1
|
Nesbit KT, Hargadon AC, Renaudin GD, Kraieski ND, Buckley KM, Darin E, Lee Y, Hamdoun A, Schrankel CS. Characterization of cellular and molecular immune components of the painted white sea urchin Lytechinus pictus in response to bacterial infection. Immunol Cell Biol 2025; 103:45-59. [PMID: 39438030 DOI: 10.1111/imcb.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/07/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Sea urchins are basal deuterostomes that share key molecular components of innate immunity with vertebrates. They are a powerful model for the study of innate immune system evolution and function, especially during early development. Here we characterize the morphology and associated molecular markers of larval immune cell types in a newly developed model sea urchin, Lytechinus pictus. We then challenge larvae through infection with an established pathogenic Vibrio and characterize phenotypic and molecular responses. We contrast these to the previously described immune responses of the purple sea urchin Strongylocentrotus purpuratus. The results revealed shared cellular morphologies and homologs of known pigment cell immunocyte markers (PKS, srcr142) but a striking absence of subsets of perforin-like macpf genes in blastocoelar cell immunocytes. We also identified novel patterning of cells expressing a scavenger receptor cysteine rich (SRCR) gene in the coelomic pouches of the larva (the embryonic stem cell niche). The SRCR signal becomes further enriched in both pouches in response to bacterial infection. Collectively, these results provide a foundation for the study of immune responses in L. pictus. The characterization of the larval immune system of this rapidly developing and genetically enabled sea urchin species will facilitate more sophisticated studies of innate immunity and the crosstalk between the immune system and development.
Collapse
Affiliation(s)
| | - Alexis Cody Hargadon
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Gloria D Renaudin
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | | | | | - Emily Darin
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Yoon Lee
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
2
|
He J, Cui H, Jiang G, Fang L, Hao J. Knowledge mapping of trained immunity/innate immune memory: Insights from two decades of studies. Hum Vaccin Immunother 2024; 20:2415823. [PMID: 39434217 PMCID: PMC11497974 DOI: 10.1080/21645515.2024.2415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
This study employs knowledge mapping and bibliometric techniques to analyze the research landscape of trained immunity over the past 20 years and to identify current research hotspots and future development directions. The literature related to trained immunity was searched from the Web of Science Core Collection database, spanning 2004 to 2023. VOSViewer, CiteSpace and Bibliometrix were used for the knowledge mapping analysis. The foremost research institutions are Radboud University Nijmegen, University of Bonn, and Harvard University. Professor Netea MG of Radboud University Nijmegen has published the greatest number of articles. The current research focus encompasses immune memory, nonspecific effects, epigenetics, metabolic reprogramming, BCG vaccine, and the development of trained immunity-based vaccines. It is likely that research on trained immunity-based vaccines will become a major focus in the development of new vaccines in the future. It would be advantageous to observe a greater number of prospective clinical studies with robust evidence.
Collapse
Affiliation(s)
- Jiacheng He
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Hongxia Cui
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Guoqian Jiang
- College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
3
|
Yi X, Liu X, Sun X, Wang S. Structural profile and diversity of immunoglobulin genes in the Arctic Fox. Vet J 2024; 309:106295. [PMID: 39716528 DOI: 10.1016/j.tvjl.2024.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Immunoglobulins are important components of humoral immunity and play a crucial role in protecting the body from external antigens. The Arctic fox is an important member of furbearer farming, but due to the lack of research on the immune system of the Arctic fox, animal welfare regarding Arctic fox farming has still not received enough attention. In this study, we used the Arctic fox as a research subject, described the gene locus structure of the Arctic fox immunoglobulin germline by genome comparison, and analysed the mechanism of expression diversity of the antibody pool of the Arctic fox by rapid amplification of cDNA 5' ends and high-throughput sequencing. The results showed that the Arctic fox IgH, Igκ and Igλ loci were located on chromosome 6, chromosome 5 and chromosome 14, respectively. The number of variable (V) genes identified were 18, 11 and 10, and the number of joining (J) were 3, 4 and 13 and six diversity (D) genes in the heavy chain, respectively. Among them, the D genes, J genes and constant region genes of the heavy chain were arranged in the middle of the two variable heavy gene clusters; Arctic fox had a strong preference for the use of V genes, D genes and J genes, which resulted in a low level of V(D)J recombination diversity; linkage diversity analyses showed that random deletion of the V and J genes and insertion of the N and P nucleotides of the immunoglobulins of the Arctic foxes had a large impact on the linkage diversity of the IgH, whereas the light chain The linkage diversity was mainly contributed by the random deletion of V and J genes, and the insertion of N and P nucleotides had a smaller effect; somatic hypermutation (SHM) analysis showed that the mutation types of SHM of the heavy and light chains of the Arctic fox had a strong bias towards G>A and A>G, and the bias exhibited by the three chains was basically the same. By analysing the structure and expression diversity analysis of the Arctic fox gene loci, this study could provide a theoretical basis for antibody design and vaccine development in the Arctic fox, and provide new insights to further improve the animal welfare level of Arctic fox farming.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Nuñez R, Sidlowski PFW, Steen EA, Wynia-Smith SL, Sprague DJ, Keyes RF, Smith BC. The TRIM33 Bromodomain Recognizes Histone Lysine Lactylation. ACS Chem Biol 2024; 19:2418-2428. [PMID: 39556662 DOI: 10.1021/acschembio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Histone lysine lactylation (Kla) regulates inflammatory gene expression in activated macrophages and mediates the polarization of inflammatory (M1) to reparative (M2) macrophages. However, the molecular mechanisms and key protein players involved in Kla-mediated transcriptional changes are unknown. As Kla is structurally similar to lysine acetylation (Kac), which is bound by bromodomains, we hypothesized that bromodomain-containing proteins bind histone Kla. Here, we screened 28 recombinantly expressed bromodomains for binding to histone Kla peptides via AlphaScreen assays. TRIM33 was the sole bromodomain tested that bound histone Kla peptides. TRIM33 attenuates inflammatory genes during late-stage macrophage activation; thus, TRIM33 provides a potential link between histone Kla and macrophage polarization. Orthogonal biophysical techniques, including isothermal titration calorimetry and protein-detected nuclear magnetic resonance, confirmed the submicromolar binding affinity of the TRIM33 bromodomain to both Kla and Kac histone post-translational modifications. Sequence alignments of human bromodomains revealed a unique glutamic acid residue within the TRIM33 binding pocket that we found confers TRIM33 specificity for binding Kla compared with other bromodomains. Molecular modeling of interactions of Kla with the TRIM33 bromodomain binding pocket and site-directed mutagenesis of glutamic acid confirmed the critical role of this residue in the selective recognition of Kla by TRIM33. Collectively, our findings implicate TRIM33, a bromodomain-containing protein, as a novel reader of histone Kla, potentially bridging the gap between histone Kla and macrophage polarization. This study enhances our understanding of the regulatory role of histone Kla in macrophage-mediated inflammation and offers insights into the underlying structural and biophysical mechanisms.
Collapse
Affiliation(s)
- Raymundo Nuñez
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Paul F W Sidlowski
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Erica A Steen
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Daniel J Sprague
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
5
|
Li W, Li A, Zhang X, Fei F, Gao X, Fang Y, Cao S, Yang H, Li W, Liu B. Transcriptomics reveals crowding stress inhibit the immune defense of the head kidney of the pearl gentian grouper juvenile through NF-κB signal pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105299. [PMID: 39645218 DOI: 10.1016/j.dci.2024.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Crowding stress is a significant welfare factor affecting aquatic animals in recirculating aquaculture systems. Little is known regarding the influence of prolonged crowding stress on the immunity of juvenile pearl gentian groupers. However, research exploring the potential mechanisms through which crowding stress affects fish immune function is limited. Therefore, this study aims to investigate the effect of crowding stress on the immune stress of the pearl gentian grouper juvenile (♀Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus) under prolonged conditions. We focused on the pearl gentian grouper juvenile and selected low- and high-density groups as the experimental breeding densities. Research shows that crowding stress increases the activities of alkaline acid plum and acid phosphatase, reduces the activities of lysozyme and immunoglobulin M content. RNA sequencing and comparative transcriptomic analyses were employed to explore changes in the gene expression of juvenile pearl gentian groupers subjected to crowding stress. Differential gene expression analyses between the low- and high-density groups identified 5777 unigenes that were differentially expressed following crowding stress, with 3216 and 2561 upregulated and downregulated, respectively. In the GO and KEGG enrichment analyses, many of the enriched signaling pathways related to genes were associated with immunity and oxidative stress. In addition, the combined analyses of enzyme activity and transcriptomics indicated that crowding stress suppressed the immune function of juvenile pearl gentian groupers, reducing their immune ability. Overall, these findings offer new insights into the molecular mechanisms underlying crowding stress tolerance in juvenile pearl gentian grouper, suggesting that the NF-κB pathway plays a crucial role in the immune response of the head kidney of the pearl gentian grouper to long-term crowding stress.
Collapse
Affiliation(s)
- Wenyang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Ao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Xianhong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Fan Fei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Xiaoqiang Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Yingying Fang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Shuquan Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China
| | - Hongjun Yang
- Xingguang Marine Ranch Fishery Co., Ltd, Rizhao, 276800 PR China
| | - Wensheng Li
- Mingbo Aquatic Products Co., Ltd, Yantai, 261400 PR China
| | - Baoliang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, PR China; Mingbo Aquatic Products Co., Ltd, Yantai, 261400 PR China.
| |
Collapse
|
6
|
Kaufman J. A personal view on developmental and comparative immunology: What, how and why? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105258. [PMID: 39214324 DOI: 10.1016/j.dci.2024.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
What are the future directions of the fields of developmental and comparative immunology? In thinking through this question as I write, I find myself marvelling at the very long ways that we have come since I began as a PhD student some 50 years ago. I think that we cannot know what technical and theoretical advances will emerge in the future, nor will our initial aims survive the realities of what appears in our sights, often from unexpected directions. I feel that we should not allow what we already know about some well-studied systems to blind us to the wide range of possibilities, and that remaining a humble seeker helps the uptake of new realities. Finally, it would be good to try answering the whole range of questions about developmental and comparative immunology, from what to how to why.
Collapse
Affiliation(s)
- Jim Kaufman
- University of Edinburgh, Institute for Immunology and Infection Research, Charlotte Auerbach Road, Edinburgh, EH9 3 FL, United Kingdom.
| |
Collapse
|
7
|
Ko S, Hong S. Characterization of IgD and IgT with their expressional analysis following subtype II megalocytivirus vaccination and infection in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105248. [PMID: 39216776 DOI: 10.1016/j.dci.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a μ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
8
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
9
|
Salvador-Martínez I, Murga-Moreno J, Nieto JC, Alsinet C, Enard D, Heyn H. Adaptation in human immune cells residing in tissues at the frontline of infections. Nat Commun 2024; 15:10329. [PMID: 39609395 PMCID: PMC11605006 DOI: 10.1038/s41467-024-54603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Human immune cells are under constant evolutionary pressure, primarily through their role as first line of defence against pathogens. Most studies on immune adaptation are, however, based on protein-coding genes without considering their cellular context. Here, using data from the Human Cell Atlas, we infer the gene adaptation rate of the human immune landscape at cellular resolution. We find abundant cell types, like progenitor cells during development and adult cells in barrier tissues, to harbour significantly increased adaptation rates. We confirm the adaptation of tissue-resident T and NK cells in the adult lung located in compartments directly facing external challenges, such as respiratory pathogens. Analysing human iPSC-derived macrophages responding to various challenges, we find adaptation in early immune responses. Together, our study suggests host benefits to control pathogen spread at early stages of infection, providing a retrospect of forces that shaped the complexity, architecture, and function of the human body.
Collapse
Affiliation(s)
| | - Jesus Murga-Moreno
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Juan C Nieto
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Clara Alsinet
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Holger Heyn
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
10
|
Marchal S, Choukér A, Bereiter-Hahn J, Kraus A, Grimm D, Krüger M. Challenges for the human immune system after leaving Earth. NPJ Microgravity 2024; 10:106. [PMID: 39557881 PMCID: PMC11574097 DOI: 10.1038/s41526-024-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
From the start of life on Earth, several immune defense mechanisms have evolved to guarantee cellular integrity, homeostasis, and host survival. All these sophisticated balances as shaped by and towards the environmental needs have occurred over hundreds of millions of years. Human spaceflight involves various health hazards, such as higher levels of radiation, altered gravity, isolation and confinement, living in tight quarters, and stress associated with being away from home. A growing body of evidence points towards immunological changes in astronauts, including heightened pro-inflammatory responses, reactivation of latent viruses, and cell-mediated alterations, reflecting a dysbalanced state in astronauts. Simultaneously, enhanced pathogenicity, virulence, and drug resistance properties of microorganisms tip the scale out of favor for prolonged stay in space. As we have learned from the past, we see potential for the human immune system, forged and maintained throughout evolutionary history, to adapt to the space exposome. It is unlikely that this will happen in the short time frames set for current space exploration missions. Instead, major risks to astronaut health need to be addressed first, before humans can safely evolve into the space environment.
Collapse
Affiliation(s)
- Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, LMU University Hospital, LMU Munich, Marchioninistr. 15, Munich, Germany
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armin Kraus
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
| |
Collapse
|
11
|
Wang LJ, Lai XH, Luo Z, Feng GL, Song YF. Diallyl disulfide alleviates hepatic steatosis by the conservative mechanism from fish to tetrapod: Augment Mfn2/Atgl-Mediated lipid droplet-mitochondria coupling. Redox Biol 2024; 77:103395. [PMID: 39447254 PMCID: PMC11539707 DOI: 10.1016/j.redox.2024.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Despite increasing evidences has highlighted the importance of mitochondria-lipid droplet (LD) coupling in maintaining lipid homeostasis, little progress in unraveling the role of mitochondria-LD coupling in hepatic lipid metabolism has been made. Additionally, diallyl disulfide (DADS), a garlic organosulfur compound, has been proposed to prevent hepatic steatosis; however, no studies have focused on the molecular mechanism to date. To address these gaps, this study investigated the systemic control mechanisms of mitochondria-LD coupling regulating hepatic lipid metabolism, and also explored their function in the process of DADS alleviating hepatic steatosis. To this end, an animal model of lipid metabolism, yellow catfish Pelteobagrus fulvidraco were fed four different diets (control, high-fat, DADS and high-fat + DADS diet) in vivo for 8 weeks; in vitro experiments were conducted to inhibit Mfn2/Atgl-mediated mitochondria-LD coupling in isolated hepatocytes. The key findings are: (1) the activations of hepatic LDs lipolysis and mitochondrial β-oxidation are likely the major drivers for DADS alleviating hepatic steatosis; (2) the underlying mechanism is that DADS enhances mitochondria-LD coupling by promoting the interaction between mitochondrion-localized Mfn2 with LD-localized Atgl, which facilitates the hepatic LDs lipolysis and the transfer of fatty acids (FAs) from LDs to mitochondria for subsequent β-oxidation; (3) Mfn2-mediated mitochondrial fusion facilitates mitochondria to form more PDM, which possess higher β-oxidation capacity in hepatocytes. Significantly, the present research unveils a previously undisclosed mechanism by which Mfn2/Atgl-mitochondria-LD coupling relieves hepatic LDs accumulation, which is a conserved strategy from fish to tetrapod. This study provides another dimension for mitochondria-LD coupling and opens up new avenues for the therapeutic interventions in hepatic steatosis.
Collapse
Affiliation(s)
- Ling-Jiao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Guang-Li Feng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Gholipourshahraki T, Bai Z, Shrestha M, Hjelholt A, Hu S, Kjolby M, Rohde PD, Sørensen P. Evaluation of Bayesian Linear Regression models for gene set prioritization in complex diseases. PLoS Genet 2024; 20:e1011463. [PMID: 39495786 PMCID: PMC11563439 DOI: 10.1371/journal.pgen.1011463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/14/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of complex traits, yet interpreting their results remains challenging due to the polygenic nature of most traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to uncover shared genetic components among different phenotypes and facilitate biological interpretation. Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's performance under various scenarios, highlighting the impact of factors such as the number of causal genes, proportions of causal variants, heritability, and disease prevalence. Comparative analyses with MAGMA (Multi-marker Analysis of GenoMic Annotation) demonstrate BLR's superior performance, especially in highly overlapped gene sets. Application of both single-trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes (T2D) and related phenotypes, identifies significant associations with T2D-related pathways. Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior performance of the multi-trait approach in identifying associated pathways, showcasing increased statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with integrated data from various public resources supports our results, confirming significant enrichment of diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR model's ability to handle diverse genomic features, perform regularization, conduct variable selection, and integrate information from multiple traits, genders, and ancestries demonstrates its utility in understanding the genetic architecture of complex traits. Our study provides insights into the potential of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets. This model presents opportunities for advancing personalized medicine by exploring the genetic underpinnings of multifactorial traits.
Collapse
Affiliation(s)
| | - Zhonghao Bai
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Merina Shrestha
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Astrid Hjelholt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Sile Hu
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Duun Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Joung JY, Lee YH, Son CG. An evolutionary perspective for integrating mechanisms of acupuncture therapy. Explore (NY) 2024; 20:103060. [PMID: 39278099 DOI: 10.1016/j.explore.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
This study applies an evolutionary medicine perspective to comprehend the therapeutic effects of acupuncture. It draws upon modern evolutionary theory to integrate the currently fragmented theories regarding the efficacy of acupuncture in alleviating pain and promoting healing. We explore the interaction between the nervous and immune systems in the context of survival and homeostasis, and elucidate both the local and systemic effects of acupuncture therapy on pain relief and tissue healing. The mechanisms involved are categorized into two main types: local effects, which include immune cell migration, local vasodilation, and the release of adenosine; and distal systemic effects, which involve the regulation of the descending pain control system and the autonomic nervous system, with a particular focus on the parasympathetic nervous system. In conclusion, this integrated perspective not only deepens our understanding of acupuncture within a scientific narrative but also underscores the need for further research to validate and expand our knowledge, thereby enhancing its scientific credibility and clinical applicability.
Collapse
Affiliation(s)
- Jin-Yong Joung
- Department of Internal Medicine, Daejeon Good-morning Oriental Hospital, 21, Dunsan-ro 123beon-gil, Seo-gu, Daejeon 35240, Republic of Korea; Department of Korean Medicine, Korean Medical College of Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea; Department of Korean Medicine, Korean Medical College of Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea.
| |
Collapse
|
14
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
15
|
Bjørnestad SA, Solbakken MH, Krokene P, Thiede B, Hylland K, Jakobsen KS, Jentoft S, Bakke O, Progida C. The Atlantic Cod MHC I compartment has the properties needed for cross-presentation in the absence of MHC II. Sci Rep 2024; 14:25404. [PMID: 39455705 PMCID: PMC11511864 DOI: 10.1038/s41598-024-76225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Atlantic cod has a peculiar immune system, characterized by the loss of Major Histocompatibility Complex (MHC) class II pathway, and an extreme expansion of the MHC class I gene repertoire. This has led to the hypothesis that some of the MHC I variants have replaced MHC II by presenting exogenous-peptides in a process similar to cross-presentation. In mammals, MHC I loads endogenous antigens in the endoplasmic reticulum, but we recently found that different Atlantic cod MHC I gene variants traffic to endolysosomes. There, they colocalize with Tapasin and other components of the peptide-loading complex, indicating a plausible peptide-loading system outside the endoplasmic reticulum. In this study, we further characterize the identity of the Atlantic cod MHC I compartment (cMIC). We found that, similarly to mammalian MHC II compartment, cMIC contains late endosomal markers such as Rab7, LAMP1 and CD63. Furthermore, we identified Hsp90b1 (also known as grp94) and LRP1 (also known as CD91) as interactors of MHC I by mass spectrometry. As these two proteins are involved in cross-presentation in mammals, this further suggests that Atlantic cod MHC I might use a similar mechanism to present exogenous peptides, thus, compensating for the absence of MHC II.
Collapse
Affiliation(s)
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| | - Pia Krokene
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Sissel Jentoft
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Rodriguez-Valbuena H, Salcedo J, De Their O, Flot JF, Tiozzo S, De Tomaso AW. Genetic and functional diversity of allorecognition receptors in the urochordate, Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618699. [PMID: 39463968 PMCID: PMC11507803 DOI: 10.1101/2024.10.16.618699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Allorecognition in Botryllus schlosseri is controlled by a highly polymorphic locus (the fuhc), and functionally similar to missing-self recognition utilized by Natural Killer cells-compatibility is determined by sharing a self-allele, and integration of activating and inhibitory signals determines outcome. We had found these signals were generated by two fuhc-encoded receptors, called fester and uncle fester. Here we show that fester genes are members of an extended family consisting of >37 loci, and co-expressed with an even more diverse gene family-the fester co-receptors (FcoR). The FcoRs are membrane proteins related to fester, but include conserved tyrosine motifs, including ITIMs and hemITAMs. Both genes are encoded in highly polymorphic haplotypes on multiple chromosomes, revealing an unparalleled level of diversity of innate receptors. Our results also suggest that ITAM/ITIM signal integration is a deeply conserved mechanism that has allowed convergent evolution of innate and adaptive cell-based recognition systems.
Collapse
Affiliation(s)
| | - Jorge Salcedo
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Olivier De Their
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Jean Francois Flot
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Stefano Tiozzo
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
17
|
Du P, Li J, Hua M, Zhu L, Chen C, Zeng H. Potential Contributions of Human Endogenous Retroviruses in Innate Immune Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1225-1233. [PMID: 39230265 DOI: 10.4049/jimmunol.2300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The phenomenon wherein innate immune cells adopt long-term inflammatory phenotypes following the first stimuli is named trained immunity and can improve host defense against infections. Transcriptional and epigenetic reprogramming are critical mechanisms of trained immunity; however, the regulatory networks are not entirely clear at present. The human endogenous retroviruses (HERVs) provide large amounts of transcriptional regulators in the regulatory pathways. In this study, we analyzed published large omics data to explore the roles of such "dark matter" of the human genome in trained and tolerant macrophages. We collected 80 RNA sequencing data and 62 sequencing data to detect histone modifications and active regulatory regions from nine published studies on trained and tolerant macrophages. By analyzing the characteristics of transcription and epigenetic modification of HERVs, as well as their association with gene expression, we found that 15.3% of HERVs were transcribed nonrandomly from noncoding regions and enriched in specific HERV families and specific chromosomes, such as chromosomes 11, 15, 17, and 19, and they were highly related with the expression of adjacent genes. We found that 295 differentially expressed HERVs are located in 50-kbp flanking regions of 142 differentially expressed genes. We found epigenetic changes of these HERVs and that overlap with predicted enhancers and identified 35 enhancer-like HERVs. The related genes were highly involved in the activation and inflammatory responses, such as the TLR pathway. Other pathways including phosphoinositide signaling and transport of folate and K+ might be also related with trained immunity, which require further study. These results demonstrated that HERVs might play important roles in trained immunity.
Collapse
Affiliation(s)
- Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Jiarui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Rao SS, Skinnemoen L, Fond AKS, Haugland GT. Analyses of the Mx family members in lumpfish: Molecular characterization, phylogeny, and gene expression analyses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105225. [PMID: 38992732 DOI: 10.1016/j.dci.2024.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Members of the myxovirus resistance (Mx) protein family play an essential role in antiviral immunity. They are Dynamin-like GTPases, induced by interferons. In the current study, we have characterized two predicted MX genes (MX1 and MX2) from lumpfish (Cyclopterus lumpus L.), having 12 and 13 exons, respectively. Mx2 has two isoforms (Mx2-X1 and Mx2-X2) which differ in exon 1. The lumpfish Mx proteins contain an N-terminal Dynamin-like GTPase domain, the middle domain (MD) and GTPase effector domain (GED) characteristic for Mx proteins. Phylogenetic analyses grouped all the lumpfish Mx sequences in group 1, and synteny analyses showed that both genes were localized at chromosome 5 in proximity to the genes Tohc7, Atxn7 and Psmd6. In vitro stimulation experiment showed that both MX1 and MX2-X2 were highly upregulated upon exposure to poly(I:C), but not bacteria, 24 h post exposure, indicating their role in antiviral immunity.
Collapse
Affiliation(s)
- Shreesha Sadashiva Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, 5006, Norway
| | - Linda Skinnemoen
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, 5006, Norway
| | - Amanda Kästel Sandal Fond
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, 5006, Norway
| | - Gyri Teien Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, 5006, Norway.
| |
Collapse
|
19
|
Tran TT, Prakash H, Nagasawa T, Nakao M, Somamoto T. Characterization of CD83 homologs differently expressed during monocytes differentiation in ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105212. [PMID: 38878874 DOI: 10.1016/j.dci.2024.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024]
Abstract
CD83 is a costimulatory molecule of antigen-presenting cells (APCs) that plays an important role in eliciting adaptive responses. It is also a well-known surface protein on mature dendritic cells (DCs). Furthermore, monocytes have been reported to differentiate into macrophages and monocyte-derived dendritic cells, which play an important role in innate immunity. CD83 expression affects the activation and maturation of DCs and stimulates cell-mediated immune responses. This study aims to reveal the CD83 expression during monocyte differentiation in teleosts, and the CD83 homologs evolutionary relationship. This study found two distinct CD83 homologs (GbCD83 and GbCD83-L) in ginbuna crucian carp (Gb) and investigated the evolutionary relationship among GbCD83 homologs and other vertebrates and the gene and protein expression levels of the homologs during 4 days of monocyte culture. The phylogenetic tree showed that the two GbCD83 homologs are classified into two distinct branches. Interestingly, only ostariophysians (Gb, common carp, rohu, fathead minnow and channel catfish), but not neoteleosts, mammals, and others, have two CD83 homologs. Morphological observation and colony-stimulating factor-1 receptor (CSF-1R), CD83, CD80/86, and CCR7 gene expressions illustrated that there is a differentiation of monocytes isolated from peripheral blood leukocytes after 4 days. Specifically, gene expression and immunocytochemistry revealed that GbCD83 is mainly expressed on monocytes at the early stage of cell culture, whereas GbCD83-L is expressed in the latter stage. These findings provided the first evidence of differential expression of CD83 homologs during monocytes differentiation in teleost.
Collapse
Affiliation(s)
- Trang Thu Tran
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan.
| |
Collapse
|
20
|
Bonnefous H, Teulière J, Lapointe FJ, Lopez P, Bapteste E. Most genetic roots of fungal and animal aging are hundreds of millions of years old according to phylostratigraphy analyses of aging networks. GeroScience 2024; 46:5037-5059. [PMID: 38862758 PMCID: PMC11335996 DOI: 10.1007/s11357-024-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Few studies have systematically analyzed how old aging is. Gaining a more accurate knowledge about the natural history of aging could however have several payoffs. This knowledge could unveil lineages with dated genetic hardware, possibly maladapted to current environmental challenges, and also uncover "phylogenetic modules of aging," i.e., naturally evolved pathways associated with aging or longevity from a single ancestry, with translational interest for anti-aging therapies. Here, we approximated the natural history of the genetic hardware of aging for five model fungal and animal species. We propose a lower-bound estimate of the phylogenetic age of origination for their protein-encoding gene families and protein-protein interactions. Most aging-associated gene families are hundreds of million years old, older than the other gene families from these genomes. Moreover, we observed a form of punctuated evolution of the aging hardware in all species, as aging-associated families born at specific phylogenetic times accumulate preferentially in genomes. Most protein-protein interactions between aging genes are also old, and old aging-associated proteins showed a reduced potential to contribute to novel interactions associated with aging, suggesting that aging networks are at risk of losing in evolvability over long evolutionary periods. Finally, due to reshuffling events, aging networks presented a very limited phylogenetic structure that challenges the detection of "maladaptive" or "adaptative" phylogenetic modules of aging in present-day genomes.
Collapse
Affiliation(s)
- Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - François-Joseph Lapointe
- Département de Sciences Biologiques, Complexe Des Sciences, Université de Montréal, Montréal, QC, Canada
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France.
| |
Collapse
|
21
|
Antonacci R, Giannico F, Moschetti R, Pala A, Jambrenghi AC, Massari S. A Comprehensive Analysis of the Genomic and Expressed Repertoire of the T-Cell Receptor Beta Chain in Equus caballus. Animals (Basel) 2024; 14:2817. [PMID: 39409766 PMCID: PMC11475548 DOI: 10.3390/ani14192817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified. The general genomic organization resembles that of other mammals, with a V cluster of 135 TRBV genes located upstream of two in-tandem aligned TRBD-J-C clusters and an inverted TRBV gene at the 3' end of the last TRBC gene. However, the horse b-chain repertoire would be affected by a high number of non-functional TRBV genes. Thus, we queried a transcriptomic dataset derived from splenic tissue of a healthy adult horse, using each TRBJ gene as a probe to analyze clonotypes encompassing the V(D)J junction. This analysis provided insights into the usage of the TRBV, TRBD, and TRBJ genes and the variability of the non-germline-encoded CDR3. Our results clearly demonstrated that the horse β-chain constitutes a complex level of variability, broadly like that described in other mammalian species.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70010 Bari, Italy;
| | - Roberta Moschetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Angela Pala
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Anna Caputi Jambrenghi
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
22
|
Jalan-Sakrikar N, Guicciardi ME, O'Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Department of Medicine, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Eugenia Guicciardi
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven P O'Hara
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Adiba Azad
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J Gores
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Huebert
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Department of Medicine, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Wang HY, Chen JY, Li Y, Zhang X, Liu X, Lu Y, He H, Li Y, Chen H, Liu Q, Huang Y, Jia Z, Li S, Zhang Y, Han S, Jiang S, Yang M, Zhang Y, Zhou L, Tan F, Ji Q, Meng L, Wang R, Liu Y, Liu K, Wang Q, Seim I, Zou J, Fan G, Liu S, Shao C. Single-cell RNA sequencing illuminates the ontogeny, conservation and diversification of cartilaginous and bony fish lymphocytes. Nat Commun 2024; 15:7627. [PMID: 39227568 PMCID: PMC11372145 DOI: 10.1038/s41467-024-51761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Elucidating cellular architecture and cell-type evolution across species is central to understanding immune system function and susceptibility to disease. Adaptive immunity is a shared trait of the common ancestor of cartilaginous and bony fishes. However, evolutionary features of lymphocytes in these two jawed vertebrates remain unclear. Here, we present a single-cell RNA sequencing atlas of immune cells from cartilaginous (white-spotted bamboo shark) and bony (zebrafish and Chinese tongue sole) fishes. Cross-species comparisons show that the same cell types across different species exhibit similar transcriptional profiles. In the bamboo shark, we identify a phagocytic B cell population expressing several pattern recognition receptors, as well as a T cell sub-cluster co-expressing both T and B cell markers. In contrast to a division by function in the bony fishes, we show close linkage and poor functional specialization among lymphocytes in the cartilaginous fish. Our cross-species single-cell comparison presents a resource for uncovering the origin and evolution of the gnathostome immune system.
Collapse
Affiliation(s)
- Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jian-Yang Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yanan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Yifang Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hang He
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yubang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hongxi Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Qun Liu
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yangqing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shenglei Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuhong Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Mingming Yang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingying Zhang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Li Zhou
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Fujian Tan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | | | - Liang Meng
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Rui Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
- BGI Research, Shenzhen, 518083, China
| | | | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
24
|
Wu F, Wu Y, Yao Y, Xu Y, Peng Q, Ma L, Li J, Yao X. The reverse TRBV30 gene of mammals: a defect or superiority in evolution? BMC Genomics 2024; 25:705. [PMID: 39030501 PMCID: PMC11264764 DOI: 10.1186/s12864-024-10632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRβ CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yuanning Yao
- Queen Mary School, Nanchang University, Nanchang, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qi Peng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
25
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
26
|
Györkei Á, Johansen FE, Qiao SW. Systematic characterization of immunoglobulin loci and deep sequencing of the expressed repertoire in the Atlantic cod (Gadus morhua). BMC Genomics 2024; 25:663. [PMID: 38961347 PMCID: PMC11223323 DOI: 10.1186/s12864-024-10571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The Atlantic cod is a prolific species in the Atlantic, despite its inconsistent specific antibody response. It presents a peculiar case within vertebrate immunology due to its distinct immune system, characterized by the absence of MHCII antigen presentation pathway, required for T cell-dependent antibody responses. Thorough characterisation of immunoglobulin loci and analysis of the antibody repertoire is necessary to further our understanding of the Atlantic cod's immune response on a molecular level. RESULTS A comprehensive search of the cod genome (gadmor3.0) identified the complete set of IgH genes organized into three sequential translocons on chromosome 2, while IgL genes were located on chromosomes 2 and 5. The Atlantic cod displayed a moderate germline V gene diversity, comprising four V gene families for both IgH and IgL, each with distinct chromosomal locations and organizational structures. 5'RACE sequencing revealed a diverse range of heavy chain CDR3 sequences and relatively limited CDR3 diversity in light chains. The analysis highlighted a differential impact of V-gene germline CDR3 length on receptor CDR3 length between heavy and light chains, underlining different recombination processes. CONCLUSIONS This study reveals that the Atlantic cod, despite its inconsistent antibody response, maintains a level of immunoglobulin diversity comparable to other fish species. The findings suggest that the extensive recent duplications of kappa light chain genes do not result in increased repertoire diversity. This research provides a comprehensive view of the Atlantic cod's immunoglobulin gene organization and repertoire, necessary for future studies of antibody responses at the molecular level.
Collapse
Affiliation(s)
- Ádám Györkei
- Department of Biosciences, Section for Physiology and Cell Biology, University of Oslo, Oslo, Norway
| | - Finn-Eirik Johansen
- Department of Biosciences, Section for Physiology and Cell Biology, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Bela-Ong DB, Kim J, Thompson KD, Jung TS. Leveraging the biotechnological promise of the hagfish variable lymphocyte receptors: tools for aquatic microbial diseases. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109565. [PMID: 38636740 DOI: 10.1016/j.fsi.2024.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The jawless vertebrates (agnathans/cyclostomes) are ancestral animals comprising lampreys and hagfishes as the only extant representatives. They possess an alternative adaptive immune system (AIS) that uses leucine-rich repeats (LRR)-based variable lymphocyte receptors (VLRs) instead of the immunoglobulin (Ig)-based antigen receptors of jawed vertebrates (gnathostomes). The different VLR types are expressed on agnathan lymphocytes and functionally resemble gnathostome antigen receptors. In particular, VLRB is functionally similar to the B cell receptor and is expressed and secreted by B-like lymphocytes as VLRB antibodies that bind antigens with high affinity and specificity. The potential repertoire scale of VLR-based antigen receptors is believed to be at least comparable to that of Ig-based systems. VLR proteins inherently possess characteristics that render them excellent candidates for biotechnological development, including tractability to recombinant approaches. In recent years, scientists have explored the biotechnological development and utility of VLRB proteins as alternatives to conventional mammalian antibodies. The VLRB antibody platform represents a non-traditional approach to generating a highly diverse repertoire of unique antibodies. In this review, we first describe some aspects of the biology of the AIS of the jawless vertebrates, which recognizes antigens by means of unique receptors. We then summarize reports on the development of VLRB-based antibodies and their applications, particularly those from the inshore hagfish (Eptatretus burgeri) and their potential uses to address microbial diseases in aquaculture. Hagfish VLRB antibodies (we call Ccombodies) are being developed and improved, while obstacles to the advancement of the VLRB platform are being addressed to utilize VLRBs effectively as tools in immunology. VLRB antibodies for novel antigen targets are expected to emerge to provide new opportunities to tackle various scientific questions. We anticipate a greater interest in the agnathan AIS in general and particularly in the hagfish AIS for greater elucidation of the evolution of adaptive immunity and its applications to address microbial pathogens in farmed aquatic animals and beyond.
Collapse
Affiliation(s)
- Dennis B Bela-Ong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaesung Kim
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK, Scotland, United Kingdom
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea.
| |
Collapse
|
28
|
Jiang XX, Tang ZR, Li ZP, Zhang GR, Zhou X, Ma XF, Wei KJ. Molecular characterization, expression analysis and function identification of Pf_IL-12p35, Pf_IL-23p19 and Pf_IL-12p40 genes in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109623. [PMID: 38750705 DOI: 10.1016/j.fsi.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The interleukin-12 (IL-12) family is a class of heterodimeric cytokines that play crucial roles in pro-inflammatory and pro-stimulatory responses. Although some IL-12 and IL-23 paralogues have been found in fish, their functional activity in fish remains poorly understood. In this study, Pf_IL-12p35a/b, Pf_IL-23p19 and Pf_IL-12p40a/b/c genes were cloned from yellow catfish (Pelteobagrus fulvidraco), four α-helices were found in Pf_IL-12p35a/b and Pf_IL-23p19. The transcripts of these six genes were relatively high in mucus and immune tissues of healthy individuals, and in gill leukocytes. Following Edwardsiella ictaluri infection, Pf_IL-12p35a/b and Pf_IL-23p19 mRNAs were induced in brain and kidney (or head kidney), Pf_IL-12p40a mRNA was induced in gill, and Pf_IL-12p40b/c mRNAs were induced in brain and liver (or skin). The mRNA expression of these genes in PBLs was induced by phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (poly I:C), while lipopolysaccharides (LPS) induced the mRNA expression of Pf_IL-12p35a and Pf_IL-12p40b/c in PBLs. After stimulation with recombinant (r) Pf_IL-12 and rPf_IL-23 subunit proteins, either alone or in combination, mRNA expression patterns of genes related to T helper cell development exhibited distinct differences. The results suggest that Pf_IL-12 and Pf_IL-23 subunits may play important roles in regulating immune responses to pathogens and T helper cell development.
Collapse
Affiliation(s)
- Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zi-Rui Tang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhang-Ping Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
29
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Sun J, Ma J, Chen L, Xiao S, Xiao X, Fang L. Orf virus as an adjuvant enhances the immune response to a PCV2 subunit vaccine. Vet Microbiol 2024; 293:110088. [PMID: 38640639 DOI: 10.1016/j.vetmic.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Orf virus (ORFV), a member of the genus Parapoxvirus, possesses an excellent immune activation capability, which makes it a promising immunomodulation agent. In this study, we evaluated ORFV as a novel adjuvant to enhance the immune response of mice to a subunit vaccine using porcine circovirus type 2 (PCV2) capsid (Cap) protein as a model. Our results showed that both inactivated and live attenuated ORFV activated mouse bone marrow-derived dendritic cells and increased expression of immune-related cytokines interleukin (IL)-1β, IL-6, and TNF-α. Enhanced humoral and cellular immune responses were induced in mice immunized with PCV2 Cap protein combined with inactivated or live attenuated ORFV adjuvant compared with the aluminum adjuvant. Increased secretion of Th1 and Th2 cytokines by splenic lymphocytes in immunized mice further indicated that the ORFV adjuvant promoted a mixed Th1/Th2 immune response. Moreover, addition of the ORFV adjuvant to the PCV2 subunit vaccine significantly reduced the viral load in the spleen and lungs of PCV2-challenged mice and prevented pathological changes in lungs. This study demonstrates that ORFV enhances the immunogenicity of a PCV2 subunit vaccine by improving the adaptive immune response, suggesting the potential application of ORFV as a novel adjuvant.
Collapse
Affiliation(s)
- Jie Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Longfei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
31
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
32
|
Zhan T, Li X, Liu J, Ye C. CRISPR-based gene expression platform for precise regulation of bladder cancer. Cell Mol Biol Lett 2024; 29:66. [PMID: 38724931 PMCID: PMC11080256 DOI: 10.1186/s11658-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and β-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular β-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.
Collapse
Affiliation(s)
- Tianying Zhan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- Department of Urology, Carson International Cancer Centre, Shenzhen University General Hospital, Shenzhen, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guang Dong Medical Academic Exchange Center, Guangzhou, China.
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guang Dong Medical Academic Exchange Center, Guangzhou, China.
| |
Collapse
|
33
|
Gao Y, Dong K, Gao Y, Jin X, Yang J, Yan G, Liu Q. Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning. CELL GENOMICS 2024; 4:100553. [PMID: 38688285 PMCID: PMC11099349 DOI: 10.1016/j.xgen.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/09/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) and T cell receptor sequencing (TCR-seq) are pivotal for investigating T cell heterogeneity. Integrating these modalities, which is expected to uncover profound insights in immunology that might otherwise go unnoticed with a single modality, faces computational challenges due to the low-resource characteristics of the multimodal data. Herein, we present UniTCR, a novel low-resource-aware multimodal representation learning framework designed for the unified cross-modality integration, enabling comprehensive T cell analysis. By designing a dual-modality contrastive learning module and a single-modality preservation module to effectively embed each modality into a common latent space, UniTCR demonstrates versatility in connecting TCR sequences with T cell transcriptomes across various tasks, including single-modality analysis, modality gap analysis, epitope-TCR binding prediction, and TCR profile cross-modality generation, in a low-resource-aware way. Extensive evaluations conducted on multiple scRNA-seq/TCR-seq paired datasets showed the superior performance of UniTCR, exhibiting the ability of exploring the complexity of immune system.
Collapse
Affiliation(s)
- Yicheng Gao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Medicine, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kejing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Medicine, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuli Gao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Medicine, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xuan Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Medicine, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingya Yang
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Gang Yan
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Medicine, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China; Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
34
|
Tillib SV, Goryainova OS. Extending Linker Sequences between Antigen-Recognition Modules Provides More Effective Production of Bispecific Nanoantibodies in the Periplasma of E. coli. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:933-941. [PMID: 38880653 DOI: 10.1134/s0006297924050134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/18/2024]
Abstract
Technology of production of single-domain antibodies (NANOBODY® molecules, also referred to as nanoantibodies, nAb, or molecules based on other stable protein structures) and their derivatives to solve current problems in biomedicine is becoming increasingly popular. Indeed, the format of one small, highly soluble protein with a stable structure, fully functional in terms of specific recognition, is very convenient as a module for creating multivalent, bi-/oligo-specific genetically engineered targeting molecules and structures. Production of nAb in periplasm of E. coli bacterium is a very convenient and fairly universal way to obtain analytical quantities of nAb for the initial study of the properties of these molecules and selection of the most promising nAb variants. The situation is more complicated with production of bi- and multivalent derivatives of the initially selected nAbs under the same conditions. In this work, extended linker sequences (52 and 86 aa) between the antigen-recognition modules in the cloned expression constructs were developed and applied in order to increase efficiency of production of bispecific nanoantibodies (bsNB) in the periplasm of E. coli bacteria. Three variants of model bsNBs described in this study were produced in the periplasm of bacteria and isolated in soluble form with preservation of functionality of all the protein domains. If earlier our attempts to produce bsNB in the periplasm with traditional linkers no longer than 30 aa were unsuccessful, the extended linkers used here provided a significantly more efficient production of bsNB, comparable in efficiency to the traditional production of original monomeric nAbs. The use of sufficiently long linkers could presumably be useful for increasing efficiency of production of other bsNBs and similar molecules in the periplasm of E. coli bacteria.
Collapse
Affiliation(s)
- Sergei V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oksana S Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
35
|
Davis WC, Mahmoud AH, Hulubei V, Hasan A, Abdellrazeq GS. Progress in the development and use of monoclonal antibodies to study the evolution and function of the immune systems in the extant lineages of ungulates. Vet Immunol Immunopathol 2024; 270:110730. [PMID: 38422854 DOI: 10.1016/j.vetimm.2024.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Details on the origin and function of the immune system are beginning to emerge from genomic studies tracing the origin of B and T cells and the major histocompatibility complex. This is being accomplished through identification of DNA sequences of ancestral genes present in the genomes of lineages of vertebrates that have evolved from a common primordial ancestor. Information on the evolution of the composition and function of the immune system is being obtained through development of monoclonal antibodies (mAbs) specific for the MHC class I and II molecules and differentially expressed on leukocytes differentiation molecules (LDM). The mAbs have provided the tools needed to compare the similarities and differences in the phenotype and function of immune systems that have evolved during speciation. The majority of information currently available on evolution of the composition and function of the immune system is derived from study of the immune systems in humans and mice. As described in the present review, further information is beginning to emerge from comparative studies of the immune systems in the extant lineages of species present in the two orders of ungulates, Perissodactyla and Artiodactyla. Methods have been developed to facilitate comparative research across species on pathogens affecting animal and human health.
Collapse
Affiliation(s)
- William C Davis
- Department Veterinary Microbiology, College Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Asmaa H Mahmoud
- Department Veterinary Microbiology, College Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Victoria Hulubei
- Department Veterinary Microbiology, College Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Amany Hasan
- Department Veterinary Microbiology, College Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Gaber S Abdellrazeq
- Department Veterinary Microbiology, College Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
36
|
Parker J, Marten SM, Ó Corcora TC, Rajkov J, Dubin A, Roth O. The effects of primary and secondary bacterial exposure on the seahorse (Hippocampus erectus) immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105136. [PMID: 38185263 DOI: 10.1016/j.dci.2024.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Evolutionary adaptations in the Syngnathidae teleost family (seahorses, pipefish and seadragons) culminated in an array of spectacular morphologies, key immune gene losses, and the enigmatic male pregnancy. In seahorses, genome modifications associated with immunoglobulins, complement, and major histocompatibility complex (MHC II) pathway components raise questions concerning their immunological efficiency and the evolution of compensatory measures that may act in their place. In this investigation heat-killed bacteria (Vibrio aestuarianus and Tenacibaculum maritimum) were used in a two-phased experiment to assess the immune response dynamics of Hippocampus erectus. Gill transcriptomes from double and single-exposed individuals were analysed in order to determine the differentially expressed genes contributing to immune system responses towards immune priming. Double-exposed individuals exhibited a greater adaptive immune response when compared with single-exposed individuals, while single-exposed individuals, particularly with V. aestuarianus replicates, associated more with the innate branch of the immune system. T. maritimum double-exposed replicates exhibited the strongest immune reaction, likely due to their immunological naivety towards the bacterium, while there are also potential signs of innate trained immunity. MHC II upregulated expression was identified in selected V. aestuarianus-exposed seahorses, in the absence of other pathway constituents suggesting a possible alternative or non-classical MHC II immune function in seahorses. Gene Ontology (GO) enrichment analysis highlighted prominent angiogenesis activity following secondary exposure, which could be linked to an adaptive immune process in seahorses. This investigation highlights the prominent role of T-cell mediated adaptive immune responses in seahorses when exposed to sequential foreign bacteria exposures. If classical MHC II pathway function has been lost, innate trained immunity in syngnathids could be a potential compensatory mechanism.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Silke-Mareike Marten
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Tadhg C Ó Corcora
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Jelena Rajkov
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Arseny Dubin
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
37
|
Okano M, Miyamae J, Sakurai K, Yamaguchi T, Uehara R, Katakura F, Moritomo T. Subgenomic T cell receptor alpha and delta (TRA/TRD) loci in common carp. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109421. [PMID: 38325591 DOI: 10.1016/j.fsi.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
In jawed vertebrates, the T cell receptor alpha (TRA) and delta (TRD) genes, which encode the TRα and TRδ chains, respectively, are located as a nested structure on a single chromosome. To date, no animal has been reported to harbor multiple TRA/TRD loci on different chromosomes. Therefore, herein, we describe the first full annotation of the TRA/TRD genomic regions of common carp, an allo-tetraploid fish species that experiences cyprinid-specific whole-genome duplication (WGD) in evolution. Fine genomic maps of TRA/TRD genomic regions 1 and 2, on LG30 and LG22, respectively, were constructed using the annotations of complete sets of TRA and TRD genes, including TRA/TRD variable (V), TRA junction (J), and constant (C), TRD diversity (D), and the J and C genes. The structure and synteny of the TRA/TRD genomic regions were highly conserved in zebrafish, indicating that these regions are on individual chromosomes. Furthermore, analysis of the variable regions of the TRA and TRD genes in a monoclonal T cell line revealed that both subgenomic regions 1 and 2 were indeed rearranged. Although carp TRAV and TRDV genes were phylogenetically divided into different lineages, they were mixed and organized into the TRA/TRD V gene clusters on the genome, similar to that in other vertebrates. Notably, 285 potential TRA/TRD V genes were detected in the TRA/TRD genomic regions, which is the most abundant number of genes in vertebrates and approximately two-fold that in zebrafish. The recombination signal sequences (RSSs) at the end of each V gene differed between TRAV and TRDV, suggesting that RSS variations might separate each V gene into a TRα or TRδ chain. This study is the first to describe subgenomic TRA/TRD loci in animals. Our findings provide fundamental insights to elucidate the impact of WGD on the evolution of immune repertoire.
Collapse
Affiliation(s)
- Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, Kanda-Surugadai 1-8-13, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 794-8555, Japan
| | - Kohei Sakurai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Takuya Yamaguchi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Ren Uehara
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
38
|
Boos F, Chen J, Brunet A. The African Turquoise Killifish: A Scalable Vertebrate Model for Aging and Other Complex Phenotypes. Cold Spring Harb Protoc 2024; 2024:107737. [PMID: 37100468 PMCID: PMC10890783 DOI: 10.1101/pdb.over107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The African turquoise killifish Nothobranchius furzeri is currently the shortest-lived vertebrate that can be bred in captivity. Because of its short life span of only 4-6 months, rapid generation time, high fecundity, and low cost of maintenance, the African turquoise killifish has emerged as an attractive model organism that combines the scalability of invertebrate models with the unique features of vertebrate organisms. A growing community of researchers is using the African turquoise killifish for studies in diverse fields, including aging, organ regeneration, development, "suspended animation," evolution, neuroscience, and disease. A wide range of techniques is now available for killifish research, from genetic manipulations and genomic tools to specialized assays for studying life span, organ biology, response to injury, etc. This protocol collection provides detailed descriptions of the methods that are generally applicable to all killifish laboratories and those that are limited to specific disciplines. Here, we give an overview of the features that render the African turquoise killifish a unique fast-track vertebrate model organism.
Collapse
Affiliation(s)
- Felix Boos
- Department of Genetics, Stanford, California 94305, USA
| | - Jingxun Chen
- Department of Genetics, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford, California 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, California 94305, USA
| |
Collapse
|
39
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
40
|
Arata K, Yamaguchi T, Takamune K, Yasumoto S, Kondo M, Kato SI, Yoshikuni M, Ohno K, Kato-Unoki Y, Okada G, Fujii T. Pattern recognition receptors involved in the immune system of hagfish (Eptatretus burgeri). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105065. [PMID: 37741564 DOI: 10.1016/j.dci.2023.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The initial defense against invading pathogenic microbes is the activation of innate immunity by binding of pattern recognition receptors (PRRs) to pathogen associated molecular patterns (PAMPs). To explain the action of PRRs from hagfish, one of the extant jawless vertebrates, we purified the GlcNAc recognition complex (GRC) from serum using GlcNAc-agarose. The GRC comprises four proteins of varying molecular masses: 19 kDa, 26 kDa, 27 kDa, and 31 kDa. Exposure of Escherichia coli to the GRC led to the phagocytic activation of macrophages, revealing the opsonic function of the GRC. The GRC in serum formed a large complex with a molecular mass of approximately 1200 kDa. The GRC bound to Escherichia coli but not to rabbit red blood cells, despite both having GlcNAc on their surface. These structural and binding properties are similar to those of mannose-binding lectin (MBL). The amino acid sequence of a portion of the 31 kDa protein in the GRC matched the amino acid sequence of variable lymphocyte receptor (VLR)-B in some place. According to the Western blot analysis, the 31 kDa protein was recognized by the anti-hagfish VLR-B antiserum. Based on the results, it appears that the GRC functions as a PRR like MBL and that its 31 kDa protein has a structure similar to that of VLR-B.
Collapse
Affiliation(s)
- Kenya Arata
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Tomokazu Yamaguchi
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Kazufumi Takamune
- Division of Natural Science, Faculty of Advanced Science and Technology, Kumamoto University(4), 2-39-1 Kurokami, Kumamoto, 860-8555, Japan.
| | - Shinya Yasumoto
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Shin-Ichi Kato
- Fishery Research Laboratory, Kyushu University, Fukutsu, 811-3304, Japan
| | | | - Kaoru Ohno
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Yoko Kato-Unoki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Genya Okada
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Minami-ku, Hiroshima, 734-8558, Japan
| | - Tamotsu Fujii
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Minami-ku, Hiroshima, 734-8558, Japan
| |
Collapse
|
41
|
Kattner AA. Evolutionary edge: NOD-like receptors in immunity. Biomed J 2024; 47:100702. [PMID: 38301953 PMCID: PMC10885312 DOI: 10.1016/j.bj.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
This issue of the Biomedical Journal delves into the multifaceted roles of NOD-like receptors (NLRs) in immunity, examining their subfamilies and functions within innate and adaptive immunity, autoimmune and inflammatory conditions, and mitophagy regulation. In this issue the dynamics of mRNA vaccines are explored, as well as the synergistic effects of a ketogenic diet with anti-tumor therapies, the roles of curcumin and RANKL in osteoclastogenesis, and the validation of a rapid diagnostic test for an oral cancer biomarker. Additionally, advancements in ocular care are highlighted, featuring a novel prodrug targeting corneal neovascularization, and discussing the efficacy of dexamethasone implants against macular edema. Concluding, further insights into the impact of sweetened foods on child development are given.
Collapse
|
42
|
Pagliuca S, Ferraro F. Immune-driven clonal cell selection at the intersection among cancer, infections, autoimmunity and senescence. Semin Hematol 2024; 61:22-34. [PMID: 38341340 DOI: 10.1053/j.seminhematol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Immune surveillance mechanisms play a crucial role in maintaining lifelong immune homeostasis in response to pathologic stimuli and aberrant cell states. However, their persistence, especially in the context of chronic antigenic exposure, can create a fertile ground for immune evasion. These escaping cell phenotypes, harboring a variety of genomic and transcriptomic aberrances, chiefly in human leukocyte antigen (HLA) and antigen presentation machinery genes, may survive and proliferate, featuring a scenario of clonal cell expansion with immune failure characteristics. While well characterized in solid and, to some extent, hematological malignancies, little is known about their occurrence and significance in other disease contexts. Historical literature highlights the role for escaping HLA-mediated recognition as a strategy adopted by virus to evade from the immune system, hinting at the potential for immune aberrant cell expansion in the context of chronic infections. Additionally, unmasked in idiopathic aplastic anemia as a mechanism able to rescue failing hematopoiesis, HLA clonal escape may operate in autoimmune disorders, particularly in tissues targeted by aberrant immune responses. Furthermore, senescent cell status emerging as immunogenic phenotypes stimulating T cell responses, may act as a bottleneck for the selection of such immune escaping clones, blurring the boundaries between neoplastic transformation, aging and inflammation. Here we provide a fresh overview and perspective on this immune-driven clonal cell expansion, linking pathophysiological features of neoplastic, autoimmune, infectious and senescence processes exposed to immune surveillance.
Collapse
Affiliation(s)
- Simona Pagliuca
- Hematology Department, Nancy University Hospital and UMR7365, IMoPA, University of Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Francesca Ferraro
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
43
|
Kastner P, Aukenova A, Chan S. Evolution of the Ikaros family transcription factors: From a deuterostome ancestor to humans. Biochem Biophys Res Commun 2024; 694:149399. [PMID: 38134477 DOI: 10.1016/j.bbrc.2023.149399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Ikaros family proteins (Ikaros, Helios, Aiolos, Eos) are zinc finger transcription factors essential for the development and function of the adaptive immune system. They also control developmental events in neurons and other cell types, suggesting that they possess crucial functions across disparate cell types. These functions are likely shared among the organisms in which these factors exist, and it is thus important to obtain a view of their distribution and conservation across organisms. How this family evolved remains poorly understood. Here we mined protein, mRNA and DNA databases to identify proteins with DNA-binding domains homologous to that of Ikaros. We show that Ikaros-related proteins exist in organisms from all four deuterostome phyla (chordates, echinoderms, hemichordates, xenacoelomorpha), but not in more distant groups. While most non-vertebrates have a single family member, this family grew to six members in the acoel worm Hofstenia miamia, three in jawless and four in jawed vertebrates. Most residues involved in DNA contact from zinc fingers 2 to 4 were identical across the Ikaros family, suggesting conserved mechanisms for target sequence recognition. Further, we identified a novel KRKxxxPxK/R motif that inhibits DNA binding in vitro which was conserved across the deuterostome phyla. We also identified a EψψxxxψM(D/E)QAIxxAIxYLGA(D/E)xL motif conserved among human Ikaros, Aiolos, Helios and subsets of chordate proteins, and motifs that are specific to subsets of vertebrate family members. Some of these motifs are targets of mutations in human patients. Finally we show that the atypical family member Pegasus emerged only in vertebrates, which is consistent with its function in bone. Our data provide a novel evolutionary perspective for Ikaros family proteins and suggest that they have conserved regulatory functions across deuterostomes.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), ILLKIRCH, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, ILLKIRCH, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, ILLKIRCH, France; Université de Strasbourg, ILLKIRCH, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| | - Adina Aukenova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), ILLKIRCH, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, ILLKIRCH, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, ILLKIRCH, France; Université de Strasbourg, ILLKIRCH, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), ILLKIRCH, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, ILLKIRCH, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, ILLKIRCH, France; Université de Strasbourg, ILLKIRCH, France.
| |
Collapse
|
44
|
Zhang J, Ren H, Zhu Q, Kong X, Zhang F, Wang C, Wang Y, Yang G, Zhang F. Comparative analysis of the immune responses of CcIgZ3 in mucosal tissues and the co-expression of CcIgZ3 and PCNA in the gills of common carp (Cyprinus carpio L.) in response to TNP-LPS. BMC Vet Res 2024; 20:15. [PMID: 38184593 PMCID: PMC10770913 DOI: 10.1186/s12917-023-03854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
Fish live in an aquatic environment rich in various microorganisms and pathogens. Fish mucosal-associated lymphoid tissue (MALT) plays a very important role in immune defence. This study was conducted to characterize the immune response mediated by CcIgZ3 in common carp (Cyprinus carpio.) and investigate the proliferating CcIgZ3+ B lymphocytes in gill. We determined the expression of CcIgZ3 in many different tissues of common carp following stimulation by intraperitoneal injection of TNP-LPS (2,4,6-Trinitrophenyl hapten conjugated to lipopolysaccharide) or TNP-KLH (2,4,6-Trinitrophenyl hapten conjugated to Keyhole Limpet Hemocyanin). Compared with TNP-KLH, TNP-LPS can induce greater CcIgZ3 expression in the head kidney, gill and hindgut, especially in the gill. The results indicate that the gill is one of the main sites involved in the immune response mediated by CcIgZ3. To examine the distribution of CcIgZ3+ B lymphocytes, immunohistochemistry (IHC) experiments were performed using a polyclonal antibody against CcIgZ3. The results indicated that CcIgZ3 was detected in the head kidney, hindgut and gill. To further examine whether CcIgZ3+ B lymphocytes proliferate in the gills, proliferating CcIgZ3+ B cells were analysed by immunofluorescence staining using an anti-CcIgZ3 polyclonal antibody and an anti-PCNA monoclonal antibody. CcIgZ3 and PCNA (Proliferating Cell Nuclear Antigen) double-labelled cells in the gills were located within the epithelial cells of the gill filaments of common carp stimulated with TNP-LPS at 3 dps and 7 dps, and relatively more proliferating CcIgZ3+ B cells appeared in the gills of common carp at 7 dps. These data imply that CcIgZ3+ B cells in the gills might be produced by local proliferation following TNP-LPS stimulation. In summary, compared with those in TNP-KLH, CcIgZ3 preferentially affects the gills of common carp following challenge with TNP-LPS. CcIgZ3+ B cells proliferate in the gills to quickly produce the CcIgZ3 antibody. In addition, CcIgZ3+ B cells can be activated to induce a strong immune response very early locally in the gill and produce the antibody CcIgZ3, which helps exert an immune-protective effect. These results suggest that an effective vaccine can be designed to promote production of the mucosal antibody CcIgZ3.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Haoyue Ren
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Qiannan Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Xiangrui Kong
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Feng Zhang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, 250117, China
| | - Chang Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Yimeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Guiwen Yang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China.
| | - Fumiao Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
45
|
Xu H, Wang Z, Li Y, Xu Z. The distribution and function of teleost IgT. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109281. [PMID: 38092093 DOI: 10.1016/j.fsi.2023.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Given the uniquely close relationship between fish and aquatic environments, fish mucosal tissues are constantly exposed to a wide array of pathogenic microorganisms in the surrounding water. To maintain mucosal homeostasis, fish have evolved a distinct mucosal immune system known as mucosal-associated lymphoid tissues (MALTs). These MALTs consist of key effector cells and molecules from the adaptive immune system, such as B cells and immunoglobulins (Igs), which play crucial roles in maintaining mucosal homeostasis and defending against external pathogen infections. Until recently, three primary Ig isotypes, IgM, IgD, and IgT, have been identified in varying proportions within the mucosal secretions of teleost fish. Similar to the role of mucosal IgA in mammals and birds, teleost IgT plays a predominant role in mucosal immunity. Following the identification of the IgT gene in 2005, significant advances have been made in researching the origin, evolution, structure, and function of teleost IgT. Multiple IgT variants have been identified in various species of teleost fish, underscoring the remarkable complexity of IgT in fish. Therefore, this study provides a comprehensive review of the recent advances in various aspects of teleost IgT, including its genomic and structural features, the diverse distribution patterns within various fish mucosal tissues (the skin, gills, gut, nasal, buccal, pharyngeal, and swim bladder mucosa), its interaction with mucosal symbiotic microorganisms, and its immune responses towards diverse pathogens, including bacteria, viruses, and parasites. We also highlight the existing research gaps in the study of teleost IgT, suggesting the need for further investigation into the functional aspects of IgT and IgT+ B cells. This research is aimed at providing valuable insights into the immune functions of IgT and the mechanisms underlying the immune responses of fish against infections.
Collapse
Affiliation(s)
- Haoyue Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Saputri DS, Ismanto HS, Nugraha DK, Xu Z, Horiguchi Y, Sakakibara S, Standley DM. Deciphering the antigen specificities of antibodies by clustering their complementarity determining region sequences. mSystems 2023; 8:e0072223. [PMID: 37975681 PMCID: PMC10734444 DOI: 10.1128/msystems.00722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Determining antigen and epitope specificity is an essential step in the discovery of therapeutic antibodies as well as in the analysis adaptive immune responses to disease or vaccination. Despite extensive efforts, deciphering antigen specificity solely from BCR amino acid sequence remains a challenging task, requiring a combination of experimental and computational approaches. Here, we describe and experimentally validate a simple and straightforward approach for grouping antibodies that share antigen and epitope specificities based on their CDR sequence similarity. This approach allows us to identify the specificities of a large number of antibodies whose antigen targets are unknown, using a small fraction of antibodies with well-annotated binding specificities.
Collapse
Affiliation(s)
- Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dendi K. Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Zichang Xu
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yasuhiko Horiguchi
- Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Shuhei Sakakibara
- Immunology Frontier Research Center, Osaka University, Suita, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
47
|
Dezfulian MH, Kula T, Pranzatelli T, Kamitaki N, Meng Q, Khatri B, Perez P, Xu Q, Chang A, Kohlgruber AC, Leng Y, Jupudi AA, Joachims ML, Chiorini JA, Lessard CJ, Farris AD, Muthuswamy SK, Warner BM, Elledge SJ. TScan-II: A genome-scale platform for the de novo identification of CD4 + T cell epitopes. Cell 2023; 186:5569-5586.e21. [PMID: 38016469 PMCID: PMC10841602 DOI: 10.1016/j.cell.2023.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.
Collapse
Affiliation(s)
- Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Qingda Meng
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bhuwan Khatri
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Qikai Xu
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aiquan Chang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ananth Aditya Jupudi
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle L Joachims
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Lessard
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Jones EM, Cain KD. An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms 2023; 11:2917. [PMID: 38138061 PMCID: PMC10745647 DOI: 10.3390/microorganisms11122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines continue to play an enormous role in the progression of aquaculture industries worldwide. Though preventable diseases cause massive economic losses, injection-based vaccine delivery is cost-prohibitive or otherwise impractical for many producers. Most oral vaccines, which are much cheaper to administer, do not provide adequate protection relative to traditional injection or even immersion formulas. Research has focused on determining why there appears to be a lack of protection afforded by oral vaccines. Here, we review the basic immunological principles associated with oral vaccination before discussing the recent progress and current status of oral vaccine research. This knowledge is critical for the development and advancement of efficacious oral vaccines for the aquaculture industry.
Collapse
Affiliation(s)
| | - Kenneth D. Cain
- Department of Fisheries and Wildlife, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
49
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
50
|
Veríssimo A, Castro LFC, Muñoz-Mérida A, Almeida T, Gaigher A, Neves F, Flajnik MF, Ohta Y. An Ancestral Major Histocompatibility Complex Organization in Cartilaginous Fish: Reconstructing MHC Origin and Evolution. Mol Biol Evol 2023; 40:msad262. [PMID: 38059517 PMCID: PMC10751288 DOI: 10.1093/molbev/msad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Cartilaginous fish (sharks, rays, and chimeras) comprise the oldest living jawed vertebrates with a mammalian-like adaptive immune system based on immunoglobulins (Ig), T-cell receptors (TCRs), and the major histocompatibility complex (MHC). Here, we show that the cartilaginous fish "adaptive MHC" is highly regimented and compact, containing (i) a classical MHC class Ia (MHC-Ia) region containing antigen processing (antigen peptide transporters and immunoproteasome) and presenting (MHC-Ia) genes, (ii) an MHC class II (MHC-II) region (with alpha and beta genes) with linkage to beta-2-microglobulin (β2m) and bromodomain-containing 2, (iii) nonclassical MHC class Ib (MHC-Ib) regions with 450 million-year-old lineages, and (iv) a complement C4 associated with the MHC-Ia region. No MHC-Ib genes were found outside of the elasmobranch MHC. Our data suggest that both MHC-I and MHC-II genes arose after the second round of whole-genome duplication (2R) on a human chromosome (huchr) 6 precursor. Further analysis of MHC paralogous regions across early branching taxa from all jawed vertebrate lineages revealed that Ig/TCR genes likely arose on a precursor of the huchr9/12/14 MHC paralog. The β2m gene is linked to the Ig/TCR genes in some vertebrates suggesting that it was present at 1R, perhaps as the donor of C1 domain to the primordial MHC gene. In sum, extant cartilaginous fish exhibit a conserved and prototypical MHC genomic organization with features found in various vertebrates, reflecting the ancestral arrangement for the jawed vertebrates.
Collapse
Affiliation(s)
- Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|