1
|
Li Q, Keskus AG, Wagner J, Izydorczyk MB, Timp W, Sedlazeck FJ, Klein AP, Zook JM, Kolmogorov M, Schatz MC. Unraveling the hidden complexity of cancer through long-read sequencing. Genome Res 2025; 35:599-620. [PMID: 40113261 DOI: 10.1101/gr.280041.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cancer is fundamentally a disease of the genome, characterized by extensive genomic, transcriptomic, and epigenomic alterations. Most current studies predominantly use short-read sequencing, gene panels, or microarrays to explore these alterations; however, these technologies can systematically miss or misrepresent certain types of alterations, especially structural variants, complex rearrangements, and alterations within repetitive regions. Long-read sequencing is rapidly emerging as a transformative technology for cancer research by providing a comprehensive view across the genome, transcriptome, and epigenome, including the ability to detect alterations that previous technologies have overlooked. In this Perspective, we explore the current applications of long-read sequencing for both germline and somatic cancer analysis. We provide an overview of the computational methodologies tailored to long-read data and highlight key discoveries and resources within cancer genomics that were previously inaccessible with prior technologies. We also address future opportunities and persistent challenges, including the experimental and computational requirements needed to scale to larger sample sizes, the hurdles in sequencing and analyzing complex cancer genomes, and opportunities for leveraging machine learning and artificial intelligence technologies for cancer informatics. We further discuss how the telomere-to-telomere genome and the emerging human pangenome could enhance the resolution of cancer genome analysis, potentially revolutionizing early detection and disease monitoring in patients. Finally, we outline strategies for transitioning long-read sequencing from research applications to routine clinical practice.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayse G Keskus
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Michal B Izydorczyk
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Alison P Klein
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland 21031, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland 21031, USA
| |
Collapse
|
2
|
Valentini V, Santi R, Silvestri V, Saieva C, Roviello G, Amorosi A, Compérat E, Ottini L, Nesi G. CD44 Methylation Levels in Androgen-Deprived Prostate Cancer: A Putative Epigenetic Modulator of Tumor Progression. Int J Mol Sci 2025; 26:2516. [PMID: 40141159 PMCID: PMC11942495 DOI: 10.3390/ijms26062516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Epigenetic changes have been reported to promote the development and progression of prostate cancer (PCa). Compared to normal prostate tissue, tumor samples from patients treated with androgen-deprivation therapy (ADT) show the hypermethylation of genes primarily implicated in PCa progression. A series of 90 radical prostatectomies was retrospectively analyzed. A total of 46 patients had undergone surgery alone (non-treated) and 44 had received ADT prior to surgery (treated). Promoter methylation analysis of the candidate genes possibly involved in PCa response to ADT (AR, ESR1, ESR2, APC, BCL2, CD44, CDH1, RASSF1, ZEB1) was conducted by pyrosequencing. The mRNA expression of differentially methylated genes was investigated by quantitative real-time PCR. Intratumoral microvessel density and ERG expression were also assessed using immunohistochemistry. A statistically significant difference in CD44 promoter methylation levels was found, with higher levels in the non-treated cases, which accordingly showed lower CD44 gene expression than the treated cases. Moreover, lower ESR1 methylation levels were associated with higher ERG expression, and the CD44 methylation levels were increased in ERG-overexpressing tumors, particularly in the treated cases. Our data suggest an interplay between ERG expression and the epigenetic modifications in key genes of prostate tumorigenesis, and that CD44 promoter methylation could serve as a promising molecular biomarker of PCa progression under androgen-deprived conditions.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (V.S.); (L.O.)
| | - Raffaella Santi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (V.S.); (L.O.)
| | - Calogero Saieva
- Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research and Clinical Network (ISPRO), 50134 Florence, Italy;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Andrea Amorosi
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Eva Compérat
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (V.S.); (L.O.)
| | - Gabriella Nesi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
3
|
Jin X, Lv Y, Bie F, Duan J, Ma C, Dai M, Chen J, Lu L, Xu S, Zhou J, Li S, Bi J, Wang F, Xie D, Cai M. METTL3 confers oxaliplatin resistance through the activation of G6PD-enhanced pentose phosphate pathway in hepatocellular carcinoma. Cell Death Differ 2025; 32:466-479. [PMID: 39472692 PMCID: PMC11894169 DOI: 10.1038/s41418-024-01406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 03/12/2025] Open
Abstract
Oxaliplatin-based therapeutics is a widely used treatment approach for hepatocellular carcinoma (HCC) patients; however, drug resistance poses a significant clinical challenge. Epigenetic modifications have been implicated in the development of drug resistance. In our study, employing siRNA library screening, we identified that silencing the m6A writer METTL3 significantly enhanced the sensitivity to oxaliplatin in both in vivo and in vitro HCC models. Further investigations through combined RNA-seq and non-targeted metabolomics analysis revealed that silencing METTL3 impeded the pentose phosphate pathway (PPP), leading to a reduction in NADPH and nucleotide precursors. This disruption induced DNA damage, decreased DNA synthesis, and ultimately resulted in cell cycle arrest. Mechanistically, METTL3 was found to modify E3 ligase TRIM21 near the 3'UTR with N6-methyladenosine, leading to reduced RNA stability upon recognition by YTHDF2. TRIM21, in turn, facilitated the degradation of the rate-limiting enzyme of PPP, G6PD, through the ubiquitination-proteasome pathway. Importantly, high expression of METTL3 was significantly associated with adverse prognosis and oxaliplatin resistance in HCC patients. Notably, treatment with the specific METTL3 inhibitor, STM2457, significantly improved the efficacy of oxaliplatin. These findings underscore the critical role of the METTL3/TRIM21/G6PD axis in driving oxaliplatin resistance and present a promising strategy to overcome chemoresistance in HCC.
Collapse
Affiliation(s)
- Xiaohan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- State Key Laboratory of Respiratory Disease, Institute of Pulmonary Diseases, Department of Oncology, Guangzhou Chest Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yongrui Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Fengjie Bie
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Jinling Duan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chao Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Miaomiao Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiewei Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Lianghe Lu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuidan Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Si Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
4
|
Martinez AM, Cavalli G. A possible role for epigenetics in cancer initiation. C R Biol 2025; 348:43-53. [PMID: 39998355 DOI: 10.5802/crbiol.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 02/26/2025]
Abstract
Cancer is one of the leading causes of mortality worldwide. Known since antiquity, its understanding has evolved over time and has significantly advanced with new technologies over the past four decades. Cancer initiation is currently admitted to be explainable by the somatic mutation theory, which postulates that DNA mutations altering the function of oncogenes and tumor suppressor genes initiate cancer. In addition to these mutations, epigenetic alterations, which heritably change gene expression without altering the DNA sequence, also play a key role. Recent data suggests that epigenetic components regulate all aspects of tumor progression, including cancer initiation. These discoveries prompt a reevaluation of the somatic mutation theory, of cancer prevention and treatment strategies.
Collapse
|
5
|
Bora Yildiz C, Du J, Mohan KN, Zimmer-Bensch G, Abdolahi S. The role of lncRNAs in the interplay of signaling pathways and epigenetic mechanisms in glioma. Epigenomics 2025; 17:125-140. [PMID: 39829063 PMCID: PMC11792803 DOI: 10.1080/17501911.2024.2442297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Gliomas, highly aggressive tumors of the central nervous system, present overwhelming challenges due to their heterogeneity and therapeutic resistance. Glioblastoma multiforme (GBM), the most malignant form, underscores this clinical urgency due to dismal prognosis despite aggressive treatment regimens. Recent advances in cancer research revealed signaling pathways and epigenetic mechanisms that intricately govern glioma progression, offering multifaceted targets for therapeutic intervention. This review explores the dynamic interplay between signaling events and epigenetic regulation in the context of glioma, with a particular focus on the crucial roles played by non-coding RNAs (ncRNAs). Through direct and indirect epigenetic targeting, ncRNAs emerge as key regulators shaping the molecular landscape of glioblastoma across its various stages. By dissecting these intricate regulatory networks, novel and patient-tailored therapeutic strategies could be devised to improve patient outcomes with this devastating disease.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Jian Du
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| | - K. Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Hyderabad, India
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Sara Abdolahi
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Liu B, Xie Y, Zhang Y, Tang G, Lin J, Yuan Z, Liu X, Wang X, Huang M, Luo Y, Yu H. Spatial deconvolution from bulk DNA methylation profiles determines intratumoral epigenetic heterogeneity. Cell Biosci 2025; 15:7. [PMID: 39844296 PMCID: PMC11756021 DOI: 10.1186/s13578-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors. METHODS Genomic DNA of three laser micro-dissected tumor regions, including digestive tract surface, central bulk, and invasive front, was extracted from formalin-fixed paraffin-embedded sections of colorectal cancer patients. The genome-wide methylation profiles were generated with methylation array. The most variable methylated probes were selected to construct a DNA methylation-based heterogeneity (MeHEG) estimation tool that can deconvolve the proportion of each reference tumor region with the support vector machine model-based method. A PCR-based assay for quantitative analysis of DNA methylation (QASM) was developed to specifically determine the methylation status of each CpG in MeHEG assay at single-base resolution to realize fast evaluation of epigenetic heterogeneity. RESULTS In the discovery set with 79 patients, the differentially methylated CpGs among the three tumor regions were found. The 7 most representative CpGs were identified and subsequently selected to develop the MeHEG algorithm. We validated its performance of deconvolution of tumor regions in an independent cohort. In addition, we showed the significant association of MeHEG-based epigenetic heterogeneity with the genomic heterogeneity in mutation and copy number variation in our in-house and TCGA cohorts. Besides, we found that the patients with higher MeHEG score had worse disease-free and overall survival outcomes. Finally, we found dynamic change of epigenetic heterogeneity based on MeHEG score in cancer cells under the treatment of therapeutic drugs. CONCLUSION By developing a 7-loci panel using a machine learning approach combined with the QASM assay for PCR-based application, we present a valuable method for evaluating intratumoral heterogeneity. The MeHEG algorithm offers novel insights into tumor heterogeneity from an epigenetic perspective, potentially enriching current knowledge of tumor complexity and providing a new tool for clinical and research applications in cancer biology.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Yumo Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Guannan Tang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jinxin Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Ze Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China.
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Li JS, Riggins K, Yang L, Chen C, Castro P, Alfarkh W, Zarrin-Khameh N, Scheurer ME, Creighton CJ, Musher B, Li W, Shen L. DNA methylation profiling at base-pair resolution reveals unique epigenetic features of early-onset colorectal cancer in underrepresented populations. Clin Epigenetics 2025; 17:11. [PMID: 39844333 PMCID: PMC11753045 DOI: 10.1186/s13148-025-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The incidence of early-onset colorectal cancer (EOCRC) has been rising at an alarming rate in the USA, and EOCRC disproportionately affects racial/ethnic minorities. Here, we construct comprehensive profiles of EOCRC DNA methylomes at base-pair resolution for a cohort of Hispanic and African American patients. RESULTS We show the epigenetic landscape of these EOCRC patients differs from that of late-onset colorectal cancer patients, and methylation canyons in EOCRC tumor tissue preferentially overlapped genes in cancer-related pathways. Furthermore, we identify epigenetic alterations in metabolic genes that are specific to our racial/ethnic minority EOCRC cohort but not Caucasian patients from TCGA. Top genes differentially methylated between these cohorts included the obesity-protective MFAP2 gene as well as cancer risk susceptibility genes APOL3 and RNASEL. CONCLUSIONS In this study, we provide to the scientific community high-resolution DNA methylomes for a cohort of EOCRC patients from underrepresented populations. Our exploratory findings in this cohort highlight epigenetic mechanisms underlying the pathogenesis of EOCRC and nominate novel biomarkers for EOCRC in underrepresented populations.
Collapse
Affiliation(s)
- Jason Sheng Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Karen Riggins
- Department of Medicine, Hematology and Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Yang
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chaorong Chen
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wedad Alfarkh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Neda Zarrin-Khameh
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, Ben Taub Hospital, 1504 Taub Loop, Houston, TX, 77030, USA
| | - Michael E Scheurer
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Musher
- Department of Medicine, Gastrointestinal Medical Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Lanlan Shen
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Wu X, Zhang X, Tang S, Wang Y. The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors. Cell Biol Toxicol 2025; 41:32. [PMID: 39825161 PMCID: PMC11742294 DOI: 10.1007/s10565-024-09984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics. These inhibitors and degraders induce histone H3K27 deacetylation, reduce oncogene expression and cancer cell proliferation, promote cancer cell death, and decrease tumor progression in mice. Furthermore, p300/CBP inhibitors and protein degraders have been demonstrated to exert synergy when in combination with conventional radiotherapy, chemotherapy and BRD4 inhibitors in vitro as well as in mice. Importantly, two p300/CBP bromodomain inhibitors, CCS1477 and FT-7051, as well as the dual p300/CBP and BRD4 bromodomain inhibitor NEO2734 have entered Phase I and IIa clinical trials in patients with advanced and refractory hematological malignancies or solid tumors. Taken together, the identification of p300/CBP as critical drivers of tumorigenesis and the development of p300/CBP inhibitors and proteolysis-targeted-chimaera protein degraders represent promising avenues for clinical translation of novel cancer therapeutics.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China
| | - Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China
| | - Shaoshan Tang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
| | - Yao Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Liu Y, Hrit JA, Chomiak AA, Stransky S, Hoffman JR, Tiedemann RL, Wiseman AK, Kariapper LS, Dickson BM, Worden EJ, Fry CJ, Sidoli S, Rothbart SB. DNA hypomethylation promotes UHRF1-and SUV39H1/H2-dependent crosstalk between H3K18ub and H3K9me3 to reinforce heterochromatin states. Mol Cell 2025; 85:394-412.e12. [PMID: 39631394 PMCID: PMC11741932 DOI: 10.1016/j.molcel.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition. Mechanistically, transient accumulation of hemi-methylated DNA at CpG islands facilitates UHRF1 recruitment and E3 ligase activity toward H3K18. Notably, H3K18ub enhances SUV39H1/H2 methyltransferase activity and, in colon cancer cells, nucleates new H3K9me3 domains at CpG island promoters of DNA methylation-silenced tumor suppressor genes (TSGs). Disrupting UHRF1 enzyme activity prevents H3K9me3 accumulation while promoting PRC2-dependent H3K27me3 as a tertiary layer of gene repression in these regions. By contrast, disrupting H3K18ub-dependent SUV39H1/H2 activity enhances the transcriptional activating and antiproliferative effects of DNMT1 inhibition. Collectively, these findings reveal roles for UHRF1 and H3K18ub in regulating a hierarchy of repressive histone methylation signaling and rationalize a combination strategy for epigenetic cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Joel A Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alison A Chomiak
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Ashley K Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Leena S Kariapper
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Evan J Worden
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
10
|
Pacaud R, Thomas S, Chaudhuri S, Lazar A, Timmerman LA, Munster PN. Low dose DNA methyltransferase inhibitors potentiate PARP inhibitors in homologous recombination repair deficient tumors. Breast Cancer Res 2025; 27:8. [PMID: 39819384 PMCID: PMC11740508 DOI: 10.1186/s13058-024-01954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Poly (ADP-Ribose) polymerase inhibitors are approved for treatment of tumors with BRCA1/2 and other homologous recombination repair (HRR) mutations. However, clinical responses are often not durable and treatment may be detrimental in advanced cancer due to excessive toxicities. Thus we are seeking alternative therapeutics to enhance PARP-directed outcomes. In an effort to expand the clinical use of PARP inhibitors to HRR proficient tumors, several groups have tested combinations of DNA methyltransferase inhibitors and PARP inhibitors. While this approach attenuated tumor cell proliferation in preclinical studies, subsequent clinical trials revealed little benefit. We hypothesized that benefit for this drug combination would only be specific to HRR deficient tumors, due to their inability to enact high fidelity DNA repair with subsequent cell death. METHODS We generated hypomorphic BRCA1 and BRCA2 variants of the HRR proficient triple negative breast cancer cell line MDA-MB-231. We compared therapeutic response features such as RAD51 focus formation, cell cycle fraction alterations, DNA damage accumulation, colony formation, and cell death of these and other cell lines with and without intrinsic BRCA1/2 mutations. Results were confirmed in BRCA1/2 intact and deficient xenografts and PDX. RESULTS Our targeted variants and cells with intrinsic BRCA1/2 mutations responded to low dose combination therapeutic treatment by G2M stalling, compounded DNA damage, severely attenuated colony formation, and importantly, increased cell death. In contrast, the parental MDA-MB-231 cells and other HRR proficient cell lines produced smaller cell populations with short term treatment, but with much less cumulative DNA damage, and minimal cell death. In animal studies, our BRCA-engineered hypomorphs and several independent PDX models with clinically relevant BRCA mutations were acutely more vulnerable to this drug combination. CONCLUSIONS We conclude that low dose DNA methyltransferase inhibition can cooperate with low dose PARP inhibition to increase DNA damage predominantly in cells with HRR deficiencies, ultimately producing more cell death than in HRR proficient tumors. We predict that clinical benefit will more likely be apparent in patients with DNA repair defective tumors and are focusing clinical exploration of this drug combination in these patients, with the goals of enhancing tumor cell death at minimal toxicities.
Collapse
Affiliation(s)
- Romain Pacaud
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA
| | - Scott Thomas
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA
| | - Sibapriya Chaudhuri
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA
| | - Ann Lazar
- Division of Oral Epidemiology and Division of Biostatistics, School of Dentistry and School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Luika A Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Pamela N Munster
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA.
| |
Collapse
|
11
|
Bai W, Xu J, Gu W, Wang D, Cui Y, Rong W, Du X, Li X, Xia C, Gan Q, He G, Guo H, Deng J, Wu Y, Yen RWC, Yegnasubramanian S, Rothbart SB, Luo C, Wu L, Liu J, Baylin SB, Kong X. Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy. Nat Commun 2025; 16:474. [PMID: 39774694 PMCID: PMC11707192 DOI: 10.1038/s41467-024-55481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells. Structural studies reveal a region of low sequence homology between these STELLA orthologs that allows mSTELLA but not hSTELLA to bind tightly and cooperatively to the essential histone-binding, linked tandem Tudor domain and plant homeodomain (TTD-PHD) of UHRF1, thus mediating ortholog-specific UHRF1 inhibition. For translating these findings to cancer therapy, we use a lipid nanoparticle (LNP)-mediated mRNA delivery approach in which the short mSTELLA, but not hSTELLA regions are required to reverse cancer-specific DNA hypermethylation and impair colorectal cancer tumorigenicity.
Collapse
Affiliation(s)
- Wenjing Bai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenbin Gu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Danyang Wang
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ying Cui
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Weidong Rong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoan Du
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuicui Xia
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingqing Gan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guantao He
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huahui Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Deng
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuqiong Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Linping Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| | - Xiangqian Kong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Furth N, Cohen N, Spitzer A, Salame TM, Dassa B, Mehlman T, Brandis A, Moussaieff A, Friedmann-Morvinski D, Castro MG, Fortin J, Suvà ML, Tirosh I, Erez A, Ron G, Shema E. Oncogenic IDH1 mut drives robust loss of histone acetylation and increases chromatin heterogeneity. Proc Natl Acad Sci U S A 2025; 122:e2403862122. [PMID: 39793065 PMCID: PMC11725805 DOI: 10.1073/pnas.2403862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2mut) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype. Yet, the complete depiction of the epigenetic alterations in IDHmut cells has not been thoroughly explored. Here, we applied an unbiased approach, leveraging epigenetic-focused cytometry by time-of-flight (CyTOF) analysis, to systematically profile the effect of mutant-IDH1 expression on a broad panel of histone modifications at single-cell resolution. This analysis revealed extensive remodeling of chromatin patterns by mutant-IDH1, with the most prominent being deregulation of histone acetylation marks. The loss of histone acetylation occurs rapidly following mutant-IDH1 induction and affects acetylation patterns over enhancers and intergenic regions. Notably, the changes in acetylation are not predominantly driven by 2-HG, can be rescued by pharmacological inhibition of mutant-IDH1, and reversed by acetate supplementations. Furthermore, cells expressing mutant-IDH1 show higher epigenetic and transcriptional heterogeneity and upregulation of oncogenes such as KRAS and MYC, highlighting its tumorigenic potential. Our study underscores the tight interaction between chromatin and metabolism dysregulation in glioma and highlights epigenetic and oncogenic pathways affected by mutant-IDH1-driven metabolic rewiring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Niv Cohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tevie Mehlman
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alexander Brandis
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem9112102, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurobiology, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Guy Ron
- Racah Institute of Physics, Hebrew University, Jerusalem9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
13
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
14
|
Wang H, Wang Z, Hu L, Yang B, Zong L, Xu D, Yu B, Kong X, Wang M. Discovery of KW0113 as a First and Effective PROTAC Degrader of DNMT1 Protein. ChemMedChem 2024; 19:e202400467. [PMID: 39302251 DOI: 10.1002/cmdc.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
DNA methyltransferase 1 (DNMT1) is an attractive therapeutic target for acute myelocytic leukemia (AML) and other malignancies. It has been reported that the genetic depletion of DNMT1 inhibited AML cell proliferation through reversing DNA methylation abnormalities. However, no DNMT1-targeted PROTAC degraders have been reported yet. Herein, a series of proteolysis-targeting chimera (PROTAC) degrader of DNMT1 based on dicyanopyridine scaffold and VHL E3 ubiquitin ligase ligand was developed. Among them, KW0113 (DC50=643/899 nM in MV4-11/MOLM-13 cells) exhibited optimal DNMT1 degradation. KW0113 induced DNMT1-selective degradation in a dose- and time-dependent manner through VHL engagement. Moreover, KW0113 inhibited AML cell growth by reversing promoter DNA hypermethylation and tumor-suppressor genes silencing. In conclusion, these findings proved the capability of PROTAC strategy for inducing DNMT1 degradation, demonstrated the therapeutic potential of DNMT1-targeted PROTACs. This work also provided a convenient chemical knockdown tool for DNMT1-related studies.
Collapse
Affiliation(s)
- Huihui Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zhaoliang Wang
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingjie Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liangyi Zong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Bo Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
15
|
Li Z, Chen X, Chen CL. Editorial: Epigenetic regulation of genome integrity and its implications in human diseases. Front Cell Dev Biol 2024; 12:1535839. [PMID: 39720006 PMCID: PMC11666543 DOI: 10.3389/fcell.2024.1535839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Zhiming Li
- West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Kobayashi Y, Ando K, Imaizumi Y, Sakamoto H, Kitanosono H, Taguchi M, Mishima H, Kinoshita A, Bekytbek S, Baba M, Kato T, Horai M, Itonaga H, Sato S, Yoshiura KI, Miyazaki Y. RUNX1 expression is regulated by a super-enhancer and is a therapeutic target in adult T-cell leukemia/lymphoma. Leuk Lymphoma 2024; 65:2116-2128. [PMID: 39219309 DOI: 10.1080/10428194.2024.2393258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Super-enhancers (SEs) play an important role in regulating tumor-specific gene expression. JQ1, a Bromodomain-containing protein 4 (BRD4) inhibitor, exerts antitumor effects by disrupting SE-mediated regulation of gene expression. We investigated the anti-adult T-cell leukemia/lymphoma (ATL) effects of JQ1. JQ1 induced apoptosis and inhibited ATL cell proliferation. JQ1 suppressed RUNX1expression through the disruption of SE-mediated gene regulation. In the previous reports, it was shown that IC50s of AI-10-104 and Ro5-3335, RUNX1 inhibitors were 1-10 µM for lymphoblastic leukemia cell lines carrying RUNX1 mutations. In the present study, we demonstrated that IC50s of AI-10-104 and Ro5-3335 were also 1-10 µM or lower for ATL cell lines. Simultaneously, AI-10-104 suppressed MYC proto-oncogene (c-MYC) expression. RUNX1 is a potential therapeutic target for ATL that promotes c-MYC expression. We showed that RUNX1 expression is regulated via SEs in ATL and that RUNX1 may be a novel therapeutic target for ATL.
Collapse
Affiliation(s)
- Yuji Kobayashi
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Ando
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Hikaru Sakamoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hideaki Kitanosono
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masataka Taguchi
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shara Bekytbek
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Maki Baba
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Makiko Horai
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hidehiro Itonaga
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Shinya Sato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
17
|
Zhang J, Yang M, Liu Q, Xue X, Tian S, Hu X, Li M, Li J, Chai Q, Liu F, You X, Zhang Y. Discovery of epigenetic modulators targeting HDACs and EZH2 simultaneously for the treatment of hematological malignancies. Bioorg Chem 2024; 153:107964. [PMID: 39571304 DOI: 10.1016/j.bioorg.2024.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Epigenetic-targeted therapy has been applied in the treatment of several types of cancer. Herein, based on the synergistic antitumor effects of co-targeting HDACs and EZH2 in some hematological malignancies, a novel series of tazemetostat-based HDACs/EZH2 dual inhibitors were rationally designed, synthesized, and biologically evaluated. Satisfyingly, compounds 22a and 22b were identified as potent HDACs/EZH2 dual inhibitors with robust antiproliferative activities against one diffuse large-cell B cell lymphomas (DLBCL) cell line harboring EZH2 mutation and multiple acute myeloid leukemia (AML) cell lines. Notably, after a short-term treatment in the EZH2 mutant DLBCL cell line (SU-DHL-6), 22a and 22b displayed much stronger antiproliferative activities than the approved EZH2 inhibitor tazemetostat, while after a long-term treatment in SU-DHL-6 cells, 22a and 22b displayed comparable or even superior antiproliferative activities to the approved HDACs inhibitor SAHA. In AML cells, compounds 22a and 22b displayed much more potent antiproliferative activities than tazemetostat, as well as distinctive differentiation-inducing abilities and superior apoptosis-inducing abilities relative to tazemetostat and SAHA. Moreover, the synergistic anti-AML effects of HDACs/EZH2 dual inhibitors combined with various anti-AML drugs were demonstrated.
Collapse
Affiliation(s)
- Jinwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Maoshuo Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Qian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Xintong Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Sijia Tian
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Xi Hu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Mengzhe Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Jintao Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Qipeng Chai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China
| | - Fabao Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China.
| | - Xiaona You
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China.
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, PR China.
| |
Collapse
|
18
|
Gorse M, Bianchi C, Proudhon C. [Epigenetics and cancer: the role of DNA methylation]. Med Sci (Paris) 2024; 40:925-934. [PMID: 39705563 DOI: 10.1051/medsci/2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer. In particular, these markers, distributed along the genome, provide a wealth of information that offers potential for innovation in the field of liquid biopsy, in particular thanks to the emergence of artificial intelligence for diagnostic purposes. This could overcome the limitations related to sensitivities and specificities, which remain too low for the most difficult applications in oncology: the detection of cancers at an early stage, the monitoring of residual disease and the analysis of brain tumors. In addition, targeting the enzymatic processes that control the epigenome offers new therapeutic strategies that could reverse the regulatory anomalies of these altered epigenomes.
Collapse
Affiliation(s)
- Marine Gorse
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charlotte Proudhon
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| |
Collapse
|
19
|
Takenaka Y, Watanabe M. Environmental Factor Index (EFI): A Novel Approach to Measure the Strength of Environmental Influence on DNA Methylation in Identical Twins. EPIGENOMES 2024; 8:44. [PMID: 39584967 PMCID: PMC11587003 DOI: 10.3390/epigenomes8040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The dynamic interaction between genomic DNA, epigenetic modifications, and phenotypic traits was examined in identical twins. Environmental perturbations can induce epigenetic changes in DNA methylation, influencing gene expression and phenotypes. Although DNA methylation mediates gene-environment correlations, the quantitative effects of external factors on DNA methylation remain underexplored. This study aimed to quantify these effects using a novel approach. METHODS A cohort study was conducted on healthy monozygotic twins to evaluate the influence of environmental stimuli on DNA methylation. We developed the Environmental Factor Index (EFI) to identify methylation sites showing statistically significant changes in response to environmental stimuli. We analyzed the identified sites for associations with disorders, DNA methylation markers, and CpG islands. RESULTS The EFI identified methylation sites that exhibited significant associations with genes linked to various disorders, particularly cancer. These sites were overrepresented on CpG islands compared to other genomic features, highlighting their regulatory importance. CONCLUSIONS The EFI is a valuable tool for understanding the molecular mechanisms underlying disease pathogenesis. It provides insights into the development of preventive and therapeutic strategies and offers a new perspective on the role of environmental factors in epigenetic regulation.
Collapse
Affiliation(s)
- Yoichi Takenaka
- Faculty of Informatics, Kansai University, Osaka 569-1052, Japan
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
| | - Osaka Twin Research Group
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
| | - Mikio Watanabe
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Lai H, Yang Y, Zhang J. Advances in post-translational modifications and recurrent spontaneous abortion. Gene 2024; 927:148700. [PMID: 38880188 DOI: 10.1016/j.gene.2024.148700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, which affects approximately 1-2% of women's fertility. The etiology of RSA has not yet been fully revealed, which poses a great problem for clinical treatment. Post- translational modifications(PTMs) are chemical modifications that play a crucial role in the functional proteome. A considerable number of published studies have shown the relationship between post-translational modifications of various proteins and RSA. The study of PTMs contributes to elucidating the role of modified proteins in the pathogenesis of RSA, as well as the design of more effective diagnostic/prognostic tools and more targeted treatments. Most reviews in the field of RSA have only focused on RNA epigenomics research. The present review reports the latest research developments of PTMs related to RSA, such as glycosylation, phosphorylation, Methylation, Acetylation, Ubiquitination, etc.
Collapse
Affiliation(s)
- Hanhong Lai
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yi Yang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jun Zhang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.
| |
Collapse
|
21
|
O'Neill K, Pleasance E, Fan J, Akbari V, Chang G, Dixon K, Csizmok V, MacLennan S, Porter V, Galbraith A, Grisdale CJ, Culibrk L, Dupuis JH, Corbett R, Hopkins J, Bowlby R, Pandoh P, Smailus DE, Cheng D, Wong T, Frey C, Shen Y, Lewis E, Paulin LF, Sedlazeck FJ, Nelson JMT, Chuah E, Mungall KL, Moore RA, Coope R, Mungall AJ, McConechy MK, Williamson LM, Schrader KA, Yip S, Marra MA, Laskin J, Jones SJM. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. CELL GENOMICS 2024; 4:100674. [PMID: 39406235 PMCID: PMC11605692 DOI: 10.1016/j.xgen.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine and is available as a resource for developing analytical approaches using this technology.
Collapse
Affiliation(s)
- Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Jeremy Fan
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Glenn Chang
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Katherine Dixon
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Signe MacLennan
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Porter
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Galbraith
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - John H Dupuis
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard Corbett
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - James Hopkins
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Duane E Smailus
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Connor Frey
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jessica M T Nelson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Robin Coope
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Melissa K McConechy
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Kasmintan A Schrader
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Chung MY, Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol 2024; 33:3153-3166. [PMID: 39328231 PMCID: PMC11422405 DOI: 10.1007/s10068-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Lipids are crucial for human health and reproduction and include diverse fatty acids (FAs), notably polyunsaturated FAs (PUFAs) and short-chain FAs (SCFAs) that are known for their health benefits. Bioactivities of PUFAs, including ω-6 and ω-3 FAs as well as SCFAs, have been widely studied in various tissues and diseases. Epigenetic regulation has been suggested as a significant mechanism affecting the progression of various diseases, including cancers and metabolic and inflammatory diseases. Epigenetics encompasses the reversible modulation of gene expression without altering the DNA sequence itself, mediated by mechanisms such as DNA methylation, histone acetylation, and chromatin remodeling. Bioactive FAs have been demonstrated to regulate gene expression via epigenetic modifications that are potentially important for modulating metabolic control and disease risk. This review paper discusses the evidence in support of bioactive FAs, including ω-6 and ω-3 FAs and SCFAs, eliciting various disease prevention via epigenetic regulation including methylation or acetylation. Graphical abstract
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul, 07661 Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
23
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
24
|
Sinanian MM, Rahman A, Elshazly AM, Neely V, Nagarajan B, Kellogg GE, Risinger AL, Gewirtz DA. A BPTF Inhibitor That Interferes with the Multidrug Resistance Pump to Sensitize Murine Triple-Negative Breast Cancer Cells to Chemotherapy. Int J Mol Sci 2024; 25:11346. [PMID: 39518898 PMCID: PMC11545213 DOI: 10.3390/ijms252111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a generally poor prognosis due to its highly aggressive and metastatic nature, lack of targetable receptors, as well as the frequent development of resistance to chemotherapy. We previously reported that AU1, a small molecule developed as an inhibitor of BPTF (bromodomain PHD finger-containing transcription factor), was capable of sensitizing preclinical models of TNBC to chemotherapy in part via the promotion of autophagy. In studies reported here, we identify an additional property of this compound, specifically that sensitization is associated with the inhibition of the P-glycoprotein (P-gp) efflux pump. In silico molecular docking studies indicate that AU1 binds to active regions of the efflux pump in a manner consistent with the inhibition of the pump function. This work identifies a novel chemical structure that can influence multidrug efflux, an established mechanism of drug resistance in TNBC, that has not yet been successfully addressed by clinical efforts.
Collapse
Affiliation(s)
- Melanie M. Sinanian
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| | - Afshan Rahman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.N.); (G.E.K.)
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.N.); (G.E.K.)
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| |
Collapse
|
25
|
Alsfouk AA, Faris A, Cacciatore I, Alnajjar R. Development of novel CDK9 and CYP3A4 inhibitors for cancer therapy through field and computational approaches. Front Chem 2024; 12:1473398. [PMID: 39498375 PMCID: PMC11532072 DOI: 10.3389/fchem.2024.1473398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) and cytochrome P450 3A4 (CYP3A4) have emerged as promising targets in the development of anticancer drugs, presenting a consistent challenge in the quest for potent inhibitors. CDK9 inhibitors can selectively target fast-growing cancer cells by disrupting transcription elongation, which in turn hinders the production of proteins essential for cell cycle progression and survivaŚ. Understanding how CYP3A4 metabolizes specific chemotherapy drugs allows for personalized treatment plans, optimizing drug dosages according to a patient's metabolic profile. Since many cancer patients undergo combination therapies, and CYP3A4 is vital in drug metabolism, its inhibition or induction by one drug can alter the plasma levels of others, potentially leading to treatment failure or increased toxicity. Therefore, managing CYP3A4 activity is critical for effective cancer treatment. Employing a range of computational methodologies, this study systematically investigated the binding mechanisms of pyrimidine derivatives against CDK9 and CYP3A4. The field-based model demonstrated high R 2 values (0.99), with Q2 (0.66), demonstrating its ability to predict in silico inhibitory activity against the target of this study. The screening process followed in this work led to the discovery of powerful new inhibitor compounds. Of the 15 new compounds designed, three have a high affinity with the target (ranging from -8 to -9 kcal/mol kcal/mol) and were singled out through docking filtration for more detailed investigation. As well as, a reference compound with a substantial pIC50 value of 8.4, serving as the foundation for the development of the new compounds, was included for comparative analysis. To elucidate the essential features of CDK9 and CYP3A4 inhibitor design, a comparative analysis was conducted between 3D-QSAR-generated contours and molecular docking conformations of ligands. Molecular dynamics simulations were carried out for a duration of 100 ns on selected docked complexes, specifically those involving novel compounds with CDK9 and CYP3A4 enzymes. Additionally, the binding free energy for these complexes was assessed using the MM/PBSA method, which evaluates the free energy landscape of protein-ligand interactions. The results of MM/PBSA highlighted the strength of the new compounds in enhancing interactions with the target protein, which favors the results of molecular docking and MD simulation. These insights contribute to a deeper understanding of the mechanisms underlying CDK9 and CYP3A4 inhibition, offering potential avenues for the development of innovative and effective CDK9 inhibitors.
Collapse
Affiliation(s)
- Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
| |
Collapse
|
26
|
Khan MA, Mishra D, Kumar R, Siddique HR. Revisiting epigenetic regulation in cancer: Evolving trends and translational implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:1-24. [PMID: 39864892 DOI: 10.1016/bs.ircmb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cancer is a leading cause of mortality worldwide. The evolving role of epigenetics and tumor microenvironments of cancer pose significant challenges to the management of cancer. Besides genetics, epigenetic changes play a crucial role in the alteration of cellular machinery, progression, metastasis, epithelial-mesenchymal transition, and chemoresistance. Epigenetic changes such as DNA and RNA methylation, histone modifications, and chromatin modeling directly or indirectly influence the different stages of cancer from initiation to chemoresistant phenotype. In addition, alterations in the epigenetic machinery, such as hypo- or hyperactivation of proteins involved in epigenetic modifications, can lead to different health complications, including cancer. Recently, epi-drugs or epigenetic drugs offer emerging hope for the treatment and management of this deadly disease. Various epigenetic drugs targeting factors responsible for epigenetic modifications in cancer are currently under clinical trials. This chapter provides an overview of epigenetic modifications, their clinical implications, and the potential of epigenetic drugs for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Dhruv Mishra
- Department of Zoology, DAV College (PG), Maa Shakumbhari University, Muzaffarnagar, India
| | - Ranjan Kumar
- School of Life Science, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
27
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
28
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Di Marco T, Mazzoni M, Greco A, Cassinelli G. Non-oncogene dependencies: Novel opportunities for cancer therapy. Biochem Pharmacol 2024; 228:116254. [PMID: 38704100 DOI: 10.1016/j.bcp.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Targeting oncogene addictions have changed the history of subsets of malignancies and continues to represent an excellent therapeutic opportunity. Nonetheless, alternative strategies are required to treat malignancies driven by undruggable oncogenes or loss of tumor suppressor genes and to overcome drug resistance also occurring in cancers addicted to actionable drivers. The discovery of non-oncogene addiction (NOA) uncovered novel therapeutically exploitable "Achilles' heels". NOA refers to genes/pathways not oncogenic per sé but essential for the tumor cell growth/survival while dispensable for normal cells. The clinical success of several classes of conventional and molecular targeted agents can be ascribed to their impact on both tumor cell-associated intrinsic as well as microenvironment-related extrinsic NOA. The integration of genetic, computational and pharmacological high-throughput approaches led to the identification of an expanded repertoire of synthetic lethality interactions implicating NOA targets. Only a few of them have been translated into the clinics as most NOA vulnerabilities are not easily druggable or appealing targets. Nonetheless, their identification has provided in-depth knowledge of tumor pathobiology and suggested novel therapeutic opportunities. Here, we summarize conceptual framework of intrinsic and extrinsic NOA providing exploitable vulnerabilities. Conventional and emerging methodological approaches used to disclose NOA dependencies are reported together with their limits. We illustrate NOA paradigmatic and peculiar examples and outline the functional/mechanistic aspects, potential druggability and translational interest. Finally, we comment on difficulties in exploiting the NOA-generated knowledge to develop novel therapeutic approaches to be translated into the clinics and to fully harness the potential of clinically available drugs.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Mara Mazzoni
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
30
|
Chang Y, Guo H, Li X, Zong L, Wei J, Li Z, Luo C, Yang X, Fang H, Kong X, Hou X. Development of a First-in-Class DNMT1/HDAC Inhibitor with Improved Therapeutic Potential and Potentiated Antitumor Immunity. J Med Chem 2024; 67:16480-16504. [PMID: 39264152 DOI: 10.1021/acs.jmedchem.4c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Epigenetic therapies have emerged as a key paradigm for treating malignancies. In this study, a series of DNMT1/HDAC dual inhibitors were obtained by fusing the key pharmacophores from DNMT1 inhibitors (DNMT1i) and HDAC inhibitors (HDACi). Among them, compound (R)-23a demonstrated significant DNMT1 and HDAC inhibition both in vitro and in cells and largely phenocopied the synergistic effects of combined DNMT1i and HDACi in reactivating epigenetically silenced tumor suppressor genes (TSGs). This translated into a profound tumor growth inhibition (TGI = 98%) of (R)-23a in an MV-4-11 xenograft model, while displaying improved tolerability compared with single agent combination. Moreover, in a syngeneic MC38 mouse colorectal tumor model, (R)-23a outperformed the combinatory treatment in reshaping the tumor immune microenvironment and inducing tumor regression. Collectively, the novel DNMT1/HDAC dual inhibitor (R)-23a effectively reverses the cancer-specific epigenetic abnormalities and holds great potential for further development into cancer therapeutic agents.
Collapse
Affiliation(s)
- Yingjie Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Huahui Guo
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xue Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Liangyi Zong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jiale Wei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhihai Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xinying Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| |
Collapse
|
31
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
33
|
Wang D, Zhang Y, Li Q, Li Y, Li W, Zhang A, Xu J, Meng J, Tang L, Lyu S. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression. Genes Dis 2024; 11:101020. [PMID: 38988323 PMCID: PMC11233905 DOI: 10.1016/j.gendis.2023.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 07/12/2024] Open
Abstract
Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer. Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression. Nevertheless, the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood. Here, we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs. In addition, we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer. However, there are still some challenges in the field of cancer epigenetics, such as epigenetic tumor heterogeneity, epigenetic drug heterogeneity, and crosstalk between epigenetics, proteomics, metabolomics, and other omics, which may be the focus and difficulty of cancer treatment in the future. In conclusion, epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer. Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuhua Lyu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
34
|
Kling T, Ferreyra Vega S, Suman M, Dénes A, Lipatnikova A, Lagerström S, Olsson Bontell T, Jakola AS, Carén H. Refinement of prognostication for IDH-mutant astrocytomas using DNA methylation-based classification. Brain Pathol 2024; 34:e13233. [PMID: 38168467 PMCID: PMC11328339 DOI: 10.1111/bpa.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lipatnikova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stina Lagerström
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Aljabali AAA, Alkaraki AK, Gammoh O, Tambuwala MM, Mishra V, Mishra Y, Hassan SS, El-Tanani M. Deciphering Depression: Epigenetic Mechanisms and Treatment Strategies. BIOLOGY 2024; 13:638. [PMID: 39194576 DOI: 10.3390/biology13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Depression, a significant mental health disorder, is under intense research scrutiny to uncover its molecular foundations. Epigenetics, which focuses on controlling gene expression without altering DNA sequences, offers promising avenues for innovative treatment. This review explores the pivotal role of epigenetics in depression, emphasizing two key aspects: (I) identifying epigenetic targets for new antidepressants and (II) using personalized medicine based on distinct epigenetic profiles, highlighting potential epigenetic focal points such as DNA methylation, histone structure alterations, and non-coding RNA molecules such as miRNAs. Variations in DNA methylation in individuals with depression provide opportunities to target genes that are associated with neuroplasticity and synaptic activity. Aberrant histone acetylation may indicate that antidepressant strategies involve enzyme modifications. Modulating miRNA levels can reshape depression-linked gene expression. The second section discusses personalized medicine based on epigenetic profiles. Analyzing these patterns could identify biomarkers associated with treatment response and susceptibility to depression, facilitating tailored treatments and proactive mental health care. Addressing ethical concerns regarding epigenetic information, such as privacy and stigmatization, is crucial in understanding the biological basis of depression. Therefore, researchers must consider these issues when examining the role of epigenetics in mental health disorders. The importance of epigenetics in depression is a critical aspect of modern medical research. These findings hold great potential for novel antidepressant medications and personalized treatments, which would significantly improve patient outcomes, and transform psychiatry. As research progresses, it is expected to uncover more complex aspects of epigenetic processes associated with depression, enhance our comprehension, and increase the effectiveness of therapies.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Almuthanna K Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| |
Collapse
|
36
|
Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Alqinyah M, Attia SM, El-Sherbeeny AM, Al-Harbi MM, Al-Shabanah OA, Ibrahim KE, Alhazzani K, Alanazi AZ. DNMT inhibitor, 5-aza-2'-deoxycytidine mitigates di(2-ethylhexyl) phthalate-induced aggravation of psoriasiform inflammation in mice via reduction in global DNA methylation in dermal and peripheral compartments. Int Immunopharmacol 2024; 137:112503. [PMID: 38906008 DOI: 10.1016/j.intimp.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psoriasis is classified as an autoimmune disorder characterized by abnormal immune response leading to the development of chronic dermal inflammation. Most individuals have a genetic vulnerability that may be further influenced by epigenetic changes occurring due to multiple variables such as pollutant exposure. Epigenetic modifications such as DNA methylation possess a dynamic nature, enabling cellular differentiation and adaptation by controlling gene expression. Di(2-ethylhexyl) phthalate (DEHP) and psoriatic inflammation are known to cause modification of DNA methylation via DNA methyltransferase (DNMT). However, it is not known whether DEHP, a ubiquitous plasticizer affects psoriatic inflammation via DNMT modulation. Therefore, this study investigated the effect of DNMT inhibitor, 5-aza-2'-deoxycytidine (AZA) on DEHP-induced changes in the expression of DNMT1, global DNA methylation, and anti-/inflammatory parameters (p-STAT3, IL-17A, IL-6, iNOS, IL-10, Foxp3, Nrf2, HO-1) in the skin and the peripheral adaptive/ myeloid immune cells (CD4+ T cells/CD11b+ cells) in imiquimod (IMQ) model of psoriasiform inflammation. Further, psoriasis-associated clinical/histopathological features (ear thickness, ear weight, ear PASI score, MPO activity, and H&E staining of the ear and the back skin) were also analyzed in IMQ model. Our data show that IMQ-treated mice with DEHP exposure had increased DNMT1 expression and DNA methylation which was associated with elevated inflammatory (p-STAT3, IL-17A, IL-6, iNOS) and downregulated anti-inflammatory mediators (IL-10, Foxp3, Nrf2, HO-1) in the peripheral immune cells (CD4+ T cells/CD11b+ cells) and the skin as compared to IMQ-treated mice. Treatment with DNMT1 inhibitor caused reduction in inflammatory and elevation in anti-inflammatory parameters with significant improvement in clinical/histopathological symptoms in both IMQ-treated and DEHP-exposed IMQ-treated mice. In conclusion, our study shows strong evidence indicating that DNMT1 plays an important role in DEHP-induced exacerbation of psoriasiform inflammation in mice through hypermethylation of DNA.
Collapse
Affiliation(s)
- Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
38
|
Hernandez Martinez CDJ, Glessner J, Finoti LS, Silva PF, Messora M, Coletta RD, Hakonarson H, Palioto DB. Methylome-wide analysis in systemic microbial-induced experimental periodontal disease in mice with different susceptibility. Front Cell Infect Microbiol 2024; 14:1369226. [PMID: 39086605 PMCID: PMC11289848 DOI: 10.3389/fcimb.2024.1369226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Objective The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.
Collapse
Affiliation(s)
- Cristhiam de Jesus Hernandez Martinez
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Livia Sertori Finoti
- Laboratory of Rebecca Ahrens-Nicklas,Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Pedro Felix Silva
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniela Bazan Palioto
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
39
|
Purnomo AF, Nurkolis F, Syahputra RA, Moon S, Lee D, Taslim NA, Park MN, Daryanto B, Seputra KP, Satyagraha P, Lutfiana NC, Wisnu Tirtayasa PM, Kim B. Elucidating the nexus between onco-immunology and kidney transplantation: An insight from precision medicine perspective. Heliyon 2024; 10:e33751. [PMID: 39040404 PMCID: PMC11261886 DOI: 10.1016/j.heliyon.2024.e33751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The interplay of onco-immunology and kidney transplantation heralds a transformative era in medical science. This integration, while promising, presents significant challenges. Chief among these is the dichotomy of immunosuppression-boosting immunity against malignancies while suppressing it for graft survival. Additionally, limited clinical data on novel therapies, genetic variations influencing responses, economic concerns, and the narrow therapeutic window for post-transplant malignancies necessitate strategic addressal. Conversely, opportunities abound, including personalized immune monitoring, targeted therapies, minimized immunosuppression, and improved patient quality of life. Emphasizing collaborative research and interdisciplinary cooperation, the merging of these fields offers the potential for enhanced graft survival and reduced post-transplant malignancy risks. As we harness modern technology and promote patient-centric care, the vision for the future of kidney transplantation becomes increasingly hopeful, paving the way for more personalized and effective treatments. The article aims to elucidate the critical challenge of balancing immunosuppression to simultaneously combat malignancies and ensure graft survival. It addresses the scarcity of clinical data on novel therapies, the impact of genetic variations on treatment responses, and the economic and therapeutic concerns in managing post-transplant malignancies. Furthermore, it explores the opportunities precision medicine offers, such as personalized immune monitoring, targeted therapies, and reduced immunosuppression, which could significantly improve patient outcomes. Highlighting the importance of collaborative research and interdisciplinary efforts, the article seeks to demonstrate the potential for enhanced graft survival and reduced post-transplant malignancy risks. By leveraging modern technology and prioritizing patient-centric care, it envisions a future where kidney transplantation is more personalized and effective, offering hope for advancements in this field.
Collapse
Affiliation(s)
- Athaya Febriantyo Purnomo
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon, South Korea, 21390, Republic of Korea
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Besut Daryanto
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Paksi Satyagraha
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Nurul Cholifah Lutfiana
- Department of Biochemistry and Biomedicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Pande Made Wisnu Tirtayasa
- Department of Urology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Teaching Hospital, Bali, 80361, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
40
|
Mariotto E, Canton M, Marchioro C, Brancale A, Hamel E, Varani K, Vincenzi F, De Ventura T, Padroni C, Viola G, Romagnoli R. Synthesis and Biological Evaluation of Novel 2-Aroyl Benzofuran-Based Hydroxamic Acids as Antimicrotubule Agents. Int J Mol Sci 2024; 25:7519. [PMID: 39062759 PMCID: PMC11277476 DOI: 10.3390/ijms25147519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Because of synergism between tubulin and HDAC inhibitors, we used the pharmacophore fusion strategy to generate potential tubulin-HDAC dual inhibitors. Drug design was based on the introduction of a N-hydroxyacrylamide or a N-hydroxypropiolamide at the 5-position of the 2-aroylbenzo[b]furan skeleton, to produce compounds 6a-i and 11a-h, respectively. Among the synthesized compounds, derivatives 6a, 6c, 6e, 6g, 11a, and 11c showed excellent antiproliferative activity, with IC50 values at single- or double-digit nanomolar levels, against the A549, HT-29, and MCF-7 cells resistant towards the control compound combretastatin A-4 (CA-4). Compounds 11a and 6g were also 10-fold more active than CA-4 against the Hela cell line. When comparing the inhibition of tubulin polymerization versus the HDAC6 inhibitory activity, we found that 6a-g, 6i, 11a, 11c, and 11e, although very potent as inhibitors of tubulin assembly, did not have significant inhibitory activity against HDAC6.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Martina Canton
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Chiara Marchioro
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic;
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (K.V.); (F.V.)
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Padroni
- Medicinal Chemistry Department, Integrated Drug Discovery, Aptuit, an Evotec Company, 37135 Verona, Italy;
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
41
|
Chen H, Peng L, Wang Z, He Y, Zhang X. Influence of METTL3 knockdown on PDLSC osteogenesis in E. coli LPS-induced inflammation. Oral Dis 2024; 30:3225-3238. [PMID: 37807890 DOI: 10.1111/odi.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms. MATERIALS AND METHODS PDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT-qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway. RESULTS METTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation. CONCLUSION METTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS-stimulated inflammatory microenvironments of PDLSCs.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Tong Y, Wang F, Li S, Guo W, Li Q, Qian Y, Li L, Zhao H, Zhang Y, Gao WQ, Liu Y. Histone methyltransferase KMT5C drives liver cancer progression and directs therapeutic response to PARP inhibitors. Hepatology 2024; 80:38-54. [PMID: 37556368 DOI: 10.1097/hep.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND AND AIMS Epigenetic plasticity is a major challenge in cancer-targeted therapy. However, the molecular basis governing this process has not yet been clearly defined. Despite the considerable success of poly(ADP-ribose) polymerase inhibitors (PARPi) in cancer therapy, the limited response to PARPi, especially in HCC, has been a bottleneck in its clinical implications. Herein, we investigated the molecular basis of the histone methyltransferase KMT5C (lysine methyltransferase 5C) that governs PARPi sensitivity and explored a potential therapeutic strategy for enhancing PARPi efficacy. APPROACH AND RESULTS We identified KMT5C, a trimethyltransferase of H4K20, as a targetable epigenetic factor that promoted liver tumor growth in mouse de novo MYC/Trp53-/- and xenograft liver tumor models. Notably, induction of KMT5C by environmental stress was crucial for DNA repair and HCC cell survival. Mechanistically, KMT5C interacted with the pivotal component of homologous recombination repair, RAD51, and promoted RAD51/RAD54 complex formation, which was essential for the activation of dsDNA breaks repair. This effect depended on the methyltransferase activity of KMT5C. We further demonstrated that the function of KMT5C in promoting HCC progression was dependent on RAD51. Importantly, either a pharmacological inhibitor (A196) or genetic inhibition of KMT5C sensitized liver cancer cells to PARPi. CONCLUSIONS KMT5C played a vital role in promoting liver cancer progression by activating the DNA repair response. Our results revealed a novel therapeutic approach using the KMT5C inhibitor A196, concurrent with olaparib, as a potential HCC therapy.
Collapse
Affiliation(s)
- Yu Tong
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Songling Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyun Guo
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyu Li
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Qian
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linfeng Li
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglong Zhang
- Central Laboratory, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
43
|
Tsumura K, Fujimoto M, Tian Y, Kawahara T, Fujimoto H, Maeshima AM, Nakagawa T, Kume H, Yoshida T, Kanai Y, Arai E. Aberrant cell adhesiveness due to DNA hypermethylation of KLF11 in papillary urothelial carcinomas. Exp Mol Pathol 2024; 137:104908. [PMID: 38824688 DOI: 10.1016/j.yexmp.2024.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE The aim of this study was to clarify DNA methylation profiles determining the clinicopathological diversity of urothelial carcinomas. METHODS Genome-wide DNA methylation analysis was performed using the Infinium HumanMethylation450 BeadChip in 46 paired samples of non-cancerous urothelium (N) and corresponding cancerous tissue (T), and 26 samples of normal control urothelium obtained from patients without urothelial carcinomas (C). For genes of interest, correlation between DNA methylation and mRNA expression was examined using the Cancer Genome Atlas database. In addition, the role of a selected target for cancer-relevant endpoints was further examined in urothelial carcinoma cell lines. RESULTS The genes showing significant differences in DNA methylation levels between papillary carcinomas and more aggressive non-papillary (nodular) carcinomas were accumulated in signaling pathways participating in cell adhesion and cytoskeletal remodeling. Five hundred ninety-six methylation sites showed differences in DNA methylation levels between papillary and nodular carcinomas. Of those sites, that were located in CpG-islands around transcription start site, 5'-untranslated region or 1st exon, 16 genes exhibited inverse correlations between DNA methylation and mRNA expression levels. Among the latter, only the KLF11 gene showed papillary T sample-specific DNA hypermethylation in comparison to C and N samples. The DNA methylation levels of KLF11 were not significantly different between T samples and N samples or T samples and C samples for patients with papillo-nodular or nodular carcinomas. Knockdown experiments using the urothelial carcinoma cell lines HT1376 and 5637, which are considered models for papillary carcinoma, revealed that KLF11 participates in altering the adhesiveness of cells to laminin-coated dishes, although cell growth was not affected. CONCLUSION These data indicate that DNA hypermethylation of KLF11 may participate in the generation of papillary urothelial carcinomas through induction of aberrant cancer cell adhesion to the basement membrane.
Collapse
Affiliation(s)
- Koji Tsumura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toru Kawahara
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Akiko Miyagi Maeshima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
44
|
Zhou H, Gui J, Zhu L, Mi Y. The Role and Mechanism of the Histone Methyltransferase G9a in Tumors: Update. Onco Targets Ther 2024; 17:449-462. [PMID: 38832355 PMCID: PMC11146345 DOI: 10.2147/ott.s451108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Methylation-mediated gene silencing is closely related to the occurrence and development of human tumors. The euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is highly expressed in many tumors and is generally considered to be an oncogene, which is associated with the poor outcome of many tumors. Combined immunotherapy and immune checkpoint blockade therapy also have good efficacy and certain safety. However, there are still many difficulties in the drugs targeting G9a, and the combined effect and safety of G9a with many drugs is still under study. This article aims to summarize the role and mechanism of G9a and its inhibitors in tumors in the past two years, and to understand the application prospect of G9a from the perspective of diagnosis and treatment.
Collapse
Affiliation(s)
- Hangsheng Zhou
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Jiandong Gui
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| |
Collapse
|
45
|
Luo J, Chen Z, Qiao Y, Tien JCY, Young E, Mannan R, Mahapatra S, He T, Eyunni S, Zhang Y, Zheng Y, Su F, Cao X, Wang R, Cheng Y, Seri R, George J, Shahine M, Miner SJ, Vaishampayan U, Wang M, Wang S, Parolia A, Chinnaiyan AM. p300/CBP degradation is required to disable the active AR enhanceosome in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587346. [PMID: 38586029 PMCID: PMC10996709 DOI: 10.1101/2024.03.29.587346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which is exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition or the inhibition of its catalytic domain. In vivo experiments using an orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Zhixiang Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rithvik Seri
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Miriam Shahine
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ulka Vaishampayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Lin CT, Ting RT, Ou YH, Shao TL, Lee MC. Protein degradation of Lsd1 is mediated by Bre1 yet opposed by Lsd1-interacting lncRNAs during fly follicle development. iScience 2024; 27:109683. [PMID: 38655201 PMCID: PMC11035368 DOI: 10.1016/j.isci.2024.109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Tissue development, homeostasis, and repair all require efficient progenitor expansion. Lysine-specific demethylase 1 (Lsd1) maintains plastic epigenetic states to promote progenitor proliferation while overexpressed Lsd1 protein causes oncogenic gene expression in cancer cells. However, the precise regulation of Lsd1 protein expression at the molecular level to drive progenitor differentiation remains unclear. Here, using Drosophila melanogaster oogenesis as our experimental system, we discovered molecular machineries that modify Lsd1 protein stability in vivo. Through genetic and biochemical analyses, an E3 ubiquitin ligase, Bre1, was identified as required for follicle progenitor differentiation, likely by mediating Lsd1 protein degradation. Interestingly, specific Lsd1-interacting long non-coding RNAs (LINRs) were found to antagonize Bre1-mediated Lsd1 protein degradation. The intricate interplay discovered among the Lsd1 complex, LINRs and Bre1 provides insight into how Lsd1 protein stability is fine-tuned to underlie progenitor differentiation in vivo.
Collapse
Affiliation(s)
- Chun Ting Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Ruei-Teng Ting
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Yang-Hsuan Ou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Tzu-Ling Shao
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Ming-Chia Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| |
Collapse
|
47
|
Ishidoya M, Fujita T, Tasaka S, Fujii H. Real-time MBDi-RPA using methyl-CpG binding protein 2: A real-time detection method for simple and rapid estimation of CpG methylation status. Anal Chim Acta 2024; 1302:342486. [PMID: 38580404 DOI: 10.1016/j.aca.2024.342486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Analysis of CpG methylation is informative for cancer diagnosis. Previously, we developed a novel method to discriminate CpG methylation status in target DNA by blocking recombinase polymerase amplification (RPA), an isothermal DNA amplification technique, using methyl-CpG binding domain (MBD) protein 2 (MBD2). The method was named MBD protein interference-RPA (MBDi-RPA). In this study, MBDi-RPA was performed using methyl-CpG binding protein 2 (MeCP2), another MBD family protein, as the blocking agent. RESULTS MBDi-RPA using MeCP2 detected low levels of CpG methylation, showing that it had higher sensitivity than MBDi-RPA using MBD2. We also developed real-time RPA, which enabled rapid analysis of DNA amplification without the need for laborious agarose gel electrophoresis and used it in combination with MBDi-RPA. We termed this method real-time MBDi-RPA. The method using MeCP2 could determine the abundance ratio of CpG-methylated target DNA simply and rapidly, although highly sensitive detection was challenging. SIGNIFICANCE AND NOVELTY Real-time MBDi-RPA using MeCP2 could be potentially useful for estimating CpG methylation status in target DNA prior to more detailed analyses.
Collapse
Affiliation(s)
- Mina Ishidoya
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
48
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
49
|
Ma W, Zhang J, Chen W, Liu N, Wu T. The histone lysine acetyltransferase KAT2B inhibits cholangiocarcinoma growth: evidence for interaction with SP1 to regulate NF2-YAP signaling. J Exp Clin Cancer Res 2024; 43:117. [PMID: 38641672 PMCID: PMC11027350 DOI: 10.1186/s13046-024-03036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
50
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|