1
|
Luo J, Pu Q, Wu X. Recent Advances of Exosomes Derived from Skeletal Muscle and Crosstalk with Other Tissues. Int J Mol Sci 2024; 25:10877. [PMID: 39456658 PMCID: PMC11507631 DOI: 10.3390/ijms252010877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Skeletal muscle plays a crucial role in movement, metabolism, and energy homeostasis. As the most metabolically active endocrine organ in the body, it has recently attracted widespread attention. Skeletal muscle possesses the ability to release adipocytokines, bioactive peptides, small molecular metabolites, nucleotides, and other myogenic cell factors; some of which have been shown to be encapsulated within small vesicles, particularly exosomes. These skeletal muscle exosomes (SKM-Exos) are released into the bloodstream and subsequently interact with receptor cell membranes to modulate the physiological and pathological characteristics of various tissues. Therefore, SKM-Exos may facilitate diverse interactions between skeletal muscle and other tissues while also serving as biomarkers that reflect the physiological and pathological states of muscle function. This review delves into the pivotal role and intricate molecular mechanisms of SKM-Exos and its derived miRNAs in the maturation and rejuvenation of skeletal muscle, along with their intercellular signaling dynamics and physiological significance in interfacing with other tissues.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qiang Pu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xiaoqian Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Lu J, Liu Y, Li H. Identification of key lncRNAs and mRNAs in muscle development pathways of Tan sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101336. [PMID: 39378789 DOI: 10.1016/j.cbd.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The study aimed to identify the long noncoding RNA (lncRNA) responsible for regulating muscle development in Tan sheep. RNA-seq analysis was conducted on longissimus dorsi samples from 1-day-old and 60-day-old Tan sheep to investigate the molecular processes involved in muscle development. A total of 5517 lncRNAs and 2885 mRNAs were found to be differentially expressed in the 60-day-old Tan sheep. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these differentially expressed lncRNAs and mRNAs were linked to pathways crucial for muscle development, such as MAPK, cAMP, and calcium-mediated signaling pathways. Key genes like CDKN1A, MAPK14, TGFB1, MEF2C, MYOD1, and CD53 were identified as significant players in muscle development. The study validated the RNA-seq results through RT-qPCR, confirming the consistency of expression levels of differentially expressed lncRNAs and mRNAs. These findings indicate that lncRNA-mRNA networks produce a remarked effect on modulating muscle development in Tan sheep, such as lncRNAs (MSTRG.12808.1/MSTRG.22662.3/MSTRG.18310.1) and mRNAs (MSTRG.10027/MSTRG.10029/MSTRG.10258/MSTRG.11011/MSTRG.10354), laying the groundwork for future research in this area.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Zhao C, Ikeya M. Novel insights from human induced pluripotent stem cells on origins and roles of fibro/adipogenic progenitors as heterotopic ossification precursors. Front Cell Dev Biol 2024; 12:1457344. [PMID: 39286484 PMCID: PMC11402712 DOI: 10.3389/fcell.2024.1457344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for muscular homeostasis and regeneration as they secrete signaling molecules and components of the extracellular matrix. During injury or disease, FAPs differentiate into different cell types and significantly modulate muscular function. Recent advances in lineage tracing and single-cell transcriptomics have proven that FAPs are heterogeneous both in resting and post-injury or disease states. Their heterogeneity may be owing to the varied tissue microenvironments and their diverse developmental origins. Therefore, understanding FAPs' developmental origins can help predict their characteristics and behaviors under different conditions. FAPs are thought to be the major cell populations in the muscle connective tissue (MCT). During embryogenesis, the MCT directs muscular development throughout the body and serves as a prepattern for muscular morphogenesis. The developmental origins of FAPs as stromal cells in the MCT were studied previously. In adult tissues, FAPs are important precursors for heterotopic ossification, especially in the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A new developmental origin for FAPs have been suggested that differs from conventional developmental perspectives. In this review, we summarize the developmental origins and functions of FAPs as stromal cells of the MCT and present novel insights obtained by using patient-derived induced pluripotent stem cells and mouse models of heterotopic ossification. This review broadens the current understanding of FAPs and suggests potential avenues for further investigation.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Wu J, Yue B. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. Biomed Pharmacother 2024; 174:116563. [PMID: 38583341 DOI: 10.1016/j.biopha.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mammalian skeletal myogenesis is a complex process that allows precise control of myogenic cells' proliferation, differentiation, and fusion to form multinucleated, contractile, and functional muscle fibers. Typically, myogenic progenitors continue growth and division until acquiring a differentiated state, which then permanently leaves the cell cycle and enters terminal differentiation. These processes have been intensively studied using the skeletal muscle developing models in vitro and in vivo, uncovering a complex cellular intrinsic network during mammalian skeletal myogenesis containing transcription factors, translation factors, extracellular matrix, metabolites, and mechano-sensors. Examining the events and how they are knitted together will better understand skeletal myogenesis's molecular basis. This review describes various regulatory mechanisms and recent advances in myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. We focus on significant cell cycle regulators, myogenic factors, and chromatin regulators impacting the coordination of the cell proliferation versus differentiation decision, which will better clarify the complex signaling underlying skeletal myogenesis.
Collapse
Affiliation(s)
- Jiyao Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
5
|
Yang JH, Tsitsipatis D, Gorospe M. Stoichiometry of long noncoding RNA interactions with other RNAs: Insights from OIP5-AS1. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1841. [PMID: 38576135 DOI: 10.1002/wrna.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Long noncoding (lnc)RNAs modulate gene expression programs in a range of developmental processes in different organs. In skeletal muscle, lncRNAs have been implicated in myogenesis, the process whereby muscle precursor cells form muscle fibers during embryonic development and regenerate muscle fibers in the adult. Here, we discuss OIP5-AS1, a lncRNA that is highly expressed in skeletal muscle and is capable of coordinating protein expression programs during myogenesis. Given that several myogenic functions of OIP5-AS1 involve interactions with MEF2C mRNA and with the microRNA miR-7, it was critical to carefully evaluate the precise levels of OIP5-AS1 during myogenesis. We discuss the approaches used to examine lncRNA copy number using OIP5-AS1 as an example, focusing on quantification by quantitative PCR analysis with reference to nucleic acids of known abundance, by droplet digital (dd)PCR measurement, and by microscopic visualization of individual lncRNAs in cells. We discuss considerations of RNA stoichiometry in light of developmental processes in which lncRNAs are implicated. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Institute of Biomedical Sciences, National Sun Yat-set University, Kaohsiung, Taiwan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Oudhoff H, Hisler V, Baumgartner F, Rees L, Grepper D, Jaźwińska A. Skeletal muscle regeneration after extensive cryoinjury of caudal myomeres in adult zebrafish. NPJ Regen Med 2024; 9:8. [PMID: 38378693 PMCID: PMC10879182 DOI: 10.1038/s41536-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Skeletal muscles can regenerate after minor injuries, but severe structural damage often leads to fibrosis in mammals. Whether adult zebrafish possess the capacity to reproduce profoundly destroyed musculature remains unknown. Here, a new cryoinjury model revealed that several myomeres efficiently regenerated within one month after wounding the zebrafish caudal peduncle. Wound clearance involved accumulation of the selective autophagy receptor p62, an immune response and Collagen XII deposition. New muscle formation was associated with proliferation of Pax7 expressing muscle stem cells, which gave rise to MyoD1 positive myogenic precursors, followed by myofiber differentiation. Monitoring of slow and fast muscles revealed their coordinated replacement in the superficial and profound compartments of the myomere. However, the final boundary between the muscular components was imperfectly recapitulated, allowing myofibers of different identities to intermingle. The replacement of connective with sarcomeric tissues required TOR signaling, as rapamycin treatment impaired new muscle formation, leading to persistent fibrosis. The model of zebrafish myomere restoration may provide new medical perspectives for treatment of traumatic injuries.
Collapse
Affiliation(s)
- Hendrik Oudhoff
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Vincent Hisler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Florian Baumgartner
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Lana Rees
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Dogan Grepper
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
7
|
Yang H, Yue B, Yang S, Qi A, Yang Y, Tang J, Ren G, Jiang X, Lan X, Pan C, Chen H. circUBE3C modulates myoblast development by binding to miR-191 and upregulating the expression of p27. J Cell Physiol 2024; 239:e31159. [PMID: 38212939 DOI: 10.1002/jcp.31159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024]
Abstract
Noncoding RNAs, including miRNAs (microRNAs) and circRNAs (circular RNA), are crucial regulators of myoblast proliferation and differentiation during muscle development. However, the specific roles and molecular mechanisms of circRNAs in muscle development remain poorly understood. Based on the existing circRNA-miRNA-mRNA network, our study focuses on circUBE3C, exploring its differential expression in fetal and adult muscle tissue of the cattle and investigating its impact on myoblast proliferation, apoptosis, and differentiation. The functional analysis of overexpression plasmids and siRNAs (small interfering RNAs) targeting circUBE3C was comprehensively evaluated by employing an array of advanced assays, encompassing CCK-8 (cell counting kit-8), EdU (5-ethynyl-20-deoxyuridine), flow cytometry, western blot analysis, and RT-qPCR. In vivo investigations indicated that overexpression of circUBE3C impedes the process of skeletal muscle regeneration. Mechanistically, we demonstrated that circUBE3C interacts with miR-191 and alleviates the suppression of p27 through cytoplasmic separation, bioinformatics prediction, dual-luciferase reporter assay, and RIP (RNA immunoprecipitation). Our findings indicate that the novel circRNA circUBE3C competitively binds to miR-191, thereby inhibiting proliferation and promoting apoptosis in bovine primary myoblasts and unveiling a regulatory pathway in bovine skeletal muscle development. These findings expand our understanding of circRNA functions in mammals and provide a basis for further exploration of their role in myogenesis and muscle diseases.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Shuling Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ao Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Jiang
- Agriculture and Animal Husbandry Fine Seed Breeding Farm of Shaanxi Province, Fufeng, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
8
|
Zeng Q, Du ZQ. Advances in the discovery of genetic elements underlying longissimus dorsi muscle growth and development in the pig. Anim Genet 2023; 54:709-720. [PMID: 37796678 DOI: 10.1111/age.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 10/07/2023]
Abstract
As a major source of protein in human diets, pig meat plays a crucial role in ensuring global food security. Key determinants of meat production refer to the chemical and physical compositions or characteristics of muscle fibers, such as the number, hypertrophy potential, fiber-type conversion and intramuscular fat deposition. However, the growth and formation of muscle fibers comprises a complex process under spatio-temporal regulation, that is, the intermingled and concomitant proliferation, differentiation, migration and fusion of myoblasts. Recently, with the fast and continuous development of next-generation sequencing technology, the integration of quantitative trait loci mapping with genome-wide association studies (GWAS) has greatly helped animal geneticists to discover and explore thousands of functional or causal genetic elements underlying muscle growth and development. However, owing to the underlying complex molecular mechanisms, challenges to in-depth understanding and utilization remain, and the cost of large-scale sequencing, which requires integrated analyses of high-throughput omics data, is high. In this review, we mainly elaborate on research advances in integrative analyses (e.g. GWAS, omics) for identifying functional genes or genomic elements for longissimus dorsi muscle growth and development for different pig breeds, describing several successful transcriptome analyses and functional genomics cases, in an attempt to provide some perspective on the future functional annotation of genetic elements for muscle growth and development in pigs.
Collapse
Affiliation(s)
- Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
9
|
Hu X, Sun M, Chen Q, Zhao Y, Liang N, Wang S, Yin P, Yang Y, Lam SM, Zhang Q, Tudiyusufu A, Gu Y, Wan X, Chen M, Li H, Zhang X, Shui G, Fu S, Zhang L, Tang P, Wong CCL, Zhang Y, Zhu D. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning. Nat Commun 2023; 14:7916. [PMID: 38036537 PMCID: PMC10689447 DOI: 10.1038/s41467-023-43402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.
Collapse
Affiliation(s)
- Xiaodi Hu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingwei Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yixia Zhao
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Na Liang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Yuanping Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianying Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Alimujiang Tudiyusufu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yingying Gu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Wan
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Meihong Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Xiaofei Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Guanghou Shui
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suneng Fu
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Yong Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Dahai Zhu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
10
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
11
|
Cai C, Wan P, Wang H, Cai X, Wang J, Chai Z, Wang J, Wang H, Zhang M, Yang N, Wu Z, Zhu J, Yang X, Li Y, Yue B, Dang R, Zhong J. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing. Cell Prolif 2023; 56:e13430. [PMID: 36855961 PMCID: PMC10472525 DOI: 10.1111/cpr.13430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle is a complex heterogeneous tissue and characterizing its cellular heterogeneity and transcriptional and epigenetic signatures are important for understanding the details of its ontogeny. In our study, we applied scRNA-seq and scATAC-seq to investigate the cell types, molecular features, transcriptional and epigenetic regulation, and patterns of developing bovine skeletal muscle from gestational, lactational and adult stages. Detailed molecular analyses were used to dissect cellular heterogeneity, and we deduced the differentiation trajectory of myogenic cells and uncovered their dynamic gene expression profiles. SCENIC analysis was performed to demonstrate key regulons during cell fate decisions. We explored the future expression states of these heterogeneous cells by RNA velocity analysis and found extensive networks of intercellular communication using the toolkit CellChat. Moreover, the transcriptomic and chromatin accessibility modalities were confirmed to be highly concordant, and integrative analysis of chromatin accessibility and gene expression revealed key transcriptional regulators acting during myogenesis. In bovine skeletal muscle, by scRNA-seq and scATAC-seq analysis, different cell types such as adipocytes, endothelial cells, fibroblasts, lymphocytes, monocytes, pericyte cells and eight skeletal myogenic subpopulations were identified at the three developmental stages. The pseudotime trajectory exhibited a distinct sequential ordering for these myogenic subpopulations and eight distinct gene clusters were observed according to their expression pattern. Moreover, specifically expressed TFs (such as MSC, MYF5, MYOD1, FOXP3, ESRRA, BACH1, SIX2 and ATF4) associated with muscle development were predicted, and likely future transcriptional states of individual cells and the developmental dynamics of differentiation among neighbouring cells were predicted. CellChat analysis on the scRNA-seq data set then classified many ligand-receptor pairs among these cell clusters, which were further categorized into significant signalling pathways, including BMP, IGF, WNT, MSTN, ANGPTL, TGFB, TNF, VEGF and FGF. Finally, scRNA-seq and scATAC-seq results were successfully integrated to reveal a series of specifically expressed TFs that are likely to be candidates for the promotion of cell fate transition during bovine skeletal muscle development. Overall, our results outline a single-cell dynamic chromatin/transcriptional landscape for normal bovine skeletal muscle development; these provide an important resource for understanding the structure and function of mammalian skeletal muscle, which will promote research into its biology.
Collapse
Affiliation(s)
- Cuicui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Peng Wan
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Hui Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Xin Cai
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Jiabo Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Zhixin Chai
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Jikun Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Haibo Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Ming Zhang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Nan Yang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Zhijuan Wu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Xueyao Yang
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Yulian Li
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Binglin Yue
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jincheng Zhong
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| |
Collapse
|
12
|
Cao J, Wang X, Advani V, Lu YW, Malizia AP, Singh GB, Huang ZP, Liu J, Wang C, Oliveira EM, Mably JD, Chen K, Wang DZ. mt-Ty 5'tiRNA regulates skeletal muscle cell proliferation and differentiation. Cell Prolif 2023; 56:e13416. [PMID: 36756712 PMCID: PMC10392060 DOI: 10.1111/cpr.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
In this study, we sought to determine the role of tRNA-derived fragments in the regulation of gene expression during skeletal muscle cell proliferation and differentiation. We employed cell culture to examine the function of mt-Ty 5' tiRNAs. Northern blotting, RT-PCR as well as RNA-Seq, were performed to determine the effects of mt-Ty 5' tiRNA loss and gain on gene expression. Standard and transmission electron microscopy (TEM) were used to characterize cell and sub-cellular structures. mt-Ty 5'tiRNAs were found to be enriched in mouse skeletal muscle, showing increased levels in later developmental stages. Gapmer-mediated inhibition of tiRNAs in skeletal muscle C2C12 myoblasts resulted in decreased cell proliferation and myogenic differentiation; consistent with this observation, RNA-Seq, transcriptome analyses, and RT-PCR revealed that skeletal muscle cell differentiation and cell proliferation pathways were also downregulated. Conversely, overexpression of mt-Ty 5'tiRNAs in C2C12 cells led to a reversal of these transcriptional trends. These data reveal that mt-Ty 5'tiRNAs are enriched in skeletal muscle and play an important role in myoblast proliferation and differentiation. Our study also highlights the potential for the development of tiRNAs as novel therapeutic targets for muscle-related diseases.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Environment and Life, Beijing University of Technology, Beijing, P. R. China
| | - Xin Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Advani
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea P Malizia
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gurinder Bir Singh
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunbo Wang
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Edilamar M Oliveira
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - John D Mably
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Internal Medicine, Molecular Pharmacology & Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Kikani CK. Metabolic "Sense Relay" in Stem Cells: A Short But Impactful Life of PAS Kinase Balancing Stem Cell Fates. Cells 2023; 12:1751. [PMID: 37443785 PMCID: PMC10340297 DOI: 10.3390/cells12131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue regeneration is a complex molecular and biochemical symphony. Signaling pathways establish the rhythmic proliferation and differentiation cadence of participating cells to repair the damaged tissues and repopulate the tissue-resident stem cells. Sensory proteins form a critical bridge between the environment and cellular response machinery, enabling precise spatiotemporal control of stem cell fate. Of many sensory modules found in proteins from prokaryotes to mammals, Per-Arnt-Sim (PAS) domains are one of the most ancient and found in the most diverse physiological context. In metazoa, PAS domains are found in many transcription factors and ion channels; however, PAS domain-containing Kinase (PASK) is the only metazoan kinase where the PAS sensory domain is connected to a signaling kinase domain. PASK is predominantly expressed in undifferentiated, self-renewing embryonic and adult stem cells, and its expression is rapidly lost upon differentiation, resulting in its nearly complete absence from the adult mammalian tissues. Thus, PASK is expressed within a narrow but critical temporal window when stem cell fate is established. In this review, we discuss the emerging insight into the sensory and signaling functions of PASK as an integrator of metabolic and nutrient signaling information that serves to balance self-renewal and differentiation programs during mammalian tissue regeneration.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biology, College of Arts and Sciences, University of Kentucky, Thomas Hunt Morgan Building, 675 Rose Street, Lexington, KY 40506, USA
| |
Collapse
|
14
|
Ai Y, Zhu Y, Wang L, Zhang X, Zhang J, Long X, Gu Q, Han H. Dynamic Changes in the Global Transcriptome of Postnatal Skeletal Muscle in Different Sheep. Genes (Basel) 2023; 14:1298. [PMID: 37372481 DOI: 10.3390/genes14061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Sheep growth performance, mainly skeletal muscle growth, provides direct economic benefits to the animal husbandry industry. However, the underlying genetic mechanisms of different breeds remain unclear. We found that the cross-sectional area (CSA) of skeletal muscle in Dorper (D) and binary cross-breeding (HD) was higher than that in Hu sheep (H) from 3 months to 12 months after birth. The transcriptomic analysis of 42 quadriceps femoris samples showed that a total of 5053 differential expression genes (DEGs) were identified. The differences in the global gene expression patterns, the dynamic transcriptome of skeletal muscle development, and the transcriptome of the transformation of fast and slow muscles were explored using weighted correlation network analysis (WGCNA) and allele-specific expression analysis. Moreover, the gene expression patterns of HD were more similar to D rather than H from 3 months to 12 months, which might be the reason for the difference in muscle growth in the three breeds. Additionally, several genes (GNB2L1, RPL15, DVL1, FBXO31, etc.) were identified as candidates related to skeletal muscle growth. These results should serve as an important resource revealing the molecular basis of muscle growth and development in sheep.
Collapse
Affiliation(s)
- Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaning Zhu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 301700, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 301700, China
| | - Xianlei Long
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyi Gu
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Curr Issues Mol Biol 2023; 45:4749-4762. [PMID: 37367051 DOI: 10.3390/cimb45060302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) form of genes is a valuable source of information regarding their suitability for use as specific markers of desirable traits in beef cattle breeding. For several decades, breeding work focused on improving production efficiency through optimizing the feed conversion ratio and improving daily gains and meat quality. Many research teams previously undertook research work on single-nucleotide polymorphism in myostatin (MSTN), thyroglobulin (TG), calpain (CAPN), and calpastatin (CAST) proteins. The literature review focuses on the most frequently addressed issues concerning these genes in beef cattle production and points to a number of relevant studies on the genes' polymorphic forms. The four genes presented are worth considering during breeding work as a set of genes that can positively influence productivity and production quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Grzegorz Grodkowski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
16
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
17
|
Liao H, Wang F, Lu K, Ma X, Yan J, Luo L, Sun Y, Liang X. Requirement for PINCH in skeletal myoblast differentiation. Cell Tissue Res 2023; 391:205-215. [PMID: 36385586 PMCID: PMC9839796 DOI: 10.1007/s00441-022-03701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
PINCH, an adaptor of focal adhesion complex, plays essential roles in multiple cellular processes and organogenesis. Here, we ablated PINCH1 or both of PINCH1 and PINCH2 in skeletal muscle progenitors using MyoD-Cre. Double ablation of PINCH1 and PINCH2 resulted in early postnatal lethality with reduced size of skeletal muscles and detachment of diaphragm muscles from the body wall. PINCH mutant myofibers failed to undergo multinucleation and exhibited disrupted sarcomere structures. The mutant myoblasts in culture were able to adhere to newly formed myotubes but impeded in cell fusion and subsequent sarcomere genesis and cytoskeleton organization. Consistent with this, expression of integrin β1 and some cytoskeleton proteins and phosphorylation of ERK and AKT were significantly reduced in PINCH mutants. However, N-cadherin was correctly expressed at cell adhesion sites in PINCH mutant cells, suggesting that PINCH may play a direct role in myoblast fusion. Expression of MRF4, the most highly expressed myogenic factor at late stages of myogenesis, was abolished in PINCH mutants that could contribute to observed phenotypes. In addition, mice with PINCH1 being ablated in myogenic progenitors exhibited only mild centronuclear myopathic changes, suggesting a compensatory role of PINCH2 in myogenic differentiation. Our results revealed a critical role of PINCH proteins in myogenic differentiation.
Collapse
Affiliation(s)
- Huimin Liao
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fei Wang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Ke Lu
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaolei Ma
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
18
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
19
|
Lu P, Morawong T, Molee A, Molee W. L-arginine alters myogenic genes expression but does not affect breast muscle characteristics by in ovo feeding technique in slow-growing chickens. Front Vet Sci 2022; 9:1030873. [PMID: 36590799 PMCID: PMC9794582 DOI: 10.3389/fvets.2022.1030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
In ovo feeding (IOF) of nutrients is a viable method for increasing muscle mass through hyperplasia and hypertrophy. The objective of this study was to evaluate the effects of IOF of L-arginine (Arg) on breast muscle weight, muscle morphology, amino acid profile, and gene expression of muscle development in slow-growing chickens. Four hundred eighty fertilized eggs were randomly divided into two groups: the first group was the non-injected control group, and the second group was the Arg group, injected with 1% Arg (0.5 mL) into the amnion on day 18 of incubation. After hatching, 160 birds from each group were randomly divided into four replicates of 40 birds each. This experiment lasted for 63 days. The results showed that IOF of Arg did not affect (P > 0.05) breast muscle weight, muscle morphology, and mRNA expression of mammalian target of rapamycin (mTOR) signaling pathway in slow-growing chickens. However, the amino acid profile of breast muscle was altered (P < 0.05) on the day of hatching (DOH), day 21 (D21), and day 42 (D42) post-hatch, respectively. Myogenic factor 5 (Myf5) mRNA expression was upregulated (P < 0.05) on D21 post-hatch. Myogenic regulator 4 (MRF4) mRNA expression was increased (P < 0.05) on DOH. And myogenin (MyoG) was increased (P < 0.05) on DOH and D21 post-hatch, in the Arg group compared to the control group. Overall, IOF of 1% Arg improved the expression of myogenic genes but did not influence muscle morphology and BMW. These results indicate that in ovo Arg dosage (0.5 mL/egg) has no adverse effect on breast muscle development of slow-growing chickens.
Collapse
|
20
|
Luo Y, Hu S, Yan P, Wu J, Guo H, Zhao L, Tang Q, Ma J, Long K, Jin L, Jiang A, Li M, Li X, Wang X. Analysis of mRNA and lncRNA Expression Profiles of Breast Muscle during Pigeon ( Columbalivia) Development. Genes (Basel) 2022; 13:genes13122314. [PMID: 36553580 PMCID: PMC9777807 DOI: 10.3390/genes13122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.
Collapse
Affiliation(s)
- Yi Luo
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiqi Yan
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| | - Xun Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
21
|
Jo YW, Park I, Yoo K, Woo HY, Kim YL, Kim YE, Kim JH, Kong YY. Notch1 and Notch2 Signaling Exclusively but Cooperatively Maintain Fetal Myogenic Progenitors. Stem Cells 2022; 40:1031-1042. [PMID: 35922037 DOI: 10.1093/stmcls/sxac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
Myogenic progenitors (MPs) generate myocytes that fuse to form myofibers during skeletal muscle development while maintaining the progenitor pool, which is crucial for generating sufficient muscle. Notch signaling has been known to reserve a population of embryonic MPs during primary myogenesis by promoting cell cycle exit and suppressing premature differentiation. However, the roles of individual Notch receptors (Notch1-4) during embryonic/fetal myogenesis are still elusive. In this study, we found that Notch1 and Notch2, which exhibit the highest structural similarity among Notch receptors, maintain the MP population by distinct mechanisms: Notch1 induces cell cycle exit and Notch2 suppresses premature differentiation. Moreover, genetic and cell culture studies showed that Notch1 and Notch2 signaling in MPs are distinctively activated by interacting with Notch ligand-expressing myofibers and MP-lineage cells, respectively. These results suggest that through different activation modes, Notch1 and Notch2 distinctively and cooperatively maintain MP population during fetal myogenesis for proper muscle development.
Collapse
Affiliation(s)
- Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Young Woo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Chen W, Chen W, Liu P, Qian S, Tao S, Huang M, Xu W, Li C, Chen X, Lin H, Qin Z, Lu J, Xie S. Role of lncRNA Has2os in Skeletal Muscle Differentiation and Regeneration. Cells 2022; 11:3497. [PMID: 36359891 PMCID: PMC9655701 DOI: 10.3390/cells11213497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate a series of physiological processes and play an important role in development, metabolism and disease. Our previous studies showed that lncRNAs involved in skeletal muscle differentiation. Here, we demonstrated that lncRNA Has2os is highly expressed in skeletal muscle and significantly elevated during skeletal cell differentiation. The knockdown of Has2os inhibited myocyte fusion and impeded the expression of the myogenic factors MyHC and Mef2C. Mechanically, Has2os regulates skeletal muscle differentiation by inhibiting the JNK/MAPK signaling pathway. Furthermore, we also revealed that Has2os is involved in the early stage of regeneration after muscle injury, and the JNK/MAPK signaling pathway is activated at both protein and mRNA levels during early repair. Our results demonstrate the new function of lncRNA Has2os, which plays crucial roles during skeletal muscle differentiation and muscle regeneration, providing a basis for the therapy of lncRNA-related muscle diseases.
Collapse
Affiliation(s)
- Wanxin Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Weicai Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Peng Liu
- Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Shiyu Qian
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Mengchun Huang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wanyi Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Cuiping Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiaoyan Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Huizhu Lin
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Zhenshu Qin
- Department of Trauma Orthopaedics, Chenzhou First People’s Hospital Affiliated to South China University, Chenzhou 423000, China
| | - Jianxi Lu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Shujuan Xie
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
- Vaccine Research Institute of Sun Yat-Sen University, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
23
|
Shams AS, Arpke RW, Gearhart MD, Weiblen J, Mai B, Oyler D, Bosnakovski D, Mahmoud OM, Hassan GM, Kyba M. The chemokine receptor CXCR4 regulates satellite cell activation, early expansion, and self-renewal, in response to skeletal muscle injury. Front Cell Dev Biol 2022; 10:949532. [PMID: 36211464 PMCID: PMC9536311 DOI: 10.3389/fcell.2022.949532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute skeletal muscle injury is followed by satellite cell activation, proliferation, and differentiation to replace damaged fibers with newly regenerated muscle fibers, processes that involve satellite cell interactions with various niche signals. Here we show that satellite cell specific deletion of the chemokine receptor CXCR4, followed by suppression of recombination escapers, leads to defects in regeneration and satellite cell pool repopulation in both the transplantation and in situ injury contexts. Mechanistically, we show that endothelial cells and FAPs express the gene for the ligand, SDF1α, and that CXCR4 is principally required for proper activation and for transit through the first cell division, and to a lesser extent the later cell divisions. In the absence of CXCR4, gene expression in quiescent satellite cells is not severely disrupted, but in activated satellite cells a subset of genes normally induced by activation fail to upregulate normally. These data demonstrate that CXCR4 signaling is essential to normal early activation, proliferation, and self-renewal of satellite cells.
Collapse
Affiliation(s)
- Ahmed S. Shams
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Robert W. Arpke
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Weiblen
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Ben Mai
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - David Oyler
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Darko Bosnakovski
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Omayma M. Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gamal M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael Kyba
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Michael Kyba,
| |
Collapse
|
24
|
Genetic Parameter Estimation and Genome-Wide Association Analysis of Social Genetic Effects on Average Daily Gain in Purebreds and Crossbreds. Animals (Basel) 2022; 12:ani12172300. [PMID: 36078021 PMCID: PMC9454713 DOI: 10.3390/ani12172300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Average daily gain (ADG) is influenced by both an individual’s direct genetic effect (DGE) and by a social genetic effect (SGE) derived from pen mates. Therefore, identifying the DGE and SGE on ADG is essential for a better understanding of pig breeding systems. We conducted this study to elucidate the genetic characteristics and relationships of DGE and SGE on ADG using purebred and crossbred pigs. We found that the DGE and SGE both contributed to ADG in both populations. In addition, the SGE of purebred pigs was highly correlated with the DGE of crossbred pigs. Furthermore, we identified several genomic regions that may be associated with the DGE and SGE on ADG. Our findings will contribute to future genomic evaluation studies of socially affected traits. Abstract Average daily gain (ADG) is an important growth trait in the pig industry. The direct genetic effect (DGE) has been studied mainly to assess the association between genetic information and economic traits. The social genetic effect (SGE) has been shown to affect ADG simultaneously with the DGE because of group housing systems. We conducted this study to elucidate the genetic characteristics and relationships of the DGE and SGE of purebred Korean Duroc and crossbred pigs by single-step genomic best linear unbiased prediction and a genome-wide association study. We used the genotype, phenotype, and pedigree data of 1779, 6022, and 7904 animals, respectively. Total heritabilities on ADG were 0.19 ± 0.04 and 0.39 ± 0.08 for purebred and crossbred pigs, respectively. The genetic correlation was the greatest (0.77 ± 0.12) between the SGE of purebred and DGE of crossbred pigs. We found candidate genes located in the quantitative trait loci (QTLs) for the SGE that were associated with behavior and neurodegenerative diseases, and candidate genes in the QTLs for DGE that were related to body mass, size of muscle fiber, and muscle hypertrophy. These results suggest that the genomic selection of purebred animals could be applied for crossbred performance.
Collapse
|
25
|
Zhang J, Wen H, Qi X, Zhang Y, Dong X, Zhang K, Zhang M, Li J, Li Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int J Mol Sci 2022; 23:ijms23179812. [PMID: 36077203 PMCID: PMC9456278 DOI: 10.3390/ijms23179812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Li
- Correspondence: ; Tel.: +86-0532-82-031-792
| |
Collapse
|
26
|
Zhou Y, Wu P, Feng L, Jiang WD, Liu Y, Peng Y, Kuang SY, Tang L, Li SW, Zhou XQ. Improvement of nutritional value and sensory quality by promoting protein deposition and muscle fiber growth in grass carp muscle (Ctenopharyngodon idella): the effect of cinnamaldehyde. Food Chem 2022; 399:133799. [DOI: 10.1016/j.foodchem.2022.133799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
|
27
|
Yang JH, Chang MW, Tsitsipatis D, Yang X, Martindale J, Munk R, Cheng A, Izydore E, Pandey PR, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Gorospe M. LncRNA OIP5-AS1-directed miR-7 degradation promotes MYMX production during human myogenesis. Nucleic Acids Res 2022; 50:7115-7133. [PMID: 35736212 PMCID: PMC9262585 DOI: 10.1093/nar/gkac524] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Correspondence may also be addressed to Jen-Hao Yang. Tel: +1 410 454 8392;
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Aiwu Cheng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Elizabeth Izydore
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- To whom correspondence should be addressed. Tel: +1 410 454 8412;
| |
Collapse
|
28
|
Mashinchian O, De Franceschi F, Nassiri S, Michaud J, Migliavacca E, Aouad P, Metairon S, Pruvost S, Karaz S, Fabre P, Molina T, Stuelsatz P, Hegde N, Le Moal E, Dammone G, Dumont NA, Lutolf MP, Feige JN, Bentzinger CF. An engineered multicellular stem cell niche for the 3D derivation of human myogenic progenitors from iPSCs. EMBO J 2022; 41:e110655. [PMID: 35703167 DOI: 10.15252/embj.2022110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Patrick Aouad
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Solenn Pruvost
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Sonia Karaz
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Paul Fabre
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Thomas Molina
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Pascal Stuelsatz
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nagabhooshan Hegde
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Emmeran Le Moal
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriele Dammone
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nicolas A Dumont
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Florian Bentzinger
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Aryana IGPS, Rini SS, Soejono CH. The Importance of on Sclerostin as Bone-Muscle Mediator Crosstalk. Ann Geriatr Med Res 2022; 26:72-82. [PMID: 35599457 PMCID: PMC9271392 DOI: 10.4235/agmr.22.0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022] Open
Abstract
Loss of bone and muscle mass is a frequent aging condition and has become a growing public health problem. The term “osteosarcopenia” denotes close links between bone and muscle. Mechanical exercise was once thought to be the only mechanism of crosstalk between muscle and bone. Sclerostin is an important player in the process of unloading-induced bone loss and plays an important role in mechanotransduction in the bone. Furthermore, bones and muscles are categorized as endocrine organs because they produce hormone-like substances, resulting in “bone-muscle crosstalk.” Sclerostin, an inhibitor of bone development, has recently been shown to play a role in myogenesis. This review discusses the importance of sclerostin in bone-muscle crosstalk.
Collapse
Affiliation(s)
- I Gusti Putu Suka Aryana
- Division of Geriatric Medicine, Department of Internal Medicine, Sanglah Hospital–Faculty of Medicine Udayana University, Bali, Indonesia
- Corresponding Author: I Gusti Putu Suka Aryana, MD, PhD Division of Geriatrics, Department of Internal Medicine, Sanglah Hospital–Faculty of Medicine Udayana University, Jl. Pulau Tarakan No.1, Denpasar 80114, Bali, Indonesia E-mail:
| | - Sandra Surya Rini
- Department of Internal Medicine, North Lombok Regional Hospital, West Nusa Tenggara, Indonesia
| | - Czeresna Heriawan Soejono
- Division of Geriatric Medicine, Department of Internal Medicine, Cipto Mangunkusumo Hospital–Faculty of Medicine University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
30
|
Florio F, Accordini S, Libergoli M, Biressi S. Targeting Muscle-Resident Single Cells Through in vivo Electro-Enhanced Plasmid Transfer in Healthy and Compromised Skeletal Muscle. Front Physiol 2022; 13:834705. [PMID: 35431987 PMCID: PMC9010744 DOI: 10.3389/fphys.2022.834705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle is composed of syncytial muscle fibers, and by various mononucleated cellular types, such as muscle stem cells, immune cells, interstitial and stromal progenitors. These cell populations play a crucial role during muscle regeneration, and alterations of their phenotypic properties have been associated with defective repair and fibrosis in aging and dystrophic muscle. Studies involving in vivo gene modulation are valuable to investigate the mechanisms underlining cell function and dysfunction in complex pathophysiological settings. Electro-enhanced transfer of plasmids using square-wave generating devices represents a cost-effective approach that is widely used to transport DNA to muscle fibers efficiently. Still, it is not clear if this method can also be applied to mononuclear cells present in muscle. We demonstrate here that it is possible to efficiently deliver DNA into different muscle–resident cell populations in vivo. We evaluated the efficiency of this approach not only in healthy muscle but also in muscles of aging and dystrophic animal models. As an exemplificative application of this method, we used a strategy relying on a reporter gene-based plasmid containing regulatory sequences from the collagen 1 locus, and we determined collagen expression in various cell types reportedly involved in the production of fibrotic tissue in the dystrophic settings. The results enclosed in this manuscript reveal the suitability in applying electro-enhanced transfer of plasmid DNA to mononucleated muscle-resident cells to get insights into the molecular events governing diseased muscle physiology.
Collapse
Affiliation(s)
- Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
- *Correspondence: Stefano Biressi,
| |
Collapse
|
31
|
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, Jarvis ED. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9. Sci Rep 2022; 12:4369. [PMID: 35288582 PMCID: PMC8921232 DOI: 10.1038/s41598-022-07434-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
Collapse
Affiliation(s)
- Matthew T Biegler
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Collier
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Hagen U Tilgner
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
32
|
Yang D, Zhu X, Liu Z, Wang X, Zhang L, Xing T, Gao F. Comparative transcriptome analyses reveal the dynamic responses of avian myotubes to acute heat stress. J Therm Biol 2022; 106:103235. [DOI: 10.1016/j.jtherbio.2022.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
|
33
|
Soulez M, Tanguay PL, Dô F, Dort J, Crist C, Kotlyarov A, Gaestel M, Ferron M, Dumont NA, Meloche S. ERK3-MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. J Cell Physiol 2022; 237:2271-2287. [PMID: 35141958 DOI: 10.1002/jcp.30695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Pierre-Luc Tanguay
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Ipsen Biopharmaceuticals Canada, Mississauga, Ontario, Canada
| | - Florence Dô
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexey Kotlyarov
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mathieu Ferron
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Messmer T, Klevernic I, Furquim C, Ovchinnikova E, Dogan A, Cruz H, Post MJ, Flack JE. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. NATURE FOOD 2022; 3:74-85. [PMID: 37118488 DOI: 10.1038/s43016-021-00419-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023]
Abstract
Cultured meat production requires the robust differentiation of satellite cells into mature muscle fibres without the use of animal-derived components. Current protocols induce myogenic differentiation in vitro through serum starvation, that is, an abrupt reduction in serum concentration. Here we used RNA sequencing to investigate the transcriptomic remodelling of bovine satellite cells during myogenic differentiation induced by serum starvation. We characterized canonical myogenic gene expression, and identified surface receptors upregulated during the early phase of differentiation, including IGF1R, TFRC and LPAR1. Supplementation of ligands to these receptors enabled the formulation of a chemically defined media that induced differentiation in the absence of serum starvation and/or transgene expression. Serum-free myogenic differentiation was of similar extent to that induced by serum starvation, as evaluated by transcriptome analysis, protein expression and the presence of a functional contractile apparatus. Moreover, the serum-free differentiation media supported the fabrication of three-dimensional bioartificial muscle constructs, demonstrating its suitability for cultured beef production.
Collapse
|
35
|
Ipulan-Colet LA. Sexual dimorphism through androgen signaling; from external genitalia to muscles. Front Endocrinol (Lausanne) 2022; 13:940229. [PMID: 35983512 PMCID: PMC9379613 DOI: 10.3389/fendo.2022.940229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphisms can be seen in many organisms with some exhibiting subtle differences while some can be very evident. The difference between male and female can be seen on the morphological level such as discrepancies in body mass, presence of body hair in distinct places, or through the presence of specific reproductive structures. It is known that the development of the reproductive structures is governed by hormone signaling, most commonly explained through the actions of androgen signaling. The developmental program of the male and female external genitalia involves a common anlage, the genital tubercle or GT, that later on develop into a penis and clitoris, respectively. Androgen signaling involvement can be seen in the different tissues in the GT that express Androgen receptor and the different genes that are regulated by androgen in the mesenchyme and endoderm component of the GT. Muscles are also known to be responsive to androgen signaling with male and female muscles exhibiting different capabilities. However, the occurrence of sexual dimorphism in muscle development is unclear. In this minireview, a summary on the role of androgen in the sexually dimorphic development of the genital tubercle was provided. This was used as a framework on analyzing the different mechanism employed by androgen signaling to regulate the sexual dimorphism in muscle development.
Collapse
|
36
|
Manneken JD, Dauer MVP, Currie PD. Dynamics of muscle growth and regeneration: Lessons from the teleost. Exp Cell Res 2021; 411:112991. [PMID: 34958765 DOI: 10.1016/j.yexcr.2021.112991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Collapse
Affiliation(s)
- Jessica D Manneken
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mervyn V P Dauer
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; EMBL Australia, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
37
|
Liu Y, Ding Q, Guo W. Life Course Impact of Glucocorticoids During Pregnancy on Muscle Development and Function. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 36325303 PMCID: PMC9624510 DOI: 10.3389/fanim.2021.788930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal stress, such as maternal obesity, can induce severe gestational disease and hormonal disorder which may disrupt fetal organ maturation and further cause endangered early or future health in offspring. During fetal development, glucocorticoids are essential for the maturation of organ systems. For instance, in clinical applications, glucocorticoids are commonly utilized to pregnant women with the risk of preterm delivery to reduce mortality of the newborns. However, exposure of excessive glucocorticoids at embryonic and fetal developmental stages can cause diseases such as cardiovascular disease and muscle atrophy in adulthood. Effects of excessive glucocorticoids on human health are well-recognized and extensively studied. Nonetheless, effects of these hormones on farm animal growth and development, particularly on prenatal muscle development, and postnatal growth, did not attract much attention until the last decade. Here, we provided a short review of the recent progress relating to the effect of glucocorticoids on prenatal skeletal muscle development and postnatal muscle growth as well as heart muscle development and cardiovascular disease during life course.
Collapse
|
38
|
Girgis J, Yang D, Chakroun I, Liu Y, Blais A. Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skelet Muscle 2021; 11:26. [PMID: 34809717 PMCID: PMC8607597 DOI: 10.1186/s13395-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.
Collapse
Affiliation(s)
- John Girgis
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dabo Yang
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Imane Chakroun
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Yubing Liu
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario, Canada.
| |
Collapse
|
39
|
Lescroart F, Dumas CE, Adachi N, Kelly RG. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm. Exp Cell Res 2021; 410:112931. [PMID: 34798131 DOI: 10.1016/j.yexcr.2021.112931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
Branchiomeric muscles of the head and neck originate in a population of cranial mesoderm termed cardiopharyngeal mesoderm that also contains progenitor cells contributing to growth of the embryonic heart. Retrospective lineage analysis has shown that branchiomeric muscles share a clonal origin with parts of the heart, indicating the presence of common heart and head muscle progenitor cells in the early embryo. Genetic lineage tracing and functional studies in the mouse, as well as in Ciona and zebrafish, together with recent experiments using single cell transcriptomics and multipotent stem cells, have provided further support for the existence of bipotent head and heart muscle progenitor cells. Current challenges concern defining where and when such common progenitor cells exist in mammalian embryos and how alternative myogenic derivatives emerge in cardiopharyngeal mesoderm. Addressing these questions will provide insights into mechanisms of cell fate acquisition and the evolution of vertebrate musculature, as well as clinical insights into the origins of muscle restricted myopathies and congenital defects affecting craniofacial and cardiac development.
Collapse
Affiliation(s)
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France.
| |
Collapse
|
40
|
Xie SJ, Tao S, Diao LT, Li PL, Chen WC, Zhou ZG, Hu YX, Hou YR, Lei H, Xu WY, Chen WJ, Peng YW, Zhang Q, Xiao ZD. Characterization of Long Non-coding RNAs Modified by m 6A RNA Methylation in Skeletal Myogenesis. Front Cell Dev Biol 2021; 9:762669. [PMID: 34722547 PMCID: PMC8548731 DOI: 10.3389/fcell.2021.762669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023] Open
Abstract
Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.
Collapse
Affiliation(s)
- Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pan-Long Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei-Cai Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhi-Gang Zhou
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wan-Yi Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Wen Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Yan Z, Yan Z, Liu S, Yin Y, Yang T, Chen Q. Regulative Mechanism of Guanidinoacetic Acid on Skeletal Muscle Development and Its Application Prospects in Animal Husbandry: A Review. Front Nutr 2021; 8:714567. [PMID: 34458310 PMCID: PMC8387576 DOI: 10.3389/fnut.2021.714567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Guanidinoacetic acid is the direct precursor of creatine and its phosphorylated derivative phosphocreatine in the body. It is a safe nutritional supplement that can be used to promote muscle growth and development. Improving the growth performance of livestock and poultry and meat quality is the eternal goal of the animal husbandry, and it is also the common demand of today's society and consumers. A large number of experimental studies have shown that guanidinoacetic acid could improve the growth performance of animals, promote muscle development and improve the health of animals. However, the mechanism of how it affects muscle development needs to be further elucidated. This article discusses the physical and chemical properties of guanidinoacetic acid and its synthesis pathway, explores its mechanism of how it promotes muscle development and growth, and also classifies and summarizes the impact of its application in animal husbandry, providing a scientific basis for this application. In addition, this article also proposes future directions for the development of this substance.
Collapse
Affiliation(s)
- Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Yan
- Chemistry Department, University of Liverpool, Liverpool, United Kingdom
| | - Shuangli Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tai Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front Vet Sci 2021; 8:699081. [PMID: 34368284 PMCID: PMC8342923 DOI: 10.3389/fvets.2021.699081] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
The continuous increase in poultry production over the last decades to meet the high growing demand and provide food security has attracted much concern due to the recent negative impacts of the most challenging environmental stressor, heat stress (HS), on birds. The poultry industry has responded by adopting different environmental strategies such as the use of environmentally controlled sheds and modern ventilation systems. However, such strategies are not long-term solutions and it cost so much for farmers to practice. The detrimental effects of HS include the reduction in growth, deterioration of meat quality as it reduces water-holding capacity, pH and increases drip loss in meat consequently changing the normal color, taste and texture of chicken meat. HS causes poor meat quality by impairing protein synthesis and augmenting undesirable fat in meat. Studies previously conducted show that HS negatively affects the skeletal muscle growth and development by changing its effects on myogenic regulatory factors, insulin growth factor-1, and heat-shock proteins. The focus of this article is in 3-fold: (1) to identify the mechanism of heat stress that causes meat production and quality loss in chicken; (2) to discuss the physiological, metabolic and genetic changes triggered by HS causing setback to the world poultry industry; (3) to identify the research gaps to be addressed in future studies.
Collapse
Affiliation(s)
- Ali H Nawaz
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Kwaku Amoah
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Qi Y Leng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jia H Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wei L Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
43
|
Wang X, Yan P, Feng S, Luo Y, Liang J, Zhao L, Liu H, Tang Q, Long K, Jin L, Ma J, Jiang A, Shuai S, Li M. Identification and expression pattern analysis of miRNAs in pectoral muscle during pigeon ( Columba livia) development. PeerJ 2021; 9:e11438. [PMID: 34221709 PMCID: PMC8234919 DOI: 10.7717/peerj.11438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of crucial regulators in the process of animal growth and development. However, little is known about the expression and function of miRNAs in pigeon muscles. To identify the miRNAs participating in the rapid development of pigeon pectoral muscles and quantitate their expression levels of pectoral muscles in different age stages, we performed miRNA transcriptome analysis in pigeon pectoral muscles by sequencing small RNAs over three different age stages (1-day old, 28 days old, and 2 years old). Dual-luciferase reporter assay was applied to validate the interaction between miRNA and its target gene. We identified 304 known miRNAs, 201 conserved miRNAs, and 86 novel miRNAs in pigeon pectoral muscles. 189 differentially expressed (DE) miRNAs were screened out during pigeon development. A short time-series expression miner (STEM) analysis indicated 89 DE miRNAs were significantly clustered in a progressively decreasing expression profile, and mainly enriched in biosynthesis-related GO categories and signaling pathways for MAPK and TGF-β. Dual-luciferase reporter assay indicated that a progressively down-regulated miRNA (miR-20b-5p) could directly target Krüppel-like factor 3 (KLF3) gene. To sum-up, our data expand the repertoire of pigeon miRNAs and enhance understanding of the mechanisms underlying rapid development in squabs.
Collapse
Affiliation(s)
- Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peiqi Yan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyuan Feng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiyuan Liang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anan Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Surong Shuai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Diao LT, Xie SJ, Lei H, Qiu XS, Huang MC, Tao S, Hou YR, Hu YX, Sun YJ, Zhang Q, Xiao ZD. METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. Biochem Biophys Res Commun 2021; 552:52-58. [PMID: 33740664 DOI: 10.1016/j.bbrc.2021.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/31/2022]
Abstract
METTL3 increasing the mature miRNA levels via N6-Methyladenosine (m6A) modification of primary miRNA (pri-miRNA) transcripts has emerged as an important post-transcriptional regulation of miRNA biogenesis. Our previous studies and others have showed that muscle specific miRNAs are essential for skeletal muscle differentiation. Whether these miRNAs are also regulated by METTL3 is still unclear. Here, we found that m6A motifs were present around most of these miRNAs, which were indeed m6A modified as confirmed by m6A-modified RNA immunoprecipitation (m6A RIP). However, we surprisingly found that these muscle specific miRNAs were repressed instead of increased by METTL3 in C2C12 in vitro differentiation and mouse skeletal muscle regeneration after injury in vivo model. To elucidate the underlined mechanism, we performed reporter assays in 293T cells and validated METTL3 increasing these miRNAs at post-transcriptional level as expected. Furthermore, in myogenic C2C12 cells, we found that METTL3 not only repressed the expression of myogenic transcription factors (TFs) which can enhance the muscle specific miRNAs, but also increased the expression of epigenetic regulators which can repress these miRNAs. Thus, METTL3 could repress the muscle specific miRNAs at transcriptional level indirectly. Taken together, our results demonstrated that skeletal muscle specific miRNAs were repressed by METTL3 and such repression is likely synthesized transcriptional and post-transcriptional regulations.
Collapse
Affiliation(s)
- Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiu-Sheng Qiu
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Meng-Chun Huang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu-Jia Sun
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
45
|
Chen M, Wei X, Song M, Jiang R, Huang K, Deng Y, Liu Q, Shi D, Li H. Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:352-368. [PMID: 33868781 PMCID: PMC8027698 DOI: 10.1016/j.omtn.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle development is a complex and highly orchestrated biological process mediated by a series of myogenesis regulatory factors. Numerous studies have demonstrated that circular RNAs (circRNAs) are involved in muscle differentiation, but the exact molecular mechanisms involved remain unclear. Here, we analyzed the expression of circRNAs at the adult and embryo development stages of cattle musculus longissimus. A stringent set of 1,318 circRNAs candidates were identified, and we found that 495 circRNAs were differentially expressed between embryonic and adult tissue libraries. We subsequently focused on one of the most downregulated circRNAs (using the adult stage expression as control), and this was named muscle differentiation-associated circular RNA (circMYBPC1). With RNA binding protein immunoprecipitation (RIP) and RNA pull-down assays, circMYBPC1 was identified to promote myoblast differentiation by directly binding miR-23a to relieve its inhibition on myosin heavy chain (MyHC). In addition, RIP assays demonstrated that circMYBPC1 could directly bind MyHC protein. In vivo observations also suggested that circMYBPC1 may stimulate skeletal muscle regeneration after muscle damage. These results revealed that the novel non-coding circRNA circMYBPC1 promotes differentiation of myoblasts and may promote skeletal muscle regeneration. Our results provided a basis for in-depth analysis of the role of circRNA in myogenesis and muscle diseases.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Rui Jiang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author: Deshun Shi, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author: Hui Li, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
46
|
Xue M, Zhang F, Ji X, Yu H, Jiang X, Qiu Y, Yu J, Chen J, Yang F, Bao Z. Oleate Ameliorates Palmitate-Induced Impairment of Differentiative Capacity in C2C12 Myoblast Cells. Stem Cells Dev 2021; 30:289-300. [PMID: 33430700 DOI: 10.1089/scd.2020.0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A common observation in metabolic disorders and aging is the elevation of free fatty acids (FFAs), which can form ectopic fat deposition and result in lipotoxicity. Ectopic fat deposition of skeletal muscle has been recognized as an important component of aging, frailty, and sarcopenia. Previous studies have suggested that lipotoxicity caused by FFAs mainly stemmed from saturated fatty acids and decreased unsaturated/saturated fatty acid ratio in serum are also observed among metabolic disorder patients. However, the different effects of saturated fatty acids and unsaturated fatty acids on skeletal muscle are not fully elucidated. In this study, we verified that palmitate (PA), a saturated fatty acid, could lead to impaired differentiative capacity of C2C12 myoblasts by affecting Pax7, MyoD, and myogenin (MyoG), which are master regulators of lineage specification and the myogenic program. Then, oleate (OA), a monounsaturated fatty acid, were added to culture medium together with PA. Results showed that OA could ameliorate the impairment of differentiative capacity in C2C12 myoblast cells. In addition, we found PI3K/Akt signaling pathway played an important role during the process by RNA sequencing and bioinformatics analysis. The positive effect of OA on myoblast differentiative capacity disappeared if PI3K inhibitor LY294002 was added. In conclusion, our study showed that PA could destroy differentiative capacity of C2C12 myoblasts by affecting the expression of Pax7, MyoD, and MyoG, and OA could improve this impairment through PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mengjuan Xue
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Fan Zhang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Xueying Ji
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Huiyuan Yu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Xin Jiang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Yixuan Qiu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Jiaming Yu
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Jie Chen
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Fan Yang
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| | - Zhijun Bao
- Department of Geriatric Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P.R. China
| |
Collapse
|
47
|
N 6-methyladenine demethylase ALKBH1 inhibits the differentiation of skeletal muscle. Exp Cell Res 2021; 400:112492. [PMID: 33529710 DOI: 10.1016/j.yexcr.2021.112492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.
Collapse
|
48
|
Yang JH, Chang MW, Pandey PR, Tsitsipatis D, Yang X, Martindale JL, Munk R, De S, Abdelmohsen K, Gorospe M. Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Res 2021; 48:12943-12956. [PMID: 33270893 DOI: 10.1093/nar/gkaa1151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Long noncoding (lnc)RNAs potently regulate gene expression programs in physiology and disease. Here, we describe a key function for lncRNA OIP5-AS1 in myogenesis, the process whereby myoblasts differentiate into myotubes during muscle development and muscle regeneration after injury. In human myoblasts, OIP5-AS1 levels increased robustly early in myogenesis, and its loss attenuated myogenic differentiation and potently reduced the levels of the myogenic transcription factor MEF2C. This effect relied upon the partial complementarity of OIP5-AS1 with MEF2C mRNA and the presence of HuR, an RNA-binding protein (RBP) with affinity for both transcripts. Remarkably, HuR binding to MEF2C mRNA, which stabilized MEF2C mRNA and increased MEF2C abundance, was lost after OIP5-AS1 silencing, suggesting that OIP5-AS1 might serve as a scaffold to enhance HuR binding to MEF2C mRNA, in turn increasing MEF2C production. These results highlight a mechanism whereby a lncRNA promotes myogenesis by enhancing the interaction of an RBP and a myogenic mRNA.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
49
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
50
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|