1
|
Habib M, Aronson D. Thromboembolic Complications in Takotsubo Cardiomyopathy. Semin Thromb Hemost 2024. [PMID: 39379040 DOI: 10.1055/s-0044-1791511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Apical ballooning syndrome, commonly known as Takotsubo syndrome, is a distinct cardiomyopathy often resembling acute myocardial infarction in presentation. Takotsubo syndrome patients exhibit varied patterns of left ventricular wall motion abnormalities, most frequently apical dyskinesis with basal hyperkinesis, that are characteristically transient. Although emotional or physical stressors precipitate Takotsubo syndrome in most cases, a significant proportion presents without identifiable triggers, with a pronounced female predominance. Despite recovery of left ventricular function, Takotsubo syndrome may lead to serious complications akin to acute coronary syndromes. The pathophysiology remains incompletely understood, with catecholamine surge implicated in the genesis of myocardial injury, although direct causation remains debated. Diagnosis involves integrating clinical history, imaging modalities like echocardiography, and cardiac MRI. Psychiatric disorders, particularly anxiety and depression, are frequently associated with Takotsubo syndrome, suggesting a role of chronic stress in disease susceptibility. Management includes supportive care, with anticoagulation considered in cases of apical thrombus, alongside close monitoring for complications and recovery of left ventricular function. This article reviews the current understanding, challenges in diagnosis, and management strategies for Takotsubo syndrome.
Collapse
Affiliation(s)
- Manhal Habib
- Department of Cardiology, Rambam Medical Center, and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Medical Center, and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| |
Collapse
|
2
|
Naryzhnaya NV, Logvinov SV, Kurbatov BK, Derkachev IA, Mustafina LR, Gorbunov AS, Sirotina MA, Kilin M, Gusakova SV, Maslov LN. The β 2-adrenergic receptor agonist formoterol attenuates necrosis and apoptosis in the rat myocardium under experimental stress-induced cardiac injury. Fundam Clin Pharmacol 2024. [PMID: 38956972 DOI: 10.1111/fcp.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Currently, there is no effective therapy for takotsubo syndrome (stress-induced cardiac injury in humans) in the clinics. It has previously been shown that β2-adrenergic receptor (β2-AR) agonist formoterol reduces cardiomyocyte injury in experimental takotsubo syndrome. OBJECTIVES The aim of this study was to investigate whether formoterol prevents apoptosis and necrosis of cardiomyocytes and endothelial cells in stress-induced cardiomyopathy. METHODS Stress-induced cardiac injury was induced by immobilization of rats for 2, 6, and 24 hours. RESULTS The myocardium of stressed rats showed a reduction in contractility and histological manifestations of cardiomyocyte damage: karyopyknosis, perinuclear edema of cardiomyocytes and endothelial cells, and microcirculation disturbances augmented with extended exposure to stress. In addition, apoptosis of endothelial cells was detected 6 hours after the onset of stress and peaked at 24 hours. Apoptosis of cardiomyocytes significantly gained only after 24 hours of stress exposure. These morphological alterations were associated with increased levels of serum creatine kinase-MB, syndecan-1, and thrombomodulin after 24 hours of stress. Administration of β2-AR agonist formoterol (50 μg/kg) four times during 24-hour stress exposure led to the improvement in myocardial inotropy, decrease in the severity of histological signatures, reduction in the number of TUNEL-positive cardiomyocytes, serum creatine kinase-MB, syndecan-1, and thrombomodulin levels. CONCLUSION Present data suggest that apoptosis and necrosis of cardiomyocytes and necrosis of endothelial cells in stress-induced cardiac injury can be mitigated by activation of the β2-AR. However, formoterol did not eliminate completely cardiomyocyte apoptosis, histological alterations, or endothelium injury markers under stress.
Collapse
Affiliation(s)
- Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Sergey V Logvinov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Liliia R Mustafina
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Aleksandr S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Maria A Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Mikhail Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| | - Svetlana V Gusakova
- Siberian State Medical University, 2, Moskovsky tract, Tomsk, 634050, Russian Federation
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, 111a, Kievskaya str., Tomsk, 634012, Russian Federation
| |
Collapse
|
3
|
Nguadi J, Faraj R, Mouhib Z, Lakhal Z, Bouzelmat H. Tako-Tsubo Syndrome Triggered by a Fibroscopy: Case Report. Cureus 2024; 16:e52420. [PMID: 38371085 PMCID: PMC10870091 DOI: 10.7759/cureus.52420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Tako-Tsubo cardiomyopathy, also called stress cardiopathy, is a rare syndrome characterized by transient regional systolic dysfunction. It can mimic myocardial infarction but the absence of coronary obstruction allows to redress the diagnosis. Its pathogenesis is not well understood. However, the role of physical or emotional stress has often been associated with this pathology. Here we report, a rare case of a 63-year-old female, with no cardiac risk factors, who presented Tako-Tsubo syndrome after a fibroscopy. This case aims to show that Tako-Tsubo syndrome should be suspected in patients, especially women, with no cardiac risk factors, who present acute chest pain in the context of physical or emotional stress, after excluding differential diagnoses.
Collapse
Affiliation(s)
- Jaouad Nguadi
- Cardiology, Mohammed V Military Hospital, Mohamed V University, Rabat, MAR
| | - Raid Faraj
- Cardiology, Ibn Sina Hospital University, Mohammed V University, Rabat, MAR
| | - Zaynab Mouhib
- Cardiology, Mohammed V Military Hospital, Mohamed V University, Rabat, MAR
| | - Zouhair Lakhal
- Cardiology, Mohammed V Military Hospital, Mohamed V University, Rabat, MAR
| | - Hicham Bouzelmat
- Cardiology, Mohammed V Military Hospital, Mohamed V University, Rabat, MAR
| |
Collapse
|
4
|
Belosludtseva NV, Pavlik LL, Mikheeva IB, Talanov EY, Serov DA, Khurtin DA, Belosludtsev KN, Mironova GD. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int J Mol Sci 2023; 24:17300. [PMID: 38139129 PMCID: PMC10744270 DOI: 10.3390/ijms242417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Lubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
| | - Dmitriy A. Khurtin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| |
Collapse
|
5
|
Hu JR, Abdullah A, Nanna MG, Soufer R. The Brain-Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr Cardiol Rep 2023; 25:1745-1758. [PMID: 37994952 PMCID: PMC10908342 DOI: 10.1007/s11886-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE OF REVIEW The role of neuroimmune modulation and inflammation in cardiovascular disease has been historically underappreciated. Physiological connections between the heart and brain, termed the heart-brain axis (HBA), are bidirectional, occur through a complex network of autonomic nerves/hormones and cytokines, and play important roles in common disorders. RECENT FINDINGS At the molecular level, advances in the past two decades reveal complex crosstalk mediated by the sympathetic and parasympathetic nervous systems, the renin-angiotensin aldosterone and hypothalamus-pituitary axes, microRNA, and cytokines. Afferent pathways amplify proinflammatory signals via the hypothalamus and brainstem to the periphery, promoting neurogenic inflammation. At the organ level, while stress-mediated cardiomyopathy is the prototypical disorder of the HBA, cardiac dysfunction can result from a myriad of neurologic insults including stroke and spinal injury. Atrial fibrillation is not necessarily a causative factor for cardioembolic stroke, but a manifestation of an abnormal atrial substrate, which can lead to the development of stroke independent of AF. Central and peripheral neurogenic proinflammatory factors have major roles in the HBA, manifesting as complex bi-directional relationships in common conditions such as stroke, arrhythmia, and cardiomyopathy.
Collapse
Affiliation(s)
- Jiun-Ruey Hu
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Ahmed Abdullah
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Michael G Nanna
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Robert Soufer
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA.
- VA Connecticut Healthcare System, 950 Campbell Ave, -111B, West Haven, CT, 06516, USA.
| |
Collapse
|
6
|
Sultana SS, Nisar S, Kumar FM, Khan H, Saeed H, Ahmed G, Malik J. Role of Positive Emotions in Takotsubo Cardiomyopathy. Curr Probl Cardiol 2023; 48:101997. [PMID: 37506960 DOI: 10.1016/j.cpcardiol.2023.101997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Takotsubo Cardiomyopathy, also known as "broken heart syndrome," is a transient cardiac condition characterized by sudden left ventricular dysfunction, often triggered by emotional stress or significant life events. While research has predominantly focused on the impact of negative emotions and emotional stressors, there is a growing interest in understanding the role of positive emotions in this unique cardiac syndrome. This narrative review explores the emerging research on positive emotions and Takotsubo Cardiomyopathy. It provides an overview of studies investigating the relationship between positive emotions and the condition, highlighting key findings and observations. Positive emotions, such as joy, happiness, gratitude, and optimism, have been associated with improved emotional well-being, better-coping mechanisms, and potential cardiovascular protection. Some studies suggest that individuals experiencing higher levels of positive emotions may have a reduced risk of developing Takotsubo Cardiomyopathy. However, the research in this area is still limited, with small sample sizes and challenges in quantifying positive emotions. Additionally, the interplay between positive and negative emotions requires further exploration to fully understand their impact on cardiovascular health. Despite these limitations, harnessing positive emotions in cardiac care holds promise for enhancing patient outcomes and emotional well-being. Integrating positive psychology into clinical practice and cardiac rehabilitation may lead to more holistic and patient-centered approaches to cardiovascular care. Further longitudinal studies, interventional trials, and mechanistic investigations are needed to strengthen the evidence base and identify potential therapeutic perspectives. As research progresses, addressing these gaps will provide valuable insights into the complex relationship between emotions and cardiovascular health, benefiting patients affected by Takotsubo Cardiomyopathy and other cardiovascular conditions.
Collapse
Affiliation(s)
- Syeda S Sultana
- Department of Medicine, Southern Medical College, Chittagong, Bangladesh
| | - Sibtain Nisar
- Department of Medicine, Lady Reading Hospital, Peshawar, Pakistan
| | - Fnu Manoj Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Haysum Khan
- Department of Medicine, Shifa College of Medicine, Islamabad, Pakistan
| | - Hamayle Saeed
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Gulfam Ahmed
- Department of Medicine, Muhammad Hospital, Lahore, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
7
|
Schweiger V, Gilhofer T, Fang R, Candreva A, Seifert B, Di Vece D, Wuerdinger M, Koleva I, Rajman K, Cieslik M, Gotschy A, Michel J, Stehli J, Niederseer D, Ryberg L, Ghadri J, Ruschitzka F, Stähli B, Cammann VL, Templin C. Coronary microvascular dysfunction in Takotsubo syndrome: an analysis using angiography-derived index of microcirculatory resistance. Clin Res Cardiol 2023:10.1007/s00392-023-02329-7. [PMID: 37985475 DOI: 10.1007/s00392-023-02329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) has been proposed as a crucial factor in the pathophysiology of Takotsubo syndrome (TTS). The angiography-derived index of microcirculatory resistance (caIMR) offers an alternative to conventional hyperemic wire-based IMR to assess CMD. We aimed to evaluate CMD's prevalence, transience, and impact on in-hospital outcomes in TTS. METHODS All three coronary arteries of 96 patients with TTS were assessed for their coronary angiography derived Index of microcirculatory Resistance (caIMR) and compared to non-obstructed vessels of matched patients with ST-elevation myocardial infarction. Further, the association between caIMR and the TTS-specific combined in-hospital endpoint of death, cardiac arrest, ventricular arrhythmogenic events and cardiogenic shock was investigated. RESULTS Elevated IMR was present in all TTS patients, with significantly elevated caIMR values in all coronary arteries compared to controls. CaIMR did not differ between apical and midventricular TTS types. CaIMR normalized in TTS patients with follow-up angiographies performed at a median of 28 months (median caIMR at event vs follow-up: LAD 34.8 [29.9-41.1] vs 20.3 [16.0-25.3], p < 0.001; LCX: 38.7 [32.9-50.1] vs 23.7 [19.4-30.5], p < 0.001; RCA: 31.7 [25.0-39.1] vs 19.6 [17.1-24.0], p < 0.001). The extent of caIMR elevation significantly correlated with the combined in-hospital endpoint (p = 0.036). CONCLUSION TTS patients had evidence of elevated caIMR in at least one coronary artery with a trend towards higher LAD caIMR in apical type TTS and normalization after recovery. Furthermore, extent of caIMR elevation was associated with increased risk of in-hospital MACE of TTS patients.
Collapse
Affiliation(s)
- Victor Schweiger
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Thomas Gilhofer
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Rick Fang
- Suzhou Rainmed Medical Technology Co., Ltd, Building 31, Northeast District, Nano City, No. 99 Jinji Lake Avenue, Suzhou Industrial Park, Suzhou, China
| | - Alessandro Candreva
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Burkhardt Seifert
- Division of Biostatistics, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Di Vece
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Michael Wuerdinger
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Iva Koleva
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Katja Rajman
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Maciej Cieslik
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alexander Gotschy
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Jonathan Michel
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Julia Stehli
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Linn Ryberg
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Jelena Ghadri
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Barbara Stähli
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Victoria Lucia Cammann
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Christian Templin
- Department of Cardiology, University Heart Centre, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
8
|
Huai H, Li J, Zhang X, Xu Q, Lan H. Creation of a Rat Takotsubo Syndrome Model and Utilization of Machine Learning Algorithms for Screening Diagnostic Biomarkers. J Inflamm Res 2023; 16:4833-4843. [PMID: 37901384 PMCID: PMC10612482 DOI: 10.2147/jir.s423544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Ferroptosis, a crucial type of programmed cell death, is directly linked to various cardiac disorders. However, the contribution of ferroptosis-related genes (FRGs) to Takotsubo syndrome (TTS) has not been completely understood. Purpose The objective of this study was to investigate the relationship between the FRGs and TTS. Methods TTS rat models were established by isoprenaline injection. Heart tissues were subsequently harvested for total RNA extraction and library construction. Transcriptome data wereobtained transcriptome data for TTS and FRGs from our laboratory, and sources such as the Ferroptosis Database (FerrDb) and the Gene Expression Omnibus Database (GEO). 57 differentially expressed FRGs (DE-FRGs) were discovered. The LASSO and SVM-RFE algorithms were employed to identify Enpp2, Pla2g6, Etv4, and Il1b as marker genes, and logistic regression was applied to construct a diagnostic model. The important genes were validated by real time PCR and the external dataset. Finally, the extent of immune infiltration was explored. Results Among the 57 genes, there were 36 up-regulated and 21 down-regulated genes that exhibited distinct expression patterns in the TTS and healthy control samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the enriched pathways were primarily associated with pathways of neurodegeneration-multiple disease, while Gene Ontology (GO) analysis revealed that these genes were primarily linked to cellular response to external stimuli, outer membrane functions, and ubiquitin protein ligase binding. After the identification of four marker genes as potentially effective biomarkers for TTS diagnosis, subsequent logistic regression modeling revealed a receiver operating characteristic curve (ROC) with an AUC of 1.0. The examination of immune cell infiltration showed significantly higher prevalence of activated CD4+ T cells, mast cells, etc., in TTS. Conclusion Our findings support the theoretical importance of ferroptosis in TTS, highlighting Enpp2, Pla2g6, Etv4, and Il1b as potential diagnostic and therapeutic biomarkers for TTS.
Collapse
Affiliation(s)
- Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Junliang Li
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiangjie Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiang Xu
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
9
|
Dong F, Yin L, Sisakian H, Hakobyan T, Jeong LS, Joshi H, Hoff E, Chandler S, Srivastava G, Jabir AR, Kimball K, Chen YR, Chen CL, Kang PT, Shabani P, Shockling L, Pucci T, Kegecik K, Kolz C, Jia Z, Chilian WM, Ohanyan V. Takotsubo syndrome is a coronary microvascular disease: experimental evidence. Eur Heart J 2023; 44:2244-2253. [PMID: 37170610 PMCID: PMC10290875 DOI: 10.1093/eurheartj/ehad274] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND AND AIMS Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS. METHODS AND RESULTS Vascular Kv1.5 channels connect coronary blood flow to myocardial metabolism and their deletion mimics the phenotype of CMD. To determine if TTS is related to CMD, wild-type (WT), Kv1.5-/-, and TgKv1.5-/- (Kv1.5-/- with smooth muscle-specific expression Kv1.5 channels) mice were studied following transaortic constriction (TAC). Measurements of left ventricular (LV) fractional shortening (FS) in base and apex, and myocardial blood flow (MBF) were completed with standard and contrast echocardiography. Ribonucleic Acid deep sequencing was performed on LV apex and base from WT and Kv1.5-/- (control and TAC). Changes in gene expression were confirmed by real-time-polymerase chain reaction. MBF was increased with chromonar or by smooth muscle expression of Kv1.5 channels in the TgKv1.5-/-. TAC-induced systolic apical ballooning in Kv1.5-/-, shown as negative FS (P < 0.05 vs. base), which was not observed in WT, Kv1.5-/- with chromonar, or TgKv1.5-/-. Following TAC in Kv1.5-/-, MBF was lower in LV apex than in base. Increasing MBF with either chromonar or in TgKv1.5-/- normalized perfusion and function between LV apex and base (P = NS). Some genetic changes during TTS were reversed by chromonar, suggesting these were independent of TAC and more related to TTS. CONCLUSION Abnormalities in flow regulation between the LV apex and base cause TTS. When perfusion is normalized between the two regions, normal ventricular function is restored.
Collapse
Affiliation(s)
- Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Hamayak Sisakian
- Department of Cardiology, Yerevan State Medical University, Yerevan, Kentron, Armenia
| | - Tatevik Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Lacey S Jeong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Hirva Joshi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Ellianna Hoff
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Geetika Srivastava
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Abdur Rahman Jabir
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Kelly Kimball
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Thomas Pucci
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Karlina Kegecik
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, USA
| |
Collapse
|
10
|
Dai Q, Li P, Bose A, Cai P, Jin L, Pan S, Dixon RAF, Laidlaw D, Liu Q. Association of atrial fibrillation burden with in-hospital outcomes in patients with Takotsubo cardiomyopathy. Am J Med Sci 2023; 365:345-352. [PMID: 35793734 DOI: 10.1016/j.amjms.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/15/2022] [Accepted: 06/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The effects of atrial fibrillation (AF) and its burden on in-hospital mortality in patients with Takotsubo cardiomyopathy (TCM) are unclear. Here, we examined the effect of AF and paroxysmal AF on in-hospital outcomes in patients with TCM. METHODS We used ICD-10 codes to retrospectively identify patients with a primary diagnosis of TCM in the National Inpatient Sample database 2016-2018. We compared in-hospital outcomes in TCM patients with and without AF before and after propensity score matching. The effect of AF burden on outcomes was assessed in patients with paroxysmal AF and no AF. RESULTS Of the 4,733 patients with a primary diagnosis of TCM, 650 (13.7%) had AF, and 4,083 (86.3%) did not. Of TCM patients with AF, 368 (56.6%) had paroxysmal AF. In-hospital mortality was higher in patients with AF before (3.4% vs 1.2%, P < 0.001) and after propensity matching (3.4% vs 1.7%, P = 0.021) but did not differ between the paroxysmal AF and the no AF groups (P = 0.205). In the matched cohorts, both AF and paroxysmal AF groups were associated with a higher rate of cardiogenic shock (AF, P < 0.001; paroxysmal AF, P < 0.001), ventricular arrhythmia (AF, P = 0.002; paroxysmal AF, P = 0.02), acute kidney injury (AF, P = 0.007; paroxysmal AF, P = 0.008), and acute respiratory failure (AF, P < 0.001; paroxysmal AF, P < 0.001) compared with the no AF group. CONCLUSIONS Although AF was associated with increased in-hospital mortality, paroxysmal AF did not affect in-hospital mortality, suggesting a higher AF burden is associated with worse clinical outcome in patients with TCM.
Collapse
Affiliation(s)
- Qiying Dai
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA, USA.
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Abhishek Bose
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA, USA
| | - Peng Cai
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ling Jin
- Department of Medicine, Metrowest Medical Center, Framingham, MA, USA
| | - Su Pan
- Molecular Cardiology Research, Texas Heart Institute, Houston, TX, USA
| | - Richard A F Dixon
- Molecular Cardiology Research, Texas Heart Institute, Houston, TX, USA
| | - Douglas Laidlaw
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA, USA
| | - Qi Liu
- Molecular Cardiology Research, Texas Heart Institute, Houston, TX, USA
| |
Collapse
|
11
|
Iatrogenic adrenaline induced mid-ventricular Takotsubo cardiomyopathy: a case-based review. Ir J Med Sci 2023; 192:125-129. [PMID: 35396675 PMCID: PMC9892140 DOI: 10.1007/s11845-022-03000-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Takotsubo cardiomyopathy (TCM) is regarded as an acute and often reversible cardiac syndrome characterised by apical ballooning of the left ventricle that occurs in the absence of coronary artery obstruction and myocarditis. The underlying pathophysiology remains largely unknown, but the most widely accepted theory is catecholamine toxicity.More recently, atypical variants of TCM have been described, and are characterised by the regional wall motion abnormalities that are observed. Mid-ventricular Takotsubo cardiomyopathy (MVTCM) is characterised by hypokinesia/akinesia of the mid left ventricular wall segments with hyperdynamic basal and apical function. This report describes the first documented case of a patient who developed MVTCM after receiving a dose of intravenous adrenaline. This case provides further evidence to support the notion that catecholamine toxicity is implicated in the pathogenesis of TCM.
Collapse
|
12
|
Yossef M, Amer R, Elsokkary H, Shama G. Psychiatric symptoms in patients with non-valvular atrial fibrillation. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Atrial fibrillation (AF) is one of the leading causes of hospitalization and even death worldwide. Complex bidirectional associations have been suggested between psychiatric disorders and AF disease. This study was conducted to investigate the prevalence of psychiatric symptoms in a cohort of Egyptian population presented with symptomatic non-valvular AF (NVAF) and to identify the high-risk subjects in need for professional psychiatric consultation. A total of 100 eligible symptomatic NVAF patients were recruited in this cross-sectional study. Each patient was subjected to: (1) cardiac evaluation included electrocardiogram, trans-esophageal echocardiography, and the European Heart Rhythm Association (EHRA). (2) Psychiatric evaluation consisted of clinical psychiatric interviewing, Hospital Anxiety and Depression Scales (HADS), Mini–Mental State Examination (MMSE), type-D personality screening, and the short form-36 (SF-36) health survey for the assessment of health-related quality of life (HRQoL).
Results
Forty-four percent of our enrolled AF patients had anxiety symptoms, 32% had depressive symptoms, 24% had mild cognitive impairment, and 32% had type-D personality. Linear regression analysis demonstrated that the left atrial dimension (LAD) and the age were the main significant predictors of MMSE, while the main predictors of HADS were SF-36 (physical functioning and general health) and the age. Neither psychiatric symptoms, nor type-D personality was a significant predictor for the evaluated cardiac parameters.
Conclusions
Mild cognitive impairment as well as depressive and anxiety symptoms is not uncommon associates with NVAF patients. Assessment of cognitive function and HRQoL is strongly advised for AF patients presented with enlarged LAD particularly among old adults.
Collapse
|
13
|
Arai T, Kanazawa H, Kimura K, Munakata M, Yamakawa H, Shinmura K, Yuasa S, Sano M, Fukuda K. Upregulation of neuropeptide Y in cardiac sympathetic nerves induces stress (Takotsubo) cardiomyopathy. Front Neurosci 2022; 16:1013712. [PMID: 36408384 PMCID: PMC9669346 DOI: 10.3389/fnins.2022.1013712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 07/02/2024] Open
Abstract
Substantial emotional or physical stress may lead to an imbalance in the brain, resulting in stress cardiomyopathy (SC) and transient left ventricular (LV) apical ballooning. Even though these conditions are severe, their precise underlying mechanisms remain unclear. Appropriate animal models are needed to elucidate the precise mechanisms. In this study, we established a new animal model of epilepsy-induced SC. The SC model showed an increased expression of the acute phase reaction protein, c-Fos, in the paraventricular hypothalamic nucleus (PVN), which is the sympathetic nerve center of the brain. Furthermore, we observed a significant upregulation of neuropeptide Y (NPY) expression in the left stellate ganglion (SG) and cardiac sympathetic nerves. NPY showed neither positive nor negative inotropic and chronotropic effects. On the contrary, NPY could interrupt β-adrenergic signaling in cardiomyocytes when exposure to NPY precedes exposure to noradrenaline. Moreover, its elimination in the left SG via siRNA treatment tended to reduce the incidence of SC. Thus, our results indicated that upstream sympathetic activation induced significant upregulation of NPY in the left SG and cardiac sympathetic nerves, resulting in cardiac dysfunctions like SC.
Collapse
Affiliation(s)
- Takahide Arai
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- International Medical Center, Department of Cardiology, Saitama Medical University, Saitama, Japan
| | - Hideaki Kanazawa
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Kimura
- Department of Internal Medicine, Kimura Clinic, Kanagawa, Japan
| | - Masahito Munakata
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yamakawa
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of General Internal Medicine, Hyogo College School of Medicine, Nishinomiya, Japan
| | - Shinsuke Yuasa
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Division of Cardiology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Ran Q, Zhang C, Wan W, Ye T, Zou Y, Liu Z, Yu Y, Zhang J, Shen B, Yang B. Pinocembrin ameliorates atrial fibrillation susceptibility in rats with anxiety disorder induced by empty bottle stimulation. Front Pharmacol 2022; 13:1004888. [PMID: 36339600 PMCID: PMC9631028 DOI: 10.3389/fphar.2022.1004888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Anxiety disorder (AD) is the most common mental disorder, which is closely related to atrial fibrillation (AF) and is considered to be a trigger of AF. Pinocembrin has been demonstrated to perform a variety of neurological and cardiac protective effects through its anti-inflammatory and antioxidant activities. The current research aims to explore the antiarrhythmic effect of pinocembrin in anxiety disorder rats and its underlying mechanisms. Methods: 60 male Sprague-Dawley rats were distributed into four groups: CTL group: control rats + saline; CTP group: control rats + pinocembrin; Anxiety disorder group: anxiety disorder rats + saline; ADP group: anxiety disorder rats + pinocembrin. Empty bottle stimulation was conducted to induce anxiety disorder in rats for 3 weeks, and pinocembrin was injected through the tail vein for the last 2 weeks. Behavioral measurements, in vitro electrophysiological studies, biochemical assays, ELISA, Western blot and histological studies were performed to assess the efficacy of pinocembrin. In addition, HL-1 atrial cells were cultured in vitro to further verify the potential mechanism of pinocembrin. Results: After 3 weeks of empty bottle stimulation, pinocembrin significantly improved the exploration behaviors in anxiety disorder rats. Pinocembrin alleviated electrophysiological remodeling in anxiety disorder rats, including shortening the action potential duration (APD), prolonging the effective refractory period (ERP), increasing the expression of Kv1.5, Kv4.2 and Kv4.3, decreasing the expression of Cav1.2, and ultimately reducing the AF susceptibility. These effects may be attributed to the amelioration of autonomic remodeling and structural remodeling by pinocembrin, as well as the inhibition of oxidative stress with upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathway. Conclusion: Pinocembrin can reduce AF susceptibility in anxiety disorder rats induced by empty bottle stimulation, with the inhibition of autonomic remodeling, structural remodeling, and oxidative stress. Therefore, pinocembrin is a promising treatment for AF in patients with anxiety disorder.
Collapse
Affiliation(s)
- Qian Ran
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | | | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| |
Collapse
|
15
|
Deenen S, Ramnarain D, Pouwels S. Subarachnoidal hemorrhage related cardiomyopathy: an overview of Tako-Tsubo cardiomyopathy and related cardiac syndromes. Expert Rev Cardiovasc Ther 2022; 20:733-745. [PMID: 36124824 DOI: 10.1080/14779072.2022.2125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) is caused by a ruptured intracranial aneurysm leading to acute extravasation of blood into the subarachnoid space. SAH has an incidence of 6.3 per 100,000 persons per year in Europe and accounts for 5% of all strokes. SAH occurs at a relatively young age and has poor clinical outcomes and high mortality rates. Cardiac syndromes are regularly seen in patients with acute neurologic disease including SAH. These cardiac complications of SAH are associated with increased morbidity and mortality and present in a large variety and severity. AREAS COVERED The main goal of this review is to describe the SAH-related cardiac syndromes. Secondly, we will provide an overview of the underlying pathophysiology regarding the development of cardiac syndromes. Thirdly, we will describe the impact of cardiac syndromes on patient outcome. EXPERT OPINION Of all neurology patients, SAH patients have the highest risk of developing takotsubo syndrome (TTS), occurring in about 0.8-30% of patients. Both TTS and neurogenic stunned myocardium have many similarities on echocardiographic evaluation. In European Cardiology consensus, SAH is recognized as a primary cause of TTS.
Collapse
Affiliation(s)
- Susan Deenen
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Dharmanand Ramnarain
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of Intensive Care Medicine, Saxenburgh Medical Center, Hardenberg, The Netherlands
| | - Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of General, Abdominal and Minimally Invasive Surgery, Helios Klinikum, Krefeld, Germany
| |
Collapse
|
16
|
Molina E, Gould N, Lee K, Krimins R, Hardenbergh D, Timlin H. Stress, mindfulness, and systemic lupus erythematosus: An overview and directions for future research. Lupus 2022; 31:1549-1562. [PMID: 35998903 DOI: 10.1177/09612033221122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the pathogenesis of autoimmunity is not fully understood, it is thought to involve genetic, hormonal, immunologic, and environmental factors. Stress has been evaluated as a potential trigger for autoimmunity and disease flares in patients with systemic lupus erythematosus (SLE). The physiologic changes that occur with stress involve numerous catecholamines, hormones, and cytokines that communicate intricately with the immune system. There is some evidence that these systems may be dysregulated in patients with autoimmune disease. Mindfulness-based techniques are practices aimed at mitigating stress response and have been shown to improve quality of life in general population. This review will discuss pathophysiology of chronic stress as it relates to SLE, evidence behind mindfulness-based practices in these patients, and directions for future research.
Collapse
Affiliation(s)
- Emily Molina
- Rheumatology Fellowship, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Neda Gould
- Division of Psychiatry and Behavioral Science, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Lee
- Internal Medicine Residency, 12244Northwestern University Hospitals, Chicago, IL, USA
| | - Rebecca Krimins
- Department of Radiology and Radiological Science, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Dylan Hardenbergh
- Internal Medicine Residency, 21611Columbia and Presbyterian Hospitals, NY, NY, USA
| | - Homa Timlin
- Division of Rheumatology, 1466Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Affiliation(s)
- Adam Ioannou
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Marcucci R, Mannini L, Andrei V, Bandinelli B, Gori AM, Fatucchi S, Giglioli C, Romano SM, Piazzai C, Marchionni N, Cecchi E. Transient stress-related hyperviscosity and endothelial dysfunction in Takotsubo syndrome: a time course study. Heart Vessels 2022; 37:1776-1784. [PMID: 35451602 DOI: 10.1007/s00380-022-02071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
Takotsubo syndrome (TTS) is an acute and usually reversible heart failure syndrome, frequently associated with emotional or physical stress. Its pathophysiology remains largely unclear, although several mechanisms related to catecholaminergic storm have been proposed. In this study we analyzed during the acute phase of TTS and at follow-up both hemorheological parameters and biomarkers of endothelial damage, whose time course has never been fully explored. In 50 TTS women, we analyzed several hemorheological parameters [whole blood viscosity (WBV) at 0.512 s-1 and at 94.5 s-1, plasma viscosity (PLV), erythrocyte deformability and aggregation index] as well as biomarkers of endothelial dysfunction [von Willebrand Factor (vWF), Plasminogen activator inhibitor-1 and factor VIII levels] during the acute phase and after a median 6 months follow-up. These variables were also assessed in 50 age-matched healthy women. Respect to follow-up, in the acute phase of TTS we observed higher values of white blood cell count, fibrinogen, WBV at low and high shear rates, PLV, erythrocyte aggregation index and lower values of erythrocyte elongation index. Moreover, all biomarkers of endothelial dysfunction resulted significantly higher in the acute phase. During follow-up WBV at 94.5 s-1, erythrocyte elongation index and vWF resulted significantly altered with respect to controls. The results of this study confirm the role of hyperviscosity and endothelial dysfunction in TTS pathophysiology. Moreover, they suggest the persistence of alterations of erythrocyte deformability and endothelial dysfunction even beyond the acute phase that could be the target of therapeutic strategies also during follow-up.
Collapse
Affiliation(s)
- Rossella Marcucci
- Department of Cardiac Thoracic and Vascular Medicine, Center for Atherothrombotic Diseases, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Lucia Mannini
- Department of Cardiac Thoracic and Vascular Medicine, Center for Atherothrombotic Diseases, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Valentina Andrei
- General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy
| | - Brunella Bandinelli
- Department of Cardiac Thoracic and Vascular Medicine, Center for Atherothrombotic Diseases, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Anna Maria Gori
- Department of Cardiac Thoracic and Vascular Medicine, Center for Atherothrombotic Diseases, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Serena Fatucchi
- General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy
| | - Cristina Giglioli
- General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy
| | - Salvatore Mario Romano
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy
| | - Chiara Piazzai
- General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy
| | - Niccolo' Marchionni
- General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy
| | - Emanuele Cecchi
- General Cardiology Unit, Department of Cardiac Thoracic and Vascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Viale Morgagni, 85, 50141, Florence, Italy.
| |
Collapse
|
19
|
Patel RS, Webeler P, Gudur UM. Peripheral Thromboembolism Formation in a Case of Takotsubo Cardiomyopathy. Cureus 2022; 14:e24087. [PMID: 35573553 PMCID: PMC9098288 DOI: 10.7759/cureus.24087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 11/05/2022] Open
|
20
|
Bairashevskaia AV, Belogubova SY, Kondratiuk MR, Rudnova DS, Sologova SS, Tereshkina OI, Avakyan EI. Update of Takotsubo cardiomyopathy: Present experience and outlook for the future. IJC HEART & VASCULATURE 2022; 39:100990. [PMID: 35281752 PMCID: PMC8913320 DOI: 10.1016/j.ijcha.2022.100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
Abstract
Takotsubo cardiomyopathy (TTS) has become a recognised clinical entity since the Japanese scientist Sato first described it in 1990. Despite an increasing number of confirmed cases, especially during the COVID-19 pandemic, its pathophysiology remains incompletely understood, and decision-making differs in the diagnosis and treatment. In addition, it is not evident whether a significant increase in TTS is due to better understanding among practitioners and widespread access to coronary angiography, or if it is a reflection of an actual increase in incidence. We analysed a series of international research studies from 1990 to 2021. Beyond epidemiology and clinical presentation, we evaluated and summarised fundamental knowledge about various predisposing factors, with particular attention to the iatrogenic impact of certain drugs, namely antidepressants, chemotherapy, and antiarrhythmics. Furthermore, we highlighted the main pathophysiological theories to date. In addition, based on published studies and clinical cases, we investigated the role of numerous diagnostic approaches in the differential diagnosis of TTS and identified predictors of TTS complications, such as cardiogenic shock, ventricular fibrillation, and left ventricular thrombi. Accordingly, we sought to propose a diagnostic algorithm and further treatment management of TTS under the presence of possible complications to help practitioners make more informed decisions, as the initial presentation continues to pose a challenge due to its close similarity to acute coronary syndrome with ST-elevation. In conclusion, this article examines Takotsubo cardiomyopathy from different perspectives and, along with future systematic reviews and meta-analyses, can be of particular interest to practising cardiologists and researchers in developing clinical guidelines.
Collapse
Affiliation(s)
- Anastasiia V. Bairashevskaia
- Department of Paediatrics, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Sofiya Y. Belogubova
- Department of Faculty Therapy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- AMEE International Networking Centre, Sechenov First Moscow State Medical University (Sechenov University), 123242 Moscow, Russia
| | - Mikhail R. Kondratiuk
- Department of Faculty Therapy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Daria S. Rudnova
- International School “Medicine of the Future”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia
| | - Olga I. Tereshkina
- Department of Pharmacology, Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia
| | - Esma I. Avakyan
- Department of Faculty Therapy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- AMEE International Networking Centre, Sechenov First Moscow State Medical University (Sechenov University), 123242 Moscow, Russia
| |
Collapse
|
21
|
Koniari I, Papageorgiou A, Artopoulou E, Velissaris D, Mplani V, Kounis N, Hahalis G, Tsigkas G. Prevalence and Impact of Atrial Fibrillation on Prognosis in Takotsubo Cardiomyopathy Patients. Angiology 2022; 73:800-808. [PMID: 35236144 DOI: 10.1177/00033197221079331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this review is to describe the impact of atrial fibrillation (AF) on the cardiovascular outcomes and prognosis in patients with Takotsubo Cardiomyopathy (TTC). The pathophysiological basis of TTC is set on the release of catecholamines, occurring post an emotional or stressful event. The cardiovascular system of patients with TTC is affected by the high concentrations of catecholamines, creating the ideal background for the development of AF: inflammation, myocardial stress, and excessive sympathetic activity. AF is considered to be the most frequent arrhythmia in TTC patients and is associated with higher rates of cardiovascular and all-cause mortality. AF is also linked with a worse prognosis concerning the hemodynamic status, cardiac fibrosis, lethal arrhythmias, thromboembolic events, and adverse heart failure associated outcomes. The early diagnosis of AF in these patients plays significant role in the prevention of adverse events, the reversibility of left ventricular function, and the restoration of sinus rhythm.
Collapse
Affiliation(s)
- Ioanna Koniari
- Department of Cardiology, NHS Foundation Trust, University Hospital of South Manchester, Manchester, UK
| | | | - Eleni Artopoulou
- Department of Internal Medicine, 37795University Hospital of Patras, Patras, Greece
| | - Dimitrios Velissaris
- Department of Internal Medicine, 37795University Hospital of Patras, Patras, Greece
| | - Virginia Mplani
- Department of Cardiology, 37795University Hospital of Patras, Patras, Greece
| | - Nicholas Kounis
- Department of Cardiology, 37795University Hospital of Patras, Patras, Greece
| | - George Hahalis
- Department of Cardiology, 37795University Hospital of Patras, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, 37795University Hospital of Patras, Patras, Greece
| |
Collapse
|
22
|
Kimura M, Hashiguchi S, Tanaka K, Hagiwara M, Takahashi K, Miyaji Y, Joki H, Doi H, Koga M, Takeuchi H, Tanaka F. Case Report: Takotsubo Cardiomyopathy in Bickerstaff Brainstem Encephalitis Triggered by COVID-19. Front Neurol 2022; 12:822247. [PMID: 35002947 PMCID: PMC8741194 DOI: 10.3389/fneur.2021.822247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
Takotsubo cardiomyopathy (TCM) is a stress-induced cardiomyopathy triggered by critical illness including severe neurological disorders. However, an association between TCM and Bickerstaff brainstem encephalitis (BBE) has rarely been described. During the current coronavirus disease 2019 (COVID-19) pandemic, growing evidence indicates that COVID-19 often leads to various neurological disorders, but there are few reports of an association between COVID-19 and BBE. Here we report a case of TCM associated with BBE triggered by COVID-19, which subsided with immunotherapy for BBE. Both transthoracic echocardiography and electrocardiography led to early and accurate diagnosis of TCM. Sustained hemodynamic instability due to TCM was immediately lessened with immunotherapy whereas additional plasmapheresis and immunotherapy were required to treat BBE. This case indicates that BBE might follow COVID-19 and TCM should be considered when hemodynamic status remains unstable in a patient with BBE.
Collapse
Affiliation(s)
- Mizuki Kimura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Manato Hagiwara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideto Joki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
23
|
The Dynamic Interplay of Healthy Lifestyle Behaviors for Cardiovascular Health. Curr Atheroscler Rep 2022; 24:969-980. [PMID: 36422788 PMCID: PMC9750923 DOI: 10.1007/s11883-022-01068-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The recent rise in cardiovascular disease (CVD) deaths in the USA has sparked interest in identifying and implementing effective strategies to reverse this trend. Healthy lifestyle behaviors (i.e., healthy diet, regular physical activity, achieve and maintain a healthy weight, avoid tobacco exposure, good quality sleep, avoiding and managing stress) are the cornerstone for CVD prevention. RECENT FINDINGS Achieving all of these behaviors significantly benefits heart health; however, even small changes lower CVD risk. Moreover, there is interplay among healthy lifestyle behaviors where changing one may result in concomitant changes in another behavior. In contrast, the presence of one or more unhealthy lifestyle behaviors may attenuate changing another lifestyle behavior(s) (poor diet, inadequate physical activity, overweight/obesity, poor sleep quality, tobacco exposure, and poor stress management). It is important to assess all of these lifestyle behaviors with patients to plan an intervention program that is best positioned for adherence.
Collapse
|
24
|
Omerovic E, Citro R, Bossone E, Redfors B, Backs J, Bruns B, Ciccarelli M, Couch LS, Dawson D, Grassi G, Iacoviello M, Parodi G, Schneider B, Templin C, Ghadri JR, Thum T, Chioncel O, Tocchetti CG, Van Der Velden J, Heymans S, Lyon AR. Pathophysiology of Takotsubo Syndrome - a joint scientific statement from the Heart Failure Association Takotsubo Syndrome Study Group and Myocardial Function Working Group of the European Society of Cardiology - Part 1: Overview and the central role for catecholamines and sympathetic nervous system. Eur J Heart Fail 2021; 24:257-273. [PMID: 34907620 DOI: 10.1002/ejhf.2400] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
This is the first part of a scientific statement from the Heart Failure Association of the European Society of Cardiology focused upon the pathophysiology of Takotsubo syndrome and is complimentary to the previous HFA Position Statement on Takotsubo syndrome which focused upon clinical management. In part 1 we provide an overview of the pathophysiology of Takotsubo syndrome and fundamental questions to consider. We then review and discuss the central role of catecholamines and the sympathetic nervous system in the pathophysiology, and the direct effects of high surges in catecholamines upon myocardial biology including β-adrenergic receptor signaling, G protein coupled receptor kinases, cardiomyocyte calcium physiology, myofilament physiology, cardiomyocyte gene expression, myocardial electrophysiology and arrhythmogenicity, myocardial inflammation, metabolism and energetics. The integrated effects upon ventricular haemodynamics are discussed and integrated into the pathophysiological model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elmir Omerovic
- Department of Cardiology, Sahlgrenska University Hospital and Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Rodolfo Citro
- Heart Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Eduardo Bossone
- Division of Cardiology, A. Cardarelli Hospital, Naples, Italy
| | - Bjorn Redfors
- Department of Cardiology, Sahlgrenska University Hospital and Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Bastian Bruns
- Institute of Experimental Cardiology, Heidelberg University, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany.,Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Michele Ciccarelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Liam S Couch
- National Heart and Lung Institute, Imperial College, London, UK
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guido Grassi
- Clinica Medica, University of Milano Bicocca, Milan, Italy
| | - Massimo Iacoviello
- University Cardiology Unit, Cardiothoracic Department, University Hospital, Bari, Italy
| | - Guido Parodi
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | | | - Christian Templin
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Jelena R Ghadri
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', Bucharest, Romania and University of Medicine Carol Davila, Bucharest, Romania
| | - C Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | | | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, The Netherlands and Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology and Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College, London, UK.,Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
25
|
Abstract
Takotsubo cardiomyopathy is characterised by left ventricular apical ballooning, in the absence of coronary artery disease, and classically occurs at times of intense stress. Due to the striking preponderance of Takotsubo cardiomyopathy occurring in postmenopausal women, it has been postulated that female sex hormones may also be implicated in its pathogenesis. This case report describes the first case of Takotsubo cardiomyopathy associated with the initiation of dydrogesterone (a synthetic retroprogesterone) in a premenopausal woman.
Collapse
Affiliation(s)
- Adam Ioannou
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Manousek J, Kala P, Lokaj P, Ondrus T, Helanova K, Miklikova M, Brazdil V, Tomandlova M, Parenica J, Pavkova Goldbergova M, Hlasensky J. Oxidative Stress in Takotsubo Syndrome-Is It Essential for an Acute Attack? Indirect Evidences Support Multisite Impact Including the Calcium Overload-Energy Failure Hypothesis. Front Cardiovasc Med 2021; 8:732708. [PMID: 34738019 PMCID: PMC8562109 DOI: 10.3389/fcvm.2021.732708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022] Open
Abstract
Indirect evidences in reviews and case reports on Takotsubo syndrome (TTS) support the fact that the existence of oxidative stress (OS) might be its common feature in the pre-acute stage. The sources of OS are exogenous (environmental factors including pharmacological and toxic influences) and endogenous, the combination of both may be present, and they are being discussed in detail. OS is associated with several pathological conditions representing TTS comorbidities and triggers. The dominant source of OS electrones are mitochondria. Our analysis of drug therapy related to acute TTS shows many interactions, e.g., cytostatics and glucocorticoids with mitochondrial cytochrome P450 and other enzymes important for OS. One of the most frequently discussed mechanisms in TTS is the effect of catecholamines on myocardium. Yet, their metabolic influence is neglected. OS is associated with the oxidation of catecholamines leading to the synthesis of their oxidized forms - aminochromes. Under pathological conditions, this pathway may dominate. There are evidences of interference between OS, catecholamine/aminochrome effects, their metabolism and antioxidant protection. The OS offensive may cause fast depletion of antioxidant protection including the homocystein-methionine system, whose activity decreases with age. The alteration of effector subcellular structures (mitochondria, sarco/endoplasmic reticulum) and subsequent changes in cellular energetics and calcium turnover may also occur and lead to the disruption of cellular function, including neurons and cardiomyocytes. On the organ level (nervous system and heart), neurocardiogenic stunning may occur. The effects of OS correspond to the effect of high doses of catecholamines in the experiment. Intensive OS might represent "conditio sine qua non" for this acute clinical condition. TTS might be significantly more complex pathology than currently perceived so far.
Collapse
Affiliation(s)
- Jan Manousek
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
| | - Petr Kala
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Lokaj
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Ondrus
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Helanova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Miklikova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
| | - Vojtech Brazdil
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Tomandlova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiri Parenica
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Jiri Hlasensky
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czechia
- Department of Internal Medicine and Cardiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
27
|
Forsberg S, Abazi L, Forsman P. Successful use of extended cardiopulmonary resuscitation followed by extracorporeal oxygenation after venlafaxine-induced takotsubo cardiomyopathy and cardiac arrest: a case report. J Med Case Rep 2021; 15:485. [PMID: 34579764 PMCID: PMC8477521 DOI: 10.1186/s13256-021-03031-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background Severe venlafaxine intoxication may cause arrhythmias, cardiac failure, and even cardiac arrest. Case presentation A 48-year-old caucasian male with an extensive psychiatric history ingested a high dose of venlafaxine causing a serum venlafaxine concentration of 12.6 mg/L 24 hours after ingestion. Seven hours post-ingestion, he experienced tonic–clonic seizures, and 8 hours later, takotsubo cardiomyopathy was recognized followed by cardiac arrest. The patient was resuscitated with prolonged cardiopulmonary resuscitation including ongoing automatic external compressions during helicopter transportation to a tertiary hospital for extracorporeal membrane oxygenation treatment. Despite a cardiopulmonary resuscitation duration of 2 hours, 36 hours of extracorporeal membrane oxygenation, and a total of 30 days of intensive care, the patient made a full recovery. Conclusion In cases of intoxication-induced cardiac arrests among otherwise young and healthy patients, prolonged cardiopulmonary resuscitation and extracorporeal circulation can be a life-saving bridge to recovery.
Collapse
Affiliation(s)
- Sune Forsberg
- Department of Anaesthesiology and Intensive Care, Norrtälje Hospital, Norrtälje, Sweden. .,Centre for Resuscitation Science, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Swedish Poisons Information Centre, Stockholm, Sweden.
| | - Lis Abazi
- Department of Anaesthesiology and Intensive Care, Norrtälje Hospital, Norrtälje, Sweden.,Centre for Resuscitation Science, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pär Forsman
- ECMO Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Mao S, Luo X, Li Y, He C, Huang F, Su C. Role of PI3K/AKT/mTOR Pathway Associated Oxidative Stress and Cardiac Dysfunction in Takotsubo Syndrome. Curr Neurovasc Res 2021; 17:35-43. [PMID: 31870264 DOI: 10.2174/1567202617666191223144715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy, but the accurate cause of this syndrome is still unknown. METHODS β-adrenergic agonist isoproterenol (ISO) is used to establish the TTS rats model. TTS rats were treated with or without LY294002 or Rapamycin. The rat cardiomyoblast cell line H9C2 was subjected to infect with constitutively active Akt (myr-Akt) or dominant-negative mutant Akt (dn-Akt) and then, treated with ISO. Cell apoptosis was assessed using the Bax/ Bcl-2 ratio. In addition, reactive oxygen species (ROS) levels were measured using dihydroethidium (DHE). Mitochondrial superoxide generation and membrane potential were assayed by MitoSOX and JC-1 fluorescence intensity. RESULTS ISO might induce the erratic acute cardiac dysfunction and overexpression of PI3K/AKT/mTOR. Moreover, it also increased the oxidative stress and apoptosis in TTS rats. The Akt inhibitor significantly reversed the cardiac injury effect, which triggered by ISO treatment. In H9C2 cells, the inhibition of Akt provides a protective role against ISO-induced injury by reducing oxidative stress, apoptosis and mitochondrial dysfunction. CONCLUSION This study provided new insight into the protective effects of myocardial dysfunction in TTS rats via chronic inhibition of the PI3K/AKT/mTOR expression, which could reduce mitochondrial ROS and oxidative stress-induced apoptosis. PI3K/AKT/mTOR inhibitor could be a therapeutic target to treat cardiovascular dysfunction induced by stress cardiomyopathy.
Collapse
Affiliation(s)
- Shan Mao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, 442000, China
| | - Xianghong Luo
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Hubei, 442000, China
| | - Yu Li
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, 442000, China
| | - Chaorong He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, 442000, China
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, JiangSu, 210006, China
| | - Cunhua Su
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, JiangSu, 210006, China
| |
Collapse
|
29
|
Abdulraheem E, Shaikhoun M, Kung D. Severe peripartum cardiomyopathy complicated by COVID-19 infection and small intestinal obstruction. Clin Case Rep 2021; 9:e04505. [PMID: 34322256 PMCID: PMC8299099 DOI: 10.1002/ccr3.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
COVID-19 infection can be a possible trigger for peripartum cardiomyopathy. Multidisciplinary teamwork was crucial for the favorable outcome in our patient. Small bowel strangulation is a rare complication post-cesarean section.
Collapse
Affiliation(s)
- Ekhlas Abdulraheem
- Obstetrics and GynecologyVassar Brothers Medical CenterPoughkeepsieNYUSA
| | - Mazin Shaikhoun
- Internal Medicine DepartmentVassar Brothers Medical CenterPoughkeepsieNYUSA
| | - David Kung
- Intensive Care UnitVassar Brothers Medical CenterPoughkeepsieNYUSA
| |
Collapse
|
30
|
Zhang L, Wuri J, An L, Liu X, Wu Y, Hu H, Wu R, Su Y, Yuan Q, Yan T. Metoprolol attenuates intracerebral hemorrhage-induced cardiac damage by suppression of sympathetic overactivity in mice. Auton Neurosci 2021; 234:102832. [PMID: 34126326 DOI: 10.1016/j.autneu.2021.102832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/08/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
The high rates of mortality and disability resulting from intracerebral hemorrhage (ICH) are closely related to subsequent cardiac complications. The mechanisms underlying ICH-induced cardiac dysfunction are not fully understood. In this study, we investigated the role of sympathetic overactivity in mediating cardiac dysfunction post ICH in mice. Collagenase-injection ICH model was established in adult male C57BL/6J mice. Neurological function was subsequently evaluated at multiple time points after ICH and cardiac function was measured by echocardiography on 3 and 14 days after ICH. Plasma adrenaline, noradrenaline, cortisol and heart β1 adrenergic receptor (β1-AR) levels were assessed to evaluate sympathetic activity. Picro Sirius Red (PSR) staining was performed to evaluate cardiomyocyte hypertrophy and interstitial fibrosis. Monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6(IL-6), nuclear factor kappa-B(NF-κB), NADPH oxidase-2 (NOX2), matrix metalloprotein (MMP-9) and transforming growth factor-beta (TGF-β) levels were assessed to evaluate inflammation, fibrosis and oxidative stress levels in heart after ICH. Macrophages and neutrophils were assessed to evaluate inflammatory cell infiltration in heart after ICH. ICH induced sympathetic excitability, as identified by increased circulating adrenaline, noradrenaline, cortisol levels and β1-AR expression in heart tissue. Metoprolol-treated ICH mice had improved cardiac and neurological function. The suppression of sympathetic overactivity by metoprolol attenuates cardiac inflammation, fibrosis and oxidative stress after ICH. In conclusion, ICH-induced secondary sympathetic overactivity which mediated inflammatory response may play an important role in post-ICH cardiac dysfunction.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Jimusi Wuri
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Lulu An
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Xiaoxuan Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Haotian Hu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ruixia Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yue Su
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Quan Yuan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Tao Yan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China.
| |
Collapse
|
31
|
Kato R, Taneichi H, Takarada S, Okabe M, Miyao N, Nakaoka H, Ibuki K, Ozawa S, Adachi Y, Yoshimura N, Saito K, Ichida F, Hirono K. Reversible left ventricular noncompaction caused by hypertensive hydrocephalus: a pediatric case report. BMC Pediatr 2021; 21:205. [PMID: 33910553 PMCID: PMC8080348 DOI: 10.1186/s12887-021-02680-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Left ventricular noncompaction cardiomyopathy (LVNC) is characterized by prominent ventricular trabeculations on cardiovascular imaging. Acquired reversible LVNC has not been reported in pediatrics without a genetic background. CASE PRESENTATION A 9-year-old girl with a ventriculoperitoneal (VP) shunt for neonatal posthemorrhagic hydrocephalus was referred due to exacerbation of hydrocephalus caused by VP shunt dysfunction. Transthoracic echocardiography (TTE) revealed depressed left ventricular (LV) systolic function and thick prominent trabeculae in the LV, predominantly in the apex, suggesting LVNC. Following treatment with extraventricular drainage for hydrocephalus, prominent trabeculation of the LV was diminished on TTE within 3 months. Genetic testing using next-generation sequencing was performed, and no significant variants were identified. CONCLUSIONS We revealed for the first time a pediatric case of reversible LVNC without genetic predisposition. This case report provides valuable information on the pathogenesis of acquired LVNC and suggests that detailed evaluation is required to elucidate the diagnosis of this wide spectrum of etiologic-pathogenetic disorders.
Collapse
Affiliation(s)
- Riko Kato
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiromichi Taneichi
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shinya Takarada
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mako Okabe
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nariaki Miyao
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hideyuki Nakaoka
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Keijiro Ibuki
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sayaka Ozawa
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Naoki Yoshimura
- First Department of Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazuyoshi Saito
- Department of Pediatrics, Fujita Health University, Toyoake city, Aichi, Japan
| | - Fukiko Ichida
- Department of Pediatrics, International University of Health and Welfare, Tokyo, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
32
|
Harris CL, Khalid M, Hashmi A, Shani J, Malik BA. A Case of Adrenal Crisis-Induced Stress Cardiomyopathy. Cureus 2021; 13:e14420. [PMID: 33996290 PMCID: PMC8117259 DOI: 10.7759/cureus.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We report a case of a 36-year-old male who presented to the emergency department with complaints of weakness. On presentation the patient was hypotensive, hyperkalemic, and hyponatremic. The patient experienced a sudden cardiac arrest in the computed tomography (CT) scanner moments after arrival. Electrocardiogram (EKG) demonstrated PR prolongation and widened QRS. Echocardiogram demonstrated a left ventricular ejection fraction of 26%-30% with evidence of severe hypokinesis of the mid antero-septal and inferior-septal segments of the left ventricle. CT of the chest, abdomen, and pelvis demonstrated hypoplastic/atrophic adrenal glands. Total cortisol level was undetectable by lab measurement. The patient was diagnosed with stress cardiomyopathy secondary to adrenal crisis. He was managed with hydrocortisone and eventually made a full clinical recovery and improvement in left ventricular ejection fraction. This article references the rarity of this phenomenon and its relevance to early clinical detection.
Collapse
Affiliation(s)
- Chad L Harris
- Internal Medicine, Maimonides Medical Center, New York, USA
| | - Mazin Khalid
- Cardiology, Maimonides Medical Center, New York, USA
| | | | - Jacob Shani
- Cardiology, Maimonides Medical Center, New York, USA
| | - Bilal A Malik
- Cardiology, Maimonides Medical Center, New York, USA
| |
Collapse
|
33
|
de Marvao A, Alexander D, Bucciarelli-Ducci C, Price S. Heart disease in women: a narrative review. Anaesthesia 2021; 76 Suppl 4:118-130. [PMID: 33682102 DOI: 10.1111/anae.15376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the worldwide leading cause of death in women. Biological differences between the sexes, a result of genetic, epigenetic and sex hormone-mediated factors, are complex and incompletely understood. These differences are compounded by socio-cultural factors and together account for the variation in the prevalence, presentation and natural history of cardiovascular disease between men and women. Although there is growing recognition of sex-specific determinants of outcomes, women remain under-represented in clinical trials, and sex-disaggregated diagnostic and management strategies are not currently recommended in clinical guidelines. Women remain more likely to experience delays in diagnosis, to be treated less aggressively and to have worse outcomes. As a consequence, cardiovascular disease in women remains understudied, underdiagnosed and undertreated. This review will focus on female-specific characteristics of cardiovascular disease and how these may impact on anaesthetic and peri-operative risk assessment and care. We highlight significant differences between the sexes in the natural history of cardiovascular disease, including those disease entities that are more common in women, such as sudden coronary artery dissection or microvascular dysfunction. Given the rapidly rising incidence of maternal cardiovascular disease and associated complications, special consideration is given to the risk assessment and management of these conditions during pregnancy. Increased awareness of these issues has the potential to improve the effectiveness of the multidisciplinary heart team and ultimately improve the care provided to women.
Collapse
Affiliation(s)
- A de Marvao
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - D Alexander
- Department of Cardiac Anaesthesia, Royal Brompton Hospital, London, UK
| | - C Bucciarelli-Ducci
- Bristol Heart Institute, Bristol NIHR Cardiovascular Research Centre, University of Bristol and University Hospitals Bristol NHS Trust, Bristol, UK
| | - S Price
- Adult Intensive Care Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
34
|
Sun H, Ji Y, Li S, Dong H. Current strategies with sensing technologies to eliminate stress cardiomyopathy. Biotechnol Appl Biochem 2021; 69:576-586. [PMID: 33619791 DOI: 10.1002/bab.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022]
Abstract
Stress cardiomyopathy refers weakening of heart muscle due to the continuous stress. Generally, the severe status of stress cardiomyopathy has been revealed after damaging the muscles and measured by the physical changes in the heart system. To overcome this issue, biosensor can be used, which could eliminate the late identification stress cardiomyopathy. With biosensors, different stress markers such as epinephrine, dopamine, catecholamine, α-amylase, norepinephrine, serotonin and cortisol have been identified by a wide range of developments. These biosensors are available from laboratory to industry at the ranges of nano to macrodevices. To merge with the identification of stress cardiomyopathy, the above strategies might be utilized properly and can aid to reduce the stress-related problems. This overview gleaned the currently available biosensing methods and the associated biomarkers at various stages of the developments and implementations of stress cardiomyopathy.
Collapse
Affiliation(s)
- Hao Sun
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| | - Yongjian Ji
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| | - Shuang Li
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| | - Hongwei Dong
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| |
Collapse
|
35
|
Tso M, Nosib S. Typical and reverse Takotsubo syndromes as initial manifestations of consecutive Addisonian crises in a 38-year-old patient: the heart has its reasons! BMJ Case Rep 2021; 14:14/1/e238189. [PMID: 33509872 PMCID: PMC7845720 DOI: 10.1136/bcr-2020-238189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report an interesting case of a 38-year-old woman presenting with reverse Takotsubo syndrome (TTS) secondary to an Addisonian crisis, her second such episode. A few years prior, she had presented with typical TTS in the setting of Addisonian crisis; diagnostic work-up revealing Auto-Immune Polyglandular Syndrome Type II (APS II). We believe this to be the first case report of typical and variant phenotypes of TTS in a patient with APS II. The pathogenic link between these two conditions is explored. In patients presenting with Addisonian crises and refractory shock, the possibility of concurrent TTS should be considered. TTS muddies the diagnostic waters and poses therapeutic challenges as outlined.
Collapse
Affiliation(s)
- Melissa Tso
- Department of Medicine, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Shravan Nosib
- Division of Cardiology, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
36
|
Michos ED, Sabouret P. Racial differences in Takotsubo cardiomyopathy: more alike than different? Minerva Cardiol Angiol 2021; 69:746-749. [PMID: 33427430 DOI: 10.23736/s2724-5683.20.05571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erin D Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA -
| | - Pierre Sabouret
- ACTION-Group, Heart Institute, Pitié-Salpétrière Hospital, Pierre and Marie Curie University, Paris, France
| |
Collapse
|
37
|
Singh A, Sturzoiu T, Vallabhaneni S, Shirani J. Stress cardiomyopathy induced during dobutamine stress echocardiography. Int J Crit Illn Inj Sci 2020; 10:43-48. [PMID: 33376690 PMCID: PMC7759070 DOI: 10.4103/ijciis.ijciis_86_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/18/2019] [Accepted: 01/20/2020] [Indexed: 11/04/2022] Open
Abstract
Background Catecholamines play a central role in pathogenesis of stress cardiomyopathy (SC). We aimed to review the clinical characteristics, procedural details and outcomes of patients with SC during dobutamine stress echocardiography (DSE). Methods/Results A total of 20 adults [age 64±15 years, 80% women, 67% hypertension, 20% diabetes, 33% hypercholesterolemia, 19% chronic kidney disease, 13% known anxiety disorder] with SC during DSE were identified from local digital archives of our laboratory (n=3) or reports in English literature (n=17). Indication for DSE was suspected coronary artery disease (CAD) in all patients. Left ventricular (LV) ejection fraction was normal at baseline. SC developed at a blood pressure of 154±47/86±24 mmHg, heart rate of 130±17 bpm (88±10% predicted maximum) and peak rate-pressure product of 20559±3898 mmHg*bpm. ST segment elevation was seen in 65%. SC occurred at peak dobutamine infusion rate of 38±6 μg/kg/min in 85% and during recovery in 15%. Atropine [0.7±0.6 (0.25-2) mg] was given to 7 patients. LV ejection fraction dropped to 30±6% with apical (40%), apical and mid (45%) or basal and mid (10%) circumferential LV ballooning. One patient (5%) had a mixed pattern of wall motion abnormality. LV outflow tract obstruction developed in 15%. Major adverse cardiac events occurred in 7 (35%) and included death (n=1), congestive heart failure (n=2), hypotension (n=3) and atrial fibrillation with heart failure (n=1). At a mean follow up duration of 19±19 days, complete or partial recovery of LV wall motion abnormality was seen in 18 and 1 patient, respectively. Conclusion SC uncommonly occurs during DSE. However, death and other adverse events (hypotension, heart failure and atrial fibrillation) may occur and require urgent attention. Once managed, complete recovery is expected in most patients.
Collapse
Affiliation(s)
- Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Tudor Sturzoiu
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| | | | - Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, PA, USA
| |
Collapse
|
38
|
Jothin A, Raj JP, Thiruvenkatarajan V. A simple procedure in a complex patient: perioperative takotsubo cardiomyopathy. BMJ Case Rep 2020; 13:13/12/e233121. [PMID: 33334739 PMCID: PMC7747580 DOI: 10.1136/bcr-2019-233121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Takotsubo cardiomyopathy (TTC) is a rare but life-threatening condition that is still not completely understood. Characterised by rapidly reversible ventricular dysfunction without any prior coronary artery disease, it can imitate a myocardial infarction and lead to death if not managed appropriately. This report examines a case of intraoperative cardiac arrest in a patient with no previous cardiac disease, and discusses the factors that may have precipitated this event, as well as the ways of distinguishing the cause of the arrest based on clinical course and investigations, eventually leading to a diagnosis of TTC.
Collapse
Affiliation(s)
- Arvind Jothin
- Department of Anaesthesia, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - John Prakash Raj
- Department of Intensive Care Medicine, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | | |
Collapse
|
39
|
Wang Z, Qin H, Chen G, Dai Y, Cai Y, Cheng X, Qian Y, Chu M, Lu X. Anxiety is associated with increased risk for atrial cardiopathy. Acta Neurol Belg 2020; 120:1383-1388. [PMID: 32193730 DOI: 10.1007/s13760-020-01335-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Anxiety is common in patients with atrial fibrillation (AF). The mutual causal effect between anxiety and AF is expected with limited evidence. Atrial cardiopathy is a term to describe structural or electrophysiological atrium abnormality that precedes the onset of AF. This study aimed to investigate the association of anxiety with atrial cardiopathy, giving a clue to the causal relationship of this mind-heart link. This cross-sectional study analyzed 532 patients who were free of AF, atrial flutter, stroke, acute coronary syndrome and valvular heart disease. Atrial cardiopathy was defined as P-wave terminal force in lead V1 > 5000 μV·ms on electrocardiogram or severe left atrial enlargement on echocardiogram. Generalized anxiety disorder was ascertained by a score of > 17/56 on Hamilton anxiety rating scale. Multivariable logistic regression was used to explore the association of anxiety with atrial cardiopathy. A total of 65(12.2%) patients had atrial cardiopathy and 53(10.0%) had generalized anxiety disorder, respectively. Those with atrial cardiopathy were older (74.0 vs 67.0, P < 0.001), had a bigger left ventricular posterior wall thickness (10.1 vs 9.7 mm, P = 0.030), and had a higher prevalence of hypertension (83.1% vs 65.5%, P = 0.005), premature complexes (20.0% vs 6.2%, P < 0.001), and generalized anxiety disorder (20.0% vs 8.6%, P = 0.004), respectively. Multivariable logistic regression showed the significant association of anxiety with atrial cardiopathy (OR 2.788; 95% CI 1.304-5.960, P = 0.008), independent of confounding factors. Anxiety is independently associated with atrial cardiopathy. This association indicates the triggering effect of anxiety on atrial remodeling.
Collapse
Affiliation(s)
- Zhaolu Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyuan Qin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guilin Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Dai
- The First School of Clinical Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyuan Cai
- Division of Neurology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, China
| | - Xi Cheng
- Division of Neurology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, China
| | - Yun Qian
- Division of Neurology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, China
| | - Ming Chu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Lu
- Division of Neurology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, China.
| |
Collapse
|
40
|
Citro R, Okura H, Ghadri JR, Izumi C, Meimoun P, Izumo M, Dawson D, Kaji S, Eitel I, Kagiyama N, Kobayashi Y, Templin C, Delgado V, Nakatani S, Popescu BA. Multimodality imaging in takotsubo syndrome: a joint consensus document of the European Association of Cardiovascular Imaging (EACVI) and the Japanese Society of Echocardiography (JSE). J Echocardiogr 2020; 18:199-224. [PMID: 32886290 PMCID: PMC7471594 DOI: 10.1007/s12574-020-00480-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Takotsubo syndrome (TTS) is a complex and still poorly recognized heart disease with a wide spectrum of possible clinical presentations. Despite its reversibility, it is associated with serious adverse in-hospital events and high complication rates during follow-up. Multimodality imaging is helpful for establishing the diagnosis, guiding therapy, and stratifying prognosis of TTS patients in both the acute and post-acute phase. Echocardiography plays a key role, particularly in the acute care setting, allowing for the assessment of left ventricular (LV) systolic and diastolic function and the identification of the typical apical-midventricular ballooning pattern, as well as the circumferential pattern of wall motion abnormalities. It is also useful in the early detection of complications (i.e. LV outflow tract obstruction, mitral regurgitation, right ventricular involvement, LV thrombi, and pericardial effusion) and monitoring of systolic function recovery. Left ventriculography allows the evaluation of LV function and morphology, identifying the typical TTS patterns when echocardiography is not available or wall motion abnormalities cannot be properly assessed with ultrasound. Cardiac magnetic resonance provides a more comprehensive depiction of cardiac morphology and function and tissue characterization and offers additional value to other imaging modalities for differential diagnosis (myocardial infarction and myocarditis). Coronary computed tomography angiography has a substantial role in the diagnostic workup of patients with acute chest pain and a doubtful TTS diagnosis to rule out other medical conditions. It can be considered as a non-invasive appropriate alternative to coronary angiography in several clinical scenarios. Although the role of nuclear imaging in TTS has not yet been well established, the combination of perfusion and metabolic imaging may provide useful information on myocardial function in both the acute and post-acute phase.
Collapse
Affiliation(s)
- Rodolfo Citro
- Cardiothoracic Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy.
| | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jelena R Ghadri
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Chisato Izumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Patrick Meimoun
- Department of Cardiology and Intensive Care, Centre Hospitalier de Compiegne, Compiegne, France
| | - Masaki Izumo
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, Scotland, UK
| | - Shuichiro Kaji
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ingo Eitel
- Department of Cardiology, University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Lübeck, Germany
- Department of Cardiology, German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Nobuyuki Kagiyama
- Department of Digital Health and Telemedicine R&D, Juntendo University and Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo, 113-8421, Japan
| | - Yukari Kobayashi
- Department of Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Christian Templin
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila," Euroecolab, Bucharest, Romania
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| |
Collapse
|
41
|
Akella K, Kanuri SH, Murtaza G, G Della Rocca D, Kodwani N, K Turagam M, Shenthar J, Padmanabhan D, Basu Ray I, Natale A, Gopinathannair R, Lakkireddy D. Impact of Yoga on Cardiac Autonomic Function and Arrhythmias. J Atr Fibrillation 2020; 13:2408. [PMID: 33024508 DOI: 10.4022/jafib.2408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
With the expanding integration of complementary and alternative medicine (CAM) practices in conjunction with modern medicine, yoga has quickly risen to being one of the most common CAM practices across the world. Despite widespread use of yoga, limited studies are available, particularly in the setting of dysrhythmia. Preliminary studies demonstrate promising results from integration of yoga as an adjunct to medical therapy for management of dysrhythmias. In this review, we discuss the role of autonomic nervous system in cardiac arrhythmia,interaction of yoga with autonomic tone and its subsequent impact on these disease states. The role of yoga in specific disease states, and potential future direction for studies assessing the role of yoga in dysrhythmia.
Collapse
Affiliation(s)
- Krishna Akella
- Arrhythmia Research Fellow, Kansas City Heart Rhythm Institute (KCHRI), Overland Park, KS, USA
| | - Sri Harsha Kanuri
- Arrhythmia Research Fellow, Kansas City Heart Rhythm Institute (KCHRI), Overland Park, KS, USA
| | - Ghulam Murtaza
- Arrhythmia Research Fellow, Kansas City Heart Rhythm Institute (KCHRI), Overland Park, KS, USA
| | | | - Naresh Kodwani
- Internal Medicine Program Director, Overland Park Regional Medical Center, Overland Park, KS, USA
| | | | - Jayaprakash Shenthar
- Sri Jayadeva Institute of Cardiovascular Sciences and Research , Bangalore , Karnataka, India
| | - Deepak Padmanabhan
- Sri Jayadeva Institute of Cardiovascular Sciences and Research , Bangalore , Karnataka, India
| | - Indranill Basu Ray
- The University of Memphis, Memphis, TN, USA; Visiting Professor and Head of Integrative Cardiology, AIIMS, Rishikesh, UK, India
| | - Andrea Natale
- Executive Medical Director, Texas Heart Rhythm Institute, Austin, TX, US
| | | | | |
Collapse
|
42
|
Norepinephrine Leads to More Cardiopulmonary Toxicities than Epinephrine by Catecholamine Overdose in Rats. TOXICS 2020; 8:toxics8030069. [PMID: 32947820 PMCID: PMC7560392 DOI: 10.3390/toxics8030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022]
Abstract
While catecholamines like epinephrine (E) and norepinephrine (NE) are commonly used in emergency medicine, limited studies have discussed the harm of exogenously induced catecholamine overdose. We investigated the possible toxic effects of excessive catecholamine administration on cardiopulmonary function and structure via continuous 6 h intravenous injection of E and/or NE in rats. Heart rate, echocardiography, and ventricular pressure were measured throughout administration. Cardiopulmonary structure was also assessed by examining heart and lung tissue. Consecutive catecholamine injections induced severe tachycardia. Echocardiography results showed NE caused worse dysfunction than E. Simultaneously, both E and NE led to higher expression of Troponin T and connexin43 in the whole ventricles, which increased further with E+NE administration. The NE and E+NE groups showed severe pulmonary edema while all catecholamine-administering groups demonstrated reduced expression of receptor for advanced glycation end products and increased connexin43 levels in lung tissue. The right ventricle was more vulnerable to catecholamine overdose than the left. Rats injected with NE had a lower survival rate than those injected with E within 6 h. Catecholamine overdose induces acute lung injuries and ventricular cardiomyopathy, and E+NE is associated with a more severe outcome. The similarities of the results between the NE and E+NE groups may indicate a predominant role of NE in determining the overall cardiopulmonary damage. The results provide important clinical insights into the pathogenesis of catecholamine storm.
Collapse
|
43
|
Qi C, Liu X, Xiong T, Wang D. Tempol prevents isoprenaline-induced takotsubo syndrome via the reactive oxygen species/mitochondrial/anti-apoptosis /p38 MAPK pathway. Eur J Pharmacol 2020; 886:173439. [PMID: 32871175 DOI: 10.1016/j.ejphar.2020.173439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Takotsubo Syndrome (TS) is a kind of acute cardiac syndrome with a complex pathophysiological mechanism that remains to be elucidated. The relationship between TS and reactive oxygen species has received increasing attention over in recent years. Therefore, the relationship between TS and reactive oxygen species was investigated in vivo and in vitro. Isoprenaline (ISO) was used to induce TS and tempol (quercetin) was selected as a scavenger to eliminate reactive oxygen species in animal experiments, and echocardiography was used to determine the incidence of TS. The H9C2 cells were cultured with different reagents to investigate the detailed mechanism; Reactive oxygen species levels and mitochondrial function were evaluated. Cell apoptosis rate was analyzed by TUNEL staining and the proteins involved in the signaling pathways were examined by Western blotting. It was found that a high dose of tempol almost eliminated TS and protected the cardiac function. Moreover, tempol also decreased the reactive oxygen species levels and reduced lipid droplet deposition in myocardial tissue. In terms of the cultured cells, tempol preconditioning decreased reactive oxygen species production as well as lipid droplet deposition, and protected the mitochondrial function by reducing mitochondrial swelling, thereby maintaining the mitochondrial membrane potential (ΔΨm) at a level that was higher than that of controls. Furthermore, tempol could reduce cells apoptosis after ISO treatment and decrease the protein level of p38, which is a member of the MAPK family, which and thus plays an important role in regulating cells apoptosis. This antiapoptotic effect of tempol was similar to that of a control reagent, SB203580, which is a specific inhibitor of phospha-p38 (p-p38). This study demonstrated, for the first time, a sudden increase in reactive oxygen species and effects of the downstream cascades play core roles in the development of TS.
Collapse
Affiliation(s)
- Chunlei Qi
- Department of Cardiology, The Third Affiliated Hospital of Nanjing Medical University; Sir Run Run Hospital Affiliated to Nanjing Medical University, 109#, Longmian Ave, Nanjing, Jiangsu, China.
| | - Xuesong Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, 172#, Tongzipo Ave, Changsha, HuNan, China
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital of Central South University, 172#, Tongzipo Ave, Changsha, HuNan, China
| | - Daxin Wang
- Clinical Medical College Yangzhou University, 88(#) South University Ave, Yangzhou; Jiangsu, China; Department of Medical Research Centre, Northern Jiangsu People's Hospital, 98#,West Nantong Ave, Yangzhou, Jiangsu, Zip code, 225009, China.
| |
Collapse
|
44
|
Citro R, Okura H, Ghadri JR, Izumi C, Meimoun P, Izumo M, Dawson D, Kaji S, Eitel I, Kagiyama N, Kobayashi Y, Templin C, Delgado V, Nakatani S, Popescu BA, Bertrand P, Donal E, Dweck M, Galderisi M, Haugaa KH, Sade LE, Stankovic I, Cosyns B, Edvardsen T. Multimodality imaging in takotsubo syndrome: a joint consensus document of the European Association of Cardiovascular Imaging (EACVI) and the Japanese Society of Echocardiography (JSE). Eur Heart J Cardiovasc Imaging 2020; 21:1184-1207. [DOI: 10.1093/ehjci/jeaa149] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Takotsubo syndrome (TTS) is a complex and still poorly recognized heart disease with a wide spectrum of possible clinical presentations. Despite its reversibility, it is associated with serious adverse in-hospital events and high complication rates during follow-up. Multimodality imaging is helpful for establishing the diagnosis, guiding therapy, and stratifying prognosis of TTS patients in both the acute and post-acute phase. Echocardiography plays a key role, particularly in the acute care setting, allowing for the assessment of left ventricular (LV) systolic and diastolic function and the identification of the typical apical-midventricular ballooning pattern, as well as the circumferential pattern of wall motion abnormalities. It is also useful in the early detection of complications (i.e. LV outflow tract obstruction, mitral regurgitation, right ventricular involvement, LV thrombi, and pericardial effusion) and monitoring of systolic function recovery. Left ventriculography allows the evaluation of LV function and morphology, identifying the typical TTS patterns when echocardiography is not available or wall motion abnormalities cannot be properly assessed with ultrasound. Cardiac magnetic resonance provides a more comprehensive depiction of cardiac morphology and function and tissue characterization and offers additional value to other imaging modalities for differential diagnosis (myocardial infarction and myocarditis). Coronary computed tomography angiography has a substantial role in the diagnostic workup of patients with acute chest pain and a doubtful TTS diagnosis to rule out other medical conditions. It can be considered as a non-invasive appropriate alternative to coronary angiography in several clinical scenarios. Although the role of nuclear imaging in TTS has not yet been well established, the combination of perfusion and metabolic imaging may provide useful information on myocardial function in both the acute and post-acute phase.
Collapse
Affiliation(s)
- Rodolfo Citro
- Cardiothoracic Vascular Department, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
| | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jelena R Ghadri
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Chisato Izumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Patrick Meimoun
- Department of Cardiology and Intensive Care, Centre Hospitalier de Compiegne, Compiegne, France
| | - Masaki Izumo
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, Scotland, UK
| | - Shuichiro Kaji
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ingo Eitel
- Department of Cardiology, University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Lübeck, Germany
- Department of Cardiology, German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Nobuyuki Kagiyama
- Department of Digital Health and Telemedicine R&D, Juntendo University and Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo, 113-8421, Japan
| | - Yukari Kobayashi
- Department of Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Christian Templin
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila,” Euroecolab, Bucharest, Romania
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “Prof. Dr. C. C. Iliescu”, Bucharest, Romania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahmad I, Hoda M. Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy. Pharmacol Res 2020; 161:105112. [PMID: 32758636 DOI: 10.1016/j.phrs.2020.105112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Cardiomyopathy is among the major clinical manifestations of heart diseases that triggers malfunctioning of the cardiovascular system. Some of the major causal factors of cardiomyopathy includes myocardial ischemia, drug-toxicity, genetic aberrations, abnormal depositions of essential elements, and redox imbalance. Diabetes, being the major comorbid of cardiovascular diseases and vice versa, further contributes to the progression of cardiomyopathy. The molecular mechanisms of action suggest that oxidative stress is among the primary factors that triggers cascading impact on cardiomyopathy. Resveratrol, a phenolic antioxidant, has the potential to quench the excessive free radicals. It is a potent antioxidant supplement that may as well be a therapeutic molecule. The review focuses on the various molecular mechanisms of action that resveratrol potentiates in reversing or attenuating the progress of diabetic and non-diabetic cardiomyopathy triggered by wide range of factors. Additionally, resveratrol also tends to preserve the healthy heart from potential damage that may be triggered by oxidative stress.
Collapse
Affiliation(s)
- Irshad Ahmad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Muddasarul Hoda
- Department of Biological Sciences, Aliah University, IIA/27, Newtown, Kolkata, 700160, India.
| |
Collapse
|
46
|
Rostagno C, Polidori G, Ceccofiglio A, Cartei A, Boccaccini A, Peris A, Rubbieri G, Civinini R, Innocenti M. Takotsubo Syndrome: Is this a Common Occurrence in Elderly Females after Hip Fracture? J Crit Care Med (Targu Mures) 2020; 6:146-151. [PMID: 32864459 PMCID: PMC7430354 DOI: 10.2478/jccm-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/31/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The prevalence of Takotsubo syndrome in hip fracture is not known. METHODS Hip fracture patients were evaluated in a multidisciplinary unit. Patients with ECG abnormalities and increased troponin I values at the time of hospital admission were included in the study Follow-up was clinical at 30 days and by telephonic interview at one year. RESULTS Between October 1st 2011 to September 30th 2016, 51 of 1506 patients had preoperative evidence of myocardial damage. Eight, all females, fulfilled the Mayo criteria for Takotsubo syndrome, six had no coronary lesions. Hip surgery was uneventful, and all eight were alive at thirty days, and seven of these were still alive after one year. Forty-three patients had myocardial infarction: mortality at thirty days and one year were 11% and 44% (p<0.0001, Student's t-test; log-rank test). CONCLUSION At least 15% of patients with hip fracture and preoperative myocardial damage had Takotsubo syndrome. They were all elderly females. Contrary to myocardial infarction, Takotsubo syndrome has a favourable long term prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriano Peris
- Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Gaia Rubbieri
- Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | | | | |
Collapse
|
47
|
Binder AK, Haydek JP, Parihar S, Modlin CE, Tannu M, Aldredge A, Sueblinvong V. Slow on the Uptake, Progression to Heartbreak. J Investig Med High Impact Case Rep 2020; 8:2324709620936832. [PMID: 32583694 PMCID: PMC7318803 DOI: 10.1177/2324709620936832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The prevalence of serotonin syndrome increases over the past several years as more serotonergic medications are being used in clinical practice. It is a potentially lethal condition caused by excessive serotonergic activity. Common causes of serotonin syndrome are the use of prescription medications, illicit drugs, or a combination of substances, leading to an increase in the activity of serotonin in the central and peripheral nervous system. The clinical symptoms range from mild to severe. We report a case of a 25-year-old woman with polysubstance abuse, including cocaine, who presented with confusion, rigidity, high-grade fever, and reduced biventricular function on echocardiogram. Based on the combination of substance used history, clinical presentation, and echocardiogram findings, she was diagnosed with serotonin syndrome complicated by takotsubo cardiomyopathy. She improved after being treated in the intensive care unit and was discharged from the hospital. This patient demonstrates the importance of recognizing and promptly initiating management of serotonin syndrome in order to improve morbidity and mortality.
Collapse
|
48
|
Zhang Y, Hou MC, Li JJ, Qi Y, Zhang Y, She G, Ren YJ, Wu W, Pang ZD, Xie W, Deng XL, Du XJ. Cardiac β-adrenergic receptor activation mediates distinct and cell type-dependent changes in the expression and distribution of connexin 43. J Cell Mol Med 2020; 24:8505-8517. [PMID: 32578931 PMCID: PMC7412418 DOI: 10.1111/jcmm.15469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activation of the sympatho-β-adrenergic receptors (β-ARs) system is a hallmark of heart failure, leading to fibrosis and arrhythmias. Connexin 43 (Cx43) is the most abundant gap junctional protein in the myocardium. Current knowledge is limited regarding Cx43 remodelling in diverse cell types in the diseased myocardium and the underlying mechanism. We studied cell type-dependent changes in Cx43 remodelling due to β-AR overactivation and molecular mechanisms involved. Mouse models of isoproterenol stimulation or transgenic cardiomyocyte overexpression of β2 -AR were used, which exhibited cardiac fibrosis and up-regulated total Cx43 abundance. In both models, whereas Cx43 expression in cardiomyocytes was reduced and more laterally distributed, fibroblasts exhibited elevated Cx43 expression and enhanced gap junction communication. Mechanistically, activation of β2 -AR in fibroblasts in vitro elevated Cx43 expression, which was abolished by the β2 -antagonist ICI-118551 or protein kinase A inhibitor H-89, but simulated by the adenylyl cyclase activator forskolin. Our in vitro and in vivo data showed that β-AR activation-induced production of IL-18 sequentially stimulated Cx43 expression in fibroblasts in a paracrine fashion. In summary, our findings demonstrate a pivotal role of β-AR in mediating distinct and cell type-dependent changes in the expression and distribution of Cx43, leading to pathological gap junction remodelling in the myocardium.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Meng-Chen Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Pathology, Xi'an Guangren Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing-Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yu-Jie Ren
- Department of Pathology, Xi'an Guangren Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zheng-Da Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
49
|
Abstract
A 58-year-old woman was admitted with symptoms of coronavirus disease-2019. She subsequently developed mixed shock, and an echocardiogram showed mid-distal left ventricular hypokinesis and apical ballooning, findings typical of stress, or takotsubo, cardiomyopathy. Over the next few days her left ventricular function improved, the further supporting the reversibility of acute stress cardiomyopathy. (Level of Difficulty: Beginner.)
Collapse
|
50
|
Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020; 8:323. [PMID: 32391340 PMCID: PMC7193099 DOI: 10.3389/fbioe.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Soraia Fernandes
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Jan Vrbsky
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Ece Ergir
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, VIC, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica, Rome, Italy
| | - Giancarlo Forte
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| |
Collapse
|