1
|
Han X, Zhang Q, He H, Zhao Q, Li G. Reflow-molded deep concave microwell arrays for robust and large-scale production of embryoid bodies. LAB ON A CHIP 2023; 23:4378-4389. [PMID: 37695312 DOI: 10.1039/d3lc00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Embryonic stem cell (ESC)-derived aggregates, called embryoid bodies (EBs), are powerful in vitro models used to study human development and disease. However, the cost-effective and large-scale production of homogeneous EBs still remains a challenge. Here, we report a rapid, straightforward method for fabricating closely arrayed deep concave microwells, enabling the mass production of uniform EBs from single cell suspensions. By simply combining micromilling, caramel replica molding, and thermal reflow, we generate convex micromolds with high aspect ratios and excellent surface smoothness. Benefitting from the nature of reflow, this method can produce rounded bottom polydimethylsiloxane (PDMS) microwells, which are not easily achieved with standard soft lithography techniques but critical to producing spherical EBs. To achieve optimal concave microwells, we investigated the effect of thermal reflow temperature and time on the surface smoothness and roundness of the finished microwells. In addition, to further improve the utility of this method, we also investigated the effect of microwell aspect ratio (AR) on the loss of EBs during medium manipulation. The capability of this deep concave microwell system was validated by rapidly generating a large number of human embryonic stem cell (hESC)-derived EBs and then efficiently differentiating them into a cardiac lineage. The proposed fabrication method and deep concave microwell platform are highly practical, and thus will benefit the mass production of EBs for potential tissue regeneration and cell therapy applications.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Qi Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Hui He
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Ferdousi F, Sasaki K, Fukumitsu S, Kuwata H, Nakajima M, Isoda H. A Descriptive Whole-Genome Transcriptomics Study in a Stem Cell-Based Tool Predicts Multiple Tissue-Specific Beneficial Potential and Molecular Targets of Carnosic Acid. Int J Mol Sci 2023; 24:ijms24098077. [PMID: 37175790 PMCID: PMC10179098 DOI: 10.3390/ijms24098077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
| | - Satoshi Fukumitsu
- NIPPN Corporation, Tokyo 243-0041, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
3
|
Ferdousi F, Sasaki K, Xu D, Zheng YW, Szele FG, Isoda H. Editorial: Directing Stem Cell Fate Using Plant Extracts and Their Bioactive Compounds. Front Cell Dev Biol 2022; 10:957601. [PMID: 35846354 PMCID: PMC9277474 DOI: 10.3389/fcell.2022.957601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Hiroko Isoda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroko Isoda,
| |
Collapse
|
4
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
DNA Microarray-Based Global Gene Expression Profiling in Human Amniotic Epithelial Cells Predicts the Potential of Microalgae-Derived Squalene for the Nervous System and Metabolic Health. Biomedicines 2021; 10:biomedicines10010048. [PMID: 35052729 PMCID: PMC8772846 DOI: 10.3390/biomedicines10010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent years, perinatal stem cells, such as human amniotic epithelial cells (hAECs), have attracted increasing interest as a novel tool of stem cell-based high-throughput drug screening. In the present study, we investigated the bioactivities of squalene (SQ) derived from ethanol extract (99.5%) of a microalgae Aurantiochytrium Sp. (EEA-SQ) in hAECs using whole-genome DNA microarray analysis. Tissue enrichment analysis showed that the brain was the most significantly enriched tissue by the differentially expressed genes (DEGs) between EEA-SQ-treated and control hAECs. Further gene set enrichment analysis and tissue-specific functional analysis revealed biological functions related to nervous system development, neurogenesis, and neurotransmitter modulation. Several adipose tissue-specific genes and functions were also enriched. Gene-disease association analysis showed nervous system-, metabolic-, and immune-related diseases were enriched. Altogether, our study suggests the potential health benefits of microalgae-derived SQ and we would further encourage investigation in EEA-SQ and its derivatives as potential therapeutics for nervous system- and metabolism-related diseases.
Collapse
|
6
|
Kargaran PK, Mosqueira D, Kozicz T. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology. Front Cardiovasc Med 2021; 7:604581. [PMID: 33585579 PMCID: PMC7874022 DOI: 10.3389/fcvm.2020.604581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial medicine is an exciting and rapidly evolving field. While the mitochondrial genome is small and differs from the nuclear genome in that it is circular and free of histones, it has been implicated in neurodegenerative diseases, type 2 diabetes, aging and cardiovascular disorders. Currently, there is a lack of efficient treatments for mitochondrial diseases. This has promoted the need for developing an appropriate platform to investigate and target the mitochondrial genome. However, developing these therapeutics requires a model system that enables rapid and effective studying of potential candidate therapeutics. In the past decade, induced pluripotent stem cells (iPSCs) have become a promising technology for applications in basic science and clinical trials, and have the potential to be transformative for mitochondrial drug development. Engineered iPSC-derived cardiomyocytes (iPSC-CM) offer a unique tool to model mitochondrial disorders. Additionally, these cellular models enable the discovery and testing of novel therapeutics and their impact on pathogenic mtDNA variants and dysfunctional mitochondria. Herein, we review recent advances in iPSC-CM models focused on mitochondrial dysfunction often causing cardiovascular diseases. The importance of mitochondrial disease systems biology coupled with genetically encoded NAD+/NADH sensors is addressed toward developing an in vitro translational approach to establish effective therapies.
Collapse
Affiliation(s)
- Parisa K Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Simpson KE, Venkateshappa R, Pang ZK, Faizi S, Tibbits GF, Claydon TW. Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Front Physiol 2021; 11:624129. [PMID: 33519527 PMCID: PMC7844309 DOI: 10.3389/fphys.2020.624129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2), is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants can result in acquired or inherited LQTS2, respectively, which are typified by delayed repolarization and predisposition to lethal arrhythmia. As such, there is significant interest in clear identification of drugs and channel variants that produce clinically meaningful perturbation of hERG channel function. While toxicological screening of hERG channels, and phenotypic assessment of inherited channel variants in heterologous systems is now commonplace, affordable, efficient, and insightful whole organ models for acquired and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a viable in vivo or whole organ model of cardiac electrophysiology. Characterization of cardiac ion currents and toxicological screening work in intact embryos, as well as adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to the development of therapeutics that lack hERG-blocking off-target effects. Moreover, forward and reverse genetic approaches show zebrafish as a tractable model in which LQTS2 can be studied. With the development of new tools and technologies, zebrafish lines carrying precise channel variants associated with LQTS2 have recently begun to be generated and explored. In this review, we discuss the present knowledge and questions raised related to the use of zebrafish as models of acquired and inherited LQTS2. We focus discussion, in particular, on developments in precise gene-editing approaches in zebrafish to create whole heart inherited LQTS2 models and evidence that zebrafish hearts can be used to study arrhythmogenicity and to identify potential anti-arrhythmic compounds.
Collapse
Affiliation(s)
- Kyle E. Simpson
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ravichandra Venkateshappa
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Zhao Kai Pang
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shoaib Faizi
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Cardiovascular Science, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Tom W. Claydon
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
8
|
Moy A. Creating Catholic Regenerative Medicine Organizations in a Secular Biotechnology Field: A Physician-Scientist Experience. LINACRE QUARTERLY 2020; 87:218-222. [PMID: 32549639 DOI: 10.1177/0024363919890941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One aspect of the progressive secularization of biotechnology is the use of the by-products from abortion and the use of human embryos. These morally illicit cells and tissue create a significant moral and economic challenge for Catholics at different stages of their career. A practicing Catholic physician or scientific professional will face the dilemma of how to reconcile their Catholic identity with their profession. While the Catechism is clear on what actions Catholics should not pursue, there has been less religious guidance on what activities Catholics should proactively pursue in their professional life to advance the Catholic culture. This essay will examine these themes through the lens of a true story of the author's experience in starting Catholic for-profit and nonprofit biotechnology organizations. Summary Abortion and the destruction of human embryos create a moral dilemma for Catholics at different stages of a physician or scientist's career. A practicing Catholic physician or scientist must reconcile their Catholic identity with their profession. While there is little professional guidance on how to advance the culture, Jesus says that one must take up the cross and direct their God-given gifts towards His name. The only way to succeed and thrive in a secular healthcare environment is to emulate Jesus by putting aside their own self-interest; pray for courage against ridicule; accept risk; and pursue scientific and medical excellence.
Collapse
Affiliation(s)
- Alan Moy
- Cellular Engineering Technologies Inc., Coralville, IA, USA.,John Paul II Medical Research Institute, Coralville, IA, USA
| |
Collapse
|
9
|
So S, Lee Y, Choi J, Kang S, Lee JY, Hwang J, Shin J, Dutton JR, Seo EJ, Lee BH, Kim CJ, Mitalipov S, Oh SJ, Kang E. The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research. PLoS One 2020; 15:e0233057. [PMID: 32396545 PMCID: PMC7217428 DOI: 10.1371/journal.pone.0233057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Poor survival of human pluripotent stem cells (hPSCs) following freezing, thawing, or passaging hinders the maintenance and differentiation of stem cells. Rho-associated kinases (ROCKs) play a crucial role in hPSC survival. To date, a typical ROCK inhibitor, Y-27632, has been the primary agent used in hPSC research. Here, we report that another ROCK inhibitor, fasudil, can be used as an alternative and is cheaper than Y-27632. It increased hPSC growth following thawing and passaging, like Y-27632, and did not affect pluripotency, differentiation ability, and chromosome integrity. Furthermore, fasudil promoted retinal pigment epithelium (RPE) differentiation and the survival of neural crest cells (NCCs) during differentiation. It was also useful for single-cell passaging of hPSCs and during aggregation. These findings suggest that fasudil can replace Y-27632 for use in stem research.
Collapse
Affiliation(s)
- Seongjun So
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeonmi Lee
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwan Choi
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Yoon Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Julie Hwang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joosung Shin
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eul-Ju Seo
- Medical Genetics Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Kang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Kim C, Seedorf GJ, Abman SH, Shepherd DP. Heterogeneous response of endothelial cells to insulin-like growth factor 1 treatment is explained by spatially clustered sub-populations. Biol Open 2019; 8:bio045906. [PMID: 31649121 PMCID: PMC6899026 DOI: 10.1242/bio.045906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
A common strategy to measure the efficacy of drug treatment is the in vitro comparison of ensemble readouts with and without treatment, such as proliferation and cell death. A fundamental assumption underlying this approach is that there exists minimal cell-to-cell variability in the response to a drug. Here, we demonstrate that ensemble and non-spatial single-cell readouts applied to primary cells may lead to incomplete conclusions due to cell-to-cell variability. We exposed primary fetal pulmonary artery endothelial cells (PAEC) isolated from healthy newborn sheep and persistent pulmonary hypertension of the newborn (PPHN) sheep to the growth hormone, insulin-like growth factor 1 (IGF-1). We found that IGF-1 increased proliferation and branch points in tube formation assays but not angiogenic signaling proteins at the population level for both cell types. We hypothesized that this molecular ambiguity was due to the presence of cellular sub-populations with variable responses to IGF-1. Using high throughput single-cell imaging, we discovered a spatially localized response to IGF-1. This suggests localized signaling or heritable cell response to external stimuli may ultimately be responsible for our observations. Discovering and further exploring these rare cells is critical to finding new molecular targets to restore cellular function.
Collapse
Affiliation(s)
- Christina Kim
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory J Seedorf
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven H Abman
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas P Shepherd
- Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Brovold M, Almeida JI, Pla-Palacín I, Sainz-Arnal P, Sánchez-Romero N, Rivas JJ, Almeida H, Dachary PR, Serrano-Aulló T, Soker S, Baptista PM. Naturally-Derived Biomaterials for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:421-449. [PMID: 30357702 PMCID: PMC7526297 DOI: 10.1007/978-981-13-0947-2_23] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.
Collapse
Affiliation(s)
- Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Joana I Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Iris Pla-Palacín
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pilar Sainz-Arnal
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), Zaragoza, Spain
| | | | - Jesus J Rivas
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Helen Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pablo Royo Dachary
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Trinidad Serrano-Aulló
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| | - Pedro M Baptista
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain.
- Center for Biomedical Research Network Liver and Digestive Diseases (CIBERehd), Zaragoza, Spain.
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
- Biomedical and Aerospace Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain.
- Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
12
|
Stigson M, Kultima K, Jergil M, Scholz B, Alm H, Gustafson AL, Dencker L. Molecular Targets and Early Response Biomarkers for the Prediction of Developmental Toxicity In Vitro. Altern Lab Anim 2019; 35:335-42. [PMID: 17650952 DOI: 10.1177/026119290703500313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is an urgent need for new in vitro methods to predict the potential developmental toxicity of candidate drugs in the early lead identification and optimisation process. This would lead to a reduction in the total number of animals required in full-scale developmental toxicology studies, and would improve the efficiency of drug development. However, suitable in vitro systems permitting robust high-throughput screening for this purpose, for the most part, remain to be designed. An understanding of the mechanisms involved in developmental toxicity may be essential for the validation of in vitro tests. Early response biomarkers — even a single one — could contribute to reducing assay time and facilitating automation. The use of toxicogenomics approaches to study in vitro and in vivo models in parallel may be a powerful tool in defining such mechanisms of action and the molecular targets of toxicity, and also for use in finding possible biomarkers of early response. Using valproic acid as a model substance, the use of DNA microarrays to identify teratogen-responsive genes in cell models is discussed. It is concluded that gene expression in P19 mouse embryocarcinoma cells represents a potentially suitable assay system, which could be readily used in a tiered testing system for developmental toxicity testing.
Collapse
Affiliation(s)
- Michael Stigson
- Department of Pharmaceutical Biosciences, Division of Toxicology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ekerdt BL, Fuentes CM, Lei Y, Adil MM, Ramasubramanian A, Segalman RA, Schaffer DV. Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture. Adv Healthc Mater 2018; 7:e1800225. [PMID: 29717823 PMCID: PMC6289514 DOI: 10.1002/adhm.201800225] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer considerable potential for biomedical applications including drug screening and cell replacement therapies. Clinical translation of hPSCs requires large quantities of high quality cells, so scalable methods for cell culture are needed. However, current methods are limited by scalability, the use of animal-derived components, and/or low expansion rates. A thermoresponsive 3D hydrogel for scalable hPSC expansion and differentiation into several defined lineages is recently reported. This system would benefit from increased control over material properties to further tune hPSC behavior, and here a scalable 3D biomaterial with the capacity to tune both the chemical and the mechanical properties is demonstrated to promote hPSC expansion under defined conditions. This 3D biomaterial, comprised of hyaluronic acid and poly(N-isopropolyacrylamide), has thermoresponsive properties that readily enable mixing with cells at low temperatures, physical encapsulation within the hydrogel upon elevation at 37 °C, and cell recovery upon cooling and reliquefaction. After optimization, the resulting biomaterial supports hPSC expansion over long cell culture periods while maintaining cell pluripotency. The capacity to modulate the mechanical and chemical properties of the hydrogel provides a new avenue to expand hPSCs for future therapeutic application.
Collapse
Affiliation(s)
- Barbara L. Ekerdt
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Christina M. Fuentes
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, 207 Othmer, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Maroof M. Adil
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Anusuya Ramasubramanian
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Rachel A. Segalman
- Department of Chemical Engineering, 3333 Engineering IIUniversity of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - David V. Schaffer
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- Department of Molecular and Cell Biology, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- The Helen Wills Neuroscience Institute, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| |
Collapse
|
14
|
TRPC3 is required for the survival, pluripotency and neural differentiation of mouse embryonic stem cells (mESCs). SCIENCE CHINA-LIFE SCIENCES 2018; 61:253-265. [PMID: 29392682 DOI: 10.1007/s11427-017-9222-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Transient receptor potential canonical subfamily member 3 (TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mouse embryonic stem cells (mESCs) and during the differentiation of mESCs into neurons. CRISPR/Cas9-mediated knockout (KO) of TRPC3 induced apoptosis and the disruption of mitochondrial membrane potential both in undifferentiated mESCs and in those undergoing neural differentiation. In addition, TRPC3 KO impaired the pluripotency of mESCs. TRPC3 KO also dramatically repressed the neural differentiation of mESCs by inhibiting the expression of markers for neural progenitors, neurons, astrocytes and oligodendrocytes. Taken together, our new data demonstrate an important function of TRPC3 with regards to the survival, pluripotency and neural differentiation of mESCs.
Collapse
|
15
|
Klimek L, Koennecke M, Mullol J, Hellings PW, Wang D, Fokkens W, Gevaert P, Wollenberg B. A possible role of stem cells in nasal polyposis. Allergy 2017; 72:1868-1873. [PMID: 28599061 DOI: 10.1111/all.13221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Since its discovery, the understanding of stem/progenitor cells raised dramatically in the last decade. Their regenerative potential is important to develop new therapeutic applications, but the identification advanced much faster than our understanding of stem/progenitor cells. In nasal polyposis, little is known about stem cells/progenitor cells and their ability. However, the further characterization of stem cells/progenitor cells may provide new treatment options for combating nasal polyposis. This review highlights the knowledge of the current literature about stem cells/progenitor cells in nasal polyposis and how this may be exploited in the development of novel treatment strategies.
Collapse
Affiliation(s)
- L. Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - M. Koennecke
- Department of Otorhinolaryngology; University Hospital Schleswig-Holstein; Lübeck Germany
| | - J. Mullol
- Rhinology Unit and Smell Clinic; Department of Otorhinolaryngology; Hospital Clinic; IDIBAPS; Universitat de Barcelona, CIBERES; Barcelona Catalonia Spain
| | - P. W. Hellings
- Department of Otorhinolaryngology; University Hospitals Leuven; Leuven Belgium
- Department of Otorhinolaryngology; Academic Medical Centre; Amsterdam The Netherlands
| | - D.Y. Wang
- Department of Otolaryngology; National University of Singapore; Singapore
| | - W. Fokkens
- Department of Otorhinolaryngology; Academic Medical Centre; Amsterdam The Netherlands
| | - P. Gevaert
- Department of Otorhinolaryngology; Ghent University; Ghent Belgium
| | - B. Wollenberg
- Department of Otorhinolaryngology; University Hospital Schleswig-Holstein; Lübeck Germany
| |
Collapse
|
16
|
Hosoya M, Czysz K. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery. Cells 2016; 5:cells5040046. [PMID: 28009813 PMCID: PMC5187530 DOI: 10.3390/cells5040046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Masaki Hosoya
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Katherine Czysz
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
17
|
Yao X, Yin N, Faiola F. Stem cell toxicology: a powerful tool to assess pollution effects on human health. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractEnvironmental pollution is a global problem; the lack of comprehensive toxicological assessments may lead to increased health risks. To fully understand the health effects of pollution, it is paramount to implement fast, efficient and specific toxicity screening that relies on human models rather than on time-consuming, expensive and often inaccurate tests involving live animals. Human stem cell toxicology represents a valid alternative to traditional toxicity assays because it takes advantage of the ability of stem cells to differentiate into multiple cell types and tissues of the human body. Thus, this branch of toxicology provides a possibility to assess cellular, embryonic, developmental, reproductive and functional toxicity in vitro within a single system highly relevant to human physiology. In this review, we describe the development, performance and future perspectives of stem cell toxicology, with an emphasis on how it can meet the increasing challenges posed by environmental pollution in the modern world.
Collapse
Affiliation(s)
- Xinglei Yao
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Nath SC, Nagamori E, Horie M, Kino-Oka M. Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture. Bioprocess Biosyst Eng 2016; 40:123-131. [PMID: 27638317 DOI: 10.1007/s00449-016-1680-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study, after determining the minimum inhibitory level of lactic acid for hiPSCs, a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically, about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture, a final cell density of (1.1 ± 0.1) × 106 cells mL-1 was obtained, with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression, on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method, culture medium refinement by dialysis was established to remove toxic metabolites, recycle autocrine factors as well as other growth factors, and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.
Collapse
Affiliation(s)
- Suman Chandra Nath
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Nagamori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Centre, Kyoto University, Kyoto, 606-8501, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Dzobo K, Vogelsang M, Parker MI. Wnt/β-Catenin and MEK-ERK Signaling are Required for Fibroblast-Derived Extracellular Matrix-Mediated Endoderm Differentiation of Embryonic Stem Cells. Stem Cell Rev Rep 2016; 11:761-73. [PMID: 26022506 DOI: 10.1007/s12015-015-9598-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human embryonic stem cells (hESCs) have the potential to differentiate into all cells of the three germ layers, thus making them an attractive source of cells for use in regenerative medicine. The greatest challenge lies in regulating the differentiation of hESCs into specific cell lineages by both intrinsic and extrinsic factors. In this study we determined the effect of a fibroblast-derived extracellular matrix (fd-ECM) on hESCs differentiation. We demonstrate that growth of hESCs on fd-ECM results in hESCs losing their stemness and proliferation potential. As the stem cells differentiate they attain gene expression profiles similar to the primitive streak of the in vivo embryo. The activation of both the MEK-ERK and Wnt/β-catenin signaling pathways is required for the fd-ECM-mediated differentiation of hESCs towards the endoderm and involves integrins α1, α2, α3 and β1. This study illustrates the importance of the cellular microenvironment in directing stem cell fate and that the nature and composition of the extracellular matrix is a crucial determining factor.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, Wernher and Beit Building (South), UCT Campus, International Centre for Genetic Engineering and Biotechnology (ICGEB), Anzio Road, Observatory, 7925, Cape Town, South Africa
| | | | | |
Collapse
|
20
|
De Vos J, Bouckenheimer J, Sansac C, Lemaître JM, Assou S. Human induced pluripotent stem cells: A disruptive innovation. Curr Res Transl Med 2016; 64:91-6. [PMID: 27316392 DOI: 10.1016/j.retram.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.
Collapse
Affiliation(s)
- J De Vos
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Médecine, 34000 Montpellier, France; Institut de Biologie Computationnelle, 34000 Montpellier, France; CHU Montpellier, SAFE-IPS Reprogramming Platform, Institute of Research in Biotherapy, 34000 Montpellier, France; CHU Montpellier, Unit for Cellular Therapy, Hospital Saint-Eloi, 34000 Montpellier, France.
| | - J Bouckenheimer
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Pharmacie, 34000 Montpellier, France
| | - C Sansac
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Pharmacie, 34000 Montpellier, France
| | - J-M Lemaître
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France
| | - S Assou
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Médecine, 34000 Montpellier, France.
| |
Collapse
|
21
|
McNeish J, Gardner JP, Wainger BJ, Woolf CJ, Eggan K. From Dish to Bedside: Lessons Learned While Translating Findings from a Stem Cell Model of Disease to a Clinical Trial. Cell Stem Cell 2016; 17:8-10. [PMID: 26140603 DOI: 10.1016/j.stem.2015.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
While iPSCs have created unprecedented opportunities for drug discovery, there remains uncertainty concerning the path to the clinic for candidate therapeutics discovered with their use. Here we share lessons that we learned, and believe are generalizable to similar efforts, while taking a discovery made using iPSCs into a clinical trial.
Collapse
Affiliation(s)
- John McNeish
- Regenerative Medicine Discovery Performance Unit, GlaxoSmithKline, Cambridge, MA 02139, USA.
| | - Jason P Gardner
- Regenerative Medicine Discovery Performance Unit, GlaxoSmithKline, Cambridge, MA 02139, USA
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Clifford J Woolf
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Eggan
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
23
|
Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015; 7:044102. [DOI: 10.1088/1758-5090/7/4/044102] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Eberhardt K, Stiebing C, Matthäus C, Schmitt M, Popp J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn 2015; 15:773-87. [PMID: 25872466 DOI: 10.1586/14737159.2015.1036744] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the last decade, Raman spectroscopy has gained more and more interest in research as well as in clinical laboratories. As a vibrational spectroscopy technique, it is complementary to the also well-established infrared spectroscopy. Through specific spectral patterns, substances can be identified and molecular changes can be observed with high specificity. Because of a high spatial resolution due to an excitation wavelength in the visible and near-infrared range, Raman spectroscopy combined with microscopy is very powerful for imaging biological samples. Individual cells can be imaged on the subcellular level. In vivo tissue examinations are becoming increasingly important for clinical applications. In this review, we present currently ongoing research in different fields of medical diagnostics involving linear Raman spectroscopy and imaging. We give a wide overview over applications for the detection of atherosclerosis, cancer, inflammatory diseases and pharmacology, with a focus on developments over the past 5 years. Conclusions drawn from Raman spectroscopy are often validated by standard methods, for example, histopathology or PCR. The future potential of Raman spectroscopy and its limitations are discussed in consideration of other non-linear Raman techniques.
Collapse
Affiliation(s)
- Katharina Eberhardt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
25
|
Gan L, Schwengberg S, Denecke B. Transcriptome analysis in cardiomyocyte-specific differentiation of murine embryonic stem cells reveals transcriptional regulation network. Gene Expr Patterns 2014; 16:8-22. [PMID: 25058891 DOI: 10.1016/j.gep.2014.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/28/2023]
Abstract
The differentiation to cardiomyocytes is a prerequisite and an important part of heart development. A good understanding of the complicated cardiomyocyte differentiation process benefits cardiogenesis study. Embryonic stem cells (ESCs), cell lines with infinite ability to proliferate and to be differentiated into all cell types of the adult body, are important research tools for investigation of differentiation and meanwhile good models for developmental research. In the current study, genome-wide gene expression of ESCs is profiled through high throughput platform during cardiomyocyte-specific differentiation and maturation. Gene expression patterns of undifferentiated ESCs and ESC-derived cardiomyocytes provide a global overview of genes involved in cardiomyocyte-specific differentiation, whereas marker gene expression profiles of both ESC-related genes and cardiac-specific genes presented the expression pattern shift during differentiation in a pure ESC-derived cardiomyocyte cell culture system. The differentiation and maturation process was completed at day 19 after initiation of differentiation, according to our gene expression profile results. Functional analysis of regulated genes reveals over-represented biological processes, molecular functions and pathways during the differentiation and maturation process. Finally, transcription factor regulation networks were engineered based on gene expression data. Within these networks, the number of identified important regulators (Trim28, E2f4, Foxm1, Myc, Hdac1, Rara, Mef2c, Nkx2-5, Gata4) and possible key co-regulation modules (Nkx2-5 - Gata4 - Tbx5, Myc - E2F4) could be expanded. We demonstrate that a more comprehensive picture of cardiomyocyte differentiation and its regulation can be achieved solely by studying gene expression patterns. The results from our study contribute to a better and more accurate understanding of the regulation mechanisms during cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Lin Gan
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | | | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
26
|
Sinz MW, Kim S. Stem cells, immortalized cells and primary cells in ADMET assays. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 3:79-85. [PMID: 24980105 DOI: 10.1016/j.ddtec.2006.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell-based assays are beginning to replace traditional absorption, distribution, metabolism, elimination and toxicology (ADMET) models employing subcellular fractions in high throughput drug discovery screening and drug development where drugs are characterized and predictions are formulated to forecast in vivo biological outcomes. Significant and continuing advances in stem cell research, new immortalized cell lines and our enhanced ability to predict outcomes from primary cells have increased the ability to employ cell-based assays to study ADMET properties of new drugs.:
Collapse
Affiliation(s)
- Michael W Sinz
- Department of Metabolism and Pharmacokinetics, Pharmaceutical Candidate Optimization, Bristol Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Sean Kim
- Department of Metabolism and Pharmacokinetics, Pharmaceutical Candidate Optimization, Bristol Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
27
|
McIntire LBJ, Landman N, Kang MS, Finan GM, Hwang JC, Moore AZ, Park LS, Lin CS, Kim TW. Phenotypic assays for β-amyloid in mouse embryonic stem cell-derived neurons. ACTA ACUST UNITED AC 2014; 20:956-67. [PMID: 23890013 DOI: 10.1016/j.chembiol.2013.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Given the complex nature of Alzheimer's disease (AD), a cell-based model that recapitulates the physiological properties of the target neuronal population would be extremely valuable for discovering improved drug candidates and chemical probes to uncover disease mechanisms. We established phenotypic neuronal assays for the biogenesis and synaptic action of amyloid β peptide (Aβ) based on embryonic stem cell-derived neurons (ESNs). ESNs enriched with pyramidal neurons were robust, scalable, and amenable to a small-molecule screening assay, overcoming the apparent limitations of neuronal models derived from human pluripotent cells. Small-molecule screening of clinical compounds identified four compounds capable of reducing Aβ levels in ESNs derived from the Tg2576 mouse model of AD. Our approach is therefore highly suitable for phenotypic screening in AD drug discovery and has the potential to identify therapeutic candidates with improved efficacy and safety potential.
Collapse
Affiliation(s)
- Laura Beth J McIntire
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lei Y, Jeong D, Xiao J, Schaffer DV. Developing Defined and Scalable 3D Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities. Cell Mol Bioeng 2014; 7:172-183. [PMID: 25419247 DOI: 10.1007/s12195-014-0333-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) - including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) - are very promising candidates for cell therapies, tissue engineering, high throughput pharmacology screens, and toxicity testing. These applications require large numbers of high quality cells; however, scalable production of human pluripotent stem cells and their derivatives at a high density and under well-defined conditions has been a challenge. We recently reported a simple, efficient, fully defined, scalable, and good manufacturing practice (GMP) compatible 3D culture system based on a thermoreversible hydrogel for hPSC expansion and differentiation. Here, we describe additional design rationale and characterization of this system. For instance, we have determined that culturing hPSCs as a suspension in a liquid medium can exhibit lower volumetric yields due to cell agglomeration and possible shear force-induced cell loss. By contrast, using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and may insulate from shear forces. Additionally, hydrogel-based 3D culture systems can support efficient hPSC expansion and differentiation at a high density if compatible with hPSC biology. Finally, there are considerable opportunities for future development to further enhance hydrogel-based 3D culture systems for producing hPSCs and their progeny.
Collapse
Affiliation(s)
- Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA ; Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA ; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, 94720, USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Daeun Jeong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Jifang Xiao
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA ; Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA ; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, 94720, USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
29
|
Mori H, Hara M. Cultured stem cells as tools for toxicological assays. J Biosci Bioeng 2013; 116:647-52. [DOI: 10.1016/j.jbiosc.2013.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
|
30
|
Characterization of uniaxial stiffness of extracellular matrix embedded with magnetic beads via bio-conjugation and under the influence of an external magnetic field. J Mech Behav Biomed Mater 2013; 30:253-65. [PMID: 24342625 DOI: 10.1016/j.jmbbm.2013.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/21/2022]
Abstract
In this paper, we study the deformation, and experimentally quantify the change in stiffness, of an extracellular matrix (ECM) embedded with magnetic beads that are bio-conjugated with the collagen fibers and under the influence of an external magnetic field. We develop an analytical model of the viscoelastic behavior of this modified ECM, and design and implement a stretch test to quantify (based on statistically meaningful experiment data) the resulting changes in its stiffness induced by the external magnetic field. The analytical results are in close agreement with that obtained from the experiments. We discuss the implication of these results that point to the possibility of creating desired stiffness gradients in an ECM in vitro to influence cell behavior.
Collapse
|
31
|
A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci U S A 2013; 110:E5039-48. [PMID: 24248365 DOI: 10.1073/pnas.1309408110] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (~20-fold per 5-d passage, for a 10(72)-fold expansion over 280 d), yield (~2.0 × 10(7) cells per mL of hydrogel), and purity (~95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ~8 × 10(7) dopaminergic progenitors per mL of hydrogel and ~80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.
Collapse
|
32
|
Watmuff B, Hartley BJ, Hunt CP, Pouton CW, Haynes JM. Pluripotent stem cell-derived dopaminergic neurons as models of neurodegeneration. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers utilize a number of models of Parkinson’s disease ranging in complexity from immortalized cell lines to nonhuman primates. These models are used to investigate everything from the mechanisms underlying neurodegeneration, to drugs that may improve patient outcomes. Each model system has advantages and disadvantages, depending on their application. In this review, the authors assess the potential value of embryonic stem and induced-pluripotent stem cells as additions to the crowded Parkinson’s disease in vitro model landscape.
Collapse
Affiliation(s)
- Bradley Watmuff
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brigham Jay Hartley
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Cameron Philip Hunt
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin William Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - John Michael Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Mondragon-Teran P, Tostoes R, Mason C, Lye GJ, Veraitch FS. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells. Regen Med 2013; 8:171-82. [PMID: 23477397 DOI: 10.2217/rme.13.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. AIM the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. MATERIALS & METHODS We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. RESULTS Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. CONCLUSION This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.
Collapse
Affiliation(s)
- Paul Mondragon-Teran
- Biomedical Research Division, Centro Medico Nacional '20 de Noviembre' - ISSSTE. San Lorenzo 502, Del Valle, Benito Juarez, México City, 03229 México
| | | | | | | | | |
Collapse
|
34
|
Hussain W, Moens N, Veraitch FS, Hernandez D, Mason C, Lye GJ. Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform. Biochem Eng J 2013; 77:246-257. [PMID: 23956681 PMCID: PMC3741632 DOI: 10.1016/j.bej.2013.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/16/2013] [Accepted: 05/16/2013] [Indexed: 02/05/2023]
Abstract
We describe an automated platform for hands-free ESC expansion and differentiation. Key bioprocess variables were investigated to optimize culture inductions. Cell growth was more consistent with automated ESC expansion than manual culture. ESCs expanded on the automated platform maintained high levels of pluripotency. Cells expressed βIII-tubulin after successful automated neuronal differentiation.
The use of embryonic stem cells (ESCs) and their progeny in high throughput drug discovery and regenerative medicine will require production at scale of well characterized cells at an appropriate level of purity. The adoption of automated bioprocessing techniques offers the possibility to overcome the lack of consistency and high failure rates seen with current manual protocols. To build the case for increased use of automation this work addresses the key question: “can an automated system match the quality of a highly skilled and experienced person working manually?” To answer this we first describe an integrated automation platform designed for the ‘hands-free’ culture and differentiation of ESCs in microwell formats. Next we outline a framework for the systematic investigation and optimization of key bioprocess variables for the rapid establishment of validatable Standard Operating Procedures (SOPs). Finally the experimental comparison between manual and automated bioprocessing is exemplified by expansion of the murine Oct-4-GiP ESC line over eight sequential passages with their subsequent directed differentiation into neural precursors. Our results show that ESCs can be effectively maintained and differentiated in a highly reproducible manner by the automated system described. Statistical analysis of the results for cell growth over single and multiple passages shows up to a 3-fold improvement in the consistency of cell growth kinetics with automated passaging. The quality of the cells produced was evaluated using a panel of biological markers including cell growth rate and viability, nutrient and metabolite profiles, changes in gene expression and immunocytochemistry. Automated processing of the ESCs had no measurable negative effect on either their pluripotency or their ability to differentiate into the three embryonic germ layers. Equally important is that over a 6-month period of culture without antibiotics in the medium, we have not had any cases of culture contamination. This study thus confirms the benefits of adopting automated bioprocess routes to produce cells for therapy and for use in basic discovery research.
Collapse
Affiliation(s)
- Waqar Hussain
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | |
Collapse
|
35
|
Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Wang PJ, Nguyen PK, Bers DM, Robbins RC, Wu JC. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 2013; 127:1677-91. [PMID: 23519760 DOI: 10.1161/circulationaha.113.001883] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. METHODS AND RESULTS Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome, familial hypertrophic cardiomyopathy, and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations. CONCLUSIONS We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go-related gene test or healthy control hiPSC-CM/hESC-CM screening assays.
Collapse
Affiliation(s)
- Ping Liang
- Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305-5111
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jonsson MK, van Veen TA, Goumans MJ, Vos MA, Duker G, Sartipy P. Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opin Drug Discov 2013; 4:357-72. [PMID: 23485039 DOI: 10.1517/17460440902794912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pharmaceutical industry suffers from high attrition rates during late phases of drug development. Improved models for early evaluation of drug efficacy and safety are needed to address this problem. Recent developments have illustrated that human stem cell-derived cardiomyocytes are attractive for using as a model system for different cardiac diseases and as a model for screening, safety pharmacology and toxicology. OBJECTIVE In this review, we discuss contemporary drug discovery models and their characteristics for cardiac efficacy testing and safety assessment. Additionally, we evaluate various sources of stem cells and how these cells could potentially improve early screening and safety models. CONCLUSION We conclude that human stem cells offer a source of physiologically relevant cells that show great potential as a future tool in cardiac drug discovery. However, some technical challenges related to cell differentiation and production and also to validation of improved platforms remain and must be overcome before successful application can become a reality.
Collapse
Affiliation(s)
- Malin Kb Jonsson
- University Medical Center Utrecht, Division Heart & Lungs, Department of Medical Physiology, Yalelaan 50, 3584 CM Utrecht, The Netherlands +46 31 7065571 ; +46 31 7763766 ;
| | | | | | | | | | | |
Collapse
|
37
|
Faulkner-Jones A, Greenhough S, A King J, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 2013; 5:015013. [DOI: 10.1088/1758-5082/5/1/015013] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Kim H, Kim YY, Ku SY, Kim SH, Choi YM, Moon SY. The effect of estrogen compounds on human embryoid bodies. Reprod Sci 2012. [PMID: 23184660 DOI: 10.1177/1933719112462630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human embryonic stem cells are derived from the inner cell mass of preimplantation embryo at the blastocyst stage and their differentiation occurs through an intermediate step involving the formation of embryoid bodies (EBs), which are aggregates of embryonic stem cells. The EBs seem to be a powerful tool for investigating the development of embryos, as they can mimic the initial stages of embryonic development. In this study, we aimed to investigate the effect of estrogen compounds on the proliferation and differentiation of short-term and long-term cultured EBs in vitro. For this study, 10-day-old (short-term cultured) and 30-day-old (long-term cultured) EBs were subjected to estradiol (E2), estriol (E3), selective estrogen receptor modulator (raloxifene [RLX]), bisphenol A, and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole for 7 days. To confirm the effects of estrogen treatment, ICI-182780 was added to the respective EBs for additional 7 days following estrogen treatment. Quantitative reverse transcription-polymerase chain reaction was performed to analyze the relative expression of differentiation marker genes representing the 3 germ layers. The expression of 7 marker genes, which included α-fetoprotein, hepatocyte nuclear factor (HNF)-3β, HNF-4α (endoderm), brachyury, cardiac actin ([cACT]; mesoderm), nestin (ectoderm), and Oct-4 (undifferentiated), was measured. Significantly, lower expression of HNF-4α in both short-term and long-term cultured EBs was observed after treatment of estrogen compounds compared to control. The expression of HNF-3β in short-term cultured EBs has been positively affected by E2, E3, and RLX. Regarding cACT, higher expression was observed after treatment of E2 (10(-7) mol/L) and E3 (10(-9) mol/L) in short-term cultured EBs, but opposite effects were demonstrated in long-term cultured EBs. The lower expressions of HNF-4α by E2 and RLX were negated by ICI-182780 treatment, although these findings were not statistically significant in E3-treated group. These findings suggest that estrogen compounds have effects on endodermal and mesodermal differentiation of human EBs.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
39
|
A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 2012; 6:22-30. [PMID: 23229562 DOI: 10.1007/s12265-012-9423-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 01/05/2023]
Abstract
Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.
Collapse
|
40
|
Dehghani L, Farokhpour M, Karbalaie K, Nematollahi M, Tanhaie S, Hayati-Rodbari N, Kiani-Esfahani A, Hescheler J, Nasr-Esfahani MH, Baharvand H. The influence of dexamethasone administration on the protection against doxorubicin-induced cardiotoxicity in purified embryonic stem cell-derived cardiomyocytes. Tissue Cell 2012; 45:101-6. [PMID: 23141520 DOI: 10.1016/j.tice.2012.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Abstract
Embryonic stem cells (ESCs) have various uses in drug toxicity, as they can be easily differentiated in vitro. However, one of the major obstacles in the assessment of these differentiated cells is the presence of a heterogeneous cell population. To circumvent this problem, purified ESC-derived desired cells by means of the tissue-specific GFP and/or antibiotic resistance gene expression has been proposed. Therefore, this study aimed to assess the role of doxorubicin (DOX) in cardiotoxicity by using genetically engineered purified ESC-derived cardiomyocytes under the control alpha-myosin heavy chain promoter. The results revealed that ESCs are suitable for evaluation of DOX cardiotoxicity. This study showed that DOX cardiotoxicity was reduced as detected by beating cardiomyocytes and caspase activity only by pretreatment with dexamethasone (DEX), not during or post-DOX treatment. DEX influence appears to be mediated via glucocorticoid receptor and enhances cardiomyocyte-specific gene expression. Therefore, for the general assessment of cytotoxicity, non-genetically engineered ESC-derived cardiomyocytes are sufficient but for the molecular assessment of DOX-induced toxicity, genetically engineered purified ESC-derived cardiomyocytes are necessary.
Collapse
Affiliation(s)
- Leila Dehghani
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hur SC, Brinckerhoff TZ, Walthers CM, Dunn JCY, Di Carlo D. Label-free enrichment of adrenal cortical progenitor cells using inertial microfluidics. PLoS One 2012; 7:e46550. [PMID: 23056341 PMCID: PMC3464287 DOI: 10.1371/journal.pone.0046550] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/05/2012] [Indexed: 12/02/2022] Open
Abstract
Passive and label-free isolation of viable target cells based on intrinsic biophysical cellular properties would allow for cost savings in applications where molecular biomarkers are known as well as potentially enable the separation of cells with little-to-no known molecular biomarkers. We have demonstrated the purification of adrenal cortical progenitor cells from digestions of murine adrenal glands utilizing hydrodynamic inertial lift forces that single cells and multicellular clusters differentially experience as they flow through a microchannel. Fluorescence staining, along with gene expression measurements, confirmed that populations of cells collected in different outlets were distinct from one another. Furthermore, primary murine cells processed through the device remained highly viable and could be cultured for 10 days in vitro. The proposed target cell isolation technique can provide a practical means to collect significant quantities of viable intact cells required to translate stem cell biology to regenerative medicine in a simple label-free manner.
Collapse
Affiliation(s)
- Soojung Claire Hur
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tatiana Z. Brinckerhoff
- Division of Pediatric Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christopher M. Walthers
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - James C. Y. Dunn
- Division of Pediatric Surgery, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Zambidis ET, Tung L. Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:166-77. [PMID: 22971665 PMCID: PMC3910285 DOI: 10.1016/j.pbiomolbio.2012.07.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Since the first description of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), these cells have garnered tremendous interest for their potential use in patient-specific analysis and therapy. Additionally, hiPSC-CMs can be derived from donor cells from patients with specific cardiac disorders, enabling in vitro human disease models for mechanistic study and therapeutic drug assessment. However, a full understanding of their electrophysiological and contractile function is necessary before this potential can be realized. Here, we review this emerging field from a functional perspective, with particular emphasis on beating rate, action potential, ionic currents, multicellular conduction, calcium handling and contraction. We further review extant hiPSC-CM disease models that recapitulate genetic myocardial disease.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - David W. Hunter
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Elias T. Zambidis
- Institute for Cell Engineering and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| |
Collapse
|
43
|
Pai S, Verrier F, Sun H, Hu H, Ferrie AM, Eshraghi A, Fang Y. Dynamic Mass Redistribution Assay Decodes Differentiation of a Neural Progenitor Stem Cell. ACTA ACUST UNITED AC 2012; 17:1180-91. [DOI: 10.1177/1087057112455059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cells hold great potential in drug discovery and development. However, challenges remain to quantitatively measure the functions of stem cells and their differentiated products. Here, we applied fluorescent imaging, quantitative real-time PCR, and label-free dynamic mass redistribution (DMR) assays to characterize the differentiation process of the ReNcell VM human neural progenitor stem cell. Immunofluorescence imaging showed that after growth factor withdrawal, the neuroprogenitor stem cell was differentiated into dopaminergic neurons, astrocytes, and oligodendrocytes, thus creating a neuronal cell system. High-performance liquid chromatography analysis showed that the differentiated cell system released dopamine upon depolarization with KCl. In conjunction with quantitative real-time PCR, DMR assays using a G-protein-coupled receptor agonist library revealed that a subset of receptors, including dopamine D1 and D4 receptors, underwent marked alterations in both receptor expression and signaling pathway during the differentiation process. These findings suggest that DMR assays can decode the differentiation process of stem cells at the cell system level.
Collapse
Affiliation(s)
- Sadashiva Pai
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Florence Verrier
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Haiyan Sun
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Haibei Hu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Ann M. Ferrie
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Azita Eshraghi
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| |
Collapse
|
44
|
Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RHW, Han L, Fan R, Krebsbach PH, Fu J. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS NANO 2012; 6:4094-103. [PMID: 22486594 PMCID: PMC3358529 DOI: 10.1021/nn3004923] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell-matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type specific, and as such, we could generate a spatially segregated coculture system for hESCs and NIH/3T3 fibroblasts using patterned nanorough glass surfaces.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luis G. Villa-Diaz
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yubing Sun
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shinuo Weng
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jin Koo Kim
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond H. W. Lam
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Lin Han
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to J. Fu [J. Fu (, Tel: 01-734-615-7363, Fax: 01-734-647-7303)]
| |
Collapse
|
45
|
Watmuff B, Pouton CW, Haynes JM. In vitro maturation of dopaminergic neurons derived from mouse embryonic stem cells: implications for transplantation. PLoS One 2012; 7:e31999. [PMID: 22384125 PMCID: PMC3285205 DOI: 10.1371/journal.pone.0031999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The obvious motor symptoms of Parkinson's disease result from a loss of dopaminergic neurons from the substantia nigra. Embryonic stem cell-derived neural progenitor or precursor cells, adult neurons and fetal midbrain tissue have all been used to replace dying dopaminergic neurons. Transplanted cell survival is compromised by factors relating to the new environment, for example; hypoxia, mechanical trauma and excitatory amino acid toxicity. In this study we investigate, using live-cell fluorescence Ca2+ and Cl− imaging, the functional properties of catecholaminergic neurons as they mature. We also investigate whether GABA has the capacity to act as a neurotoxin early in the development of these neurons. From day 13 to day 21 of differentiation [Cl−]i progressively dropped in tyrosine hydroxylase positive (TH+) neurons from 56.0 (95% confidence interval, 55.1, 56.9) mM to 6.9 (6.8, 7.1) mM. At days 13 and 15 TH+ neurons responded to GABA (30 µM) with reductions in intracellular Cl− ([Cl−]i); from day 21 the majority of neurons responded to GABA (30 µM) with elevations of [Cl−]i. As [Cl−]i reduced, the ability of GABA (30 µM) to elevate intracellular Ca2+ ([Ca2+]i) did also. At day 13 of differentiation a three hour exposure to GABA (30 µM) or L-glutamate (30 µM) increased the number of midbrain dopaminergic (TH+ and Pitx3+) neurons labeled with the membrane-impermeable nuclear dye TOPRO-3. By day 23 cultures were resistant to the effects of both GABA and L-glutamate. We believe that neuronal susceptibility to amino acid excitotoxicity is dependent upon neuronal maturity, and this should be considered when isolating cells for transplantation studies.
Collapse
Affiliation(s)
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- * E-mail: (CWP); (JMH)
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- * E-mail: (CWP); (JMH)
| |
Collapse
|
46
|
Embryonic stem cells in safety pharmacology and toxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:14-25. [PMID: 22437810 DOI: 10.1007/978-1-4614-3055-1_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryonic stem (ES) cells undergo self-renewal and are pluripotent, i.e., they can give rise to all the types of specialised cells in the body. Scientific knowledge on ES cells is increasing rapidly, leading to opportunities for establishment of ES cell-based in vitro tests for drug discovery, preclinical safety pharmacology and toxicology. The main properties of ES cells making them useful in in vitro assays are that they have a normal diploid karyotype and can provide a large number of cells for high-throughput assays. Human ES cells additionally have the potential to provide solutions to problems related to interspecies differences and methods for screening for human polymorphisms, thus supporting robust human hazard identification and optimised drug discovery strategies. Importantly, ES cell based assays could be potential tools to reduce and perhaps replace, animal experiments. This chapter will describe ongoing research in the use of ES cells in toxicology and safety pharmacology, focusing on the major areas of progress, namely, embryotoxicology, cardiotoxicology and hepatoxicology.
Collapse
|
47
|
Tan Y, Konorov SO, Schulze HG, Piret JM, Blades MW, Turner RFB. Comparative study using Raman microspectroscopy reveals spectral signatures of human induced pluripotent cells more closely resemble those from human embryonic stem cells than those from differentiated cells. Analyst 2012; 137:4509-15. [DOI: 10.1039/c2an35507h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
An HJ, Gip P, Kim J, Wu S, Park KW, McVaugh CT, Schaffer DV, Bertozzi CR, Lebrilla CB. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol Cell Proteomics 2011; 11:M111.010660. [PMID: 22147732 DOI: 10.1074/mcp.m111.010660] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine cell surface glycosylation.
Collapse
Affiliation(s)
- Hyun Joo An
- Graduate School of Analytical Science and Technology and Cancer Research Institute, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kizjakina K, Bryson JM, Grandinetti G, Reineke TM. Cationic glycopolymers for the delivery of pDNA to human dermal fibroblasts and rat mesenchymal stem cells. Biomaterials 2011; 33:1851-62. [PMID: 22138032 DOI: 10.1016/j.biomaterials.2011.10.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022]
Abstract
Progenitor and pluripotent cell types offer promise as regenerative therapies but transfecting these sensitive cells has proven difficult. Herein, a series of linear trehalose-oligoethyleneamine "click" copolymers were synthesized and examined for their ability to deliver plasmid DNA (pDNA) to two progenitor cell types, human dermal fibroblasts (HDFn) and rat mesenchymal stem cells (RMSC). Seven polymer vehicle analogs were synthesized in which three parameters were systematically varied: the number of secondary amines (4-6) within the polymer repeat unit (Tr4(33), Tr5(30), and Tr6(32)), the end group functionalities [PEG (Tr4(128)PEG-a, Tr4(118)PEG-b), triphenyl (Tr4(107)-c), or azido (Tr4(99)-d)], and the molecular weight (degree of polymerization of about 30 or about 100) and the biological efficacy of these vehicles was compared to three controls: Lipofectamine 2000, JetPEI, and Glycofect. The trehalose polymers were all able to bind and compact pDNA polyplexes, and promote pDNA uptake and gene expression [luciferase and enhanced green fluorescent protein (EGFP)] with these primary cell types and the results varied significantly depending on the polymer structure. Interestingly, in both cell types, Tr4(33) and Tr5(30) yielded the highest luciferase gene expression. However, when comparing the number of cells transfected with a reporter plasmid encoding enhanced green fluorescent protein, Tr4(33) and Tr4(107)-c yielded the highest number of HDFn cells positive for EGFP. Interestingly, with RMSCs, all of the higher molecular weight analogs (Tr4(128)PEG-a, Tr4(118)PEG-b, Tr4(107)-c, Tr4(99)-d) yielded high percentages of cells positive for EGFP (30-40%).
Collapse
Affiliation(s)
- Karina Kizjakina
- Department of Chemistry and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
50
|
Kang S, Hong S. Prediction of personalized drugs based on genetic variations provided by DNA sequencing technologies. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0124-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|