1
|
Mahmoud AS, Sayed AEDH, Mahmoud UT, Mohammed AAA, Darwish MHA. Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress. BMC Vet Res 2024; 20:474. [PMID: 39420344 PMCID: PMC11484423 DOI: 10.1186/s12917-024-04302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
Collapse
Affiliation(s)
- Amr Saber Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Alaa El Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt.
| | - Usama T Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A A Mohammed
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Animal Husbandry and Livestock Development, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Madeha H A Darwish
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Ouyang P, Li Q, Liu S, Li Y, Li S, Zhou Y, Jia P, Chen D, Huang X, Geng Y. Histopathology and transcriptome profiling reveal features of immune responses in gills and intestine induced by Spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109726. [PMID: 38944254 DOI: 10.1016/j.fsi.2024.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The immune system of bony fish closely resembles that of mammals, comprising both specific (adaptive) and non-specific (innate) components. Notably, the mucosa-associated lymphoid tissue (MALT) serves as the first line of defense within the non-specific immune system, playing a critical role in protecting these aquatic organisms against invading pathogens. MALT encompasses a network of immune cells strategically distributed throughout the gills and intestines, forming an integral part of the mucosal barrier that interfaces directly with the surrounding aquatic environment. Spring Viremia of Carp Virus(SVCV), a highly pathogenic agent causing substantial harm to common carp populations, has been designated as a Class 2 animal disease by the Ministry of Agriculture and Rural Affairs of China. Utilizing a comprehensive array of research techniques, including Hematoxylin and Eosin (HE)、Alcian Blue Periodic Acid-Schiff (AB-PAS)、transcriptome analysis for global gene expression profiling and Reverse Transcription-Polymerase Chain Reaction (RT-qPCR), this study uncovered several key findings: SVCV is capable of compromising the mucosal architecture in the gill and intestinal tissues of carp, and stimulate the proliferation of mucous cells both in gill and intestinal tissues. Critically, the study revealed that SVCV's invasion elicits a robust response from the carp's mucosal immune system, demonstrating the organism's capacity to resist SVCV invasion despite the challenges posed by the pathogen.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shuya Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yankai Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shuhan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yongheng Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Peng Jia
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Wang H, Su B, Zhang Y, Shang M, Wang J, Johnson A, Dilawar H, Bruce TJ, Dunham RA, Wang X. Transcriptome analysis revealed potential mechanisms of channel catfish growth advantage over blue catfish in a tank culture environment. Front Genet 2024; 15:1341555. [PMID: 38742167 PMCID: PMC11089159 DOI: 10.3389/fgene.2024.1341555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production. While hybrid catfish have significant growth advantages in earthen ponds, channel catfish were reported to grow faster in tank culture environments. In this study, we confirmed channel fish's superiority in growth over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this study, respectively; p < 0.001). In addition, we conducted RNA sequencing experiments and established transcriptomic resources for the heart, liver, intestine, mucus, and muscle of both species. The number of expressed genes varied across tissues, ranging from 5,036 in the muscle to over 20,000 in the mucus. Gene Ontology analysis has revealed the functional specificity of differentially expressed genes within their respective tissues, with significant pathway enrichment in metabolic pathways, immune activity, and stress responses. Noteworthy tissue-specific marker genes, including lrrc10, fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This transcriptome resource is poised to support future investigations into the molecular mechanisms underlying environment-dependent heterosis and advance genetic breeding efforts of hybrid catfish.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Rex A. Dunham
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
4
|
Sánchez-Velázquez J, Peña-Herrejón GA, Aguirre-Becerra H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals (Basel) 2024; 14:765. [PMID: 38473149 DOI: 10.3390/ani14050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Aquaculture has become one of the most attractive food production activities as it provides high-quality protein for the growing human population. However, the abiotic chronic stress of fish in intensive fish farming leads to a detrimental condition that affects their health and somatic growth, comprising productive performance. This work aims to comprehensively review the impact of alternative and novel dietary protein sources on fish somatic growth, metabolism, and antioxidative capacity under environmental/abiotic stressors. The documental research indicates that ingredients from rendered animal by-products, insects, bacteria as single-cell proteins, and fungal organisms (e.g., yeast, filamentous fungus, and mushrooms) benefit fish health and performance. A set of responses allows fish growth, health, and survival to remain unaffected by feeding with alternative ingredients during chronic environmental stress. Those ingredients stimulate the production of enzymes such as catalase, glutathione peroxidase, and selenoproteins that counteract ROS effects. In addition, the humoral immune system promotes immunoglobulin production (IgM) and cortisol plasmatic reduction. Further investigation must be carried out to establish the specific effect by species. Additionally, the mixture and the pre-treatment of ingredients such as hydrolysates, solid fermentations, and metabolite extraction potentialize the beneficial effects of diets in chronically stressed fish.
Collapse
Affiliation(s)
- Julieta Sánchez-Velázquez
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| | - Guillermo Abraham Peña-Herrejón
- Centro de Investigación y Desarrollo Tecnológico en Materia Agrícola Pecuaria Acuícola y Forestal (CIDAF), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Concá, Arroyo Seco 76410, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| |
Collapse
|
5
|
Xiao K, Wang X, Wang MM, Guo HX, Liu WB, Jiang GZ. Metabolism, antioxidant and immunity in acute and chronic hypoxic stress and the improving effect of vitamin C in the channel catfish (Ictalurus punctatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:183-196. [PMID: 37291452 DOI: 10.1007/s10695-023-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Hypoxia is the most significant factor that threatens the health and even survival of freshwater and marine fish. Priority should be given to the investigation of hypoxia adaptation mechanisms and their subsequent modulation. Acute and chronic studies were designed for the current study. Acute hypoxia comprised of normoxia dissolved oxygen (DO) 7.0 ± 0.5 mg/mL (N0), low-oxygen 5.0 ± 0.5 mg/mL(L0), and hypoxia 1.0 ± 0.1 mg/mL (H0) and 300 mg/L Vc for hypoxia regulation (N300, L300, H300). Chronic hypoxia comprised of normoxia (DO 7.0 ± 0.5 mg/mL) with 50 mg/kg Vc in the diet (N50) and low oxygen (5.0 ± 0.5 mg/mL) with 50, 250, 500 mg/kg Vc in the diet (L50, L250, L500) to assess the effect of Vc in hypoxia. The growth, behavior, hematological parameters, metabolism, antioxidants, and related inflammatory factors of channel catfish were investigated, and it was found that channel catfish have a variety of adaptive mechanisms in response to acute and chronic hypoxia. Under acute 5 mg/mL DO, the body color lightened (P < 0.05) and reverted to normal with 300 mg/mL Vc. PLT was significantly elevated after 300 mg/L Vc (P < 0.05), indicating that Vc can effectively restore hemostasis following oxygen-induced tissue damage. Under acute hypoxia, the significantly increased of cortisol, blood glucose, the gene of pyruvate kinase (pk), and phosphofructokinase (pfk), together with the decreased expression of fructose1,6-bisphosphatase (fbp) and the reduction in myoglycogen, suggested that Vc might enhance the glycolytic ability of the channel catfish. And the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and the gene expression of sod rose significantly, showing that Vc might improve the antioxidant capacity of the channel catfish. The significant up-regulation of tumor necrosis factor-alpha (tnf-α), interleukin-1β (il-1β), and cd68 under acute hypoxia implies that hypoxia may generate inflammation in channel catfish, whereas the addition of Vc and down-regulation of these genes suggests that Vc suppresses inflammation under acute hypoxia. We found that the final weight, WGR, FCR, and FI of channel catfish were significantly reduced under chronic hypoxia, and that feeding 250 mg/kg of Vc in the diet was effective in alleviating the growth retardation caused by hypoxia. The significant increase in cortisol, blood glucose, myoglycogen, and the expression of tnf-α, il-1β, and cd68 (P < 0.05) and the significant decrease in lactate (P < 0.05) under chronic hypoxia indicated that the channel catfish had gradually adapted to the survival threat posed by hypoxia and no longer relied on carbohydrates as their primary source of energy. While the addition of Vc did not appear to increase the energy supply of the fish under hypoxia in terms of glucose metabolism, but the significantly decreased expression of tnf-α, il-1β, and cd68 (P < 0.05) also were found, indicating that chronic hypoxia, similar acute hypoxia, may increase inflammation in the channel catfish. This study indicates that under acute stress, channel catfish withstand stress by raising energy supply through glycolysis, and acute hypoxic stress significantly promotes inflammation in channel catfish, but Vc assists the channel catfish resist stress by raising glycolysis, antioxidant capacity, and decreasing the production of inflammatory markers. Under chronic hypoxia, the channel catfish no longer utilize carbohydrates as their primary energy source, and Vc may still effectively reduce inflammation in the channel catfish under hypoxia.
Collapse
Affiliation(s)
- Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Mang-Mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
Wu RX, Miao BB, Han FY, Niu SF, Liang YS, Liang ZB, Wang QH. Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala. Genes (Basel) 2023; 14:1268. [PMID: 37372448 DOI: 10.3390/genes14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study, the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data, 23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total, 67 gene family expansions and 93 gene family contractions were detected in the L. savala genome. Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis, we screened a number of candidate genes associated with the specific morphology, behaviour-related immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed mechanisms underlying the special morphological and behavioural characteristics of L. savala from a genomic perspective. Furthermore, this study provides valuable reference data for subsequent molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.
Collapse
Affiliation(s)
- Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Cao Q, Zong J, Zhang Z, Liu W, Li T, Zhao Y, Liu H, Jiang J. Pyroptosis in fish research: A promising target for disease management. FISH & SHELLFISH IMMUNOLOGY 2023:108866. [PMID: 37277049 DOI: 10.1016/j.fsi.2023.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Pyroptosis is a newly discovered programmed cell death pathway that plays an essential role in the host's defense against pathogenic infections. This process is orchestrated by inflammasomes, which are intricate multiprotein complexes that orchestrate the activation of caspase and instigate the liberation of proinflammatory cytokines. Additionally, gasdermin family proteins execute their role by forming pores in the cell membrane, ultimately leading to cell lysis. In recent years, pyroptosis has emerged as a promising target for disease management in fish, particularly in the context of infectious diseases. In this review, we provide an overview of the current understanding regarding the role of pyroptosis in fish, focusing on its involvement in host-pathogen interactions and its potential as a therapeutic target. We also highlighted the latest advancements in the field development of pyroptosis inhibitors and their potential applications in fish disease management. Subsequently, we deliberate on the obstacles and future prospects for pyroptosis research in fish, emphasizing the necessity of conducting more comprehensive investigations to unravel the intricate regulatory mechanisms governing this process across diverse fish species and environmental contexts. Finally, this review will also highlight the current limitations and future perspectives of pyroptosis research in aquaculture.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zslahihao Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
8
|
Zhou ZY, Bai SJ, Lu CW, Yang B, Wang J, Lian S, Jian ZR, Wang EL, Wang GX, Liu T. Nocardia seriolae mediates liver granulomatous chronic inflammation in Micropterus salmoides through pyroptosis. JOURNAL OF FISH DISEASES 2023; 46:321-332. [PMID: 36644875 DOI: 10.1111/jfd.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Granulomatous diseases caused by Nocardia seriously endanger the health of cultured fish. These bacteria are widely distributed, but prevention and treatment methods are very limited. Chronic granulomatous inflammation is an important pathological feature of Nocardia infection. However, the molecular mechanisms of granuloma formation and chronic inflammation are still unclear. Constructing a granuloma infection model of Nocardia is the key to exploring the pathogenesis of the disease. In this study, we established a granuloma model in the liver of largemouth bass (Micropterus salmoides) and assessed the infection process of Nocardia seriolae at different concentrations by analysing relevant pathological features. By measuring the expression of pro-inflammatory cytokines, transcription factors and a pyroptosis-related protein, we revealed the close relationship between pyroptosis and chronic inflammation of granulomas. We further analysed the immunofluorescence results and the expression of pyroptosis-related protein of macrophage infected by N. seriolae and found that N. seriolae infection induced macrophage pyroptosis in vitro. These results were proved by flow cytometry analysis of infection experiment in vivo. Our results indicated that the pyroptosis effect may be the key to inducing chronic inflammation in the fish liver and further mediating granuloma formation. In this study, we explored the molecular mechanism underlying chronic inflammation of granulomas and developed research ideas for understanding the occurrence and development of granulomatous diseases in fish.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shang-Jie Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen-Wang Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, China
| | - Sheng Lian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng-Ran Jian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Er-Long Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zuloaga R, Varas O, Ahrendt C, Pulgar VM, Valdés JA, Molina A, Duarte C, Urzúa Á, Guzmán-Rivas F, Aldana M, Pulgar J. Revealing coastal upwelling impact on the muscle growth of an intertidal fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159810. [PMID: 36341853 DOI: 10.1016/j.scitotenv.2022.159810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Upwelling oceanographic phenomenon is associated with increased food availability, low seawater temperature and pH. These conditions could significantly affect food quality and, in consequence, the growth of marine species. One of the most important organismal traits is somatic growth, which is highly related to skeletal muscle. In fish, skeletal muscle growth is highly influenced by environmental factors (i.e. temperature and nutrient availability) that showed differences between upwelling and downwelling zones. Nevertheless, there are no available field studies regarding the impact of those conditions on fish muscle physiology. This work aimed to evaluate the muscle fibers size, protein content, gene expression of growth and atrophy-related genes in fish sampled from upwelling and downwelling zones. Seawater and fish food items (seaweeds) samples were collected from upwelling and downwelling zones to determine the habitat's physical-chemical variations and the abundance of biomolecules in seaweed tissue. In addition, white skeletal muscle samples were collected from an intertidal fish to analyze muscular histology, the growth pathways of protein kinase B and the extracellular signal-regulated kinase; and the gene expression of growth- (insulin-like growth factor 1 and myosin heavy-chain) and atrophy-related genes (F-box only protein 32 and muscle RING-finger protein-1). Upwelling zones revealed higher nutrients in seawater and higher protein content in seaweed than samples from downwelling zones. Moreover, fish from upwelling zones presented a greater size of muscle fibers and protein content compared to downwelling fish, associated with lower protein ubiquitination and gene expression of F-box only protein 32. Our data indicate an attenuated use of proteins as energy source in upwelling conditions favoring protein synthesis and muscle growth. This report shed lights of how oceanographic conditions may modulate food quality and fish muscle physiology in an integrated way, with high implications for marine conservation and sustainable fisheries management.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Oscar Varas
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Camila Ahrendt
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Victor M Pulgar
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies-Creek, NC, USA; Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Juan A Valdés
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile.
| | - Cristian Duarte
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Ángel Urzúa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Av. Alonso de Ribera 2850, Concepción, Chile
| | - Fabián Guzmán-Rivas
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Av. Alonso de Ribera 2850, Concepción, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - José Pulgar
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile.
| |
Collapse
|
10
|
He Z, Shou C, Han Z. Transcriptome Analysis of Marbled Rockfish Sebastiscus marmoratus under Salinity Stress. Animals (Basel) 2023; 13:ani13030400. [PMID: 36766289 PMCID: PMC9913653 DOI: 10.3390/ani13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
The marbled rockfish, Sebastiscus marmoratus, belongs to the euryhaline fish and is an oviparous scleractinian fish. There are few studies on the adaptation mechanism, functional genes, and related pathways of S. marmoratus and salinity. The results showed that a total of 72.1 GB of clean reads were obtained and all clean reads annotated a total of 25,278 Unigenes, of which 2,160 were novel genes. Compared to 20‱, 479 and 520 differential genes were obtained for 35‱ and 10‱, respectively. Gene ontology (GO) enrichment analysis revealed significant enrichment in protein binding, ion binding, ATP binding, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that differentially expressed genes significantly expressed under salinity stress were mainly involved in the pathways of the cytochrome P450 metabolism of xenobiotics, tryptophan metabolism, cellular senescence, and calcium signaling pathways. Among them, pik3r6b, cPLA2γ-like, and WSB1 were differentially expressed in all three groups, and they were associated with apoptosis, inflammation, DNA damage, immune regulation, and other physiological processes. Six differentially expressed genes were randomly selected for qRT-PCR validation, and the results showed that the transcriptomic data were of high confidence.
Collapse
|
11
|
Zheng X, Xu D, Sun L, Qin X, Zhang Y. Inflammation and apoptosis pathways mediated the stress response of Litopenaeus vannamei to acute cold and air exposure during waterless live transportation: Based on ultrastructure and transcriptome. FISH & SHELLFISH IMMUNOLOGY 2022; 131:391-400. [PMID: 36252695 DOI: 10.1016/j.fsi.2022.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
the combination of acute cold (AC) and waterless duration (WD) constitutes the major environmental stress and induces the damage or even mortality to shrimp L. vannamei during live transport, whereas the responding mechanism to AC + WD at molecular level remains unknown. The present study aims to clarify the responding mechanism of L. vannamei to AC + WD stress by ultrastructural observation and transcriptomic analysis on hepatopancreas tissue. The results showed that the dramatical oxidative stress induced by AC + WD significantly mediated the alteration of amino acids and energy metabolism. Furthermore, KEGG pathway enrichment analysis revealed that the genes including DDO, GOT1, IDH1 and BBOX1 involved in energy metabolism and were significantly down-regulated, while some apoptosis- and inflammation-related genes such as DRONC, AP-1, and COX-2 were significantly up-regulated under AC + WD stress in comparison with those at normal control (all p < 0.05 or 0.01). These findings suggested that metabolic processes mediate the stress-induced damages of L. vannamei during waterless transport. Moreover, the significant overexpression of apoptosis-and inflammation-related proteins, and levels of inflammation cytokines in serum of shrimps strongly demonstrated the implication of inflammation and apoptosis pathways in stress-induced ultrastructural damage. These findings deepen our understanding into the response mechanisms of L. vannamei to AC + WD stress and provide the potential controlling biomarkers for transportation management.
Collapse
Affiliation(s)
- Xiaoxian Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, China
| | - Ying Zhang
- School of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
12
|
Yuan H, Liu X, Wang Z, Ren Y, Li Y, Gao C, Jiao T, Cai Y, Yang Y, Zhao S. Alternative splicing signature of alveolar type II epithelial cells of Tibetan pigs under hypoxia-induced. Front Vet Sci 2022; 9:984703. [PMID: 36187824 PMCID: PMC9523697 DOI: 10.3389/fvets.2022.984703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) allows the generation of multiple transcript variants from a single gene and affects biological processes by generating protein diversity in organisms. In total, 41,642 AS events corresponding to 9,924 genes were identified, and SE is the most abundant alternatively spliced type. The analysis of functional categories demonstrates that alternatively spliced differentially expressed genes (DEGs) were enriched in the MAPK signaling pathway and hypoxia-inducible factor 1 (HIF-1) signaling pathway. Proteoglycans in cancer between the normoxic (21% O2, TN and LN) and hypoxic (2% O2, TL and LL) groups, such as SLC2A1, HK1, HK2, ENO3, and PFKFB3, have the potential to rapidly proliferate alveolar type II epithelial (ATII) cells by increasing the intracellular levels of glucose and quickly divert to anabolic pathways by glycolysis intermediates under hypoxia. ACADL, EHHADH, and CPT1A undergo one or two AS types with different frequencies in ATII cells between TN and TL groups (excluding alternatively spliced DEGs shared between normoxic and hypoxic groups), and a constant supply of lipids might be obtained either from the circulation or de novo synthesis for better growth of ATII cells under hypoxia condition. MCM7 and MCM3 undergo different AS types between LN and LL groups (excluding alternatively spliced DEGs shared between normoxic and hypoxic groups), which may bind to the amino-terminal PER-SIM-ARNT domain and the carboxyl terminus of HIF-1α to maintain their stability. Overall, AS and expression levels of candidate mRNAs between Tibetan pigs and Landrace pigs revealed by RNA-seq suggest their potential involvement in the ATII cells grown under hypoxia conditions.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhengwen Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Xinjiang, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yanan Yang
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Shengguo Zhao
| |
Collapse
|
13
|
Minaz M, Er A, Ak K, Nane ID, Ipek ZZ, Yalcın A, Kurtoglu IZ, Kayis S. Investigation of long-term bisphenol A exposure on rainbow trout (Oncorhynchus mykiss): Hematological parameters, biochemical indicator, antioxidant activity, and histopathological examination. CHEMOSPHERE 2022; 303:135136. [PMID: 35636605 DOI: 10.1016/j.chemosphere.2022.135136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
As an industrial synthetic chemical, bisphenol A (BPA) has the potential to have physiologically and histologically adverse effects on aquatic organisms. BPA causes the reproductive disrupting of all vertebrates due to its degradation on endocrine system. Therefore, the effect of BPA on fish with high economic value is an important issue. This study focused weekly on long-term BPA exposure on rainbow trout (Oncorhynchus mykiss). Hematological, biochemical, antioxidant activity and histopathological examinations were performed on O. mykiss exposed to 1000 μg/L BPA concentration. Mortality was observed in the BPA group during the first three weeks. As a result of hematological studies, leukocyte count and hemoglobin in the BPA group were significantly higher in the first three weeks compared to the control group. Plasma cortisol level as a biochemical indicator showed a similar trend to leukocyte and hemoglobin. There was no significant difference between BPA and control groups in terms of superoxide dismutase and catalase. However, glutathione peroxidase activity in the BPA group was significantly lower than in the control group for four weeks. At the end of the study, many alterations were observed histologically in the gill tissues. While more intense hyperplasia and epithelial lifting were observed in the tissues in the BPA group compared to the control group, vacuolization, necrosis and hypertrophy were observed infrequently. In conclusion, this study argues that BPA causes negative effects on O. mykiss in terms of fish welfare and future study should be focused on its environmental adaptation with color preference patterns.
Collapse
Affiliation(s)
- Mert Minaz
- Department of Aquaculture, Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Akif Er
- Department of Aquaculture, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Kubra Ak
- Department of Aquaculture, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ikbal Demet Nane
- Technical Sciences Vocational School, Isparta University of Applied Sciences, Isparta, Turkey
| | - Zeynep Zehra Ipek
- Department of Aquaculture, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Arzu Yalcın
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | | | - Sevki Kayis
- Department of Aquaculture, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
14
|
Wu C, Li J, Cai C, Qin Q, Huang C, Chen Z, Hu F, Hu J, Huang H, Luo J, Cao L, Chen Q, Huang X, Tang C, Cai Y, Cai J, Cai S, Cai H, Chen Y, Yang Y, Ma M, Chen B, Liu S. A new type of hybrid golden pompano “Chenhai No.1” produced by the hybridization of (Trachinotus ovatus ♀ × Trachinotus blochii ♂) ♀ × T. ovatus ♂. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Pickett BD, Glass JR, Johnson TP, Ridge PG, Kauwe JSK. The genome of a giant (trevally): Caranx ignobilis. GIGABYTE 2022; 2022:gigabyte67. [PMID: 36824527 PMCID: PMC9694125 DOI: 10.46471/gigabyte.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Caranx ignobilis, commonly known as giant kingfish or giant trevally, is a large, reef-associated apex predator. It is a prized sportfish, targeted throughout its tropical and subtropical range in the Indian and Pacific Oceans. It also gained significant interest in aquaculture due to its unusual freshwater tolerance. Here, we present a draft assembly of the estimated 625.92 Mbp nuclear genome of a C. ignobilis individual from Hawaiian waters, which host a genetically distinct population. Our 97.4% BUSCO-complete assembly has a contig NG50 of 7.3 Mbp and a scaffold NG50 of 46.3 Mbp. Twenty-five of the 203 scaffolds contain 90% of the genome. We also present noisy, long-read DNA, Hi-C, and RNA-seq datasets, the latter containing eight distinct tissues and can help with annotations and studies of freshwater tolerance. Our genome assembly and its supporting data are valuable tools for ecological and comparative genomics studies of kingfishes and other carangoid fishes.
Collapse
Affiliation(s)
| | - Jessica R. Glass
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, Utah, USA
- Brigham Young University – Hawai‘i, Laie, Hawai‘i, USA
| |
Collapse
|
16
|
Lou F, Liu M, Han Z, Gao T. Comparative transcriptome reveals the thermal stress response differences between Heilongjiang population and Xinjiang population of Lota lota. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100960. [PMID: 35042124 DOI: 10.1016/j.cbd.2022.100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Some cold-water fishes are particularly sensitive to the water temperature increasing caused by current global warming. However, the alterations in the physiology and behavior of infraspecific populations living in heterogeneous landscapes in response to water temperature increasing were significantly different. Consequently, understanding the impact of temperature increasing on different populations may be crucial for the conservation of cold-water fishes in the context of global warming. The burbot is the only freshwater specie in Gadiformes. To better understand the differences of different populations of burbot under similar thermal stress, Lota lota was selected as the research objects. Firstly, RNA-seq was applied to identify the transcriptomic responses of Heilongjiang population exposed to three temperature gradients (0 °C, 18 °C and 28 °C). Compared with 0 °C, 4216 and 12,657 genes were significantly differentially expressed at 18 °C and 28 °C, respectively. Meanwhile, 49 genes were significantly differentially expressed in three temperature pairs and these genes were presumed to involve in stress response process, immunologic process, reproductive process, development process, material metabolism process, signal transduction process, spermatogenesis process and cell apoptosis process. The response differences of two L. lota populations to similar thermal stress were compared and the results showed that they have different gene expression responses (the number of differentially expression genes and biological processes). The lower annual temperature of the Heilongjiang River might make it more sensitive to temperature increasing. Based on the comparative transcriptome analyses, 12 orthologous genes were considered as the potential regulators of L. lota preference for cold-water environment and these genes are potentially related to the immunologic process, reproductive process, development process, signal transduction process, and cell apoptosis process. Those results can provide basic information for the rational development of conservation strategies of different L. lota populations under the background of global warming.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Manhong Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
17
|
Jahan K, Yin Z, Zhang Y, Yan X, Nie H. Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Different Temperature Stress Adaptation of Manila Clam. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:542-554. [PMID: 35482153 DOI: 10.1007/s10126-022-10117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The Manila clam (Ruditapes philippinarum) is one of the most important aquaculture species and widely distributed along the coasts of China, Japan, and Korea. Due to its wide distribution, it can tolerate a wide range of temperature. Studying the gene expression profiles of clam gills had found differentially expressed genes (DEGs) and pathway involved in temperature stress tolerance. A systematic study of cellular response to temperature stress may provide insights into the mechanism of acquired tolerance. Here, weighted gene co-expression network analysis (WGCNA) was carried out using RNA-seq data from gill transcriptome in response to high and low temperature stress. There are a total 32 gene modules, of which 18 gene modules were identified as temperature-related modules. Blue module was one significantly correlated with temperature which was associated with cellular metabolism, apoptosis pathway, ER stress, and others.
Collapse
Affiliation(s)
- Kifat Jahan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
18
|
Song Z, Zou J, Wang M, Chen Z, Wang Q. A Comparative Review of Pyroptosis in Mammals and Fish. J Inflamm Res 2022; 15:2323-2331. [PMID: 35431566 PMCID: PMC9012342 DOI: 10.2147/jir.s361266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is a form of programmed cell death, which is executed by gasdermin family proteins. Under the stimulation of pathogen- and/or damage-associated molecular patterns, pattern recognition receptors (PRRs) such as Nod like receptors could recruit apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspases to form inflammasomes and then activate caspases through various pathways. The activated caspases then cleave gasdermin family proteins, and N-terminal (NT) domains of gasdermins were released to form oligomeric pores, resulting in the increased membrane permeability, cell swelling, and final pyroptosis. During this process, caspases also promote the maturation and release of inflammatory cytokines such as IL-1β and IL-18, thus pyroptosis is also named inflammatory cell death. Unlike numerous gasdermin family proteins in mammals, only gasdermin E (GSDME) has been identified in fish. GSDME in fish can be cleaved by caspase-a/-b to release its NT domain and induce pyroptosis. Studies indicated that pyroptosis in fish mainly depends on NLR family pyrin domain-containing 3 (NLRP3) inflammasome. ASC and different caspase proteins also were identified in different fish species. The influences of pathogenic microorganism infection and environmental pollutants on fish pyroptosis were studied in recent years. Considering that fish living environment is affected by multiple factors such as water salinity, temperature, oxygen supply, and highly fluctuating food supply, the in-depth research about fish pyroptosis will contribute to revealing the mechanism of pyroptosis during evolution.
Collapse
Affiliation(s)
- Zixi Song
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Jiahong Zou
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Mengya Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Zhenwei Chen
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
- Correspondence: Qingchao Wang, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan Street 1st, Hongshan District, Wuhan, Hubei, People’s Republic of China, Tel +86-138 71499065, Fax +86-27 87282113, Email
| |
Collapse
|
19
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
20
|
Xu J, Yu X, Ye H, Gao S, Deng N, Lu Y, Lin H, Zhang Y, Lu D. Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Front Immunol 2022; 12:825358. [PMID: 35095928 PMCID: PMC8793131 DOI: 10.3389/fimmu.2021.825358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) raises the issue of how hypoxia destroys normal physiological function and host immunity against pathogens. However, there are few or no comprehensive omics studies on this effect. From an evolutionary perspective, animals living in complex and changeable marine environments might develop signaling pathways to address bacterial threats under hypoxia. In this study, the ancient genomic model animal Takifugu obscurus and widespread Vibrio parahaemolyticus were utilized to study the effect. T. obscurus was challenged by V. parahaemolyticus or (and) exposed to hypoxia. The effects of hypoxia and infection were identified, and a theoretical model of the host critical signaling pathway in response to hypoxia and infection was defined by methods of comparative metabolomics and proteomics on the entire liver. The changing trends of some differential metabolites and proteins under hypoxia, infection or double stressors were consistent. The model includes transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor-1α (HIF-1α), and epidermal growth factor (EGF) signaling pathways, and the consistent changing trends indicated that the host liver tended toward cell proliferation. Hypoxia and infection caused tissue damage and fibrosis in the portal area of the liver, which may be related to TGF-β1 signal transduction. We propose that LRG (leucine-rich alpha-2-glycoprotein) is widely involved in the transition of the TGF-β1/Smad signaling pathway in response to hypoxia and pathogenic infection in vertebrates as a conserved molecule.
Collapse
Affiliation(s)
- Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Hangyu Ye
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Songze Gao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Ocean, Hainan University, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Dhara K, Saha S, Pal P, Chukwuka AV, Panigrahi AK, Saha NC, Faggio C. Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109195. [PMID: 34597778 DOI: 10.1016/j.cbpc.2021.109195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
The widespread occurrence of Mercury (Hg) and its derivatives in the aquatic environment and risks to the health of local populations has necessitated investigations into its toxic effects on sessile species. The toxicity of Mercury was observed sequentially from 96 h acute exposure regime (behavioural endpoints) to chronic durations (haematological and biochemical toxicity endpoints) in Bellamya bengalensis. Time-dependent lethal endpoints for acute toxicity (LC50) of mercury i.e., 24,48,72 and 96 h were estimated as 0.94, 0.88, 0.69 and 0.40 mg/l respectively. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration) and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were found to be 0.10, 0.05, 0.039 mg/l respectively. The study of oxygen consumption rate and behavioural changes during acute toxicity and haematological and biochemical responses during chronic toxicity to sublethal concentrations (10% and 20% of 96 h LC50) of mercury to the snail were also conducted. The organisms showed initial elevation at 24 h but later gradual decrease in oxygen consumption rate with the increase of concentration of mercury and time of exposure. For behavioural studies, variable test concentrations from 0.00 to 1.00 mg/l were used for 24, 48, 72 and 96 h. The crawling activity and clumping tendency decreased with the progress of time at all treatment periods and stopped ultimately at 96 h of exposure from 0.7 mg/l onwards whereas touch reflex was not observed at 96 h exposure at all treatments except at 0.09 mg/l. In haemocyte count, no significant variation was observed among control values between various exposure periods (p > 0.05) though variations were observed in sub-lethal concentrations versus control at all treatment duration (7, 14, 21, 28d, p < 0.05). In biochemical response study, the protein content in hepatopancreas of the snails treated at sublethal concentrations of mercury (10% and 20% of 96 h LC50) reduced significantly versus control after 21d of exposure (p < 0.05). In gonads, the protein content of the treated snails significantly reduced at all treatment concentrations versus control at all exposure times (p < 0.05). Based on the safe levels indicated above, the concentration of 0.01 to 0.04 ppm of mercury can be considered safe for Bellamya bengalensis and any less-hardy aquatic species. These responses elicited by our molluscan model will not only help in biomonitoring of environmental mercury contamination in water bodies but will also provide support to ecological health and risk assessment.
Collapse
Affiliation(s)
- Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kulia, Kalyani, Nadia 741 235, West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24 Parganas, 743 611, West Bengal, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799210, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcements Agency (NESREA), Osogbo, Osun State, Nigeria
| | - Asish Kumar Panigrahi
- Ecotoxicology, Fisheries and Aquaculture Extension Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741 235, West Bengal, India
| | - Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Golapbagh, Burdwan 713 104, West Bengal, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
22
|
Gerlai R. From Genes to Behavior: The Question of Evolutionary Conservation and the Role of Ethology in the Analysis of the Zebrafish. Front Neuroanat 2021; 15:809967. [PMID: 34924966 PMCID: PMC8675880 DOI: 10.3389/fnana.2021.809967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
23
|
Sun Z, Lou F, Zhao X, Song N. Characterization and analysis of transcriptome complexity using SMRT-Seq combined with RNA-Seq for a better understanding of Acanthogobius ommaturus in response to temperature stress. Int J Biol Macromol 2021; 193:1551-1561. [PMID: 34742843 DOI: 10.1016/j.ijbiomac.2021.10.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Acanthogobius ommaturus is a eurythermic fish, which is widely distributed in coastal, estuarine and bay waters of China, Japan and Korea. Due to the lack of whole genomic information, full-length transcriptome of A. ommaturus was firstly generated by single molecule real-time sequencing (SMRT-seq) in this study. A total of 49,833 full-length non-redundant transcripts (FLNRTs), 2255 alternative splices, 46,856 simple sequence repeats, 5094 long non-coding RNAs and 2708 transcription factors were obtained. Additionally, FLNRTs were used as reference sequences for the following transcriptome analysis of the temperature stress (7 °C, 14 °C, 21 °C (control), 28 °C and 35 °C). GO and KEGG enrichment analysis using GSEA were performed on all genes in 10 response modules which were screened out by WGCNA. Enrichment analysis showed that protein degradation, immune response and energy metabolism play an active role in the temperature stress of A. ommaturus. The differentially expressed hub genes (DEHGs) in response modules were closely related to adhesion, vascular remodeling and disease. The results of this study provided the first systematical full-length transcriptome profile of A. ommaturus and characterized its temperature stress responses, which will serve as the foundation for further exploring the molecular mechanism of the temperature stress in fish.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Fangrui Lou
- School of Ocean at Yantai University, Yantai, Shandong, China
| | - Xiang Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Na Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
24
|
Chu PY, Li JX, Hsu TH, Gong HY, Lin CY, Wang JH, Huang CW. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia ( Oreochromis spp.) via Transcriptome Analysis. Animals (Basel) 2021; 11:3538. [PMID: 34944312 PMCID: PMC8697892 DOI: 10.3390/ani11123538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Taiwan tilapia is one of the primary species used in aquaculture practices in Taiwan. However, as a tropical fish, it is sensitive to cold temperatures that can lead to high mortality rates during winter months. Genetic and broodstock management strategies using marker-assisted selection and breeding are the best tools currently available to improve seed varieties for tilapia species. The purpose of this study was to develop molecular markers for cold stress-related genes using digital gene expression analysis of next-generation transcriptome sequencing in Taiwan tilapia (Oreochromis spp.). We constructed and sequenced cDNA libraries from the brain, gill, liver, and muscle tissues of cold-tolerance (CT) and cold-sensitivity (CS) strains. Approximately 35,214,833,100 nucleotides of raw sequencing reads were generated, and these were assembled into 128,147 unigenes possessing a total length of 185,382,926 bp and an average length of 1446 bp. A total of 25,844 unigenes were annotated using five protein databases and Venny analysis, and 38,377 simple sequence repeats (SSRs) and 65,527 single nucleotide polymorphisms (SNPs) were identified. Furthermore, from the 38-cold tolerance-related genes that were identified using differential gene expression analysis in the four tissues, 13 microsatellites and 37 single nucleotide polymorphism markers were identified. The results of the genotype analysis revealed that the selected markers could be used for population genetics. In addition to the diversity assessment, one of the SNP markers was determined to be significantly related to cold-tolerance traits and could be used as a molecular marker to assist in the selection and verification of cold-tolerant populations. The specific genetic markers explored in this study can be used for the identification of genetic polymorphisms and cold tolerance traits in Taiwan tilapia, and they can also be used to further explore the physiological and biochemical molecular regulation pathways of fish that are involved in their tolerance to environmental temperature stress.
Collapse
Affiliation(s)
- Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
| | - Jia-Xian Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan;
| | - Jung-Hua Wang
- Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan;
- AI Research Center, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
25
|
Gou N, Ji H, Wu W, Zhong M, Zhang B. Transcriptional response to cold and fasting acclimation in Onychostoma macrolepis during the overwintering stage. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100901. [PMID: 34418784 DOI: 10.1016/j.cbd.2021.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the transcriptome responses of the liver of Onychostoma macrolepis in by RNA sequencing. The sampling process involved three groups: 1G (0 week, 10 °C), 2G (12 weeks, 0 °C) and 3G (24 weeks, 10 °C). The body weight, viscera index, hepatopancreas index and intraperitoneal fat index of O. macrolepis showed a decreasing trend with the prolonging of overwintering time. The crude fat contents of whole fish, muscle and liver in O. macrolepis after overwintering were significantly lower than those of the fish before overwintering (p < 0.05). In 1G versus 2G group, 2G versus 3G group and 1G versus 3G group, the differently expressed genes (DEGs) were 4630, 3976 and 2311, respectively. These results indicated that different stages of overwintering period had significant effects on gene expression of O. macrolepis, and the influence degree gradually decreased with the extension of overwintering period. The results of Gene ontology (GO) enrichment showed that these DEGs were mainly related to metabolism and immunity, and most of them were down-regulated. In this study, the KEGG pathway classification results showed that signal transduction was the most representative. In addition, KOG enrichment results showed that many DEGs associated with lipid transport and metabolism were down-regulated during the overwintering period. These observations suggested that slowing metabolism and delaying immunity may be the strategies for overwintering adaptation of O. macrolepis.
Collapse
Affiliation(s)
- Nina Gou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wenyi Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mingzhi Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Binxin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
26
|
Zhao X, Sun Z, Xu H, Song N, Gao T. Transcriptome and co-expression network analyses reveal the regulatory pathways and key genes associated with temperature adaptability in the yellow drum (Nibea albiflora). J Therm Biol 2021; 100:103071. [PMID: 34503808 DOI: 10.1016/j.jtherbio.2021.103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
The yellow drum (Nibea albiflora) is an important marine economy fish, that is widely distributed in the coastal waters of the Northwest Pacific. To understand the molecular regulatory mechanism of the yellow drum under temperature stress, transcriptome analysis was performed under five temperature conditions (10 °C, 15 °C, 20 °C, 24 °C, 28 °C) in the present study. Compared with 20 °C, 163, 401, 276, and 372 differentially expressed genes (DEGs) were obtained at 10 °C, 15 °C, 24 °C and 28 °C, respectively. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in cellular processes, metabolic processes, catalytic activity, membrane and binding. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the temperature adaptive regulation of the yellow drum was mainly involved in signal transduction, metabolism, genetic information and protein processing. Weighted gene co-expression network analysis (WGCNA) showed that HMGB1, STAT4, Noct, C1q and CRT may be the key hub genes in the response of the yellow drum to temperature stress. In addition, 20 genes that may be associated with temperature stress were identified based on comparative analysis between the KEGG enrichment and the WGCNA results. Ten DEGs were selected for further validation using quantitative real-time PCR (qRT-PCR), and the results were consistent with the RNA-seq data. This study explored the transcriptional patterns of the yellow drum under temperature stress and provided fundamental information on the temperature adaptability of this species.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Zhicheng Sun
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Hao Xu
- Qingdao Marine Hazard Mitigation Service, Qingdao, Shandong, 266003, China
| | - Na Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
27
|
Acute and chronic effects of temperature on membrane adjustments in the gills of a neotropical catfish. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110625. [PMID: 34033916 DOI: 10.1016/j.cbpb.2021.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022]
Abstract
Structural modifications in the gill membranes maintain homeostasis under the influence of temperature changes. We hypothesized that thermal acclimation would result in significant modification of phospholipid fatty acids, with modulation of sodium pump activity during acute (24 and 48 h) and chronic (15 days) thermal shifts in the neotropical reophilic catfish Steindachneridion parahybae. Indeed, the time-course experiment showed acute and chronic changes in gill membrane at the lowest temperatures, notably linked to maintenance of membrane fluidity: significant preferential changes in phosphatidylethanolamine, with decrease of saturated fatty acids and increase of C18:1 in all groups kept below 30 °C in chronic trial, increase in polyunsaturated fatty acids n6 and C18:1 at 17 and 12 °C compared to 24 °C, as soon as the temperature was changed (initial time). Additionally, the activity of the sodium pump increased at 12 °C, but without apparent connection with the altered lipid environment. The animals maintained at the lowest temperature showed a higher mortality, possibly because of the approach to the minimum critical temperature for this species, and unexpected results of changes in the fatty acid profile, such as decreased docosahexaenoic acid in phosphatidylethanolamine and increased saturated fatty acids in phosphatidylcholine. This set of mechanisms highlights rheostatic adjustments in this species in the face of temperature changes.
Collapse
|
28
|
Kim WJ, Lee K, Lee D, Kim HC, Nam BH, Jung H, Yi SJ, Kim K. Transcriptome profiling of olive flounder responses under acute and chronic heat stress. Genes Genomics 2021; 43:151-159. [PMID: 33511573 DOI: 10.1007/s13258-021-01053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The olive flounder (Paralichthys olivaceus) is a saltwater fish, which is valuable to the economy. The olive flounder strives to adapt to environmental stressors through physiological, biochemical, and transcriptional responses. The rise in water temperature threatens the growth, development, reproduction, and survival of olive flounder. Each organ in the olive flounder can differentially respond to heat stress. OBJECTIVES The purpose of this study is to investigate organ-specific transcriptional changes in olive flounder tissues during heat stress. METHODS In this study, transcriptome dynamics of the gill, liver, and muscle of olive flounder to acute or chronic heat stress were investigated. RESULTS Principal component analysis plotting revealed that the transcriptome of each organ is quite separated. K-means clustering, gene ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed the differential transcriptome responses of each organ to heat stress. Heat stress commonly affects the pathways involved in the correct protein folding, DNA repair, and cell cycle. CONCLUSION Our results may provide a valuable molecular basis of heat acclimation in fishes.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Kyubin Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyun-Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hyungtaek Jung
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
29
|
Oxidation of Energy Substrates in Tissues of Fish: Metabolic Significance and Implications for Gene Expression and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:67-83. [PMID: 34251639 DOI: 10.1007/978-3-030-74180-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fish are useful animal models for studying effects of nutrients and environmental factors on gene expression (including epigenetics), toxicology, and carcinogenesis. To optimize the response of the animals to substances of interest (including toxins and carcinogens), water pollution, or climate changes, it is imperative to understand their fundamental biochemical processes. One of these processes concerns energy metabolism for growth, development, and survival. We have recently shown that tissues of hybrid striped bass (HSB), zebrafish, and largemouth bass (LMB) use amino acids (AAs; such as glutamate, glutamine, aspartate, alanine, and leucine) as major energy sources. AAs contribute to about 80% of ATP production in the liver, proximal intestine, kidney, and skeletal muscle tissue of the fish. Thus, as for mammals (including humans), AAs are the primary metabolic fuels in the proximal intestine of fish. In contrast, glucose and fatty acids are only minor metabolic fuels in the fish. Fish tissues have high activities of glutamate dehydrogenase, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase, as well as high rates of glutamate uptake. In contrast, the activities of hexokinase, pyruvate dehydrogenase, and carnitine palmitoyltransferase 1 in all the tissues are relatively low. Furthermore, unlike mammals, the skeletal muscle (the largest tissue) of HSB and LMB has a limited uptake of long-chain fatty acids and barely oxidizes fatty acids. Our findings explain differences in the metabolic patterns of AAs, glucose, and lipids among various tissues in fish. These new findings have important implications for understanding metabolic significance of the tissue-specific oxidation of AAs (particularly glutamate and glutamine) in gene expression (including epigenetics), nutrition, and health, as well as carcinogenesis in fish, mammals (including humans), and other animals.
Collapse
|
30
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Bertel-Sevilla A, Alzate JF, Olivero-Verbel J. De novo assembly and characterization of the liver transcriptome of Mugil incilis (lisa) using next generation sequencing. Sci Rep 2020; 10:13957. [PMID: 32811897 PMCID: PMC7435268 DOI: 10.1038/s41598-020-70902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Mugil incilis (lisa) is an important commercial fish species in many countries, living along the coasts of the western Atlantic Ocean. It has been used as a model organism for environmental monitoring and ecotoxicological investigations. Nevertheless, available genomic and transcriptomic information for this organism is extremely deficient. The aim of this study was to characterize M. incilis hepatic transcriptome using Illumina paired-end sequencing. A total of 32,082,124 RNA-Seq read pairs were generated utilizing the HiSeq platform and subsequently cleaned and assembled into 93,912 contigs (N50 = 2,019 bp). The analysis of species distribution revealed that M. incilis contigs had the highest number of hits to Stegastes partitus (13.4%). Using a sequence similarity search against the public databases GO and KEGG, a total of 7,301 and 16,967 contigs were annotated, respectively. KEGG database showed genes related to environmental information, metabolism and organismal system pathways were highly annotated. Complete or partial coding DNA sequences for several candidate genes associated with stress responses/detoxification of xenobiotics, as well as housekeeping genes, were employed to design primers that were successfully tested and validated by RT-qPCR. This study presents the first transcriptome resources for Mugil incilis and provides basic information for the development of genomic tools, such as the identification of RNA markers, useful to analyze environmental impacts on this fish Caribbean species.
Collapse
Affiliation(s)
- Angela Bertel-Sevilla
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia.
| |
Collapse
|
32
|
Huang X, Wu C, Gong K, Chen Q, Gu Q, Qin H, Zhao C, Yu T, Yang L, Fu W, Wang Y, Qin Q, Liu S. Sox Gene Family Revealed Genetic Variations in Autotetraploid Carassius auratus. Front Genet 2020; 11:804. [PMID: 32849805 PMCID: PMC7399338 DOI: 10.3389/fgene.2020.00804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
The Sox gene family encoded transcription factors that played key roles in developmental processes in vertebrates. To further understand the evolutionary fate of the Sox gene family in teleosts, the Sox genes were comprehensively characterized in fish of different ploidy levels, including blunt snout bream (2n = 48, Megalobrama amblycephala, BSB), goldfish (2n = 100, Carassius auratus red var., 2nRCC), and autotetraploid C. auratus (4n = 200, 4nRCC). The 4nRCC, which derived from the whole genome duplication (WGD) of 2nRCC, were obtained through the distant hybridization of 2nRCC (♀) × BSB (♂). Compared with the 26 Sox genes in zebrafish (2n = 50, Danio rerio), 26, 47, and 92 putative Sox genes were identified in the BSB, 2nRCC, and 4nRCC genomes, respectively, and classified into seven subfamilies (B1, B2, C, D, E, F, and K). Comparative analyses showed that 89.36% (42/47) of Sox genes were duplicated in 2nRCC compared with those in BSB, while 97.83% (90/92) of Sox genes were duplicated in 4nRCC compared with those in 2nRCC, meaning the Sox gene family had undergone an expansion in BSB, 2nRCC, and 4nRCC, respectively, following polyploidization events. In addition, potential gene loss, genetic variations, and paternal parent SNP locus insertion occurred during the polyploidization events. Our data provided new insights into the evolution of the Sox gene family in polyploid vertebrates after several rounds of WGD events.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kaijun Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qian Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
33
|
Angiulli E, Pagliara V, Cioni C, Frabetti F, Pizzetti F, Alleva E, Toni M. Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Sci Rep 2020; 10:5385. [PMID: 32214187 PMCID: PMC7096496 DOI: 10.1038/s41598-020-62331-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
The aim of this work is to investigate the effect of a temperature increase on the behaviour of adult zebrafish (Danio rerio) maintained for 21 days at 34 °C (treatment) and 26 °C (control). The temperatures chosen are within the vital range of zebrafish and correspond to temperatures that this species encounters in the natural environment. Previous results showed that the same treatment affects the brain proteome and the behaviour of adult zebrafish by producing alterations in the proteins involved in neurotransmitter release and synaptic function and impairing fish exploratory behaviour. In this study, we have investigated the performance of treated and control zebrafish during environmental exploration by using four behavioural tests (novel tank diving, light and dark preference, social preference and mirror biting) that are paradigms for assessing the state of anxiety, boldness, social preference and aggressive behaviour, respectively. The results showed that heat treatment reduces anxiety and increases the boldness of zebrafish, which spent more time in potentially dangerous areas of the tank such as the top and the uncovered bright area and at a distance from the social group, thus decreasing protection for the zebrafish. These data suggest that the increase in ambient temperature may compromise zebrafish survival rate in the natural environment.
Collapse
Affiliation(s)
- E Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - V Pagliara
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - C Cioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - F Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - F Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - E Alleva
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
34
|
Transcriptome analyses provide the first insight into the molecular basis of cold tolerance in Larimichthys polyactis. J Comp Physiol B 2019; 190:27-34. [PMID: 31768633 DOI: 10.1007/s00360-019-01247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
Larimichthys polyactis is one of the most economically important marine fish species that have become newly cultured in China in recent years. The gene expression changes that L. polyactis experiences in cold toleranceis still unknown, limiting the expansion of its cultivation, fast growth, and high yield. To investigate the molecular mechanism behind L. polyactis's cold tolerance and to provide a resource for conducting genetic research on L. polyactis, transcriptome sequencing using RNA-seq was performed on individuals that survived cold stress at 4 °C (cold tolerant, CT), and individuals that barely survived 4 °C (cold sensitive, CS), which was considered as the control. A number of 387,607,550 clean reads were obtained from the transcriptomes, and comparative transcriptomic analysis identified 141 differently expressed genes (DEGs), of which 67 were up-regulated and 74 were down-regulated in CT compared to CS under cold stress. Furthermore, ten differently expressed genes were selected from the RNA-Seq analysis to be further validated by real-time PCR. Functional network analysis indicated that L. polyactis adapted to cold stress by employing a series of mechanisms to minimize damages caused by exposure to cold temperatures. The molecular mechanisms identified through RNA-Seq included Extracellular matrix (ECM) receptor interaction, glycerolipid metabolism, regulation of autophagy and focal adhesion pathway as playing vital roles in cold tolerance in L. polyactis. This study may help elucidate how L. polyactis tolerates cold, which is of value for breeding cold-tolerant L. polyactis stocks for cultivation.
Collapse
|
35
|
Lou F, Gao T, Han Z. Effect of salinity fluctuation on the transcriptome of the Japanese mantis shrimp Oratosquilla oratoria. Int J Biol Macromol 2019; 140:1202-1213. [PMID: 31470058 DOI: 10.1016/j.ijbiomac.2019.08.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Salinity fluctuation may detrimentally affect the composition and biological processes of crustaceans. As a euryhaline crustacean, Oratosquilla oratoria can survive at salinities ranging from 20 psu to 40 psu. Therefore, we designed five salinity gradients (20, 25, 30, 35, and 40 psu) and 66.39 Gb clean transcriptome data were obtained after O. oratorias were exposed to each gradient for 24 h. All clean data were spliced into 50,482 unigenes and 17,035 unigenes were annotated in at least one database. Compared with 30 psu, 1010, 851, 1733 and 2188 differentially expressed genes were obtained at 20, 25, 35 and 40 psu, respectively. Results also showed that the osmoregulation of O. oratoria is primarily regulated by lipid and amino acid metabolism, amongst others. No significant up-regulated pathways were enriched at 25 psu and 35 psu, although more significant down-regulated pathways were obtained at 35 psu. Therefore, we assumed that the optimum survival salinity of O. oratoria may range from 25 psu to 35 psu. However, 35 psu may be more suitable for O. oratoria. In addition, 55 unigenes that encode putative inorganic ion exchanges were identified. This study aims to provide fundamental information for understanding the osmoregulation mechanisms of crustaceans.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Fishery College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
36
|
Li C, Fang H, Xu D. Effect of seasonal high temperature on the immune response in Apostichopus japonicus by transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 92:765-771. [PMID: 31288099 DOI: 10.1016/j.fsi.2019.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
The sea cucumber Apostichopus japonicus is a flourishing aquaculture species in China. However, there are challenges for sea cucumber aquaculture, one of which is the high temperature in summer. In this study, we explored the transcriptome expression profiles with seasons (APR, JUN and JUL) in the muscle tissue of A. japonicus. The temperature of the natural coast was 13 °C, 21 °C and 25 °C respectively when sampling. Compared with APR group, changes of expression profiles were more significant in JUL group than that in JUN group. A total of 46 differential expressed genes (DEGs) involved in both innate and adaptive immunity were highlighted, including 27 up-regulated and 19 down-regulated genes. They were further grouped into 10 sub-classes: heat shock, coagulation cascades, antigen processing and presentation, inflammatory response, transporter activity, immunoglobulin, lectin C, cell adhesion, reactive oxygen species (ROS) scavenging, apoptosis and autophagy. The study will offer deep insights of the molecular mechanisms underlying the physiological responses to seasonal high temperature in A. japonicus. Particularly, knowledge about the immunological effects of seasonal temperature on the species is critical for the optimal management practices for both wild and aquaculture populations.
Collapse
Affiliation(s)
- Chao Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huahua Fang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
37
|
Lou F, Gao T, Han Z. Transcriptome analyses reveal alterations in muscle metabolism, immune responses and reproductive behavior of Japanese mantis shrimp (Oratosquilla oratoria) at different cold temperature. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100615. [PMID: 31419604 DOI: 10.1016/j.cbd.2019.100615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Low temperature reduction is thought to cause widespread effects on the physical and behavioral traits of marine organisms, which include metabolic processes, immune responses, and reproductive behavior. Crustaceans are generally considered sensitive to temperature reduction due to the lack of efficient regulators. To better understand the molecular regulatory mechanisms of crustacean exposure to cold stress, Japanese mantis shrimp (Oratosquilla oratoria) was chosen as a representative crustacean. Transcriptomic responses in O. oratoria from five temperatures (25 °C, 22 °C, 19 °C, 16 °C, and 13 °C) were studied using RNA-seq. A total of 64.91 Gb of clean transcriptomic data were generated in 10 libraries and then spliced into 52,107 unigenes with an average length of 1089 bp and an N50 length of 1872 bp. A total of 14,841 unigenes was annotated in at least one database using Blastx alignment. Compared with the control temperature (25 °C), 7, 21, 58, and 236 unigenes were significantly differentially expressed at 22 °C, 19 °C, 16 °C, and 13 °C, respectively. GO analysis showed that 6, 20, 27, and 35 terms were significantly enriched at 22 °C, 19 °C, 16 °C, and 13 °C, respectively. In addition, 2, 5, 2, and 10 significant pathways were presented at 22 °C, 19 °C, 16 °C, and 13 °C, respectively. Combining NR, GO, and KEGG annotation information, many genes significantly differentially expressed at low temperatures may be associated with metabolic processes, immune response, and reproductive behavior. Additionally, we reconstructed the phylogenetic relationship based on 366 orthologous genes and the predicted differentiation time of O. oratoria and P. vannamei range from 212.82 to 365.30 Mya. Furthermore, 16 orthologous genes were identified as PSGs and 30 orthologous genes were identified as FEGs and these adaptive genes were associated with energy metabolism, stress response and immunity, and multiple cellular processing. These results provide fundamental information about molecular mechanisms regulating cold stress response of O. oratoria.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Fishery College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
38
|
Abdel-Tawwab M, Monier MN, Hoseinifar SH, Faggio C. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:997-1013. [PMID: 30715663 DOI: 10.1007/s10695-019-00614-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 05/20/2023]
Abstract
Water quality encompasses the water physical, biological, and chemical parameters. It generally affects the fish growth and welfare. Thus, the success of a commercial aquaculture project depends on supplying the optimum water quality for prompt fish growth at the minimum cost of resources. Although the aquaculture environment is a complicated system, depending on various water quality variables, only less of them have a critical role. One of these vital parameters is dissolved oxygen (DO) level, which requires continuous oversight in aquaculture systems. In addition, the processes of natural stream refinement require suitable DO levels in order to extend for aerobic life forms. The depletion of DO concentration (called hypoxia) in pond water causes great stress on fish where DO levels that remain below 1-2 mg/L for a few hours can adversely affect fish growth resulting in fish death. Furthermore, hypoxia has substantial effects on fish physiological and immune responses, making them more susceptible to diseases. Therefore, to avoid disease outbreak in modern aquaculture production systems where fish are intensified and more crowded, increasing attention should be taken into account on DO levels.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt.
| | - Mohamed N Monier
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Zhou T, Gui L, Liu M, Li W, Hu P, Duarte DFC, Niu H, Chen L. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1145-1156. [PMID: 30408600 DOI: 10.1016/j.fsi.2018.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The Nile tilapia, Oreochromis niloticus, is a species of high economic value and extensively cultured. The limited stress tolerance of this species to a low temperature usually leads to mass mortality and great loss. Nevertheless, there is limited information on the molecular mechanisms underlying the susceptibility to low temperature in the tilapia. In this study, tilapia was treated at 28 °C to a lethal temperature of 8 °C by a gradual decrement. Transcriptomic response of the immune organ, kidney, in tilapia was characterized using RNA-seq. In total, 2191 genes were annotated for significant expression, which were mainly associated with metabolism and immunity. Pathway analysis showed that immune-related pathways of phagosome and cell adhesion molecules (CAMs) pathway were significantly down-regulated under low temperature. Moreover, ferroptosis, a significantly changed pathway involved in tissue damage and acute renal failure, is reported here for the first time. The levels of serum parameters associated with kidney damage such as urea and uric acid (UA) increased significantly under low temperature. The immunofluorescence staining of the kidney showed that cell apoptosis occurred at low temperature. The results of the present study indicate that exposure to low temperature can cause kidney disfunction and down-regulate the immune-related pathway in the kidney of tilapia. This study provides new insight into the mechanism of kidney damage in fish under low temperature.
Collapse
Affiliation(s)
- Tao Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mingli Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Daniel F C Duarte
- Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Hongbo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
40
|
Establishment and application of distant hybridization technology in fish. SCIENCE CHINA-LIFE SCIENCES 2018; 62:22-45. [DOI: 10.1007/s11427-018-9408-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
|
41
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Jin Y, Yang Y, Gao D, Dunham R, Liu Z. Heat stress induced alternative splicing in catfish as determined by transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:166-172. [PMID: 30481682 DOI: 10.1016/j.cbd.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Heat tolerance is increasingly becoming an important trait for aquaculture species with a changing climate. Transcriptional studies on responses to heat stress have been conducted in catfish, one of the most important economic aquaculture species around the world. The molecular mechanisms underlying heat tolerance is still poorly understood, especially at the post-transcriptional level including regulation of alternative splicing. In this study, existing RNA-Seq datasets were utilized to characterize the change of alternative splicing in catfish following heat treatment. Heat-tolerant and -intolerant catfish were differentiated by the time to lost equilibrium after heat stress. With heat stress, alternative splicing was generally increased. In heat-intolerant fish, the thermal stress induced 29.2% increases in alternative splicing events and 25.8% increases in alternatively spliced genes. A total of 282, 189, and 44 differential alternative splicing (DAS) events were identified in control-intolerant, control-tolerant, and intolerant-tolerant comparisons, corresponding to 252, 171, and 42 genes, respectively. Gene ontology analyses showed that genes involved in the molecular function of RNA binding were significantly enriched in DAS gene sets after heat stress in both heat-intolerant and -tolerant catfish compared with the control group. Similar results were also observed in the DAS genes between heat-intolerant and -tolerant catfish, and the biological process of RNA splicing was also enriched in this comparison, indicating the involvement of RNA splicing-related genes underlying heat tolerance. This is the first comprehensive study of alternative splicing in response to heat stress in fish species, providing insights into the molecular mechanisms of responses to the abiotic stress.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
42
|
Akbarzadeh A, Günther OP, Houde AL, Li S, Ming TJ, Jeffries KM, Hinch SG, Miller KM. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 2018; 19:749. [PMID: 30326831 PMCID: PMC6192343 DOI: 10.1186/s12864-018-5108-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background Pacific salmon (Oncorhynchus spp.) serve as good biological indicators of the breadth of climate warming effects on fish because their anadromous life cycle exposes them to environmental challenges in both marine and freshwater environments. Our study sought to mine the extensive functional genomic studies in fishes to identify robust thermally-responsive biomarkers that could monitor molecular physiological signatures of chronic thermal stress in fish using non-lethal sampling of gill tissue. Results Candidate thermal stress biomarkers for gill tissue were identified using comparisons among microarray datasets produced in the Molecular Genetics Laboratory, Pacific Biological Station, Nanaimo, BC, six external, published microarray studies on chronic and acute temperature stress in salmon, and a comparison of significant genes across published studies in multiple fishes using deep literature mining. Eighty-two microarray features related to 39 unique gene IDs were selected as candidate chronic thermal stress biomarkers. Most of these genes were identified both in the meta-analysis of salmon microarray data and in the literature mining for thermal stress markers in salmonids and other fishes. Quantitative reverse transcription PCR (qRT-PCR) assays for 32 unique genes with good efficiencies across salmon species were developed, and their activity in response to thermally challenged sockeye salmon (O. nerka) and Chinook salmon (O. tshawytscha) (cool, 13–14 °C and warm temperatures 18–19 °C) over 5–7 days was assessed. Eight genes, including two transcripts of each SERPINH1 and HSP90AA1, FKBP10, MAP3K14, SFRS2, and EEF2 showed strong and robust chronic temperature stress response consistently in the discovery analysis and both sockeye and Chinook salmon validation studies. Conclusions The results of both discovery analysis and gene expression showed that a panel of genes involved in chaperoning and protein rescue, oxidative stress, and protein biosynthesis were differentially activated in gill tissue of Pacific salmon in response to elevated temperatures. While individually, some of these biomarkers may also respond to other stressors or biological processes, when expressed in concert, we argue that a biomarker panel comprised of some or all of these genes could provide a reliable means to specifically detect thermal stress in field-caught salmon. Electronic supplementary material The online version of this article (10.1186/s12864-018-5108-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada. .,Department of Fisheries, Faculty of Marine Science and technology, University of Hormozgan, P.O. Box: 3995, Bandar Abbas, Iran.
| | | | - Aimee Lee Houde
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Tobi J Ming
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Kenneth M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| |
Collapse
|
43
|
Rastgar S, Movahedinia A, Salamat N, Salati A, Zabihi E. Optimization of macrophage isolation from the Persian sturgeon and the Caspian kutum fish: a comparative study. Cytotechnology 2018; 70:1643-1654. [PMID: 30306290 DOI: 10.1007/s10616-018-0256-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of this research was a comparative study on the isolation and culture of head kidney macrophages derived from Acipenser persicous and Rutilus frisii kutum as teleost and chondrostei species of fish. The macrophages were isolated by density gradient sedimentation, followed by adherence to a plastic surface. They exhibited strong phagocytic activity against bacteria. The effect of cell density, incubation time, FBS percentage, pH and temperatures on the cell number and viability were determined and compared. Also, the effect of light/dark regimen on viability, adherence, release of reactive oxygen species (ROS) and nitric oxide (NO) in the macrophages was determined. The results showed that the Caspian kutum macrophages were more sensitive to FBS percentage and cell density whereas the Persian sturgeon macrophages were more sensitive to pH of the cell culture media. The adherence and viability of the macrophages from both fish species firstly increased (P < 0.05) after exposure to a light/dark regimen, but then significantly decreased as did ROS and NO productions. For the first time, this study has determined the optimal conditions for primary culture of macrophages derived from sturgeons, and shows the unique effect of light on the biology of fish immune cells.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran.
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Amirparviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khoramshahr University of Marine, Khorramshahr, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
44
|
Xu M, Gan T, Ning H, Wang L. MicroRNA Functions in Thymic Biology: Thymic Development and Involution. Front Immunol 2018; 9:2063. [PMID: 30254640 PMCID: PMC6141719 DOI: 10.3389/fimmu.2018.02063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
During the entire processes of thymus organogenesis, maturation, and involution, gene regulation occurs post-transcriptionally via recently discovered microRNA (miRNA) transcripts. Numerous reports indicate that miRNAs may be involved in the construction of a normal thymic microenvironment, which constitutes a critical component to support T lymphocyte development. MiRNAs are also expressed in thymic stromal cells including thymic epithelial cells (TECs) during maturation and senescence. This review focuses on the function of miRNAs in thymic development and involution. A better understanding of these processes will provide new insights into the regulatory network of TECs and further comprehension of how genes control TECs to maintain the thymic microenvironment during thymus development and aging, thus supporting a normal cellular immune system.
Collapse
Affiliation(s)
- Minwen Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tao Gan
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Huiting Ning
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
45
|
Qi D, Chao Y, Zhao Y, Xia M, Wu R. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:557-571. [PMID: 29230594 DOI: 10.1007/s10695-017-0453-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (< 8.0%) relative to that of the heart. The trace levels of Mb expression in non-muscle tissues are perhaps the major reason why non-muscle Mb remained undiscovered for so long. The expression response of the Mb gene to hypoxia at the mRNA and protein levels was strikingly different in S. pylzovi compared to that found in the common carp, medaka, zebrafish, and goldfish, suggesting that the hypoxia response of Mb in fish may be species and tissue-specific. Notably, severe hypoxia induced significant expression of Mb at the mRNA and protein levels in the S. pylzovi heart, which suggests Mb has a major role in the supply of oxygen to the heart of Tibetan Plateau fish.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Yongli Zhao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Rongrong Wu
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| |
Collapse
|
46
|
Jayaprakash B, Das A. Extraction and Characterization of Chick PEA (Cicer arietinum) Extract with Immunostimulant Activity in BALB/C MICE. Asian Pac J Cancer Prev 2018; 19:803-810. [PMID: 29582638 PMCID: PMC5980859 DOI: 10.22034/apjcp.2018.19.3.803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/05/2022] Open
Abstract
Traditional plant medicines are used for a range of cancer conditions. The chickpea is highly proteinaceous and consumed as a staple in many parts of the world. An evaluation of chemoprotective and immunomodulatory activities of Cicer arietinum (CE) in cisplatin-induced immunosuppressed mice was here performed. Cisplatin was given at 100mg/kg, intraperitoneally, and after induction of immunosuppression mice were treated with Cicer arietinum (0.5 mg/dose/animal/IP) for a period of 10-day. The influence of the extract on lymphoid organ weight, bone marrow cellularity, alpha esterase activity and on enzyme levels such as (SGOT,SGPT, Urea, Creatinine was assessed to identify any chemoprotective influence. Administration of CE to cisplatin-treated mice alleviated the drastic reduction in bone marrow cellularity and α- esterase positive cells seen with cisplatin. Thus myelosuppression was reversed or inhibited. Cisplatin bids to DNA and causes damage resulting in chromosome breaks, micronucleus formation and cell death. CE is comprised of numerous middle-chain aliphatic alcohols, aldehydes and ketones, in addition to compounds like 7-hydroxy-1-methoxy-6-methylanthraquinone, cyclohexadecane (CAS) and 6-(amino methyl)-2-naphthol. These latter are thought to contribute to the characteristic aroma of C. arietimnum. In conclusion, administration of CE in cisplatin-treated mice, boosted bone marrow cellularity and increased α- esterase positive cells, thus reversing myelosupproession.
Collapse
Affiliation(s)
- Bindhu Jayaprakash
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam Erode Dist-638401, India.
| | | |
Collapse
|
47
|
Symonová R, Howell WM. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes (Basel) 2018; 9:genes9020096. [PMID: 29443947 PMCID: PMC5852592 DOI: 10.3390/genes9020096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal 'rDNAome' consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| | - W Mike Howell
- Department of Biological and Environmental Sciences, Samford University, Birmingham, AL 35229, USA.
| |
Collapse
|
48
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
49
|
Cacabelos R, Lombardi V, Fernández-Novoa L, Carrera I, Cacabelos P, Corzo L, Carril JC, Teijido O. Basic and Clinical Studies With Marine LipoFishins and Vegetal Favalins in Neurodegeneration and Age-Related Disorders. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00006-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Ratn A, Awasthi Y, Kumar M, Singh SK, Tripathi R, Trivedi SP. Phorate induced oxidative stress, DNA damage and differential expression of p53, apaf-1 and cat genes in fish, Channa punctatus (Bloch, 1793). CHEMOSPHERE 2017; 182:382-391. [PMID: 28511133 DOI: 10.1016/j.chemosphere.2017.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The present study was conducted to assess the in-vivo activities of certain molecular biomarkers under the impact of phorate exposure. Fish, Channa punctatus (35 ± 3.0 g; 14.5 ± 1.0 cm; Actinopterygii) were subjected to semi-static conditions having 5% (0.0375 mg/L for T1 group) and 10% of 96 h-LC50 (0.075 mg/L for T2 group) of phorate exposure for 15 and 30 d. The oxidative stress was assessed in terms of superoxide dismutase (SOD) and catalase (CAT) activities. DNA damage was measured as induction of micronuclei (MN) and consequent differential expression of apoptotic genes-tumor suppressor (p53), apoptotic peptidase activating factor-1 (apaf-1) and catalase (cat) in liver and kidney, two major sites of biotransformation in fish, were quantified. Our findings reveal significant (p < 0.001) augmentations in SOD and CAT activities of liver and kidney tissues. MN frequency in erythrocytes of fish also increases significantly (p < 0.05) in a dose- and time-dependent manner. The mRNA level of p53 increased significantly (p < 0.05) in liver at 10% of 96 h-LC50 of phorate exposure after 30 d suggesting generation of stress due to accumulation of reactive oxygen species (ROS). Eventually, these findings decipher the dual role of ROS in generating genotoxicity as is evident by micronuclei induction and differential regulation of p53, apaf-1 and cat genes during the phorate induced DNA damage and apoptosis in test fish. The experimental inferences drawn on the basis of activities of aforesaid biomarkers shall be helpful in elucidating the possible causes of apoptosis under stressful conditions. Further, this study finds ample application in biomonitoring of phorate polluted aquatic ecosystem.
Collapse
Affiliation(s)
- Arun Ratn
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Yashika Awasthi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Sunil Kumar Singh
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renu Tripathi
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|