1
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
3
|
Zheng J, Meng W, Chen S, Cui Z, Xian X, Tian J, Krysko DV, Li B, Zhang W. A near-infrared broad-spectrum antimicrobial nanoplatform powered by bacterial metabolic activity for enhanced antimicrobial photodynamic-immune therapy. Acta Biomater 2024; 184:335-351. [PMID: 38936751 DOI: 10.1016/j.actbio.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The emergence of antimicrobial-resistant bacterial infections poses a significant threat to public health, necessitating the development of innovative and effective alternatives to antibiotics. Photodynamic therapy (PDT) and immunotherapy show promise in combating bacteria. However, PDT's effectiveness is hindered by its low specificity to bacteria, while immunotherapy struggles to eliminate bacteria in immunosuppressive environments. In this work, we introduce an innovative near-infrared antimicrobial nanoplatform (ZFC) driven by bacterial metabolism. ZFC, comprising d-cysteine-functionalized pentafluorophenyl bacteriochlorin (FBC-Cy) coordinated with Zn2+, is designed for antimicrobial photodynamic-immune therapy (aPIT) against systemic bacterial infections. By specifically targeting bacteria via d-amino acid incorporation into bacterial surface peptidoglycans during metabolism, ZFC achieves precise bacterial clearance in wound and pulmonary infections, exhibiting an antimicrobial efficacy of up to 90 % with minimal damage to normal cells under 750 nm light. Additionally, ZFC enhances the activation of antigen-presenting cells by 3.2-fold compared to control groups. Furthermore, aPIT induced by ZFC triggers systemic immune responses and establishes immune memory, resulting in a 1.84-fold increase in antibody expression against bacterial infections throughout the body of mice. In conclusion, aPIT prompted by ZFC presents a approach to treating bacterial infections, offering a broad-spectrum solution for systemic bacterial infections. STATEMENT OF SIGNIFICANCE: The new concept demonstrated focuses on an innovative near-infrared antimicrobial nanoplatform (ZFC) for antimicrobial photodynamic-immune therapy (aPIT), highlighting its reliance on bacterial metabolism and its non-damaging effect on normal tissues. ZFC efficiently targets deep-tissue bacterial infections by harnessing bacterial metabolism, thereby enhancing therapeutic efficacy while sparing normal tissues from harm. This approach not only clears bacterial infections effectively but also induces potent adaptive immune responses, leading to the eradication of distant bacterial infections. By emphasizing ZFC's unique mechanism driven by bacterial metabolism and its tissue-sparing properties, this work underscores the potential for groundbreaking advancements in antimicrobial therapy. Such advancements hold promise for minimizing collateral damage to healthy tissues, thereby improving treatment outcomes and mitigating the threat of antimicrobial resistance. This integrated approach represents a significant progress forward in the development of next-generation antimicrobial therapies with enhanced precision and efficacy.
Collapse
Affiliation(s)
- Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xueying Xian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
5
|
Li Q, Feng H, Tian Q, Xiang Y, Wang X, He YX, Zhu K. Discovery of antibacterial diketones against gram-positive bacteria. Cell Chem Biol 2024:S2451-9456(24)00277-0. [PMID: 39089260 DOI: 10.1016/j.chembiol.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/21/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.
Collapse
Affiliation(s)
- Qian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanzhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Tian
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Zhuang H, Chen M, Hu D, Liu L, Wu D, Zhang H, Wang Z, Jiang S, Chen Y, Zhu F, Hong Y, Lei T, Wang H, Sun L, Ji S, Yu Y, Chen Y. Role of tcaA, a potential target as a ceftobiprole resistance breaker in MRSA β-lactam resistance. Int J Antimicrob Agents 2024; 64:107185. [PMID: 38692492 DOI: 10.1016/j.ijantimicag.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Using a random forest algorithm, we previously found that teicoplanin-associated gene A (tcaA) might play a role in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactams, which we have investigated further here. METHODS Representative MRSA strains of prevalent clones were selected to identify the role of tcaA in the MRSA response to β-lactams. tcaA genes were deleted by homologous recombination in the selected MRSA strains, and antibiotic susceptibility tests were applied to evaluate the effect of tcaA on the minimum inhibitory concentrations (MICs) of glycopeptides and β-lactams. Scanning electron microscopy, RNA sequencing, and quantitative reverse transcription-polymerase chain reaction were performed to explore the mechanism of tcaA in MRSA resistance to β-lactams. RESULTS The MIC of penicillin plus clavulanate decreased from 3 mg/L to 0.064 mg/L and that of oxacillin decreased from 16 to 0.5 mg/L when tcaA was knocked out in the LAC strain. Compared with wild-type MRSA isolates, when tcaA was deleted, all selected strains were more susceptible to β-lactams. Susceptibility to ceftobiprole was restored in the ceftobiprole-resistant strain when tcaA was deleted. tcaA knockout caused "log-like" abnormal division of MRSA, and tcaA deficiency mediated low expression of mecA, ponA, and murA2. CONCLUSIONS Machine learning is a reliable tool for identifying drug resistance-related genes. tcaA may be involved in S. aureus cell division and may affect mecA, ponA, and murA2 expression. Furthermore, tcaA is a potential resistance breaker target for β-lactams, including ceftobiprole, in MRSA.
Collapse
Affiliation(s)
- Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongping Hu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Disease, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lin Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dandan Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqin Hong
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Infectious Diseases, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Glajzner P, Bernat A, Jasińska-Stroschein M. Improving the treatment of bacterial infections caused by multidrug-resistant bacteria through drug repositioning. Front Pharmacol 2024; 15:1397602. [PMID: 38910882 PMCID: PMC11193365 DOI: 10.3389/fphar.2024.1397602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Drug repurposing (repositioning) is a dynamically-developing area in the search for effective therapy of infectious diseases. Repositioning existing drugs with a well-known pharmacological and toxicological profile is an attractive method for quickly discovering new therapeutic indications. The off-label use of drugs for infectious diseases requires much less capital and time, and can hasten progress in the development of new antimicrobial drugs, including antibiotics. The use of drug repositioning in searching for new therapeutic options has brought promising results for many viral infectious diseases, such as Ebola, ZIKA, Dengue, and HCV. This review describes the most favorable results for repositioned drugs for the treatment of bacterial infections. It comprises publications from various databases including PubMed and Web of Science published from 2015 to 2023. The following search keywords/strings were used: drug repositioning and/or repurposing and/or antibacterial activity and/or infectious diseases. Treatment options for infections caused by multidrug-resistant bacteria were taken into account, including methicillin-resistant staphylococci, multidrug-resistant Mycobacterium tuberculosis, or carbapenem-resistant bacteria from the Enterobacteriaceae family. It analyses the safety profiles of the included drugs and their synergistic combinations with antibiotics and discusses the potential of antibacterial drugs with antiparasitic, anticancer, antipsychotic effects, and those used in metabolic diseases. Drug repositioning may be an effective response to public health threats related to the spread of multidrug-resistant bacterial strains and the growing antibiotic resistance of microorganisms.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lodz, Łódź, Poland
| | | | | |
Collapse
|
8
|
Mesüm O, Atilgan AR, Kocuk B. A stochastic programming approach to the antibiotics time machine problem. Math Biosci 2024; 372:109191. [PMID: 38604597 DOI: 10.1016/j.mbs.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/26/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Antibiotics Time Machine is an important problem to understand antibiotic resistance and how it can be reversed. Mathematically, it can be modeled as follows: Consider a set of genotypes, each of which contain a set of mutated and unmutated genes. Suppose that a set of growth rate measurements of each genotype under a set of antibiotics is given. The transition probabilities of a 'realization' of a Markov chain associated with each arc under each antibiotic are computable via a predefined function given the growth rate realizations. The aim is to maximize the expected probability of reaching to the genotype with all unmutated genes given the initial genotype in a predetermined number of transitions, considering the following two sources of uncertainties: (i) the randomness in growth rates, (ii) the randomness in transition probabilities, which are functions of growth rates. We develop stochastic mixed-integer linear programming and dynamic programming approaches to solve static and dynamic versions of the Antibiotics Time Machine Problem under the aforementioned uncertainties. We adapt a Sample Average Approximation approach that exploits the special structure of the problem and provide accurate solutions that perform very well in an out-of-sample analysis.
Collapse
Affiliation(s)
- Oğuz Mesüm
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
| | - Burak Kocuk
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
| |
Collapse
|
9
|
Mathuria A, Ali N, Kataria N, Mani I. Drug repurposing for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:59-78. [PMID: 38942545 DOI: 10.1016/bs.pmbts.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The rise of multidrug-resistant bacteria is a well-recognized threat to world health, necessitating the implementation of effective treatments. This issue has been identified as a top priority on the global agenda by the World Health Organization. Certain strains, such as Candida glabrata, Candida krusei, Candida lusitaniae, Candida auris, select cryptococcal species, and opportunistic Aspergillus or Fusarium species, have significant intrinsic resistance to numerous antifungal medicines. This inherent resistance and subsequent suboptimal clinical outcomes underscore the critical imperative for enhanced therapeutic alternatives and management protocols. The challenge of effectively treating fungal infections, compounded by the protracted timelines involved in developing novel drugs, underscores the pressing need to explore alternative therapeutic avenues. Among these, drug repurposing emerges as a particularly promising and expeditious solution, providing cost-effective solutions and safety benefits. In the fight against life-threatening resistant fungal infections, the idea of repurposing existing medications has encouraged research into both established and new compounds as a last-resort therapy. This chapter seeks to provide a comprehensive overview of contemporary antifungal drugs, as well as their key resistance mechanisms. Additionally, it seeks to provide insight into the antimicrobial properties of non-traditional drugs, thereby offering a holistic perspective on the evolving landscape of antifungal therapeutics.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
10
|
Liu S, Zhao C, Shu R, Dou L, Luo X, Luo L, Sun J, Wang Y, Ji Y, Wang J. Fortified Dual-Spectral Overlap with Enhanced Colorimetric/Fluorescence Dual-Response Immunochromatography for On-Site Bimodal-Type Gentamicin Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38624165 DOI: 10.1021/acs.jafc.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Cui R, Zhang J, Liu X, Hu C, Zhou F, Zhang M, Wang X, Zou Q, Huang W. Dronedarone Enhances the Antibacterial Activity of Polymyxin B and Inhibits the Quorum Sensing System by Interacting with LuxS. ACS Infect Dis 2024; 10:961-970. [PMID: 38317424 DOI: 10.1021/acsinfecdis.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Quorum sensing (QS) is considered an appealing target for interference with bacterial infections. β-Adrenergic blockers are promising anti-QS agents but do not have antibacterial activity. We assessed the potential ability of adrenergic receptor inhibitors to enhance the antibacterial activity of polymyxin B (PB) against Klebsiella pneumoniae and determined that dronedarone has the most potent activity both in vitro and in vivo. We found that dronedarone increases the thermal stability of LuxS, decreases the production of AI-2, and affects the biofilm formation of K. pneumoniae. We also identified the direct binding of dronedarone to LuxS. However, the mechanism by which dronedarone enhances the antibacterial activity of PB has not been elucidated and is worthy of further exploration. Our study provides a basis for the future development of drug combination regimens.
Collapse
Affiliation(s)
- Ruiqin Cui
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiaodi Liu
- Department of Infectious Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Chunxia Hu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Fan Zhou
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Min Zhang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Huang
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| |
Collapse
|
12
|
Abdullah SJ, Yan BTS, Palanivelu N, Dhanabal VB, Bifani JP, Bhattacharjya S. Outer-Membrane Permeabilization, LPS Transport Inhibition: Activity, Interactions, and Structures of Thanatin Derived Antimicrobial Peptides. Int J Mol Sci 2024; 25:2122. [PMID: 38396798 PMCID: PMC10888688 DOI: 10.3390/ijms25042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, viable antibiotics available to mitigate infections caused by drug-resistant Gram-negative bacteria are highly limited. Thanatin, a 21-residue-long insect-derived antimicrobial peptide (AMP), is a promising lead molecule for the potential development of novel antibiotics. Thanatin is extremely potent, particularly against the Enterobacter group of Gram-negative pathogens, e.g., E. coli and K. pneumoniae. As a mode of action, cationic thanatin efficiently permeabilizes the LPS-outer membrane and binds to the periplasmic protein LptAm to inhibit outer membrane biogenesis. Here, we have utilized N-terminal truncated 16- and 14-residue peptide fragments of thanatin and investigated structure, activity, and selectivity with correlating modes of action. A designed 16-residue peptide containing D-Lys (dk) named VF16 (V1PIIYCNRRT-dk-KCQRF16) demonstrated killing activity in Gram-negative bacteria. The VF16 peptide did not show any detectable toxicity to the HEK 293T cell line and kidney cell line Hep G2. As a mode of action, VF16 interacted with LPS, permeabilizing the outer membrane and binding to LptAm with high affinity. Atomic-resolution structures of VF16 in complex with LPS revealed cationic and aromatic surfaces involved in outer membrane interactions and permeabilization. Further, analyses of an inactive 14-residue native thanatin peptide (IM14: IIYCNRRTGKCQRM) delineated the requirement of the β-sheet structure in activity and target interactions. Taken together, this work would pave the way for the designing of short analogs of thanatin-based antimicrobials.
Collapse
Affiliation(s)
- Swaleeha Jaan Abdullah
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Bernice Tan Siu Yan
- A*Star Infectious Diseases Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Nithya Palanivelu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Vidhya Bharathi Dhanabal
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Juan Pablo Bifani
- A*Star Infectious Diseases Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| |
Collapse
|
13
|
Bhat MF, Prats Luján A, Saifuddin M, Fodran P, Poelarends GJ. Multigram-scale chemoenzymatic synthesis of diverse aminopolycarboxylic acids as potential metallo-β-lactamase inhibitors. Org Biomol Chem 2024; 22:491-495. [PMID: 38126753 PMCID: PMC10792612 DOI: 10.1039/d3ob01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Toxin A, a precursor to naturally occurring aspergillomarasmine A, aspergillomarasmine B, lycomarasmine and related aminopolycarboxylic acids, was synthesized as the desired (2S,2'S)-diastereomer on a multigram-scale (>99% conversion, 82% isolated yield, dr > 95 : 5) from commercially available starting materials using the enzyme ethylenediamine-N,N'-disuccinic acid lyase. A single-step protection route of this chiral synthon was developed to aid N-sulfonylation/-alkylation and reductive amination at the terminal primary amine for easy derivatization, followed by global deprotection to give the corresponding toxin A derivatives, including lycomarasmine, in moderate to good yields (23-66%) and with high stereopurity (dr > 95 : 5). Furthermore, a chemoenzymatic route was developed to introduce a click handle on toxin A (yield 72%, dr > 95 : 5) and its cyclized congener for further analogue design. Finally, a chemoenzymatic route towards the synthesis of photocaged aspergillomarasmine B (yield 8%, dr > 95 : 5) was established, prompting further steps into smart prodrug design and precision delivery. These new synthetic methodologies have the prospective of facilitating research into the finding of more selective and potent metallo-β-lactamase (MBL) inhibitors, which are urgently needed to combat MBL-based infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Peter Fodran
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
14
|
Cui S, Cong Y, Zhao W, Guo R, Wang X, Lv B, Liu H, Liu Y, Zhang Q. A novel multifunctional magnetically recyclable BiOBr/ZnFe 2O 4-GO S-scheme ternary heterojunction: Photothermal synergistic catalysis under Vis/NIR light and NIR-driven photothermal detection of tetracycline. J Colloid Interface Sci 2024; 654:356-370. [PMID: 37847950 DOI: 10.1016/j.jcis.2023.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The threat of tetracycline (TC) to human health has become a significant issue that cannot be disregarded. Herein, in order to achieve effective degradation and high-sensitivity detection of TC, BiOBr/ZnFe2O4-GO (BOB/ZFO-GO) S-scheme heterojunction nanocomposites (NCs) have been prepared using hydrothermal method. GO with high light absorption capacity accelerated the electron transfer between BiOBr and ZnFe2O4 nanocrystals and extended the light absorption region of BOB/ZFO NCs. The optimal GO addition of BOB/ZFO-GO NCs could degrade TC solution of 10 mg/L in 80 min and have a high reaction rate constant (k) of 0.072 min-1 under visible/NIR light. According to calculations, the non-metal photocatalyst (BOB/ZFO-GO(2)) with the best degradation performance had a photothermal conversion efficiency of up to 23%. Meanwhile, BOB/ZFO-GO NCs could be recycled by magnetic field. The excellent photocatalytic and photothermal performance could be maintained even after several cycles. In addition, a photothermal detection sensor based on a photothermal material/specific recognition element/tetracycline sandwich-type structure was constructed for the trace detection of TC concentration with a detection limit as low as 10-4 ng/mL. This research provides a unique idea for the multi-functionalization of photocatalysts and has a wide range of potential applications for the identification and treatment of organic wastewater.
Collapse
Affiliation(s)
- Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Cong
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Bohui Lv
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hongbo Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
15
|
Xu J, Chen X, Zhou H, Zhao Y, Cheng Y, Wu Y, Zhang J, Chen J, Zhang S. Machine learning-assisted photoluminescent sensor array based on gold nanoclusters for the discrimination of antibiotics with test paper. Talanta 2024; 266:125122. [PMID: 37651910 DOI: 10.1016/j.talanta.2023.125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic residues accumulation in the environment endangers ecosystems and human health. There is an urgent need for a facile and efficient strategy to detect antibiotics. Here, we report a photoluminescent sensor array based on protein-stabilized gold nanoclusters (AuNCs) for the detection of two families of antibiotics, tetracyclines and quinolones. The nanoclusters were synthesized with bovine serum albumin (BSA) and ovalbumin (OVA), respectively. They had different interactions with seven kinds of antibiotics and exhibited diverse photoluminescence (PL) responses, which were analyzed by linear discriminant analysis and ExtraTrees algorithms. The sensor array performed well in both classification and quantification of seven antibiotics. And the quantitative results of all antibiotics obtained R2 of no less than 0.99 at 0-100 μM when using suitable regression models. Additionally, the sensor array was able to distinguish antibiotic mixtures and multiple interfering substances, and it also kept 100% classification accuracy in river water samples. Moreover, test paper assisted by a smartphone was applied for quick detection of antibiotics, with good performance in both HEPES buffer and river water. These studies reveal great potential for the point-of-use analysis of antibiotics in environmental monitoring.
Collapse
Affiliation(s)
- Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Yuchi Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China.
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
16
|
Kaushik A, Kaushik M, Kaur G, Gupta V. Perspective of Secondary Metabolites in Respect of Multidrug Resistance (MDR): A Review. Infect Disord Drug Targets 2024; 24:40-52. [PMID: 38031773 DOI: 10.2174/0118715265210606231113105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.
Collapse
Affiliation(s)
- Aditi Kaushik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Manish Kaushik
- KC Group of Institutions, UNA, H.P, MMDU, Mullana, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vrinda Gupta
- Chitkara Group of Institutions, Chitkara University, Chandigarh, India
| |
Collapse
|
17
|
Tan J, Fang Y, Yang C, Tay J, Tan N, Krishnan NDB, Chua BL, Zhao Y, Chen Y, Hedrick JL, Yang YY. pH-Responsive Polymeric Micelle Dynamic Complexes for Selective Killing of Helicobacter pylori. Biomacromolecules 2023; 24:5551-5562. [PMID: 37828909 DOI: 10.1021/acs.biomac.2c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Helicobacter pylori, the world's most common chronic infection-causing pathogen, is responsible for causing gastric ulcers, the fourth-leading cause of cancer-related death globally in 2020. In recent years, the effectiveness of the current treatment regimen (two antibiotics and one proton pump inhibitor) has often been plagued with problems such as resistance and the undesired elimination of commensal bacteria. Herein, we report the synthesis of block and random copolycarbonates, functionalized with cationic guanidinium and anionic acetate functional groups, aimed at selectively killing H. pylori in the acidic environment of the stomach, while remaining nontoxic to the commensal bacteria in the gut. The compositions of the polymers were fine-tuned so that the polymers were readily dispersed in water without any difficulty at both pH 3.0 and 7.4. The self-assembly behavior of the polymers at different pH values by dynamic light scattering showed that the random and block copolymers formed stable micelles in a simulated gastric environment (pH 3.0) while aggregated at pH 7.4. Both polymers demonstrated stronger antibacterial activity against H. pylori than the guanidinium-functionalized homopolymer without any acetate functional group at pH 3.0. The block copolymer was significantly more bactericidal at pH 3.0 across the concentrations tested, as compared to the random copolymer, while it did not show significant toxicity toward rat red blood cells (rRBCs) and HK-2 cells or bactericidal effect toward E. coli (a common gut bacterium) and nor caused aggregation of rRBCs at its effective concentration and at physiological pH of 7.4. Additionally, both the block and random copolymers were much more stable against hydrolysis at pH 3.0 than at pH 7.4. This study provides insight into the influence of both polymer architecture and dynamic assembly on the bioactivities of antimicrobial polymers, where the disassembly of coacervates into narrowly dispersed micelles at pH 3 make them potent antimicrobials aided by the protonated carboxylic acid block.
Collapse
Affiliation(s)
- Jason Tan
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yunhui Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, China
| | - Chuan Yang
- Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Joyce Tay
- Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Nathanael Tan
- Institute of Bioengineering and Bioimaging, Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138669, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nithiyaa D/O Bala Krishnan
- Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Boon Lin Chua
- Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, China
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore
| |
Collapse
|
18
|
Fang Z, Zhou Q, Zhang W, Wang J, Liu Y, Yu M, Qiu Y, Ma Z, Liu S. A Synergistic Antibacterial Study of Copper-Doped Polydopamine on Ti 3C 2T x Nanosheets with Enhanced Photothermal and Fenton-like Activities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7583. [PMID: 38138725 PMCID: PMC10744557 DOI: 10.3390/ma16247583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In response to the trend of drug-resistant and super bacteria, the existing single antibacterial methods are not sufficient to kill bacteria, and the development of multifunctional antibacterial nanomaterials is urgent. Our study aims to construct copper-doped polydopamine-coated Ti3C2Tx (CuPDA@Ti3C2Tx) with an enhanced photothermal property and Fenton-like activity. The nanocomposite hydrogel consisting of CuPDA@Ti3C2Tx and alginate can improve the antioxidant activity of two-dimensional MXene nanosheets by coating them with a thin layer of PDA nanofilm. Meanwhile, Cu ions are adsorbed through the coordination of PDA-rich oxygen-containing functional groups and amino groups. Calcium ions were further used to crosslink sodium alginate to obtain antibacterial hydrogel materials with combined chemotherapy and photothermal therapy properties. The photothermal conversion efficiency of CuPDA@Ti3C2Tx is as high as 57.7% and the antibacterial rate of Escherichia coli reaches 96.12%. The photothermal effect leads to oxidative stress in bacteria, increases cell membrane permeability, and a high amount of ROS and copper ions enter the interior of the bacteria, causing protein denaturation and DNA damage, synergistically leading to bacterial death. Our study involves a multifunctional synergistic antibacterial nanodrug platform, which is conducive to the development of high-performance antibacterial agents and provides important research ideas for solving the problem of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zhuluni Fang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
| | - Qingyang Zhou
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Wenbo Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Junyi Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Yihan Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Miao Yu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Yunfeng Qiu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
19
|
Li R, Shen X, Li Z, Shen J, Tang H, Xu H, Shen J, Xu Y. Combination of AS101 and Mefloquine Inhibits Carbapenem-Resistant Pseudomonas aeruginosa in vitro and in vivo. Infect Drug Resist 2023; 16:7271-7288. [PMID: 38023412 PMCID: PMC10664714 DOI: 10.2147/idr.s427232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background In recent years, carbapenem-resistant Pseudomonas aeruginosa (CRPA) has spread around the world, leading to a high mortality and close attention of medical community. In this study, we aim to find a new strategy of treatment for CRPA infections. Methods Eight strains of CRPA were collected, and PCR detected the multi-locus sequence typing (MLST). The antimicrobial susceptibility test was conducted using the VITEK@2 compact system. The minimum inhibitory concentration (MIC) for AS101 and mefloquine was determined using the broth dilution method. Antibacterial activity was tested in vitro and in vivo through the chessboard assay, time killing assay, and a mouse model. The mechanism of AS101 combined with mefloquine against CRPA was assessed through the biofilm formation inhibition assay, electron microscopy, and detection of reactive oxygen species (ROS). Results The results demonstrated that all tested CRPA strains exhibited multidrug resistance. Moreover, our investigation revealed a substantial synergistic antibacterial effect of AS101-mefloquine in vitro. The assay for inhibiting biofilm formation indicated that AS101-mefloquine effectively suppressed the biofilm formation of CRPA-5 and CRPA-6. Furthermore, AS101-mefloquine were observed to disrupt the bacterial cell wall and enhance the permeability of the cell membrane. This effect was achieved by stimulating the production of ROS, which in turn hindered the growth of CRPA-3. To evaluate the therapeutic potential, a murine model of CRPA-3 peritoneal infection was established. Notably, AS101-mefloquine administration resulted in a significant reduction in bacterial load within the liver, kidney, and spleen of mice after 72 hours of treatment. Conclusion The present study showed that the combination of AS101 and mefloquine yielded a notable synergistic bacteriostatic effect both in vitro and in vivo, suggesting a potential clinical application of this combination in the treatment of CRPA.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Xuhang Shen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengyuan Li
- Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jilong Shen
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Hao Tang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Huaming Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
20
|
Lv J, Liu G, Ju Y, Huang H, Sun Y. AADB: A Manually Collected Database for Combinations of Antibiotics With Adjuvants. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2827-2836. [PMID: 37279138 DOI: 10.1109/tcbb.2023.3283221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antimicrobial resistance is a global public health concern. The lack of innovations in antibiotic development has led to renewed interest in antibiotic adjuvants. However, there is no database to collect antibiotic adjuvants. Herein, we build a comprehensive database named Antibiotic Adjuvant DataBase (AADB) by manually collecting relevant literature. Specifically, AADB includes 3,035 combinations of antibiotics with adjuvants, covering 83 antibiotics, 226 adjuvants, and 325 bacterial strains. AADB provides user-friendly interfaces for searching and downloading. Users can easily obtain these datasets for further analysis. In addition, we also collected related datasets (e.g., chemogenomic and metabolomic data) and proposed a computational strategy to dissect these datasets. As a test case, we identified 10 candidates for minocycline, and 6 of 10 candidates are the known adjuvants that synergize with minocycline to inhibit the growth of E. coli BW25113. We hope that AADB can help users to identify effective antibiotic adjuvants. AADB is freely available at http://www.acdb.plus/AADB.
Collapse
|
21
|
Hadiya S, Ibrahem RA, Abd El-Baky RM, Elsabahy M, Hussein AM, Tolba ME, Aly SA. Nano-ciprofloxacin/meropenem exhibit bactericidal activity against Gram-negative bacteria and rescue septic rat model. Nanomedicine (Lond) 2023; 18:1553-1566. [PMID: 37933674 DOI: 10.2217/nnm-2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Aim: We hypothesized that simultaneous administration of two antibiotics loaded into a nanopolymer matrix would augment their synergistic bactericidal interaction. Methods: Nanoplatforms of chitosan/Pluronic® loaded with ciprofloxacin/meropenem (CS/Plu-Cip/Mer) were prepared by the ionic gelation method, using Plu at concentrations in the range 0.5-4% w/v. CS/Plu-Cip/Mer was evaluated for antibacterial synergistic activity in vitro and in vivo. Results: CS/Plu-Cip and CS/Plu-Mer with Plu concentrations of 3% w/v and 2% w/v, respectively, exhibited ∼80% encapsulation efficiency. The MICs of pathogens were fourfold to 16-fold lower for CS/Plu-Cip/Mer than for Cip/Mer. Synergy was evidenced for CS/Plu-Cip/Mer with a bactericidal effect (at 1× MIC and sub-MICs), and it significantly decreased bacterial load and rescued infected rats. Conclusion: This study illustrates the ability of CS/Plu nanopolymer to intensify synergy between antibiotics, thereby providing a promising potential to rejuvenate antibiotics considered ineffective against resistant pathogens.
Collapse
Affiliation(s)
- Safy Hadiya
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, 71515, Egypt
| | - Reham A Ibrahem
- Department of Microbiology & Immunology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Rehab M Abd El-Baky
- Department of Microbiology & Immunology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Deraya University, Minia, 61511, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Abeer Mr Hussein
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mohammed Em Tolba
- Medical Parasitology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Sherine A Aly
- Department of Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
22
|
Furikado I, Habe T, Inoue S, Tanaka M. Thermodynamics and Viscoelastic Property of Interface Unravel Combined Functions of Cationic Surfactant and Aromatic Alcohol against Gram-Negative Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289662 DOI: 10.1021/acs.langmuir.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs), the major constituents of the outer membranes of Gram-negative bacteria, play a key role in protecting bacteria against antibiotics and antibacterial agents. In this study, we investigated how a mixture of cationic surfactants and aromatic alcohols, the base materials of widely used sanitizers, synergistically act on LPSs purified from Escherichia coli using isothermal titration calorimetry (ITC), surface tension measurements, and quartz crystal microbalance with dissipation (QCM-D). ITC data measured in the absence of Ca2+ ions showed the coexistence of exothermic and endothermic processes. The exotherm can be interpreted as the electrostatic binding of the cationic surfactant to the negatively charged LPS membrane surface, whereas the endotherm indicates the hydrophobic interaction between the hydrocarbon chains of the surfactants and LPSs. In the presence of Ca2+ ions, only an exothermic reaction was observed by ITC, and no entropically driven endotherm could be detected. Surface tension experiments further revealed that the co-adsorption of surfactants and LPS was synergistic, while that of surfactants and alcohol was negatively synergistic. Moreover, the QCM-D data indicated that the LPS membrane remained intact when the alcohol alone was added to the system. Intriguingly, the LPS membrane became highly susceptible to the combination of cationic surfactants and aromatic alcohols in the absence of Ca2+ ions. The obtained data provide thermodynamic and mechanical insights into the synergistic function of surfactants and alcohols in sanitation, which will enable the identification of the optimal combination of small molecules for a high hygiene level for the post-pandemic society.
Collapse
Affiliation(s)
- Ippei Furikado
- Analytical Science Research Laboratories, Kao Corporation, 1334, Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Taichi Habe
- Analytical Science Research Laboratories, Kao Corporation, 1334, Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Shigeto Inoue
- Analytical Science Research Laboratories, Kao Corporation, 1334, Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Real JP, Real DA, Lopez-Vidal L, Barrientos BA, Bolaños K, Tinti MG, Litterio NJ, Kogan MJ, Palma SD. 3D-Printed Gastroretentive Tablets Loaded with Niclosamide Nanocrystals by the Melting Solidification Printing Process (MESO-PP). Pharmaceutics 2023; 15:pharmaceutics15051387. [PMID: 37242629 DOI: 10.3390/pharmaceutics15051387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Niclosamide (NICLO) is a recognized antiparasitic drug being repositioned for Helicobacter pylori. The present work aimed to formulate NICLO nanocrystals (NICLO-NCRs) to produce a higher dissolution rate of the active ingredient and to incorporate these nanosystems into a floating solid dosage form to release them into the stomach slowly. For this purpose, NICLO-NCRs were produced by wet-milling and included in a floating Gelucire l3D printed tablet by semi-solid extrusion, applying the Melting solidification printing process (MESO-PP) methodology. The results obtained in TGA, DSC, XRD and FT-IR analysis showed no physicochemical interactions or modifications in the crystallinity of NICLO-NCR after inclusion in Gelucire 50/13 ink. This method allowed the incorporation of NICLO-NCRs in a concentration of up to 25% w/w. It achieved a controlled release of NCRs in a simulated gastric medium. Moreover, the presence of NICLO-NCRs after redispersion of the printlets was observed by STEM. Additionally, no effects on the cell viability of the NCRs were demonstrated in the GES-1 cell line. Finally, gastroretention was demonstrated for 180 min in dogs. These findings show the potential of the MESO-PP technique in obtaining slow-release gastro-retentive oral solid dosage forms loaded with nanocrystals of a poorly soluble drug, an ideal system for treating gastric pathologies such as H. pylori.
Collapse
Affiliation(s)
- Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Daniel Andrés Real
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santos Dumont 964, Santiago 8380494, Chile
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Santiago 8380494, Chile
| | - Lucía Lopez-Vidal
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Bruno Andrés Barrientos
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| | - Karen Bolaños
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santos Dumont 964, Santiago 8380494, Chile
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Santiago 8380494, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile
| | - Mariano Guillermo Tinti
- Facultad de Ciencias Agropecuarias, IRNASUS CONICET, Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
| | - Nicolás Javier Litterio
- Facultad de Ciencias Agropecuarias, IRNASUS CONICET, Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
| | - Marcelo Javier Kogan
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santos Dumont 964, Santiago 8380494, Chile
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Santiago 8380494, Chile
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba X5000XHUA, Argentina
| |
Collapse
|
24
|
Rampacci E, Felicetti T, Cernicchi G, Stefanetti V, Sabatini S, Passamonti F. Inhibition of Staphylococcus pseudintermedius Efflux Pumps by Using Staphylococcus aureus NorA Efflux Pump Inhibitors. Antibiotics (Basel) 2023; 12:antibiotics12050806. [PMID: 37237709 DOI: 10.3390/antibiotics12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
One promising approach in treating antibiotic-resistant bacteria is to "break" resistances connected with antibacterial efflux by co-administering efflux pump inhibitors (EPIs) with antibiotics. Here, ten compounds, previously optimized to restore the susceptibility to ciprofloxacin (CIP) of norA-overexpressing Staphylococcus aureus, were evaluated for their ability to inhibit norA-mediated efflux in Staphylococcus pseudintermedius and synergize with CIP, ethidium bromide (EtBr), gentamycin (GEN), and chlorhexidine digluconate (CHX). We focused efforts on S. pseudintermedius as a pathogenic bacterium of concern within veterinary and human medicine. By combining data from checkerboard assays and EtBr efflux inhibition experiments, the hits 2-arylquinoline 1, dihydropyridine 6, and 2-phenyl-4-carboxy-quinoline 8 were considered the best EPIs for S. pseudintermedius. Overall, most of the compounds, except for 2-arylquinoline compound 2, were able to fully restore the susceptibility of S. pseudintermedius to CIP and synergize with GEN as well, while the synergistic effect with CHX was less significant and often did not show a dose-dependent effect. These are valuable data for medicinal chemistry optimization of EPIs for S. pseudintermedius and lay the foundation for further studies on successful EPIs to treat staphylococcal infections.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, Via Del Liceo 1, 06123 Perugia, Italy
| | - Giada Cernicchi
- Department of Pharmaceutical Sciences, Via Del Liceo 1, 06123 Perugia, Italy
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, Via Del Liceo 1, 06123 Perugia, Italy
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| |
Collapse
|
25
|
Ryan A, Patel P, Ratrey P, O'Connor PM, O'Sullivan J, Ross RP, Hill C, Hudson SP. The development of a solid lipid nanoparticle (SLN)-based lacticin 3147 hydrogel for the treatment of wound infections. Drug Deliv Transl Res 2023:10.1007/s13346-023-01332-9. [PMID: 36964439 PMCID: PMC10382363 DOI: 10.1007/s13346-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
Chronic wounds affect millions of people globally. This number is set to rise with the increasing incidence of antimicrobial-resistant bacterial infections, such as methicillin-resistant Staphylococcus aureus (MRSA), which impair the healing of chronic wounds. Lacticin 3147 is a two-peptide chain bacteriocin produced by Lactococcus lactis that is active against S. aureus including MRSA strains. Previously, poor physicochemical properties of the peptides were overcome by the encapsulation of lacticin 3147 into solid lipid nanoparticles. Here, a lacticin 3147 solid lipid nanoparticle gel is proposed as a topical treatment for S. aureus and MRSA wound infections. Initially, lacticin 3147's antimicrobial activity against S. aureus was determined before encapsulation into solid lipid nanoparticles. An optimised gel formulation with the desired physicochemical properties for topical application was developed, and the lacticin-loaded solid lipid nanoparticles and free lacticin 3147 aqueous solution were incorporated into separate gels. The release of lacticin 3147 from both the solid lipid nanoparticle and free lacticin gels was measured where the solid lipid nanoparticle gel exhibited increased activity for a longer period (11 days) compared to the free lacticin gel (9 days). Both gels displayed potent activity ex vivo against S. aureus-infected pig skin with significant bacterial eradication (> 75%) after 1 h. Thus, a long-acting potent lacticin 3147 solid lipid nanoparticle gel with the required physicochemical properties for topical delivery of lacticin 3147 to the skin for the potential treatment of S. aureus-infected chronic wounds was developed.
Collapse
Affiliation(s)
- Aoibhín Ryan
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Pratikkumar Patel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Poonam Ratrey
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Julie O'Sullivan
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, College Road, Cork, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
- SSPC the SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick, Ireland.
| |
Collapse
|
26
|
Resina L, El Hauadi K, Sans J, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C. Electroresponsive and pH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules 2023; 24:1432-1444. [PMID: 36821593 PMCID: PMC10889591 DOI: 10.1021/acs.biomac.2c01442] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.
Collapse
Affiliation(s)
- Leonor Resina
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Karima El Hauadi
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Teresa Esteves
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Yang TY, Tseng SP, Ho HC, Chen LH, Hsueh PR, Lu PL, Lin CH, Wang LC. In Vitro Evaluation of Tellurium-Based AS101 Compound against Neisseria gonorrhoeae Infectivity. Microbiol Spectr 2023; 11:e0149622. [PMID: 36877078 PMCID: PMC10100759 DOI: 10.1128/spectrum.01496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Neisseria gonorrhoeae (GC) is a obligate human pathogen responsible for gonorrhea, one of the most common sexually transmitted infections. The yearly increased multidrug resistance in GC has led to treatment failure clinically, suggesting an urgent need for novel therapy to combat this global health issue. AS101 [ammonium trichloro(dioxoethylene-O,O'-)tellurate], a tellurium-based compound previously used as an immunomodulatory agent, was found to have antimicrobial effects against Klebsiella pneumoniae via a high-throughput drug screening and showed antibacterial activity against Acinetobacter spp. This study aimed to evaluate the in vitro anti-gonococcal activity of AS101, including its antimicrobial activity, biofilm and infectivity inhibition, and potential underlying mechanisms. The agar-dilution-based MIC was used. The inhibition of GC microcolony formation and continual growth by AS101 was assessed by microscopy. The effect of AS101 on GC infectivity was evaluated by infecting endocervical ME180 and colorectal T84 epithelial cell lines. The mode of action was evaluated by a time-killing curve, transmission electron microscopy (TEM), and the level of reactive oxygen species (ROS). The MICs of MS11 and WHO GC isolates were both found to be 0.05 μg/mL. The biofilm formation, continual growth, and infectivity of two epithelial cell lines were significantly decreased with AS101 treatment. The time-kill curve, similar to that of azithromycin, suggested that AS101 is a bacteriostatic antimicrobial. However, TEM and ROS levels implied a mode of action different from that of azithromycin. Our findings highlighted the robust anti-gonococcal activities of AS101, which potentiates its use as a future antimicrobial for GC. IMPORTANCE Neisseria gonorrhoeae is an obligate human pathogen responsible for gonorrhea, one of the most common sexually transmitted infections. The yearly increased multidrug resistance in GC has led to treatment failure clinically, suggesting an urgent need for novel therapy to combat the global health issue. This study aimed to evaluate the in vitro anti-gonococcal activity of a previous immunomodulatory agent, AS101, and its underlying mechanisms. Here, we report that AS101 possesses remarkable anti-gonococcal activity. These findings supported further studies on in vivo experiments and formulations for the clinical application of AS101 as an anti-gonococcal agent.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
- Research Organization for Nano and Life Innovation, Future Innovation Institute, Waseda University, Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- School of Education, Waseda University, Tokyo, Japan
| | - Sung-Pin Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, College of Medicine, Tzu Chi University, Hualian, Taiwan
| | - Li-Hsuan Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Kong L, Zhang Y, Yang L, Yan Y, Cheng M, Wang X, Zhai L, Yang K. Synthesis and Inhibitory Activity of Oxazolethioacetamides against Metallo‐β‐Lactamase. ChemistrySelect 2023. [DOI: 10.1002/slct.202204108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lingyan Kong
- The College of Life Sciences Northwest University Xi'an 710069, Shaanxi Province P. R. China
| | - Yilin Zhang
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Liwen Yang
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Yong Yan
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Min Cheng
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Xuejun Wang
- Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources, College of Biology Pharmacy and Food Engineering Shangluo University Shangluo 726000, Shaanxi Province P. R. China
| | - Le Zhai
- Engineering Research Center of Advanced Ferroelectric Functional Materials, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering Baoji University of Arts and Sciences Baoji 721013, Shaanxi Province P. R. China
| | - Kewu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science Northwest University Xi'an 710127, Shaanxi Province P. R. China
| |
Collapse
|
29
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
30
|
Sinha S, Dhanabal VB, Manivannen VL, Cappiello F, Tan SM, Bhattacharjya S. Ultra-Short Cyclized β-Boomerang Peptides: Structures, Interactions with Lipopolysaccharide, Antibiotic Potentiator and Wound Healing. Int J Mol Sci 2022; 24:ijms24010263. [PMID: 36613707 PMCID: PMC9820106 DOI: 10.3390/ijms24010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Many antibiotics are ineffective in killing Gram-negative bacteria due to the permeability barrier of the outer-membrane LPS. Infections caused by multi-drug-resistant Gram-negative pathogens require new antibiotics, which are often difficult to develop. Antibiotic potentiators disrupt outer-membrane LPS and can assist the entry of large-scaffold antibiotics to the bacterial targets. In this work, we designed a backbone-cyclized ultra-short, six-amino-acid-long (WKRKRY) peptide, termed cWY6 from LPS binding motif of β-boomerang bactericidal peptides. The cWY6 peptide does not exhibit any antimicrobial activity; however, it is able to permeabilize the LPS outer membrane. Our results demonstrate the antibiotic potentiator activity in the designed cWY6 peptide for several conventional antibiotics (vancomycin, rifampicin, erythromycin, novobiocin and azithromycin). Remarkably, the short cWY6 peptide exhibits wound-healing activity in in vitro assays. NMR, computational docking and biophysical studies describe the atomic-resolution structure of the peptide in complex with LPS and mode of action in disrupting the outer membrane. The dual activities of cWY6 peptide hold high promise for further translation to therapeutics.
Collapse
Affiliation(s)
- Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Vidhya Bharathi Dhanabal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Veronica Lavanya Manivannen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Floriana Cappiello
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Correspondence:
| |
Collapse
|
31
|
Kopel J, McDonald J, Hamood A. An Assessment of the In Vitro Models and Clinical Trials Related to the Antimicrobial Activities of Phytochemicals. Antibiotics (Basel) 2022; 11:antibiotics11121838. [PMID: 36551494 PMCID: PMC9774156 DOI: 10.3390/antibiotics11121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An increased number antibiotic-resistant bacteria have emerged with the rise in antibiotic use worldwide. As such, there has been a growing interest in investigating novel antibiotics against antibiotic-resistant bacteria. Due to the extensive history of using plants for medicinal purposes, scientists and medical professionals have turned to plants as potential alternatives to common antibiotic treatments. Unlike other antibiotics in use, plant-based antibiotics have the innate ability to eliminate a broad spectrum of microorganisms through phytochemical defenses, including compounds such as alkaloids, organosulfur compounds, phenols, coumarins, and terpenes. In recent years, these antimicrobial compounds have been refined through extraction methods and tested against antibiotic-resistant strains of Gram-negative and Gram-positive bacteria. The results of the experiments demonstrated that plant extracts successfully inhibited bacteria independently or in combination with other antimicrobial products. In this review, we examine the use of plant-based antibiotics for their utilization against antibiotic-resistant bacterial infections. In addition, we examine recent clinical trials utilizing phytochemicals for the treatment of several microbial infections.
Collapse
Affiliation(s)
- Jonathan Kopel
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Abdul Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| |
Collapse
|
32
|
Cauilan A, Ruiz C. Sodium Malonate Inhibits the AcrAB-TolC Multidrug Efflux Pump of Escherichia coli and Increases Antibiotic Efficacy. Pathogens 2022; 11:1409. [PMID: 36558743 PMCID: PMC9781404 DOI: 10.3390/pathogens11121409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
There is an urgent need to find novel treatments for combating multidrug-resistant bacteria. Multidrug efflux pumps that expel antibiotics out of cells are major contributors to this problem. Therefore, using efflux pump inhibitors (EPIs) is a promising strategy to increase antibiotic efficacy. However, there are no EPIs currently approved for clinical use especially because of their toxicity. This study investigates sodium malonate, a natural, non-hazardous, small molecule, for its use as a novel EPI of AcrAB-TolC, the main multidrug efflux pump of the Enterobacteriaceae family. Using ethidium bromide accumulation experiments, we found that 25 mM sodium malonate inhibited efflux by the AcrAB-TolC and other MDR pumps of Escherichia coli to a similar degree than 50 μΜ phenylalanine-arginine-β-naphthylamide, a well-known EPI. Using minimum inhibitory concentration assays and molecular docking to study AcrB-ligand interactions, we found that sodium malonate increased the efficacy of ethidium bromide and the antibiotics minocycline, chloramphenicol, and ciprofloxacin, possibly via binding to multiple AcrB locations, including the AcrB proximal binding pocket. In conclusion, sodium malonate is a newly discovered EPI that increases antibiotic efficacy. Our findings support the development of malonic acid/sodium malonate and its derivatives as promising EPIs for augmenting antibiotic efficacy when treating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
| | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
33
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
34
|
Huang F, Cai X, Hou X, Zhang Y, Liu J, Yang L, Liu Y, Liu J. A dynamic covalent polymeric antimicrobial for conquering drug-resistant bacterial infection. EXPLORATION (BEIJING, CHINA) 2022; 2:20210145. [PMID: 37325499 PMCID: PMC10191036 DOI: 10.1002/exp.20210145] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Increasing bacterial drug resistance to antibiotics has posed a major threat to contemporary public health, which resulted in a large number of people suffering from serious infections and ending up dying without any effective therapies every year. Here, a dynamic covalent polymeric antimicrobial, based on phenylboronic acid (PBA)-installed micellar nanocarriers incorporating clinical vancomycin and curcumin, is developed to overcome drug-resistant bacterial infections. The formation of this antimicrobial is facilitated by reversible dynamic covalent interactions between PBA moieties in polymeric micelles and diols in vancomycin, which impart favorable stability in blood circulation and excellent acid-responsiveness in the infection microenvironment. Moreover, the structurally similar aromatic vancomycin and curcumin molecules can afford π-π stacking interaction to realize simultaneous delivery and release of payloads. In comparison with monotherapy, this dynamic covalent polymeric antimicrobial demonstrated more significant eradication of drug-resistant bacteria in vitro and in vivo due to the synergism of the two drugs. Furthermore, the achieved combination therapy shows satisfied biocompatibility without unwanted toxicity. Considering various antibiotics contain diol and aromatic structures, this simple and robust strategy can become a universal platform to combat the ever-threatening drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang ProvinceWenzhou InstituteUniversity of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiangP. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
35
|
Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: The biofactory of secondary metabolites. Front Microbiol 2022; 13:968053. [PMID: 36246257 PMCID: PMC9558229 DOI: 10.3389/fmicb.2022.968053] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Arpita Mazumder
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Yi-Ming Zhao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chaoyi Song
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rajib Sarkar
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
- Saiful Islam,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Aiying Li,
| |
Collapse
|
36
|
Seukep AJ, Mbuntcha HG, Kuete V, Chu Y, Fan E, Guo MQ. What Approaches to Thwart Bacterial Efflux Pumps-Mediated Resistance? Antibiotics (Basel) 2022; 11:antibiotics11101287. [PMID: 36289945 PMCID: PMC9598416 DOI: 10.3390/antibiotics11101287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/03/2022] Open
Abstract
An effective response that combines prevention and treatment is still the most anticipated solution to the increasing incidence of antimicrobial resistance (AMR). As the phenomenon continues to evolve, AMR is driving an escalation of hard-to-treat infections and mortality rates. Over the years, bacteria have devised a variety of survival tactics to outwit the antibiotic’s effects, yet given their great adaptability, unexpected mechanisms are still to be discovered. Over-expression of efflux pumps (EPs) constitutes the leading strategy of bacterial resistance, and it is also a primary driver in the establishment of multidrug resistance (MDR). Extensive efforts are being made to develop antibiotic resistance breakers (ARBs) with the ultimate goal of re-sensitizing bacteria to medications to which they have become unresponsive. EP inhibitors (EPIs) appear to be the principal group of ARBs used to impair the efflux system machinery. Due to the high toxicity of synthetic EPIs, there is a growing interest in natural, safe, and innocuous ones, whereby plant extracts emerge to be excellent candidates. Besides EPIs, further alternatives are being explored including the development of nanoparticle carriers, biologics, and phage therapy, among others. What roles do EPs play in the occurrence of MDR? What weapons do we have to thwart EP-mediated resistance? What are the obstacles to their development? These are some of the core questions addressed in the present review.
Collapse
Affiliation(s)
- Armel Jackson Seukep
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 437004, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea P.O. Box 63, Cameroon
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 437004, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Helene Gueaba Mbuntcha
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- College of Life Sciences, Linyi University, Linyi 276005, China
- Correspondence: (E.F.); (M.-Q.G.)
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 437004, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 437004, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (E.F.); (M.-Q.G.)
| |
Collapse
|
37
|
Combination with a FtsZ inhibitor potentiates the in vivo efficacy of oxacillin against methicillin-resistant Staphylococcus aureus. Med Chem Res 2022; 31:1705-1715. [PMID: 37065467 PMCID: PMC10104549 DOI: 10.1007/s00044-022-02960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Oxacillin is a first-line antibiotic for the treatment of methicillin-sensitive Staphylococcus aureus (MSSA) infections but is ineffective against methicillin-resistant S. aureus (MRSA) due to resistance. Here we present results showing that co-administering oxacillin with the FtsZ-targeting prodrug TXA709 renders oxacillin efficacious against MRSA. The combination of oxacillin and the active product of TXA709 (TXA707) is associated with synergistic bactericidal activity against clinical isolates of MRSA that are resistant to current standard-of-care antibiotics. We show that MRSA cells treated with oxacillin in combination with TXA707 exhibit morphological characteristics and PBP2 mislocalization behavior similar to that exhibited by MSSA cells treated with oxacillin alone. Co-administration with TXA709 renders oxacillin efficacious in mouse models of both systemic and tissue infection with MRSA, with this efficacy being observed at human-equivalent doses of oxacillin well below that recommended for daily adult use. Pharmacokinetic evaluations in mice reveal that co-administration with TXA709 also increases total exposure to oxacillin. Viewed as a whole, our results highlight the clinical potential of repurposing oxacillin to treat MRSA infections through combination with a FtsZ inhibitor.
Collapse
|
38
|
Zhang S, Qu X, Jiao J, Tang H, Wang M, Wang Y, Yang H, Yuan W, Yue B. Felodipine enhances aminoglycosides efficacy against implant infections caused by methicillin-resistant Staphylococcus aureus, persisters and biofilms. Bioact Mater 2022; 14:272-289. [PMID: 35310349 PMCID: PMC8897655 DOI: 10.1016/j.bioactmat.2021.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), biofilms, and persisters are three major factors leading to recurrent and recalcitrant implant infections. Although antibiotics are still the primary treatment for chronic implant infections in clinical, only few drugs are effective in clearing persisters and formed biofilms. Here, felodipine, a dihydropyridine calcium channel blocker, was reported for the first time to have antibacterial effects against MRSA, biofilm, and persisters. Even after continuous exposure to sub-lethal concentrations of felodipine, bacteria are less likely to develop resistance. Besides, low doses of felodipine enhances the antibacterial activity of gentamicin by inhibiting the expression of protein associated with aminoglycoside resistance (aacA-aphD). Next, biofilm eradication test and persisters killing assay suggested felodipine has an excellent bactericidal effect against formed biofilms and persisters. Furthermore, the result of protein profiling, and quantitative metabonomics analysis indicated felodipine reduce MRSA virulence (agrABC), biofilm formation and TCA cycle. Then, molecular docking showed felodipine inhibit the growth of persisters by binding to the H pocket of ClpP protease, which could lead to substantial protein degradation. Furthermore, murine infection models suggested felodipine in combination with gentamicin alleviate bacterial burden and inflammatory response. In conclusion, low dose of felodipine might be a promising agent for biomaterial delivery to enhance aminoglycosides efficacy against implant infections caused by MRSA, biofilm, and persisters. Felodipine inhibits MRSA gene expression associated with aminoglycoside resistance and biofilm formation. Felodipine eradicates formed biofilm and persisters on the surface of implants. Felodipine induces proteolysis of MRSA and decreases energy metabolism. Felodipine in combination with gentamicin alleviates murine periprosthetic joint infection.
Collapse
|
39
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
40
|
Han D, Liu X, Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 2022; 51:7138-7169. [PMID: 35866702 DOI: 10.1039/d2cs00460g] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria, as the most abundant living organisms, have always been a threat to human life until the development of antibiotics. However, with the wide use of antibiotics over a long time, bacteria have gradually gained tolerance to antibiotics, further aggravating threat to human beings and environmental safety significantly. In recent decades, new bacteria-killing methods based on metal ions, hyperthermia, free radicals, physical pricks, and the coordination of several multi-mechanisms have attracted increasing attention. Consequently, multiple types of new antibacterial agents have been developed. Among them, metal organic frameworks (MOFs) appear to play an increasingly important role. The unique characteristics of MOFs make them suitable multiple-functional platforms. By selecting the appropriate metastable coordination bonds, MOFs can act as reservoirs and release antibacterial metal ions or organic linkers; by constructing a porous structure, MOFs can act as carriers for multiple types of agents and achieve slow and sustained release; and by designing their composition and the pore structure precisely, MOFs can be endowed with properties to produce heat and free radicals under stimulation. Importantly, in combination with other materials, MOFs can act as a platform to kill bacteria effectively through the synergistic effect of multiple types of mechanisms. In this review, we focus on the recent development of MOF-based antibacterial agents, which are classified according to their antibacterial mechanisms.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
41
|
Extraction and Characterization of β-Viginin Protein Hydrolysates from Cowpea Flour as a New Manufacturing Active Ingredient. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The increased mortality rates associated with antibiotic resistance has become a significant public health problem worldwide. Living beings produce a variety of endogenous compounds to defend themselves against exogenous pathogens. The knowledge of these endogenous compounds may contribute to the development of improved bioactive ingredients with antimicrobial properties, useful against conventional antibiotic resistance. Cowpea is an herbaceous legume of great interest due to its high protein content and high productivity rates. The study of genetic homology of vicillin (7S) from cowpea (Vigna unguiculata L.) with vicilins from soybean and other beans, such as adzuki, in addition to the need for further studies about potential biological activities of this vegetable, led us to seek the isolation of the vicilin fraction from cowpea and to evaluate the potential in vitro inhibitory action of pathogenic microorganisms. The cowpea beta viginin protein was isolated, characterized, and hydrolyzed in silico and in vitro by two enzymes, namely, pepsin and chymotrypsin. The antimicrobial activity of the protein hydrolysate fractions of cowpea flour was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa, confirming the potential use of the peptides as innovative antimicrobial agents.
Collapse
|
42
|
Moynihan E, Mackey K, Blaskovich MAT, Reen FJ, McGlacken G. N-Alkyl-2-Quinolonopyrones Demonstrate Antimicrobial Activity against ESKAPE Pathogens Including Staphylococcus aureus. ACS Med Chem Lett 2022; 13:1358-1362. [PMID: 35978679 PMCID: PMC9377017 DOI: 10.1021/acsmedchemlett.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Eoin Moynihan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Katrina Mackey
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Mark A. T. Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - F. Jerry Reen
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Gerard McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
43
|
Jampilek J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin Drug Discov 2022; 17:949-968. [PMID: 35787715 DOI: 10.1080/17460441.2022.2097659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Some of otherwise useful fungi are pathogenic to humans, and unfortunately, the number of these pathogens is increasing. In addition to common skin infections, these opportunistic pathogens are able to cause severe, often incurable, systemic mycoses. AREAS COVERED : The number of antifungal drugs is limited, especially drugs that can be used for systemic administration, and resistance to these drugs is very common. This review summarizes various approaches to the discovery and development of new antifungal drugs, provides an overview of the most important molecules in terms of basic (laboratory) research and compounds currently in clinical trials, and focuses on drug repurposing strategy, while providing an overview of drugs of other indications that have been tested in vitro for their antifungal activity for possible expansion of antifungal drugs and/or support of existing antimycotics. EXPERT OPINION : Despite the limitations of the research of new antifungal drugs by pharmaceutical manufacturers, in addition to innovated molecules based on clinically used drugs, several completely new small entities with unique mechanisms of actions have been identified. The identification of new molecular targets that offer alternatives for the development of new unique selective antifungal highly effective agents has been an important outcome of repurposing of non-antifungal drugs to antifungal drug. Also, given the advances in monoclonal antibodies and their application to immunosuppressed patients, it may seem possible to predict a more optimistic future for antifungal therapy than has been the case in recent decades.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
44
|
A NIR-II emissive polymer AIEgen for imaging-guided photothermal elimination of bacterial infection. Biomaterials 2022; 286:121579. [DOI: 10.1016/j.biomaterials.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
45
|
Zhu J, Li Q, Li X, Wu X, Yuan T, Yang Y. Simulated Enzyme Activity and Efficient Antibacterial Activity of Copper-Doped Single-Atom Nanozymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6860-6870. [PMID: 35617453 DOI: 10.1021/acs.langmuir.2c00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanozymes with good biocompatibility are novel antibacterial agents because they mimic the structure and properties of enzymes and destroy bacterial structures by generating reactive oxygen species in large quantities. Herein, we synthesized a Cu single-atom nanozyme (Cu-N-C) with intrinsic peroxidase- and oxidase-like activities. Cu-N-C can generate ·OH and O2·- during oxidase-catalyzed reactions, which have good antibacterial effects. Meanwhile, the antimicrobial performance can be further enhanced by light emitting diode light incubation due to photocatalysis. Lethal disruption of the membrane structure was confirmed by biofilm staining and scanning electron microscopy analysis. Notably, the antibacterial effect of Cu-N-C (MIC = 16 μg/mL) was significantly better than that of vancomycin (MIC = 1500 μg/mL), a commonly used drug for methicillin-resistant Staphylococcus aureus, and Cu-N-C outperformed the positive control cephalexin and gentamicin in terms of resistance development (27.3% less production of drug-resistant bacteria). Good biocompatibility was also verified using the MTT method, hemolysis analysis, and routine blood measurements in mice. The results of this work suggest that Cu-N-C has great potential for clinical applications as an efficient metal antimicrobial agent.
Collapse
Affiliation(s)
- Junrun Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
- Department of Gynecology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province 650032, China
| | - Xiaomei Wu
- Department of Gynecology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province 650032, China
| | - Tao Yuan
- Department of Gynecology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province 650032, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| |
Collapse
|
46
|
Thomasen RSS, dos Santos PT, Sternkopf Lillebæk EM, Skov MN, Kemp M, Kallipolitis BH. Absence of N-Acetylglucosamine Glycosylation on Listeria monocytogenes Wall Teichoic Acids Promotes Fatty Acid Tolerance by Repulsion From the Bacterial Surface. Front Microbiol 2022; 13:897682. [PMID: 35633716 PMCID: PMC9133914 DOI: 10.3389/fmicb.2022.897682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Free fatty acids (FFAs) have strong antimicrobial properties against pathogenic bacteria and are known as natural protective agents against bacterial infections. Growth of the foodborne pathogen Listeria monocytogenes is highly affected by the presence of antimicrobial FFAs, however, the response of L. monocytogenes toward FFAs is not fully understood. Here, we explore how L. monocytogenes gains tolerance toward FFAs and present a novel mechanism conferring bacterial protection against FFA toxicity. Strains tolerant against the antimicrobial FFA palmitoleic acid were isolated and whole genome sequenced, and mutations were found in genes involved in wall teichoic acid (WTA) glycosylations. We show that mutation or deletion of lmo1079, which is essential for N-acetylglucosamine (GlcNAc) glycosylation of WTAs, confer tolerance against several antimicrobial FFAs. The FFA tolerant strains are lacking GlcNAc on their WTAs, which result in a more hydrophilic surface. In line with this, we observed a reduced binding of FFAs to the surface of the FFA tolerant strains. Additionally, lack of GlcNAc on WTAs confers tolerance toward acid stress. Altogether, these findings support that GlcNAc modification of WTA plays an important role in the response of L. monocytogenes toward stress conditions encountered during growth as a saprophyte and pathogen, including FFA-rich environments. Most importantly, our data revealed that L. monocytogenes strains lacking GlcNAc on their WTAs are protected against FFA toxicity, because the FFAs are repulsed from the bacterial surface of GlcNAc-deficient strains.
Collapse
Affiliation(s)
- Rikke S. S. Thomasen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patricia T. dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Marianne N. Skov
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
- The Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- *Correspondence: Birgitte H. Kallipolitis,
| |
Collapse
|
47
|
Chiș AA, Rus LL, Morgovan C, Arseniu AM, Frum A, Vonica-Țincu AL, Gligor FG, Mureșan ML, Dobrea CM. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022; 10:biomedicines10051121. [PMID: 35625857 PMCID: PMC9138529 DOI: 10.3390/biomedicines10051121] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, the efficacy of antibiotics is severely affected by the emergence of the antimicrobial resistance phenomenon, leading to increased morbidity and mortality worldwide. Multidrug-resistant pathogens are found not only in hospital settings, but also in the community, and are considered one of the biggest public health concerns. The main mechanisms by which bacteria develop resistance to antibiotics include changes in the drug target, prevention of entering the cell, elimination through efflux pumps or inactivation of drugs. A better understanding and prediction of resistance patterns of a pathogen will lead to a better selection of active antibiotics for the treatment of multidrug-resistant infections.
Collapse
|
48
|
Ndugire W, Raviranga NGH, Lao J, Ramström O, Yan M. Gold Nanoclusters as Nanoantibiotic Auranofin Analogues. Adv Healthc Mater 2022; 11:e2101032. [PMID: 34350709 PMCID: PMC8816973 DOI: 10.1002/adhm.202101032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Auranofin, a gold(I)-complex with tetraacetylated thioglucose (Ac4 GlcSH) and triethylphosphine ligands, is an FDA-approved drug used as an anti-inflammatory aid in the treatment of rheumatoid arthritis. In repurposing auranofin for other diseases, it was found that the drug showed significant activity against Gram-positive but was inactive against Gram-negative bacteria. Herein, the design and synthesis of gold nanoclusters (AuNCs) based on the structural motif of auranofin are reported. Phosphine-capped AuNCs are synthesized and glycosylated, yielding auranofin analogues with mixed triphenylphosphine monosulfonate (TPPMS)/Ac4 GlcSH ligand shells. These AuNCs are active against both Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Notably, an auranofin analogue, a mixed-ligand 1.6 nm AuNC 4b, is more active than auranofin against Pseudomonas aeruginosa, while exhibiting lower toxicity against human A549 cells. The enhanced antibacterial activity of these AuNCs is characterized by a greater uptake of Au by the bacteria compared to AuI complexes. Additional factors include increased oxidative stress, moderate inhibition of thioredoxin reductase (TrxR), and DNA damage. Most intriguingly, the uptake of AuNCs are not affected by the bacterial outer membrane (OM) barrier or by binding with the extracellular proteins. This contrasts with AuI complexes like auranofin that are susceptible to protein binding and hindered by the OM barrier.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Jingzhe Lao
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| |
Collapse
|
49
|
Yi K, Liu S, Liu P, Luo X, Zhao J, Yan F, Pan Y, Liu J, Zhai Y, Hu G. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella. Biomed Pharmacother 2022; 149:112873. [PMID: 35349932 DOI: 10.1016/j.biopha.2022.112873] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
It has been recognized that colistin resistance is a growing problem that seriously impairs the clinical efficacy of colistin against bacterial infections. One strategy that has been proven to have therapeutic effect is to overcome the widespread emergence of antibiotic-resistant pathogens by combining existing antibiotics with promising non-antibiotic agents. In this work, antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of the combination. The molecular mechanisms of tetrandrine in combination with colistin were analyzed using fluorometric assay and Real-time PCR. To predict possible interactions between tetrandrine and MCR-1, molecular docking assay was taken. Finally, we evaluated the in vivo efficacy of tetrandrine in combination with colistin against MCR-positive Salmonella. Overall, the combination of tetrandrine and colistin showed significant synergistic activity. In-depth mechanistic analysis showed that the combination of tetrandrine with colistin enhances the membrane-damaging ability of colistin, undermines the functions of proton motive force (PMF) and efflux pumps in MCR-positive bacteria. The results of molecular docking and RT-PCR analyses showed that tetrandrine not only affects the expression of mcr-1 but is also an effective MCR-1 inhibitor. Compared with colistin monotherapy, the combination of tetrandrine with colistin significantly reduced the bacterial load in vivo. Our findings demonstrated that tetrandrine serves as a potential colistin adjuvant against MCR-positive Salmonella.
Collapse
Affiliation(s)
- Kaifang Yi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuobo Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Peiyi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xingwei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinfeng Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jianhua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
50
|
Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23094558. [PMID: 35562950 PMCID: PMC9100274 DOI: 10.3390/ijms23094558] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Global rise of infections and deaths caused by drug-resistant bacterial pathogens are among the unmet medical needs. In an age of drying pipeline of novel antibiotics to treat bacterial infections, antimicrobial peptides (AMPs) are proven to be valid therapeutics modalities. Direct in vivo applications of many AMPs could be challenging; however, works are demonstrating encouraging results for some of them. In this review article, we discussed 3-D structures of potent AMPs e.g., polymyxin, thanatin, MSI, protegrin, OMPTA in complex with bacterial targets and their mode of actions. Studies on human peptide LL37 and de novo-designed peptides are also discussed. We have focused on AMPs which are effective against drug-resistant Gram-negative bacteria. Since treatment options for the infections caused by super bugs of Gram-negative bacteria are now extremely limited. We also summarize some of the pertinent challenges in the field of clinical trials of AMPs.
Collapse
|