNF43 co-associates with PAR2 , promoting its membrane elimination and degradation as shown by reduced cell surface biotinylated PAR2 levels and polyubiquitination. PAR2 degradation is rescued by R-spondin2 in the presence of leucine-rich repeat-containing G-protein-coupled receptor5 (LGR5). In fact, PAR2 acts jointly with LGR5, as recapitulated by increased β-catenin levels, transcriptional activity, phospho-LRP6, and anchorage-independent colony growth in agar. Animal models of the chemically induced AOM/DSS colon cancer of wt versus Par2/f2rl1 KO mice as also the 'spleen-liver' colon cancer metastasis, allocated a central role for PAR2 in colon cancer growth and development. RNF43 is abundantly expressed in the Par2/f2rl1 KO-treated AOM/DSS colon tissues while its level is very low to nearly null in colon cancer adenocarcinomas of the wt mice. The same result is obtained in the 'spleen-liver' model of spleen-inoculated cells, metastasized to the liver. High RNF43 expression is observed in the liver upon shRNA -Par2 silencing. "Limited-dilution-assay" performed in mice in-vivo, assigned PAR2 as a member of the cancer stem cell niche compartment. Collectively, we elucidate an original regulation of PAR2 oncogene, a member of cancer stem cells, by RNF43 ubiquitin ligase. It impacts β-catenin signaling and colon cancer growth.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Sedley
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hodaya Malka
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
18
|
|
19
|
Structural Insights into the Phosphorylation-Enhanced Deubiquitinating Activity of UCHL3 and Ubiquitin Chain Cleavage Preference Analysis. Int J Mol Sci 2022; 23:ijms231810789. [PMID: 36142702 PMCID: PMC9501053 DOI: 10.3390/ijms231810789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L3 (UCHL3), an important member of the ubiquitin C-terminal hydrolase family, is involved in DNA repair and cancer development. UCHL3 can cleave only complexes of monoubiquitin and its conjugates, such as Ub-AMC, His, or small ubiquitin-like modifier, but not polyubiquitin chains. Phosphorylation of Ser75 promotes the cleavage activity of UCHL3 toward poly-ubiquitin chains in vivo, but biochemical evidence in vitro is still lacking. Here, we first analyzed the structure of simulated phosphorylated UCHL3S75E and the complex of UCHL3S75E with Ub-PA and preliminarily explained the structural mechanism of phosphorylation-enhanced UCHL3 deubiquitinating activity. Additionally, the cleavage activity of UCHL3 toward different types of synthesized poly-ubiquitin chains in vitro was tested. The results showed that purified UCHL3S75E enhanced the cleavage activity toward Ub-AMC compared to UCHL3WT. Meanwhile, UCHL3S75E and UCHL3WT did not show any cleavage activity for different types of di-ubiquitin and tri-ubiquitin chains. However, UCHL3 could hydrolyze the K48 tetra-ubiquitin chain, providing compelling in vitro evidence confirming previous in vivo results. Thus, this study shows that UCHL3 can hydrolyze and has a cleavage preference for polyubiquitin chains, which expands our understanding of the phosphorylation regulation of UCHL3 and lays a foundation for further elucidation of its physiological role.
Collapse
|
20
|
The aminopeptidase B (Ap-B) is phosphorylated in HEK293 cells. Biochimie 2022; 201:204-212. [PMID: 35952945 DOI: 10.1016/j.biochi.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Proteolysis is a post-translational modification (PTM) that affects the whole proteome. First regarded as only destructive, it is more precise than expected. It is finely regulated by other PTMs like phosphorylation. Aminopeptidase B (Ap-B), a M1 metallopeptidase, hydrolyses the peptide bond on the carbonyl side of basic residues at the NH2-terminus of peptides. 2D electrophoresis (2DE) was used to show that Ap-B is modified by phosphorylation. Detection of Ap-B by western blot after 2DE reveals several isoforms with different isoelectric points. Using alkaline phosphatase, Pro-Q Diamond phosphorylation-specific dye and kinase-specific inhibitors, we confirmed that Ap-B is phosphorylated. Phosphorylation can alter the structure of proteins leading to changes in their activity, localization, stability and association with other interacting molecules. We showed that Ap-B phosphorylation might delay its turnover. Our study illustrates the central role of the crosstalk between kinases and proteases in the regulation of many biological processes.
Collapse
|
21
|
PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23158758. [PMID: 35955891 PMCID: PMC9368822 DOI: 10.3390/ijms23158758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are involved in a wide array of physiological and disease functions, yet knowledge of their role in colon cancer stem cell maintenance is still lacking. In addition, the molecular mechanisms underlying GPCR-induced post-translational signaling regulation are poorly understood. Here, we find that protease-activated receptor 4 (PAR4) unexpectedly acts as a potent oncogene, inducing β-catenin stability and transcriptional activity. Both PAR4 and PAR2 are able to drive the association of methyltransferase EZH2 with β-catenin, culminating in β-catenin methylation. This methylation on a lysine residue at the N-terminal portion of β-catenin suppresses the ubiquitination of β-catenin, thereby promoting PAR-induced β-catenin stability and transcriptional activity. Indeed, EZH2 is found to be directly correlated with high PAR4-driven tumors, and is abundantly expressed in large tumors, whereas very little to almost none is expressed in small tumors. A truncated form of β-catenin, ∆N133β-catenin, devoid of lysine, as well as serine/threonine residues, exhibits low levels of β-catenin and a markedly reduced transcriptional activity following PAR4 activation, in contrast to wt β-catenin. Our study demonstrates the importance of β-catenin lysine methylation in terms of its sustained expression and function. Taken together, we reveal that PAR-induced post-transcriptional regulation of β-catenin is centrally involved in colon cancer.
Collapse
|
22
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
23
|
Mehner C, Hockla A, Coban M, Madden B, Estrada R, Radisky DC, Radisky ES. Activity-based protein profiling reveals active serine proteases that drive malignancy of human ovarian clear cell carcinoma. J Biol Chem 2022; 298:102146. [PMID: 35716777 PMCID: PMC9304776 DOI: 10.1016/j.jbc.2022.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.
Collapse
Affiliation(s)
- Christine Mehner
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA,Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Benjamin Madden
- Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA,For correspondence: Evette S. Radisky
| |
Collapse
|
24
|
Holland DO, Gotea V, Fedkenheuer K, Jaiswal SK, Baugher C, Tan H, Fedkenheuer M, Elnitski L. Characterization and clustering of kinase isoform expression in metastatic melanoma. PLoS Comput Biol 2022; 18:e1010065. [PMID: 35560144 PMCID: PMC9132324 DOI: 10.1371/journal.pcbi.1010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attention as it could lead to loss or gain of functional domains, altering a kinase's downstream impact. The present study quantifies changes in gene expression and isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of splicing events favored in metastatic samples. We demonstrate differential apoptosis and protein localization between SLK isoforms in metastatic melanoma. We cluster isoform expression data and identify subgroups that correlate with genomic subtypes and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell migration. Our results reveal a new approach to therapeutic target identification and demonstrate how different mutational subtypes may respond differently to treatments highlighting possible new driver events in cancer.
Collapse
Affiliation(s)
- David O. Holland
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sushil K. Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Baugher
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Fedkenheuer
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
25
|
Solleder M, Racle J, Guillaume P, Coukos G, Bassani-Sternberg M, Gfeller D. Deciphering the landscape of phosphorylated HLA-II ligands. iScience 2022; 25:104215. [PMID: 35494241 PMCID: PMC9051626 DOI: 10.1016/j.isci.2022.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cell activation in infectious diseases and cancer is governed by the recognition of peptides presented on class II human leukocyte antigen (HLA-II) molecules. Therefore, HLA-II ligands represent promising targets for vaccine design and personalized cancer immunotherapy. Much work has been done to identify and predict unmodified peptides presented on HLA-II molecules. However, little is known about the presentation of phosphorylated HLA-II ligands. Here, we analyzed Mass Spectrometry HLA-II peptidomics data and identified 1,943 unique phosphorylated HLA-II ligands. This enabled us to precisely define phosphorylated binding motifs for more than 30 common HLA-II alleles and to explore various molecular properties of phosphorylated peptides. Our data were further used to develop the first predictor of phosphorylated peptide presentation on HLA-II molecules. 1,943 unique phosphorylated HLA-II ligands from MS HLA-II peptidomics data Binding motifs of phosphorylated HLA-II ligands identified for more than 30 alleles Predictor trained on phosphorylated peptides achieves higher accuracy
Collapse
Affiliation(s)
- Marthe Solleder
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Philippe Guillaume
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
- Corresponding author
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
26
|
Arshad R, Meng Y, Qiu N, Geng F, Mine Y, Keast R, Zhu C. Phosphoproteomic analysis of duck egg yolk provides novel insights into its characteristics and biofunctions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1165-1173. [PMID: 34329491 DOI: 10.1002/jsfa.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although the importance of phosphorylation in the function of proteins is known, investigation of the protein phosphorylation of duck egg yolk (DEY) is still very limited. This study aimed to conduct a detailed phosphoproteomic study of DEY using immobilized metal affinity chromatography and ultra-high liquid chromatography tandem mass spectrometry. RESULTS A total of 253 phosphorylation sites assigned to 66 phosphoproteins were identified in DEY, of which VTG-1, VTG-2, and fibrinogen alpha chain were found to be the highly phosphorylated proteins in DEY. The biological functions of the identified phosphoproteins were illuminated through gene ontology analysis, which showed that they were mainly involved in binding, catalytic, immune response, and metabolic activity. S-X-E and S-X-S were found to be the most conserved serine motifs of phosphorylation in DEY. The comparison of DEY phosphoproteins with those of chicken egg yolk (CEY) revealed that differences mostly involved molecular functions and biological processes. The comparison also revealed a higher phosphorylation level in DEY proteins. CONCLUSION The higher phosphorylation level in DEY proteins than that in CEY proteins are supposed to help enhance duck growth performance and biological activities (e.g. antibacterial and antioxidant ability) for better adapting the humid environment the duck lived. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rida Arshad
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
27
|
Gopcevic KR, Gkaliagkousi E, Nemcsik J, Acet Ö, Bernal-Lopez MR, Bruno RM, Climie RE, Fountoulakis N, Fraenkel E, Lazaridis A, Navickas P, Rochfort KD, Šatrauskienė A, Zupkauskienė J, Terentes-Printzios D. Pathophysiology of Circulating Biomarkers and Relationship With Vascular Aging: A Review of the Literature From VascAgeNet Group on Circulating Biomarkers, European Cooperation in Science and Technology Action 18216. Front Physiol 2021; 12:789690. [PMID: 34970157 PMCID: PMC8712891 DOI: 10.3389/fphys.2021.789690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Impairment of the arteries is a product of sustained exposure to various deleterious factors and progresses with time; a phenomenon inherent to vascular aging. Oxidative stress, inflammation, the accumulation of harmful agents in high cardiovascular risk conditions, changes to the extracellular matrix, and/or alterations of the epigenetic modification of molecules, are all vital pathophysiological processes proven to contribute to vascular aging, and also lead to changes in levels of associated circulating molecules. Many of these molecules are consequently recognized as markers of vascular impairment and accelerated vascular aging in clinical and research settings, however, for these molecules to be classified as biomarkers of vascular aging, further criteria must be met. In this paper, we conducted a scoping literature review identifying thirty of the most important, and eight less important, biomarkers of vascular aging. Herein, we overview a selection of the most important molecules connected with the above-mentioned pathological conditions and study their usefulness as circulating biomarkers of vascular aging.
Collapse
Affiliation(s)
- Kristina R. Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, Belgrade, Serbia
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
- Health Service of ZUGLO, Department of Family Medicine, Budapest, Hungary
| | - Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey
| | - M. Rosa Bernal-Lopez
- Internal Medicine Department, Regional University Hospital of Malaga, Instituto de Investigacion Biomedica de Malaga, University of Malaga, CIBER Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Málaga, Spain
| | - Rosa M. Bruno
- Unversite de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
| | - Rachel E. Climie
- Unversite de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Sports Cardiology Lab, Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nikolaos Fountoulakis
- Faculty of Life Sciences and Medicine, King’s College London - Waterloo Campus, London, United Kingdom
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital and Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petras Navickas
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
29
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
31
|
Quantitative profiling of protease specificity. PLoS Comput Biol 2021; 17:e1008101. [PMID: 33617527 PMCID: PMC7932537 DOI: 10.1371/journal.pcbi.1008101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/04/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
Proteases are an important class of enzymes, whose activity is central to many physiologic and pathologic processes. Detailed knowledge of protease specificity is key to understanding their function. Although many methods have been developed to profile specificities of proteases, few have the diversity and quantitative grasp necessary to fully define specificity of a protease, both in terms of substrate numbers and their catalytic efficiencies. We have developed a concept of “selectome”; the set of substrate amino acid sequences that uniquely represent the specificity of a protease. We applied it to two closely related members of the Matrixin family–MMP-2 and MMP-9 by using substrate phage display coupled with Next Generation Sequencing and information theory-based data analysis. We have also derived a quantitative measure of substrate specificity, which accounts for both the number of substrates and their relative catalytic efficiencies. Using these advances greatly facilitates elucidation of substrate selectivity between closely related members of a protease family. The study also provides insight into the degree to which the catalytic cleft defines substrate recognition, thus providing basis for overcoming two of the major challenges in the field of proteolysis: 1) development of highly selective activity probes for studying proteases with overlapping specificities, and 2) distinguishing targeted proteolysis from bystander proteolytic events. Proteases and proteolysis are intimately involved in virtually all biological processes from embryonic development to programmed cell death and cellular protein recycling. As the only irreversible posttranslational modification, proteolysis represents a committed step in regulation of biological networks and pathways. Imbalance of proteolytic activity has catastrophic implications and is the basis of many genetic disorders as well as a multitude of pathological states of varying etiologies. To understand protease function, one must gain insight into the repertoires of substrates targeted by these enzymes. As many proteases recognize a wide variety of sequences in proteins, it is a challenge to establish if a particular cleavage represents a targeted or a bystander proteolytic event. In addition, since many proteases have overlapping specificities, especially among closely related members of the same gene families, it is a challenge to develop highly selective tools for studying or inhibition of these enzymes. In this work, we used two closely related proteases (MMP-2 and 9) as a model system for development of an information theory-based approach to quantification of substrate specificity and demonstrated its potential for distinguishing between the target and bystander proteolytic events as well as for uncovering selectivity between closely related proteases.
Collapse
|
32
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
33
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
34
|
Mumtaz T, Qindeel M, Asim Ur Rehman, Tarhini M, Ahmed N, Elaissari A. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. Int J Pharm 2020; 587:119712. [PMID: 32745499 DOI: 10.1016/j.ijpharm.2020.119712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The measurement of biological processes at a molecular and cellular level serves as a basis for molecular imaging. As compared with traditional imaging approaches, molecular imaging functions to probe molecular anomalies that are the basis of a disease rather than the evaluation of end results of these molecular changes. Proteases play central role in tumor invasion, angiogenesis and metastasis thus can be exploited as a target for imaging probes in early diagnosis and treatment of tumors. Molecular imaging of protease has undergone tremendous breakthroughs in the field of diagnosis. It allows the clinicians not only to see the tumor location but also provides an insight into the expression and activity of different types of markers associated with the tumor microenvironment. These imaging techniques are expected to have a huge impact on early cancer detection and personalized cancer treatment. Effective development of protease imaging probes with the highest in vivo biocompatibility, stability and most appropriate pharmacokinetics for clinical translation will upsurge the success level of early cancer detection and treatment.
Collapse
Affiliation(s)
- Tehreem Mumtaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maimoona Qindeel
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007, F-69622 Lyon, France
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP-UMR 5007, F-69622 Lyon, France.
| |
Collapse
|
35
|
Feng N, Hu J, Ma Q, Ju H. Mass spectrometric biosensing: Quantitation of multiplex enzymes using single mass probe and fluorous affinity chip. Biosens Bioelectron 2020; 157:112159. [DOI: 10.1016/j.bios.2020.112159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/12/2023]
|
36
|
Xia J, Sun S, Wu X, Huang Y, Lei C, Nie Z. Enzyme-activated anchoring of peptide probes onto plasma membranes for selectively lighting up target cells. Analyst 2020; 145:3626-3633. [PMID: 32350495 DOI: 10.1039/d0an00487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a cellular microenvironment, numerous biomolecules are involved in various physiological and pathological processes. However, for the in-depth and comprehensive understanding of their roles at the molecular level, there is still a lack of detection techniques for the in situ tracking of these biomolecules in a local environment. Herein, we engineered a membrane insertion peptide (MIP) as an enzyme-activated membrane insertion peptide probe (eaMIP) that allowed the in situ tracking of the activity of target enzymes in living cells. In this strategy, the membrane insertion capacity of the MIP motif in each eaMIP was caged by appending a chemical moiety. In the presence of target enzymes, the caging moiety in each eaMIP was removed by enzymatic decaging, leading to the generation of active MIPs. The versatility of this design was demonstrated by lighting up different tumor cells with distinct fluorescence signal patterns, affording an alternative tool for clinical diagnostics, biochemical research and membrane engineering.
Collapse
Affiliation(s)
- Julan Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
37
|
The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediators Inflamm 2020; 2020:8635158. [PMID: 32454796 PMCID: PMC7222606 DOI: 10.1155/2020/8635158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix metalloproteinases (MMPs) are a group of proteins that activate substrates by enzymatic cleavage and, on the basis of their activities, have been demonstrated to play a role in ageing. Thus, in order to gain insight into the pathophysiology of ageing and to identify new markers of longevity, we analysed the activity levels of MMP-2 and MMP-9 in association with some relevant haematochemical parameters in a Sicilian population, including long-living individuals (LLIs, ≥95 years old). A cohort of 154 healthy subjects (72 men and 82 women) of different ages (age range 20-112) was recruited. The cohort was divided into five subgroups: the first group with subjects less than 40 years old, the second group ranging from 40 to 64 years old, the third group ranging from 65 to 89 years old, the fourth group ranging from 90 to 94 years old, and the fifth group with subjects more than 95 years old. A relationship was observed between LLIs and MMP-2, but not between LLIs and MMP-9. However, in the LLI group, MMP-2 and MMP-9 values were significantly correlated. Furthermore, in LLIs, we found a positive correlation of MMP-2 with the antioxidant catabolite uric acid and a negative correlation with the inflammatory marker C-reactive protein. Finally, in LLIs MMP-9 values correlated directly both with cholesterol and with low-density lipoproteins. On the whole, our data suggest that the observed increase of MMP-2 in LLIs might play a positive role in the attainment of longevity. This is the first study that shows that serum activity of MMP-2 is increased in LLIs as compared to younger subjects. As far as we are concerned, it is difficult to make wide-ranging conclusions/assumptions based on these observations in view of the relatively small sample size of LLIs. However, this is an important starting point. Larger-scale future studies will be required to clarify these findings including the link with other systemic inflammatory and antioxidant markers.
Collapse
|
38
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
39
|
Abstract
Heterobifunctional molecules, which recruit E3 ligases to ubiquitinate a target protein of interest, have found wide application as both biological tools and molecules with the potential to have clinical effects. In their recent paper, Yamazoe et al. report a heterobifunctional molecule that recruits the phosphatase PP1 to promote the dephosphorylation of pAKT to give AKT. This Viewpoint seeks to place this work in the wider context of heterobifunctional molecules and looks ahead to new possibilities presented by these results.
Collapse
Affiliation(s)
- Stuart J Conway
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
40
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
41
|
Xie X, Shah S, Holtz A, Rose J, Basisty N, Schilling B. Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization. J Vis Exp 2020:10.3791/60780. [PMID: 32176209 PMCID: PMC7275731 DOI: 10.3791/60780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Studying multiple post-translational modifications (PTMs) of proteins is a crucial step to understand PTM crosstalk and gain more holistic insights into protein function. Despite the importance of multi-PTM enrichment studies, few studies investigate more than one PTM at a time, due partially to the expenses, time, and large protein quantities required to perform multiple global proteomic analysis of PTMs. The "one-pot" affinity enrichment detailed in this protocol overcomes these barriers by permitting the simultaneous identification and quantification of peptides with lysine residues containing acetylation and succinylation PTMs with low amounts of sample input. The protocol involves preparation of protein lysate from mouse livers of SIRT5 knockout mice, performance of trypsin digestion, enrichment for PTMs, and performance of mass spectrometric analysis using a data-independent acquisition (DIA) workflow. Because this workflow allows for the enrichment of two PTMs from the same sample simultaneously, it provides a practical tool to study PTM crosstalk without requiring large amounts of samples, and it greatly reduces the time required for sample preparation, data acquisition, and analysis. The DIA component of the workflow provides comprehensive PTM-specific information. This is particularly important when studying PTM site localization, as DIA provides comprehensive sets of fragment ions that can be computationally deciphered to differentiate between different PTM localization isoforms.
Collapse
|
42
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
43
|
Abstract
The metallopeptidases thimet oligopeptidase (THOP, EC 3.4.24.25) and neurolysin (NEL, EC 3.4.24.26) are enzymes that belong to the zinc endopeptidase M13 family. Numerous studies suggest that these peptidases participate in the processing of bioactive peptides such as angiotensins and bradykinin. Efforts have been conducted to develop biotechnological tools to make possible the use of both proteases to regulate blood pressure in mice, mainly limited by the low plasmatic stability of the enzymes. In the present study, it was investigated the use of nanotechnology as an efficient strategy for to circumvent the low stability of the proteases. Recombinant THOP and NEL were immobilized in gold nanoparticles (GNPs) synthesized in situ using HEPES and the enzymes as reducing and stabilizing agents. The formation of rTHOP-GNP and rNEL-GNP was characterized by the surface plasmon resonance band, zeta potential and atomic force microscopy. The gain of structural stability and activity of rTHOP and rNEL immobilized on GNPs was demonstrated by assays using fluorogenic substrates. The enzymes were also efficiently immobilized on GNPs fabricated with sodium borohydride. The efficient immobilization of the oligopeptidases in gold nanoparticles with gain of stability may facilitate the use of the enzymes in therapies related to pressure regulation and stroke, and as a tool for studying the physiological and pathological roles of both proteases.
Collapse
|
44
|
Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019; 24:molecules24224188. [PMID: 31752262 PMCID: PMC6891433 DOI: 10.3390/molecules24224188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yu-Shuan Chen
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +03-8561825 (ext. 15615)
| |
Collapse
|
45
|
Singh N, Kumar P, Riaz U. Applications of near infrared and surface enhanced Raman scattering techniques in tumor imaging: A short review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117279. [PMID: 31234091 DOI: 10.1016/j.saa.2019.117279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Imaging technologies play a vital role in clinical oncology and have undergone massive growth over the past few decades. Research in the field of tumor imaging and biomedical diagnostics requires early detection of physiological alterations so as to provide curative treatment in real time. The objective of this review is to provide an insight about near infrared fluorescence (NIRF) and surface enhanced Raman scattering (SERS) imaging techniques that can be used to expand their capabilities for the early detection and diagnosis of cancer cells. Basic setup, principle and working of the instruments has been provided and common NIRF imaging agents as well as SERS tags are also discussed besides the analytical advantages/disadvantages of these techniques. This review can help researchers working in the field of molecular imaging to design cost effective fluorophores and SERS tags to overcome the limitations of both NIRF as well as SERS imaging technologies.
Collapse
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prabhat Kumar
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India; Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
46
|
Rochman M, Azouz NP, Rothenberg ME. Epithelial origin of eosinophilic esophagitis. J Allergy Clin Immunol 2019; 142:10-23. [PMID: 29980278 DOI: 10.1016/j.jaci.2018.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, allergen-driven inflammatory disease of the esophagus characterized predominantly by eosinophilic inflammation, leading to esophageal dysfunction. Converging data have placed the esophageal epithelium at the center of disease pathogenesis. In particular, the main EoE disease susceptibility loci at 2p23 and 5p22 encode for gene products that are produced by the esophageal epithelium: the intracellular protease calpain 14 and thymic stromal lymphopoietin, respectively. Furthermore, genetic and functional data establish a primary role for impaired epithelial barrier function in disease susceptibility and pathoetiology. Additionally, the EoE transcriptome, a set of genes dysregulated in the esophagi of patients with EoE, is enriched in genes that encode for proteins involved in esophageal epithelial cell differentiation. This transcriptome has a high proportion of esophagus-specific epithelial genes that are notable for the unexpected enrichment in genes encoding for proteases and protease inhibitors, as well as in IL-1 family genes, demonstrating a previously unappreciated role for innate immunity responses in the esophagus under homeostatic conditions. Among these pathways, basal production of the serine protease inhibitor, Kazal-type 7 (SPINK7) has been demonstrated to be part of the normal differentiation program of esophageal epithelium. Profound lost expression of SPINK7 occurs in patients with EoE and is sufficient for unleashing increased proteolytic activity (including urokinase plasminogen activator), impaired barrier function, and production of large quantities of proinflammatory and proallergic cytokines, including thymic stromal lymphopoietin. Collectively, we put forth a model in which the esophagus is normally equipped as an anti-inflammatory sensing organ and that defects in this pathway, mediated by epithelial protease/protease inhibitor imbalances, unleash inflammatory responses resulting in disorders, such as EoE.
Collapse
Affiliation(s)
- Mark Rochman
- Division of Allergy and Immunology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nurit P Azouz
- Division of Allergy and Immunology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
47
|
Das T, Kim EE, Song EJ. Phosphorylation of USP15 and USP4 Regulates Localization and Spliceosomal Deubiquitination. J Mol Biol 2019; 431:3900-3912. [PMID: 31330151 DOI: 10.1016/j.jmb.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023]
Abstract
Deubiquitinating enzymes have key roles in diverse cellular processes whose enzymatic activities are regulated by different mechanisms including post-translational modification. Here, we show that USP15 is phosphorylated, and its localization and activity are dependent on the phosphorylation status. Nuclear-cytoplasmic fractionation and mass spectrometric analysis revealed that Thr149 and Thr219 of human USP15, which is conserved among different species, are phosphorylated in the cytoplasm. The phosphorylation status of USP15 at these two positions alters the interaction with its partner protein SART3, consequently leading to its nuclear localization and deubiquitinating activity toward the substrate PRP31. Treatment of cells with purvalanol A, a cyclin-dependent kinase inhibitor, results in nuclear translocation of USP15. USP4, another deubiquitinating enzyme with a high sequence homology and domain structure as USP15, also showed purvalanol A-dependent changes in activity and localization. Collectively, our data suggest that modifications of USP15 and USP4 by phosphorylation are important for the regulation of their localization required for cellular function in the spliceosome.
Collapse
Affiliation(s)
- Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea 03760.
| |
Collapse
|
48
|
Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Jang IS, Ghazoui Z, Ahsen ME, Vogel R, Neto EC, Norman T, Tang EKY, Garnett MJ, Veroli GYD, Fawell S, Stolovitzky G, Guinney J, Dry JR, Saez-Rodriguez J. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 2019; 10:2674. [PMID: 31209238 PMCID: PMC6572829 DOI: 10.1038/s41467-019-09799-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
Collapse
Affiliation(s)
- Michael P Menden
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6EH, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, D-85764, Germany
| | - Dennis Wang
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6EH, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, 1085, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University (MTA-SE), Budapest, 1085, Hungary
- RWTH Aachen University, Faculty of Medicine, Joint Research Center for Computational Biomedicine, Aachen, 52062, Germany
| | - Krishna C Bulusu
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6EH, UK
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, USA
| | - Thomas Yu
- Sage Bionetworks, Seattle, WA, 98121, USA
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, 02841, Korea
| | - Minji Jeon
- Department of Computer Science and Engineering, Korea University, Seoul, 02841, Korea
| | | | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, 89557, USA
| | - Mikhail Zaslavskiy
- Independent Consultant in Computational Biology, Owkin, Inc., New York, NY, 10022, USA
| | | | - Zara Ghazoui
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6EH, UK
| | - Mehmet Eren Ahsen
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598, USA
| | - Robert Vogel
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598, USA
| | | | | | - Eric K Y Tang
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6EH, UK
| | | | - Giovanni Y Di Veroli
- Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6EH, UK
| | - Stephen Fawell
- Oncology, IMED Biotech Unit, AstraZeneca, R&D Boston, Waltham, MA, 02451, USA
| | - Gustavo Stolovitzky
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | | | - Jonathan R Dry
- Oncology, IMED Biotech Unit, AstraZeneca, R&D Boston, Waltham, MA, 02451, USA.
| | - Julio Saez-Rodriguez
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, UK.
- RWTH Aachen University, Faculty of Medicine, Joint Research Center for Computational Biomedicine, Aachen, 52062, Germany.
- Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Algar WR, Jeen T, Massey M, Peveler WJ, Asselin J. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7067-7091. [PMID: 30415548 DOI: 10.1021/acs.langmuir.8b02733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enzymes are important biomarkers for molecular diagnostics and targets for the action of drugs. In turn, inorganic nanoparticles (NPs) are of interest as materials for biological assays, biosensors, cellular and in vivo imaging probes, and vectors for drug delivery and theranostics. So how does an enzyme interact with a NP, and what are the outcomes of multivalent conjugation of its substrate to a NP? This invited feature article addresses the current state of the art in answering this question. Using gold nanoparticles (Au NPs) and semiconductor quantum dots (QDs) as illustrative materials, we discuss aspects of enzyme structure-function and the properties of NP interfaces and surface chemistry that determine enzyme-NP interactions. These aspects render the substrate-on-NP configurations far more complex and heterogeneous than the conventional turnover of discrete substrate molecules in bulk solution. Special attention is also given to the limitations of a standard kinetic analysis of the enzymatic turnover of these configurations, the need for a well-defined model of turnover, and whether a "hopping" model can account for behaviors such as the apparent acceleration of enzyme activity. A detailed and predictive understanding of how enzymes turn over multivalent NP-substrate conjugates will require a convergence of many concepts and tools from biochemistry, materials, and interface science. In turn, this understanding will help to enable rational, optimized, and value-added designs of NP bioconjugates for biomedical and clinical applications.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Tiffany Jeen
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Melissa Massey
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| | - William J Peveler
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
- Division of Biomedical Engineering, School of Engineering , University of Glasgow , Glasgow G12 8LT , United Kingdom
| | - Jérémie Asselin
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
50
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|