1
|
Farooq Z, Delre P, Iliadis S, Mangiatordi GF, Contino M, Howell LA, McCormick PJ. Identification of a Cannabinoid Receptor 2 Allosteric Site Using Computational Modeling and Pharmacological Analysis. ACS Pharmacol Transl Sci 2025; 8:423-434. [PMID: 39974643 PMCID: PMC11833715 DOI: 10.1021/acsptsci.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025]
Abstract
Emerging evidence has demonstrated that cannabinoid receptor 2 (CB2) is involved in a number of diseases, such as neurodegenerative disorders and various types of cancer, making it an attractive pharmacological target. Classically, a protein active site or an orthosteric binding site, where the endogenous ligand binds to, is used as a target for the design of most small-molecule drugs. This can present challenges when it comes to phylogenetically related proteins that have similar orthosteric binding sites, such as the cannabinoid receptors. An alternative approach is to target sites that are unique to these receptors yet still impact receptor function, known as allosteric binding sites. Using an inactive-state human cannabinoid receptor 2 crystal structure (PDB ID:5ZTY), we identified a putative CB2 allosteric site using computational approaches. In vitro signaling assays using known allosteric modulators and CB2 agonists have been used to verify the in silico results. This identification opens promising avenues for the development of selective and specific CB2 ligands for therapeutic purposes.
Collapse
Affiliation(s)
- Zara Farooq
- Centre
for Endocrinology, William Harvey Research Institute, Bart’s
and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Pietro Delre
- CNR-Institute
of Crystallography, Via Amendola 122/o, Bari 70126, Italy
| | - Stylianos Iliadis
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | | | - Marialessandra Contino
- Department
of Pharmacy-Drug Sciences, University of
Bari Aldo Moro, Via Orabona
4, Bari 70125, Italy
| | - Lesley A. Howell
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Peter J. McCormick
- Centre
for Endocrinology, William Harvey Research Institute, Bart’s
and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.
- Department
of Pharmacology and Therapeutics, Institute of Systems Integrative
and Molecular Biology, University of Liverpool, Liverpool L69 7BE, U.K.
- XJTLU-University
of Liverpool Joint Centre for Pharmacology and Therapeutics, Liverpool L69 7ZX, U.K.
| |
Collapse
|
2
|
Pandey P, Zagzoog A, Laprairie RB, Neal WM, Doerksen RJ, Chittiboyina AG. Determination of the Negative Allosteric Binding Site of Cannabidiol at the CB1 Receptor: A Combined Computational and Site-Directed Mutagenesis Study. ACS Chem Neurosci 2025; 16:311-328. [PMID: 39812521 DOI: 10.1021/acschemneuro.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs. An X-ray crystal structure revealed a binding site for the NAM, ORG27569, at an extrahelical location within the inner leaflet of the membrane. In contrast, multiple computational studies have previously proposed several potential allosteric binding sites for CBD within the CB1R structure. Given that a prior structural study suggested CBD might occupy the same site as ORG27569, we conducted a comprehensive investigation of potential CBD binding sites using molecular docking, molecular dynamics (MD) simulations, metadynamics (MTD) simulations, binding free-energy calculations, and in vitro mutagenesis experiments. Molecular docking, MD, and MTD simulations results, along with binding free-energy calculations, suggest that CBD may potentially bind to either the same extrahelical site as ORG27569 or a previously unidentified intracellular site located near TMHs 2, 6, and 7 and helix 8. This intracellular site is consistent with allosteric binding sites observed in other G protein-coupled receptors (GPCRs). To establish the most favorable allosteric site for CBD, we conducted site-directed mutagenesis of key residues at each site. Mutations at S4018.47ΔA and D4038.49ΔA augmented the binding of [3H]-SR141716A, suggesting these residues play critical roles in CBD binding. As a result, the combined computational and mutagenesis results identified a binding site for CBD between TMHs 2, 6, and 7 and helix 8, involving residues Y1532.40, I1562.43, M3376.29, L3416.33, S4018.47, and D4038.49. These findings provide valuable insights into how CBD binds to CB1R, thereby informing the rational design of new, selective, and potent NAMs. Moreover, the elucidation of this previously unexplored allosteric site might explain the polypharmacology of CBD due to structural conservation among Class A GPCRs.
Collapse
Affiliation(s)
- Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William M Neal
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
3
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
4
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
5
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2025; 46:500-511. [PMID: 39256608 PMCID: PMC11747167 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Li M, Gan X, Liu K, Walajapet R, Stanczyk MA, Stewart HC, Rech JC, White AD, Traynor JR. Structure-Activity Relationships and Molecular Pharmacology of Positive Allosteric Modulators of the Mu-Opioid Receptor. ACS Chem Neurosci 2025; 16:16-29. [PMID: 39661492 DOI: 10.1021/acschemneuro.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Positive allosteric modulation of the mu-opioid receptor is a promising strategy to address the ever-growing problem of acute and chronic pain management. Positive allosteric modulators (PAMs) of the mu-opioid receptor could be employed to enhance the efficacy of endogenous opioid peptides to a degree that provides pain relief without the need for traditional opioid drugs. Alternatively, PAMs might be used to enhance the action of opioid drugs and so provide an opioid-sparing effect, allowing for the use of lower doses of opioid agonists and potentially decreasing associated side effects. BMS-986122 (2-(3-bromo-4-methoxyphenyl)-3-[(4-chlorophenyl)-sulfonyl]-thiazolidine) has been previously identified as a PAM of the mu-opioid receptor. In the present work, we have designed and synthesized 33 analogs of BMS-986122 to explore the structure-activity relationships of this scaffold and confirm its allosteric mechanism of action. Among several newly identified modulators, the most promising compound (14b) had improved activity to increase the in vitro potency of the standard mu-opioid agonist DAMGO and showed in vivo activity in mice to enhance the antinociceptive action of morphine.
Collapse
Affiliation(s)
- Mengchu Li
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kun Liu
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rajeswaran Walajapet
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - M Alex Stanczyk
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah C Stewart
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason C Rech
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D White
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Weizmann T, Pearce A, Griffin P, Schild A, Flaßhoff M, Grossenbacher P, Lochner M, Reynolds CA, Ladds G, Deganutti G. Mechanistic Insights into the Adenosine A1 Receptor's Positive Allosteric Modulation for Non-Opioid Analgesics. Cells 2024; 13:2121. [PMID: 39768211 PMCID: PMC11726717 DOI: 10.3390/cells13242121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The adenosine A1 receptor (A1R) is a promising target for pain treatment. However, the development of therapeutic agonists is hampered by adverse effects, mainly including sedation, bradycardia, hypotension, or respiratory depression. Recently discovered molecules able to overcome this impediment are the positive allosteric modulator MIPS521 and the A1R-selective agonist BnOCPA, which are both potent and powerful analgesics with fewer side effects. While BnOCPA directly activates the A1R from the canonical orthosteric site, MIPS521 binds to an allosteric site, acting in concert with orthosteric adenosine and tuning its pharmacology. Given their overlapping profile in pain models but distinct mechanisms of action, we combined pharmacology and microsecond molecular dynamics simulations to address MIPS521 and BnOCPA activity and their reciprocal influence when bound to the A1R. We show that MIPS521 changes adenosine and BnOCPA G protein selectivity in opposite ways and propose a structural model where TM7 dynamics are differently affected and involved in the G protein preferences of adenosine and BnOCPA.
Collapse
Affiliation(s)
- Tal Weizmann
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Peter Griffin
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Achille Schild
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Maren Flaßhoff
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Philipp Grossenbacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | | | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
8
|
Boutonnet M, Bünemann M, Perroy J. The voltage sensitivity of G-protein coupled receptors: Unraveling molecular mechanisms and physiological implications. Pharmacol Ther 2024; 264:108741. [PMID: 39489434 DOI: 10.1016/j.pharmthera.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In the landscape of proteins controlled by membrane voltage (Vm), like voltage-gated ionotropic channels, the emergence of the voltage sensitivity within the vast family of G-protein coupled receptors (GPCRs) marked a significant milestone at the onset of the 21st century. Since its discovery, extensive research has been devoted to understanding the intricate relationship between Vm and GPCRs. Approximately 30 GPCRs out of a family comprising more than 800 receptors have been implicated in Vm-dependent positive and negative regulation. GPCRs stand out as the quintessential regulators of synaptic transmission in neurons, where they encounter substantial variations in Vm. However, the molecular mechanism underlying the Vm sensor of GPCRs remains enigmatic, hindered by the scarcity of mutant GPCRs insensitive to Vm yet functionally intact, impeding a comprehensive understanding of this unique property in physiology. Nevertheless, two decades of dedicated research have furnished numerous insights into the molecular aspects of GPCR Vm-sensing, accompanied by recently proposed physiological roles as well as pharmacological potential, which we encapsulate in this review. The Vm sensitivity of GPCRs emerges as a pivotal attribute, shedding light on previously unforeseen roles in synaptic transmission and extending beyond, underscoring its significance in cellular signaling and physiological processes.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
9
|
Cruz A, Warshel A. Unraveling GPCRs Allosteric Modulation. Cannabinoid 1 Receptor as a Case Study. Proteins 2024. [PMID: 39584635 DOI: 10.1002/prot.26762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the most prominent families of integral membrane receptor proteins that mediate most transmembrane signaling processes. Malfunction of these signal transduction processes is one of the underlying causes of many human pathologies (Parkinson's, Huntington's, heart diseases, etc), provoking that GPCRs are the largest family of druggable proteins. However, these receptors have been targeted traditionally by orthosteric ligands, which usually causes side effects due to the simultaneous targeting of homologous receptor subtypes. Allosteric modulation offers a promising alternative approach to circumvent this problematic and, thus, comprehending its details is a most important task. Here we use the Cannabinoid type-1 receptor (CB1R) in trying to shed light on this issue, focusing on positive allosteric modulation. This is done by using the protein-dipole Langevin-dipole (PDLD) within the linear response approximation (LRA) framework (PDLD/S-2000) along with our coarse-grained (CG) model of membrane proteins to evaluate the dissociation constants (KBs) and cooperativity factors (αs) for a diverse series of CB1R positive allosteric modulators belonging to the 2-phenylindole structural class, considering CP55940 as an agonist. The agreement with the experimental data evinces that significantly populated allosteric modulator:CB1R and allosteric modulator:CP55940:CB1R complexes have been identified and characterized successfully. Analyzing them, it has been determined that CB1R positive allosteric modulation lies in an outwards displacement of transmembrane α helix (TM) 4 extracellular end and in the regulation of the range of motion of a compound TM7 movement for binary and ternary complexes, respectively. In this respect, we achieved a better comprehension of the molecular architecture of CB1R positive allosteric site, identifying Lys1923.28 and Gly1943.30 as key residues regarding electrostatic interactions inside this cavity, and to rationalize (at both structural and molecular level) the exhibited stereoselectivity in relation to positive allosteric modulation activity by considered CB1R allosteric modulators. Additionally, putative/postulated allosteric binding sites have been screened successfully, identifying the real CB1R positive allosteric site, and most structure-activity relationship (SAR) studies of CB1R 2-phenylindole allosteric modulators have been rationalized. All these findings point out towards the predictive value of the methodology used in the current work, which can be applied to other biophysical systems of interest. The results presented in this study contribute significantly to understand GPCRs allosteric modulation and, hopefully, will encourage a more thorough exploration of the topic.
Collapse
Affiliation(s)
- Alejandro Cruz
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Green HM, Manning JJ, Greig IR, Ross RA, Finlay DB, Glass M. Positive allosteric modulation of the cannabinoid CB 1 receptor potentiates endocannabinoid signalling and changes ERK1/2 phosphorylation kinetics. Br J Pharmacol 2024; 181:3642-3662. [PMID: 38831545 DOI: 10.1111/bph.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of CB1 by exogenous agonists causes adverse effects in vivo. Positive allosteric modulation may offer improved therapeutic potential and a reduced on-target adverse effect profile compared with orthosteric agonists, due to reduced desensitisation/tolerance, but this has not been directly tested. This study investigated the ability of PAMs/ago-PAMs to induce receptor regulation pathways, including desensitisation and receptor internalisation. EXPERIMENTAL APPROACH Bioluminescence resonance energy transfer (BRET) assays in HEK293 cells were performed to investigate G protein dissociation, ERK1/2 phosphorylation and β-arrestin 2 translocation, while immunocytochemistry was performed to measure internalisation of CB1 in response to the PAMs ZCZ011, GAT229 and ABD1236 alone and in combination with the orthosteric agonists AEA, 2-AG, and AMB-FUBINACA. KEY RESULTS ZCZ011, GAT229 and ABD1236 were allosteric agonists in all pathways tested. The ago-PAM ZCZ011 induced a biphasic ERK1/2 phosphorylation time course compared to transient activation by orthosteric agonists. In combination with 2-AG but not AEA or AMB-FUBINACA, ZCZ011 and ABD1236 caused the transient peak of ERK1/2 phosphorylation to become sustained. All PAMs increased the potency and efficacy of AEA-induced signalling in all pathways tested; however, no notable potentiation of 2-AG or AMB-FUBINACA was observed. CONCLUSION AND IMPLICATIONS Ago-PAMs can potentiate endocannabinoid CB1 agonism by AEA to a larger extent compared with 2-AG. However, all compounds were found to be allosteric agonists and induce activation of CB1 in the absence of endocannabinoid, including β-arrestin 2 recruitment and internalisation. Thus, the spatiotemporal signalling of endogenous cannabinoids will not be retained in vivo.
Collapse
Affiliation(s)
- Hayley M Green
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jamie J Manning
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ian R Greig
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ruth A Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Tobin AB. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 2024; 23:743-758. [PMID: 39143241 DOI: 10.1038/s41573-024-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Collapse
Affiliation(s)
- Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
12
|
Li N, Zheng G, Fu L, Liu N, Chen T, Lu S. Designed dualsteric modulators: A novel route for drug discovery. Drug Discov Today 2024; 29:104141. [PMID: 39168404 DOI: 10.1016/j.drudis.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Orthosteric and allosteric modulators, which constitute the majority of current drugs, bind to the orthosteric and allosteric sites of target proteins, respectively. However, the clinical efficacy of these agents is frequently compromised by poor selectivity or reduced potency. Dualsteric modulators feature two linked pharmacophores that bind to orthosteric and allosteric sites of the target proteins simultaneously, thereby offering a promising avenue to achieve both potency and specificity. In this review, we summarize recent structures available for dualsteric modulators in complex with their target proteins, elucidating detailed drug-target interactions and dualsteric action patterns. Moreover, we provide a design and optimization strategy for dualsteric modulators based on structure-based drug design approaches.
Collapse
Affiliation(s)
- Nuan Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| | - Lili Fu
- Department of Nephrology, People's Hospital of Pudong New Area, Shanghai University of Medicine & Health Sciences, Shanghai 201299, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Maletz SN, Reid BT, Baekey DM, Whitaker-Fornek JR, Bateman JT, Arakawa K, Bissonnette JM, Levitt ES. Effect of positive allosteric modulation and orthosteric agonism of dopamine D2-like receptors on respiration in mouse models of Rett syndrome. Respir Physiol Neurobiol 2024; 328:104314. [PMID: 39117159 DOI: 10.1016/j.resp.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.
Collapse
Affiliation(s)
- Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - David M Baekey
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Jessica R Whitaker-Fornek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States
| | - Keiko Arakawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - John M Bissonnette
- Oregon Health and Sciences University, Portland, OR 97239, United States
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Belousov A, Maslov I, Orekhov P, Khorn P, Kuzmichev P, Baleeva N, Motov V, Bogorodskiy A, Krasnova S, Mineev K, Zinchenko D, Zernii E, Ivanovich V, Permyakov S, Hofkens J, Hendrix J, Cherezov V, Gensch T, Mishin A, Baranov M, Mishin A, Borshchevskiy V. Monitoring GPCR conformation with GFP-inspired dyes. iScience 2024; 27:110466. [PMID: 39156645 PMCID: PMC11326922 DOI: 10.1016/j.isci.2024.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Solvatochromic compounds have emerged as valuable environment-sensitive probes for biological research. Here we used thiol-reactive solvatochromic analogs of the green fluorescent protein (GFP) chromophore to track conformational changes in two proteins, recoverin and the A2A adenosine receptor (A2AAR). Two dyes showed Ca2+-induced fluorescence changes when attached to recoverin. Our best-performing dye, DyeC, exhibited agonist-induced changes in both intensity and shape of its fluorescence spectrum when attached to A2AAR; none of these effects were observed with other common environment-sensitive dyes. Molecular dynamics simulations showed that activation of the A2AAR led to a more confined and hydrophilic environment for DyeC. Additionally, an allosteric modulator of A2AAR induced distinct fluorescence changes in the DyeC spectrum, indicating a unique receptor conformation. Our study demonstrated that GFP-inspired dyes are effective for detecting structural changes in G protein-coupled receptors (GPCRs), offering advantages such as intensity-based and ratiometric tracking, redshifted fluorescence spectra, and sensitivity to allosteric modulation.
Collapse
Affiliation(s)
- Anatoliy Belousov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ivan Maslov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Sechenov University, Moscow 119146, Russia
| | - Polina Khorn
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Pavel Kuzmichev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nadezhda Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladislav Motov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Svetlana Krasnova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Konstantin Mineev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Evgeni Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | - Sergei Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino 142292, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Alexander Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| |
Collapse
|
15
|
Saha PP, Gogonea V, Sweet W, Mohan ML, Singh KD, Anderson JT, Mallela D, Witherow C, Kar N, Stenson K, Harford T, Fischbach MA, Brown JM, Karnik SS, Moravec CS, DiDonato JA, Naga Prasad SV, Hazen SL. Gut microbe-generated phenylacetylglutamine is an endogenous allosteric modulator of β2-adrenergic receptors. Nat Commun 2024; 15:6696. [PMID: 39107277 PMCID: PMC11303761 DOI: 10.1038/s41467-024-50855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/16/2024] [Indexed: 08/09/2024] Open
Abstract
Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing β1- versus β2-adrenergic receptors (β1AR and β2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of β2AR, but not β1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on β2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical β2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Allosteric Regulation
- Gastrointestinal Microbiome
- Glutamine/metabolism
- Heart Failure/metabolism
- Heart Failure/microbiology
- HEK293 Cells
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
Collapse
Affiliation(s)
- Prasenjit Prasad Saha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Chemistry Department, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, USA
| | - Wendy Sweet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Maradumane L Mohan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Khuraijam Dhanachandra Singh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - James T Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Deepthi Mallela
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Conner Witherow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Niladri Kar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Kate Stenson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Terri Harford
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Christine S Moravec
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Sathyamangla Venkata Naga Prasad
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
- Center for Microbiome & Human Health, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
16
|
Shi Z, Liu X, Wu S, Song N, Tang Q, Li H, Luo S, Chan ASC, Cai X, Liu H, Jiang X. Discovery of Novel Peptide Antagonists Targeting GPR55 for Liver Inflammation and Fibrosis. J Med Chem 2024; 67:12085-12098. [PMID: 38991128 DOI: 10.1021/acs.jmedchem.4c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Liver fibrosis is a condition characterized by aberrant proliferation of connective tissue in the liver resulting from diverse etiological factors. G protein-coupled receptor GPR55 has recently been identified as a regulator of liver diseases. Herein, we report the discovery of a cyclic peptide P1-1 that antagonizes GPR55 and suppresses collagen secretion in hepatic stellate cells. The alanine scanning and docking study was carried out to predict the binding mode and allowed for further structural optimization of peptide antagonists for GPR55. The subsequent in vivo study demonstrated that P1-1 ameliorates CCl4-induce and MCD-diet-induce acute liver inflammation and fibrosis. Further study indicates that P1-1 reduces reactive oxygen species (ROS) production, attenuates ER stress, and inhibits mitochondria-associated hepatocyte apoptosis. In this work, we provided the first successful example of antagonizing GPR55 for liver inflammation and fibrosis, which validates GPR55 as a promising target for the treatment of liver fibrosis and affords a high-potent GPR55 antagonist P1-1 as a potential therapeutic candidate.
Collapse
Affiliation(s)
- Zihan Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianyan Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuohan Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Nazi Song
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qinglin Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Haonan Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suijia Luo
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Albert S C Chan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqing Cai
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Han Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Gaiser BI, Danielsen M, Xu X, Røpke Jørgensen K, Fronik P, Märcher-Rørsted E, Wróbel TM, Liu X, Mosolff Mathiesen J, Sejer Pedersen D. Bitopic Ligands Support the Presence of a Metastable Binding Site at the β 2 Adrenergic Receptor. J Med Chem 2024; 67:11053-11068. [PMID: 38952152 DOI: 10.1021/acs.jmedchem.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Metastable binding sites (MBS) have been observed in a multitude of molecular dynamics simulations and can be considered low affinity allosteric binding sites (ABS) that function as stepping stones as the ligand moves toward the orthosteric binding site (OBS). Herein, we show that MBS can be utilized as ABS in ligand design, resulting in ligands with improved binding kinetics. Four homobivalent bitopic ligands (1-4) were designed by molecular docking of (S)-alprenolol ((S)-ALP) in the cocrystal structure of the β2 adrenergic receptor (β2AR) bound to the antagonist ALP. Ligand 4 displayed a potency and affinity similar to (S)-ALP, but with a >4-fold increase in residence time. The proposed binding mode was confirmed by X-ray crystallography of ligand 4 in complex with the β2AR. This ligand design principle can find applications beyond the β2AR and G protein-coupled receptors (GPCRs) as a general approach for improving the pharmacological profile of orthosteric ligands by targeting the OBS and an MBS simultaneously.
Collapse
Affiliation(s)
- Birgit Isabel Gaiser
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Mia Danielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Xinyu Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084 ,China
| | - Kira Røpke Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Philipp Fronik
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Emil Märcher-Rørsted
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Tomasz M Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084 ,China
| | - Jesper Mosolff Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Green HM, Yang L, Zhu X, Finlay DB, Duffull SB, Glass M. Insight into the mechanism of action of ORG27569 at the cannabinoid type one receptor utilising a unified mathematical model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5105-5118. [PMID: 38227196 PMCID: PMC11166842 DOI: 10.1007/s00210-023-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Allosteric modulation of CB1 is therapeutically advantageous compared to orthosteric activation as it potentially offers reduced on-target adverse effects. ORG27569 is an allosteric modulator that increases orthosteric agonist binding to CB1 but decreases functional signalling. ORG27569 is characterised by a delay in disinhibition of agonist-induced cAMP inhibition (lag); however, the mechanism behind this kinetic lag is yet to be identified. We aimed to utilise a mathematical model to predict data and design in vitro experiments to elucidate mechanisms behind the unique signalling profile of ORG27569. The established kinetic ternary complex model includes the existence of a transitional state of CB1 bound to ORG27569 and CP55940 and was used to simulate kinetic cAMP data using NONMEM 7.4 and Matlab R2020b. These data were compared with empirical cAMP BRET data in HEK293 cells stably expressing hCB1. The pharmacometric model suggested that the kinetic lag in cAMP disinhibition by ORG27569 is caused by signal amplification in the cAMP assay and can be reduced by decreasing receptor number. This was confirmed experimentally, as reducing receptor number through agonist-induced internalisation resulted in a decreased kinetic lag by ORG27569. ORG27569 was found to have a similar interaction with CP55940 and the high efficacy agonist WIN55,212-2, and was suggested to have lower affinity for CB1 bound by the partial agonist THC compared to CP55940. Allosteric modulators have unique signalling profiles that are often difficult to interrogate exclusively in vitro. We have used a combined mathematical and in vitro approach to prove that ORG27569 causes a delay in disinhibition of agonist-induced cAMP inhibition due to large receptor reserve in this pathway. We also used the pharmacometric model to investigate the common phenomenon of probe dependence, to propose that ORG27569 binds with higher affinity to CB1 bound by high efficacy orthosteric agonists.
Collapse
Affiliation(s)
- Hayley M Green
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Liang Yang
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Stephen B Duffull
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
- , Certara, Princeton, NJ, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
19
|
Nguyen HTM, van der Westhuizen ET, Langmead CJ, Tobin AB, Sexton PM, Christopoulos A, Valant C. Opportunities and challenges for the development of M 1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol 2024; 181:2114-2142. [PMID: 36355830 DOI: 10.1111/bph.15982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Huong T M Nguyen
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, University of Glasgow, Glasgow, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Heilig M, Witkiewitz K, Ray LA, Leggio L. Novel medications for problematic alcohol use. J Clin Invest 2024; 134:e172889. [PMID: 38828724 PMCID: PMC11142745 DOI: 10.1172/jci172889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lara A. Ray
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
21
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
22
|
Zeng J, Loi GWZ, Saipuljumri EN, Romero Durán MA, Silva-García O, Perez-Aguilar JM, Baizabal-Aguirre VM, Lo CH. Peptide-based allosteric inhibitor targets TNFR1 conformationally active region and disables receptor-ligand signaling complex. Proc Natl Acad Sci U S A 2024; 121:e2308132121. [PMID: 38551841 PMCID: PMC10998571 DOI: 10.1073/pnas.2308132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/23/2024] [Indexed: 04/02/2024] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1) plays a pivotal role in mediating TNF induced downstream signaling and regulating inflammatory response. Recent studies have suggested that TNFR1 activation involves conformational rearrangements of preligand assembled receptor dimers and targeting receptor conformational dynamics is a viable strategy to modulate TNFR1 signaling. Here, we used a combination of biophysical, biochemical, and cellular assays, as well as molecular dynamics simulation to show that an anti-inflammatory peptide (FKCRRWQWRMKK), which we termed FKC, inhibits TNFR1 activation allosterically by altering the conformational states of the receptor dimer without blocking receptor-ligand interaction or disrupting receptor dimerization. We also demonstrated the efficacy of FKC by showing that the peptide inhibits TNFR1 signaling in HEK293 cells and attenuates inflammation in mice with intraperitoneal TNF injection. Mechanistically, we found that FKC binds to TNFR1 cysteine-rich domains (CRD2/3) and perturbs the conformational dynamics required for receptor activation. Importantly, FKC increases the frequency in the opening of both CRD2/3 and CRD4 in the receptor dimer, as well as induces a conformational opening in the cytosolic regions of the receptor. This results in an inhibitory conformational state that impedes the recruitment of downstream signaling molecules. Together, these data provide evidence on the feasibility of targeting TNFR1 conformationally active region and open new avenues for receptor-specific inhibition of TNFR1 signaling.
Collapse
Affiliation(s)
- Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Gavin Wen Zhao Loi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eka Norfaishanty Saipuljumri
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Marco Antonio Romero Durán
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México
| | - Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla, University City, Puebla 72570, México
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, México
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
23
|
Ayub H, Murray RJ, Kuyler GC, Napier-Khwaja F, Gunner J, Dafforn TR, Klumperman B, Poyner DR, Wheatley M. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs. Arch Biochem Biophys 2024; 754:109946. [PMID: 38395122 DOI: 10.1016/j.abb.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and β-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.
Collapse
Affiliation(s)
- Hoor Ayub
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK.
| | - Rebecca J Murray
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gestél C Kuyler
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Joseph Gunner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bert Klumperman
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Mark Wheatley
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
24
|
Kamiya T, Masuko T, Borroto-Escuela DO, Okado H, Nakata H. In Silico Analyses of Vertebrate G-Protein-Coupled Receptor Fusions United With or Without an Additional Transmembrane Sequence Indicate Classification into Three Groups of Linkers. Protein J 2024; 43:225-242. [PMID: 38616227 DOI: 10.1007/s10930-024-10184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 04/16/2024]
Abstract
Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)-(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone Exaiptasia diaphana (LOC110241027) and (330-SPSFLCI-L-SLL-340) identified in a tropical bird Opisthocomus hoazin protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat Neotoma lepida A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in Gavia stellate (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals Neotoma lepida, Aves Erythrura gouldiae, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.
Collapse
Affiliation(s)
- Toshio Kamiya
- Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo, 183-8526, Japan.
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo, 183-8526, Japan.
- Cell Biology Laboratory, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Neural Development Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan.
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa Setagaya-Ku, Tokyo, 156-8506, Japan.
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | | | - Haruo Okado
- Neural Development Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Hiroyasu Nakata
- Department of Molecular Cell Signaling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo, 183-8526, Japan
| |
Collapse
|
25
|
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 2024; 187:1527-1546.e25. [PMID: 38412860 PMCID: PMC10947893 DOI: 10.1016/j.cell.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Eva Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
27
|
Green HM, Fellner DMJ, Finlay DB, Furkert DP, Glass M. Determination of the Cannabinoid CB1 Receptor's Positive Allosteric Modulator Binding Site through Mutagenesis Studies. Pharmaceuticals (Basel) 2024; 17:154. [PMID: 38399369 PMCID: PMC10892375 DOI: 10.3390/ph17020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Positive allosteric modulators (PAMs) of the cannabinoid CB1 receptor (CB1) offer potential therapeutic advantages in the treatment of neuropathic pain and addiction by avoiding the adverse effects associated with orthosteric CB1 activation. Here, molecular modeling and mutagenesis were used to identify residues central to PAM activity at CB1. Six putative allosteric binding sites were identified in silico, including novel sites previously associated with cholesterol binding, and key residues within each site were mutated to alanine. The recently determined ZCZ011 binding site was found to be essential for allosteric agonism, as GAT228, GAT229 and ZCZ011 all increased wild-type G protein dissociation in the absence of an orthosteric ligand; activity that was abolished in mutants F191A3.27 and I169A2.56. PAM activity was demonstrated for ZCZ011 in the presence of the orthosteric ligand CP55940, which was only abolished in I169A2.56. In contrast, the PAM activity of GAT229 was reduced for mutants R220A3.56, L404A8.50, F191A3.27 and I169A2.56. This indicates that allosteric modulation may represent the net effect of binding at multiple sites, and that allosteric agonism is likely to be mediated via the ZCZ011 site. This study underlines the need for detailed understanding of ligand receptor interactions in the search for pure CB1 allosteric modulators.
Collapse
Affiliation(s)
- Hayley M. Green
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.M.G.); (D.B.F.)
| | - Daniel M. J. Fellner
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand; (D.M.J.F.); (D.P.F.)
| | - David B. Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.M.G.); (D.B.F.)
| | - Daniel P. Furkert
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand; (D.M.J.F.); (D.P.F.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.M.G.); (D.B.F.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
28
|
He J, Liu X, Zhu C, Zha J, Li Q, Zhao M, Wei J, Li M, Wu C, Wang J, Jiao Y, Ning S, Zhou J, Hong Y, Liu Y, He H, Zhang M, Chen F, Li Y, He X, Wu J, Lu S, Song K, Lu X, Zhang J. ASD2023: towards the integrating landscapes of allosteric knowledgebase. Nucleic Acids Res 2024; 52:D376-D383. [PMID: 37870448 PMCID: PMC10767950 DOI: 10.1093/nar/gkad915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Allosteric regulation, induced by perturbations at an allosteric site topographically distinct from the orthosteric site, is one of the most direct and efficient ways to fine-tune macromolecular function. The Allosteric Database (ASD; accessible online at http://mdl.shsmu.edu.cn/ASD) has been systematically developed since 2009 to provide comprehensive information on allosteric regulation. In recent years, allostery has seen sustained growth and wide-ranging applications in life sciences, from basic research to new therapeutics development, while also elucidating emerging obstacles across allosteric research stages. To overcome these challenges and maintain high-quality data center services, novel features were curated in the ASD2023 update: (i) 66 589 potential allosteric sites, covering > 80% of the human proteome and constituting the human allosteric pocketome; (ii) 748 allosteric protein-protein interaction (PPI) modulators with clear mechanisms, aiding protein machine studies and PPI-targeted drug discovery; (iii) 'Allosteric Hit-to-Lead,' a pioneering dataset providing panoramic views from 87 well-defined allosteric hits to 6565 leads and (iv) 456 dualsteric modulators for exploring the simultaneous regulation of allosteric and orthosteric sites. Meanwhile, ASD2023 maintains a significant growth of foundational allosteric data. Based on these efforts, the allosteric knowledgebase is progressively evolving towards an integrated landscape, facilitating advancements in allosteric target identification, mechanistic exploration and drug discovery.
Collapse
Affiliation(s)
- Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jinyin Zha
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingzhu Zhao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiacheng Wei
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Junyuan Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Yonglai Jiao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaobo Ning
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiamin Zhou
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Yue Hong
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yonghui Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongxi He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feiying Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanxiu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kun Song
- Nutshell Therapeutics, Shanghai 201210, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Janicot R, Maziarz M, Park JC, Luebbers A, Green E, Zhao J, Philibert C, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573921. [PMID: 38260348 PMCID: PMC10802303 DOI: 10.1101/2024.01.02.573921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D. Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
30
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
32
|
Jardón-Valadez E, Ulloa-Aguirre A. Tracking conformational transitions of the gonadotropin hormone receptors in a bilayer of (SDPC) poly-unsaturated lipids from all-atom molecular dynamics simulations. PLoS Comput Biol 2024; 20:e1011415. [PMID: 38206994 PMCID: PMC10807830 DOI: 10.1371/journal.pcbi.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/24/2024] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Glycoprotein hormone receptors [thyrotropin (TSHR), luteinizing hormone/chorionic gonadotropin (LHCGR), and follicle stimulating hormone (FSHR) receptors] are rhodopsin-like G protein-coupled receptors. These receptors display common structural features including a prominent extracellular domain with leucine-rich repeats (LRR) stabilized by β-sheets and a long and flexible loop known as the hinge region (HR), and a transmembrane (TM) domain with seven α-helices interconnected by intra- and extracellular loops. Binding of the ligand to the LRR resembles a hand coupling transversally to the α- and β-subunits of the hormone, with the thumb being the HR. The structure of the FSH-FSHR complex suggests an activation mechanism in which Y335 at the HR binds into a pocket between the α- and β-chains of the hormone, leading to an adjustment of the extracellular loops. In this study, we performed molecular dynamics (MD) simulations to identify the conformational changes of the FSHR and LHCGR. We set up a FSHR structure as predicted by AlphaFold (AF-P23945); for the LHCGR structure we took the cryo-electron microscopy structure for the active state (PDB:7FII) as initial coordinates. Specifically, the flexibility of the HR domain and the correlated motions of the LRR and TM domain were analyzed. From the conformational changes of the LRR, TM domain, and HR we explored the conformational landscape by means of MD trajectories in all-atom approximation, including a membrane of polyunsaturated phospholipids. The distances and procedures here defined may be useful to propose reaction coordinates to describe diverse processes, such as the active-to-inactive transition, and to identify intermediaries suited for allosteric regulation and biased binding to cellular transducers in a selective activation strategy.
Collapse
Affiliation(s)
- Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Unidad Lerma, Universidad Autónoma Metropolitana, Lerma de Villada, Estado de México, Mexico
| | - Alfredo Ulloa-Aguirre
- Instituto Nacional de Ciencias Medicas y Nutrición “Salvador Zubiran”. Mexico City, Mexico
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México. Mexico City, Mexico
| |
Collapse
|
33
|
Li M, Lan X, Lu X, Zhang J. A Structure-Based Allosteric Modulator Design Paradigm. HEALTH DATA SCIENCE 2023; 3:0094. [PMID: 38487194 PMCID: PMC10904074 DOI: 10.34133/hds.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024]
Abstract
Importance: Allosteric drugs bound to topologically distal allosteric sites hold a substantial promise in modulating therapeutic targets deemed undruggable at their orthosteric sites. Traditionally, allosteric modulator discovery has predominantly relied on serendipitous high-throughput screening. Nevertheless, the landscape has undergone a transformative shift due to recent advancements in our understanding of allosteric modulation mechanisms, coupled with a significant increase in the accessibility of allosteric structural data. These factors have extensively promoted the development of various computational methodologies, especially for machine-learning approaches, to guide the rational design of structure-based allosteric modulators. Highlights: We here presented a comprehensive structure-based allosteric modulator design paradigm encompassing 3 critical stages: drug target acquisition, allosteric binding site, and modulator discovery. The recent advances in computational methods in each stage are encapsulated. Furthermore, we delve into analyzing the successes and obstacles encountered in the rational design of allosteric modulators. Conclusion: The structure-based allosteric modulator design paradigm holds immense potential for the rational design of allosteric modulators. We hope that this review would heighten awareness of the use of structure-based computational methodologies in advancing the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Mingyu Li
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobin Lan
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xun Lu
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
34
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
35
|
Mao C, Gao M, Zang SK, Zhu Y, Shen DD, Chen LN, Yang L, Wang Z, Zhang H, Wang WW, Shen Q, Lu Y, Ma X, Zhang Y. Orthosteric and allosteric modulation of human HCAR2 signaling complex. Nat Commun 2023; 14:7620. [PMID: 37993467 PMCID: PMC10665550 DOI: 10.1038/s41467-023-43537-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Hydroxycarboxylic acids are crucial metabolic intermediates involved in various physiological and pathological processes, some of which are recognized by specific hydroxycarboxylic acid receptors (HCARs). HCAR2 is one such receptor, activated by endogenous β-hydroxybutyrate (3-HB) and butyrate, and is the target for Niacin. Interest in HCAR2 has been driven by its potential as a therapeutic target in cardiovascular and neuroinflammatory diseases. However, the limited understanding of how ligands bind to this receptor has hindered the development of alternative drugs able to avoid the common flushing side-effects associated with Niacin therapy. Here, we present three high-resolution structures of HCAR2-Gi1 complexes bound to four different ligands, one potent synthetic agonist (MK-6892) bound alone, and the two structures bound to the allosteric agonist compound 9n in conjunction with either the endogenous ligand 3-HB or niacin. These structures coupled with our functional and computational analyses further our understanding of ligand recognition, allosteric modulation, and activation of HCAR2 and pave the way for the development of high-efficiency drugs with reduced side-effects.
Collapse
Affiliation(s)
- Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Mengru Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Shao-Kun Zang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yanqing Zhu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liu Yang
- School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhiwei Wang
- School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Huibing Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yanhui Lu
- School of Nursing, Peking University, 100191, Beijing, China.
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Jörg M, van der Westhuizen ET, Lu Y, Christopher Choy KH, Shackleford DM, Khajehali E, Tobin AB, Thal DM, Capuano B, Christopoulos A, Valant C, Scammells PJ. Design, synthesis and evaluation of novel 2-phenyl-3-(1H-pyrazol-4-yl)pyridine positive allosteric modulators for the M 4 mAChR. Eur J Med Chem 2023; 258:115588. [PMID: 37423123 PMCID: PMC7616163 DOI: 10.1016/j.ejmech.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and β-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Yao Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - K H Christopher Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
37
|
Ahn S, Maarsingh H, Walker JK, Liu S, Hegde A, Sumajit HC, Kahsai AW, Lefkowitz RJ. Allosteric modulator potentiates β2AR agonist-promoted bronchoprotection in asthma models. J Clin Invest 2023; 133:e167337. [PMID: 37432742 PMCID: PMC10503797 DOI: 10.1172/jci167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Asthma is a chronic inflammatory disease associated with episodic airway narrowing. Inhaled β2-adrenergic receptor (β2AR) agonists (β2-agonists) promote - with limited efficacy - bronchodilation in asthma. All β2-agonists are canonical orthosteric ligands that bind the same site as endogenous epinephrine. We recently isolated a β2AR-selective positive allosteric modulator (PAM), compound-6 (Cmpd-6), which binds outside of the orthosteric site and modulates orthosteric ligand functions. With the emerging therapeutic potential of G-protein coupled receptor allosteric ligands, we investigated the impact of Cmpd-6 on β2AR-mediated bronchoprotection. Consistent with our findings using human β2ARs, Cmpd-6 allosterically potentiated β2-agonist binding to guinea pig β2ARs and downstream signaling of β2ARs. In contrast, Cmpd-6 had no such effect on murine β2ARs, which lack a crucial amino acid in the Cmpd-6 allosteric binding site. Importantly, Cmpd-6 enhanced β2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in guinea pig lung slices, but - in line with the binding studies - not in mice. Moreover, Cmpd-6 robustly potentiated β2 agonist-mediated bronchoprotection against allergen-induced airway constriction in lung slices obtained from a guinea pig model of allergic asthma. Cmpd-6 similarly enhanced β2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in human lung slices. Our results highlight the potential of β2AR-selective PAMs in the treatment of airway narrowing in asthma and other obstructive respiratory diseases.
Collapse
Affiliation(s)
- Seungkirl Ahn
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Julia K.L. Walker
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- School of Nursing, Duke University, Durham, North Carolina, USA
| | - Samuel Liu
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, North Carolina, USA
| | - Hyeje C. Sumajit
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Alem W. Kahsai
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biochemistry and
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
38
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
39
|
Morales P, Scharf MM, Johnson CP, Di Pizio A, Hilger D. Editorial: New approaches for the discovery of GPCR ligands. Front Endocrinol (Lausanne) 2023; 14:1272700. [PMID: 37670881 PMCID: PMC10476518 DOI: 10.3389/fendo.2023.1272700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Magdalena M. Scharf
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Cory P. Johnson
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Antonella Di Pizio
- In Silico Biology & Machine Learning, Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
40
|
Goldberg A, Xie B, Shi L. The Molecular Mechanism of Positive Allosteric Modulation at the Dopamine D1 Receptor. Int J Mol Sci 2023; 24:12848. [PMID: 37629030 PMCID: PMC10454769 DOI: 10.3390/ijms241612848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na+-binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R paves the way for the rational design of more potent and effective allosteric modulators.
Collapse
Affiliation(s)
| | | | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
41
|
Goldberg A, Xie B, Shi L. The molecular mechanism of positive allosteric modulation at the dopamine D1 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550907. [PMID: 37546785 PMCID: PMC10402154 DOI: 10.1101/2023.07.27.550907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The dopamine D1 receptor (D1R) is a promising target for treating various psychiatric disorders. While upregulation of D1R activity has shown potential in alleviating motor and cognitive symptoms, orthosteric agonists have limitations, restricting their clinical applications. However, the discovery of several allosteric compounds specifically targeting the D1R, such as LY3154207, has opened new therapeutic avenues. Based on the cryo-EM structures of the D1R, we conducted molecular dynamics simulations to investigate the binding and allosteric mechanisms of LY3154207. Our simulations revealed that LY3154207 preferred the horizontal orientation above intracellular loop 2 (IL2) and stabilized the helical conformation of IL2. Moreover, LY3154207 binding induced subtle yet significant changes in key structural motifs and their neighboring residues. Notably, a cluster of residues centered around the Na + binding site became more compact, while interactions involving the PIF motif and its neighboring residues were loosened upon LY3154207 binding, consistent with their role in opening the intracellular crevice for receptor activation. Additionally, we identified an allosteric pathway likely responsible for the positive allosteric effect of LY3154207 in enhancing Gs protein coupling. This mechanistic understanding of LY3154207's allosteric action at the D1R pave the way for the rational design of more potent and effective allosteric modulators.
Collapse
Affiliation(s)
- Alexander Goldberg
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
42
|
Bosquez-Berger T, Gudorf JA, Kuntz CP, Desmond JA, Schlebach JP, VanNieuwenhze MS, Straiker A. Structure-Activity Relationship Study of Cannabidiol-Based Analogs as Negative Allosteric Modulators of the μ-Opioid Receptor. J Med Chem 2023; 66:9466-9494. [PMID: 37437224 PMCID: PMC11299522 DOI: 10.1021/acs.jmedchem.3c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The US faces an unprecedented surge in fatal drug overdoses. Naloxone, the only antidote for opiate overdose, competes at the mu opioid receptor (μOR) orthosteric site. Naloxone struggles against fentanyl-class synthetic opioids that now cause ∼80% of deaths. Negative allosteric modulators (NAMs) targeting secondary sites may noncompetitively downregulate μOR activation. (-)-Cannabidiol ((-)-CBD) is a candidate μOR NAM. To explore its therapeutic potential, we evaluated the structure-activity relationships among CBD analogs to identify NAMs with increased potency. Using a cyclic AMP assay, we characterize reversal of μOR activation by 15 CBD analogs, several of which proved more potent than (-)-CBD. Comparative docking investigations suggest that potent compounds interact with a putative allosteric pocket to stabilize the inactive μOR conformation. Finally, these compounds enhance naloxone displacement of fentanyl from the orthosteric site. Our results suggest that CBD analogs offer considerable potential for the development of next-generation antidotes for opioid overdose.
Collapse
Affiliation(s)
- Taryn Bosquez-Berger
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, United States
| | - Jessica A Gudorf
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jacob A Desmond
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jonathan P Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Alex Straiker
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
43
|
Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT. Small molecule allosteric modulation of the adenosine A 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1184360. [PMID: 37435481 PMCID: PMC10331460 DOI: 10.3389/fendo.2023.1184360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the target for approximately a third of FDA-approved small molecule drugs. The adenosine A1 receptor (A1R), one of four adenosine GPCR subtypes, has important (patho)physiological roles in humans. A1R has well-established roles in the regulation of the cardiovascular and nervous systems, where it has been identified as a potential therapeutic target for a number of conditions, including cardiac ischemia-reperfusion injury, cognition, epilepsy, and neuropathic pain. A1R small molecule drugs, typically orthosteric ligands, have undergone clinical trials. To date, none have progressed into the clinic, predominantly due to dose-limiting unwanted effects. The development of A1R allosteric modulators that target a topographically distinct binding site represent a promising approach to overcome current limitations. Pharmacological parameters of allosteric ligands, including affinity, efficacy and cooperativity, can be optimized to regulate A1R activity with high subtype, spatial and temporal selectivity. This review aims to offer insights into the A1R as a potential therapeutic target and highlight recent advances in the structural understanding of A1R allosteric modulation.
Collapse
Affiliation(s)
- Anh T. N. Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Quan L. Tran
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Samantha M. McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Diep T. N. Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
44
|
Schüß C, Vu O, Mishra NM, Tough IR, Du Y, Stichel J, Cox HM, Weaver CD, Meiler J, Emmitte KA, Beck-Sickinger AG. Structure-Activity Relationship Study of the High-Affinity Neuropeptide Y 4 Receptor Positive Allosteric Modulator VU0506013. J Med Chem 2023. [PMID: 37339079 DOI: 10.1021/acs.jmedchem.3c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Positive allosteric modulators targeting the Y4 receptor (Y4R), a G protein-coupled receptor (GPCR) involved in the regulation of satiety, offer great potential in anti-obesity research. In this study, we selected 603 compounds by using quantitative structure-activity relationship (QSAR) models and tested them in high-throughput screening (HTS). Here, the novel positive allosteric modulator (PAM) VU0506013 was identified, which exhibits nanomolar affinity and pronounced selectivity toward the Y4R in engineered cell lines and mouse descending colon mucosa natively expressing the Y4R. Based on this lead structure, we conducted a systematic SAR study in two regions of the scaffold and presented a series of 27 analogues with modifications in the N- and C-terminal heterocycles of the molecule to obtain insight into functionally relevant positions. By mutagenesis and computational docking, we present a potential binding mode of VU0506013 in the transmembrane core of the Y4R. VU0506013 presents a promising scaffold for developing in vivo tools to move toward anti-obesity drug research focused on the Y4R.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Oanh Vu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute for Drug Discovery, Leipzig University, Leipzig 04103, Germany
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | | |
Collapse
|
45
|
Zhang X, Zhang S, Wang M, Chen H, Liu H. Advances in the allostery of angiotensin II type 1 receptor. Cell Biosci 2023; 13:110. [PMID: 37330563 DOI: 10.1186/s13578-023-01063-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Angiotensin II type 1 receptor (AT1R) is a promising therapeutic target for cardiovascular diseases. Compared with orthosteric ligands, allosteric modulators attract considerable attention for drug development due to their unique advantages of high selectivity and safety. However, no allosteric modulators of AT1R have been applied in clinical trials up to now. Except for the classical allosteric modulators of AT1R such as antibody, peptides and amino acids, cholesterol and biased allosteric modulators, there are non-classical allosteric modes including the ligand-independent allosteric mode, and allosteric mode of biased agonists and dimers. In addition, finding the allosteric pockets based on AT1R conformational change and interaction interface of dimers are the future of drug design. In this review, we summarize the different allosteric mode of AT1R, with a view to contribute to the development and utilization of drugs targeting AT1R allostery.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Meili Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hao Chen
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, China.
| |
Collapse
|
46
|
Luo ML, Zhao Q, He XH, Xie X, Zhu HP, You FM, Peng C, Zhan G, Huang W. Research progress of indole-fused derivatives as allosteric modulators: Opportunities for drug development. Biomed Pharmacother 2023; 162:114574. [PMID: 36996677 DOI: 10.1016/j.biopha.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Allosteric modulation is a direct and effective method for regulating the function of biological macromolecules, which play vital roles in various cellular activities. Unlike orthosteric modulators, allosteric modulators bind to sites distant from the protein's orthosteric/active site and can have specific effects on the protein's function or activity without competing with endogenous ligands. Compared to traditional orthosteric modulators, allosteric modulators offer several advantages, including reduced side effects, greater specificity, and lower toxicity, making them a promising strategy for developing novel drugs. Indole-fused architectures are widely distributed in natural products and bioactive drug leads, displaying diverse biological activities that attract the interest of both chemists and biologists in drug discovery. Currently, an increasing number of indole-fused compounds have exhibited potent activities in allosteric modulation. In this review, we provide a brief summary of examples of allosteric modulators based on the indole-fused complex architecture, highlighting the strategies for drug design/discovery and the structure-activity relationships of allosteric modulators from the perspective of medicinal chemistry.
Collapse
|
47
|
Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 2023; 12:83477. [PMID: 37248726 DOI: 10.7554/elife.83477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.
Collapse
Affiliation(s)
- Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Vindhya Nawaratne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, United States
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
48
|
Shen S, Zhao C, Wu C, Sun S, Li Z, Yan W, Shao Z. Allosteric modulation of G protein-coupled receptor signaling. Front Endocrinol (Lausanne) 2023; 14:1137604. [PMID: 36875468 PMCID: PMC9978769 DOI: 10.3389/fendo.2023.1137604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of transmembrane proteins, regulate a wide array of physiological processes in response to extracellular signals. Although these receptors have proven to be the most successful class of drug targets, their complicated signal transduction pathways (including different effector G proteins and β-arrestins) and mediation by orthosteric ligands often cause difficulties for drug development, such as on- or off-target effects. Interestingly, identification of ligands that engage allosteric binding sites, which are different from classic orthosteric sites, can promote pathway-specific effects in cooperation with orthosteric ligands. Such pharmacological properties of allosteric modulators offer new strategies to design safer GPCR-targeted therapeutics for various diseases. Here, we explore recent structural studies of GPCRs bound to allosteric modulators. Our inspection of all GPCR families reveals recognition mechanisms of allosteric regulation. More importantly, this review highlights the diversity of allosteric sites and presents how allosteric modulators control specific GPCR pathways to provide opportunities for the development of new valuable agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Bagher AM, Binmahfouz LS, Shaik RA, Eid BG. Cannabinoid receptor 1 positive allosteric modulator (GAT229) attenuates cisplatin-induced neuropathic pain in mice. Saudi Pharm J 2023; 31:255-264. [PMID: 36942271 PMCID: PMC10023546 DOI: 10.1016/j.jsps.2022.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of chemotherapies' most often documented side effects. Patients with CIPN experience spontaneous burning, numbness, tingling, and neuropathic pain in their feet and hands. Currently, there is no effective pharmacological treatment to prevent or treat CIPN. Activating the cannabinoid receptor type 1 (CB1) by orthosteric agonists has shown promising results in alleviating the pain and neuroinflammation associated with CIPN. However, the use of CB1 orthosteric agonists is linked to undesirable side effects. Unlike the CB1 orthosteric agonists, CB1 positive allosteric modulators (PAMs) don't produce any psychoactive effects, tolerance, or dependence. Previous studies have shown that CB1 PAMs exhibit antinociceptive effects in inflammatory and neuropathic rodent models. This study aimed to investigate the potential benefits of the newly synthesized GAT229, a pure CB1 PAM, in alleviating neuropathic pain and slowing the progression of CIPN. GAT229 was evaluated in a cisplatin-induced (CIS) mouse model of peripheral neuropathic pain (3 mg/kg/d, 28 d, i.p.). GAT229 attenuated and slowed the progression of thermal hyperalgesia and mechanical allodynia induced by CIS, as evaluated by the hotplate test and von Frey filament test. GAT229 reduced the expression of proinflammatory cytokines in the dorsal root ganglia (DRG) neurons. Furthermore, GAT229 attenuated nerve injuries by normalizing the brain-derived neurotrophic factor and the nerve growth factor mRNA expression levels in the DRG neurons. The CB1 receptor antagonist/inverse agonist AM251 blocked GAT229-mediated beneficial effects. According to our data, we suggest that CB1 PAMs might be beneficial in alleviating neuropathic pain and slowing the progression of CIPN.
Collapse
Affiliation(s)
- Amina M. Bagher
- Corresponding author at: Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | |
Collapse
|
50
|
Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun 2023; 14:376. [PMID: 36690613 PMCID: PMC9870890 DOI: 10.1038/s41467-022-35726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Collapse
Affiliation(s)
- Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
- Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuyong Tao
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|