1
|
Luo S, Zhou X. Post-transcriptional regulation of behavior plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101329. [PMID: 39708917 DOI: 10.1016/j.cois.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Social insects often show remarkable behavioral plasticity, which is closely associated with their respective castes. The underpinnings of this plasticity are complex, involving genetic differences among individuals within a colony and regulation of gene expression at multiple levels. Post-transcriptional regulation, which increases the complexity of the transcriptome, plays a crucial role in the multilayer regulatory network that influences social insect behavior. We provide an overview of the impact of three post-transcriptional regulatory processes on the reproductive division of labor and worker division of labor in social insects: alternative splicing, RNA modifications, and noncoding RNAs. We also discuss the relationship between post-transcriptional regulation and chromatin modification.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Suzuki Y, Amaya S, Gonzalez P, Becerril D, Aquit S, Davis M, Hoesel M, Chou E, Khong H, Zaia K, Park HS, Nijhout HF, Tjaden B. Molecular mechanisms underlying the evolution of a color polyphenism by genetic accommodation in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 2025; 122:e2425004122. [PMID: 40106356 PMCID: PMC11962426 DOI: 10.1073/pnas.2425004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
How organisms evolve under extreme environmental changes is a critical question in the face of global climate change. Genetic accommodation is an evolutionary process by which natural selection acts on novel phenotypes generated through repeated encounters with extreme environments. In this study, polyphenic and monophenic strains of the black mutant tobacco hornworm, Manduca sexta, were evolved via genetic accommodation of heat stress-induced phenotypes, and the molecular differences between the two strains were explored. Transcriptomic analyses showed that epigenetic and hormonal differences underlie the differences between the two strains and their distinct responses to temperature. DNA methylation had diverged between the two strains potentially mediating genetic assimilation. Juvenile hormone (JH) signaling in the polyphenic strain was temperature sensitive, whereas in the monophenic strain, JH signaling remained low at all temperatures. Although 20-hydroxyecdysone titers were elevated under heat shock conditions in both strains, the strains did not differ in the titers. Tyrosine hydroxylase was also found to differ between the two strains at different temperatures, and its expression could be modulated by topical application of a JH analog. Finally, heat shock of unselected black mutants demonstrated that the expression of the JH-response gene, Krüppel-homolog 1 (Kr-h1), increased within the first 30 min of heat shock, suggesting that JH levels respond readily to thermal stress. Our study highlights the critical role that hormones and epigenetics play during genetic accommodation and potentially in the evolution of populations in the face of climate change.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Stephanie Amaya
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Paula Gonzalez
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Daniela Becerril
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Surisadai Aquit
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Maya Davis
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Madeline Hoesel
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Elizabeth Chou
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Hesper Khong
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Kathryn Zaia
- Department of Biological Sciences, Wellesley College, Wellesley, MA02481
| | - Heidi S. Park
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, MA02114
| | | | - Brian Tjaden
- Department of Computer Sciences, Wellesley College, Wellesley, MA02481
| |
Collapse
|
3
|
Zhang W, Chen X, Tian J, Schal C, Mohamed A, Zang LS, Xia Y, Keyhani NO. An odorant-binding protein functions in fire ant social immunity interfacing with innate immunity. Open Biol 2025; 15:240254. [PMID: 39933575 DOI: 10.1098/rsob.240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Social immunity-mediated sanitation behaviours occur in insects when microbially killed corpses are removed and/or dismembered by healthy nestmates. However, little is known concerning the chemical signals or receptor proteins that mediate these responses. Here, we identify cuticular components in the eusocial red important fire ant, Solenopsis invicta: behenic acid, which induces dismemberment behaviour, and oleic and cis,cis-9,12-linoleic acids, which inhibit dismemberment in a process mediated by S. invicta odorant-binding protein-15 (SiOBP15). Yeast two-hybrid screening and protein-protein interaction analyses identified the ant immunity-related proteins apolipophorin-III (SiApoLp-III) and fatty acid binding protein-5 (SiFABP5) as SiOBP15 interacting partners. SiOBP15 and SiFABP5 bound all three dismemberment-related compounds, whereas interactions between SiOBP15 and SiApoLp-III narrowed binding to behenic acid. RNAi-mediated gene expression knockdown of SiOBP15, SiApoLp-III or SiFABP5 revealed that behenic acid chemoreception determines dismemberment behaviour via SiApoLp-III/SiOBP15, whereas SiOBP15 or SiOBP15/SiFABP5 recognition of linoleic acid inhibits dismemberment behaviour. These data identify a host circuit linking olfactory proteins and proteins involved in innate immunity to control the degree of sanitation behaviour elicited in response to microbial infection. We identify specific chemical cues transduced by these proteins, providing a mechanism connecting olfaction-related processes to innate immunity, host-pathogen interactions and social immunity.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, People's Republic of China
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
- School of Life Science, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xuanyu Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, People's Republic of China
| | - Jiaxin Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, People's Republic of China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, People's Republic of China
| | - Yuxian Xia
- School of Life Science, Chongqing University, Chongqing 401331, People's Republic of China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Aparecida Dos Santos France F, Maeda DK, Rodrigues AB, Ono M, Lopes Nogueira Marchetti F, Marchetti MM, Faustino Martins AC, Gomes RDS, Rainho CA. Exploring fatty acids from royal jelly as a source of histone deacetylase inhibitors: from the hive to applications in human well-being and health. Epigenetics 2024; 19:2400423. [PMID: 39255363 PMCID: PMC11404605 DOI: 10.1080/15592294.2024.2400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Collapse
Affiliation(s)
| | - Debora Kazumi Maeda
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ana Beatriz Rodrigues
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mai Ono
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Franciele Lopes Nogueira Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos Martins Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
5
|
Jones BM, Webb AE, Geib SM, Sim S, Schweizer RM, Branstetter MG, Evans JD, Kocher SD. Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee. Mol Biol Evol 2024; 41:msae229. [PMID: 39487572 PMCID: PMC11568387 DOI: 10.1093/molbev/msae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Sheina Sim
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI 96720, USA
| | - Rena M Schweizer
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jay D Evans
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Bee Research Laboratory BARC-E, Beltsville, MD 20705, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Liberti J, Frank ET, Kay T, Kesner L, Monié--Ibanes M, Quinn A, Schmitt T, Keller L, Engel P. Gut microbiota influences onset of foraging-related behavior but not physiological hallmarks of division of labor in honeybees. mBio 2024; 15:e0103424. [PMID: 39072646 PMCID: PMC11389387 DOI: 10.1128/mbio.01034-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbes can impact cognition and behavior, but whether they regulate the division of labor in animal societies is unknown. We addressed this question using honeybees since they exhibit division of labor between nurses and foragers and because their gut microbiota can be manipulated. Using automated behavioral tracking and controlling for co-housing effects, we show that gut microbes influence the age at which bees start expressing foraging-like behaviors in the laboratory but have no effects on the time spent in a foraging arena and number of foraging trips. Moreover, the gut microbiota did not influence hallmarks of behavioral maturation such as body weight, cuticular hydrocarbon profile, hypopharyngeal gland size, gene expression, and the proportion of bees maturing into foragers. Overall, this study shows that the honeybee gut microbiota plays a role in controlling the onset of foraging-related behavior without permanent consequences on colony-level division of labor and several physiological hallmarks of behavioral maturation. IMPORTANCE The honeybee is emerging as a model system for studying gut microbiota-host interactions. Previous studies reported gut microbiota effects on multiple worker bee phenotypes, all of which change during behavioral maturation-the transition from nursing to foraging. We tested whether the documented effects may stem from an effect of the microbiota on behavioral maturation. The gut microbiota only subtly affected maturation: it accelerated the onset of foraging without affecting the overall proportion of foragers or their average output. We also found no effect of the microbiota on host weight, cuticular hydrocarbon (CHC) profile, hypopharyngeal gland size, and the expression of behavioral maturation-related genes. These results are inconsistent with previous studies reporting effects of the gut microbiota on bee weight and CHC profile. Our experiments revealed that co-housed bees tend to converge in behavior and physiology, suggesting that spurious associations may emerge when rearing environments are not replicated sufficiently or accounted for analytically.
Collapse
Affiliation(s)
- Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Erik T. Frank
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Andrew Quinn
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Merchant A, Zhou X. Caste-biased patterns of brain investment in the subterranean termite Reticulitermes flavipes. iScience 2024; 27:110052. [PMID: 38883809 PMCID: PMC11176635 DOI: 10.1016/j.isci.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Investment into neural tissue is expected to reflect the specific sensory and behavioral capabilities of a particular organism. Termites are eusocial insects that exhibit a caste system in which individuals can develop into one of several morphologically and behaviorally distinct castes. However, it is unclear to what extent these differences between castes are reflected in the anatomy of the brain. To address this question, we used deformation-based morphometry to conduct pairwise comparisons between the brains of different castes in the eastern subterranean termite, Reticulitermes flavipes. Workers exhibited enlargement in the antennal lobes and mushroom bodies, while reproductives showed increased investment into the optic lobes and central body. In addition, caste-specific enlargement was observed in regions that could not be mapped to distinct neuropils, most notably in soldiers. These findings demonstrate a significant influence of caste development on brain anatomy in termites alongside convergence with eusocial hymenopteran systems.
Collapse
Affiliation(s)
- Austin Merchant
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Brown AL, Meiborg AB, Franz-Wachtel M, Macek B, Gordon S, Rog O, Weadick CJ, Werner MS. Characterization of the Pristionchus pacificus "epigenetic toolkit" reveals the evolutionary loss of the histone methyltransferase complex PRC2. Genetics 2024; 227:iyae041. [PMID: 38513719 PMCID: PMC11075575 DOI: 10.1093/genetics/iyae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Comparative approaches have revealed both divergent and convergent paths to achieving shared developmental outcomes. Thus, only through assembling multiple case studies can we understand biological principles. Yet, despite appreciating the conservation-or lack thereof-of developmental networks, the conservation of epigenetic mechanisms regulating these networks is poorly understood. The nematode Pristionchus pacificus has emerged as a model system of plasticity and epigenetic regulation as it exhibits a bacterivorous or omnivorous morph depending on its environment. Here, we determined the "epigenetic toolkit" available to P. pacificus as a resource for future functional work on plasticity, and as a comparison with Caenorhabditis elegans to investigate the conservation of epigenetic mechanisms. Broadly, we observed a similar cast of genes with putative epigenetic function between C. elegans and P. pacificus. However, we also found striking differences. Most notably, the histone methyltransferase complex PRC2 appears to be missing in P. pacificus. We described the deletion/pseudogenization of the PRC2 genes mes-2 and mes-6 and concluded that both were lost in the last common ancestor of P. pacificus and a related species P. arcanus. Interestingly, we observed the enzymatic product of PRC2 (H3K27me3) by mass spectrometry and immunofluorescence, suggesting that a currently unknown methyltransferase has been co-opted for heterochromatin silencing. Altogether, we have provided an inventory of epigenetic genes in P. pacificus to compare with C. elegans. This inventory will enable reverse-genetic experiments related to plasticity and has revealed the first loss of PRC2 in a multicellular organism.
Collapse
Affiliation(s)
- Audrey L Brown
- School of Biological Sciences, The University of Utah, Salt Lake City, UT 84112, USA
| | - Adriaan B Meiborg
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree between EMBL and Heidelberg University, 69120 Heidelberg, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, 72074 Tübingen, Germany
| | - Spencer Gordon
- School of Biological Sciences, The University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- School of Biological Sciences, The University of Utah, Salt Lake City, UT 84112, USA
| | | | - Michael S Werner
- School of Biological Sciences, The University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Pyenson BC, Rehan SM. Gene regulation supporting sociality shared across lineages and variation in complexity. Genome 2024; 67:99-108. [PMID: 38096504 DOI: 10.1139/gen-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Li J, Zhang D, Zhang Z, Meng S, Wang B, Li Z, Liu X, Zhang S. miR-2765 Modulates the Seasonal Polyphenism in Cacopsylla chinensis by Targeting a Novel Cold Rreceptor CcTRPC3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:140-152. [PMID: 38118125 DOI: 10.1021/acs.jafc.3c05429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Polyphenism is a beneficial way in organisms to better cope with changing circumstances and is a hot topic in entomology, evolutionary biology, and ecology. Until now, this phenomenon has been proven to be season-, density-, and diet-dependent; however, there are very few reports on temperature regulation. Cacopsylla chinensis showed seasonal polyphenism, namely as summer- and winter-form, with obvious diversity in phenotypic characteristics in response to seasonal variation. Previous studies have found that low temperature in autumn is an extremely important element in inducing summer-form change to winter-form, but the underlying regulatory mechanism is still a mystery. Herein, we provided the initial evidence that the third instar of the summer-form is the critical period for developing to the winter-form, and 10 °C induces this transition by affecting the total pigment, chitin level, and thickness of the cuticle. Second, CcTPRC3 was proven to function as a novel cold receptor to control this seasonal polyphenism. Moreover, miR-2765 was found to mediate seasonal polyphenism by inhibiting CcTRPC3 expression. Last, we found that cuticle binding proteins CcCPR4 and CcCPR9 function as the downstream signals of CcTRPC3 to regulate the seasonal polyphenism in C. chinensis. In conclusion, our results displayed a novel signal pathway of miR-2765 and CcTRPC3 for the regulation of seasonal polyphenism in C. chinensis. These findings provide insights into the comprehensive analysis of insect polyphenism and are useful in developing potential strategies to block the phase transition for the pest control of C. chinensis.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhixian Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Shili Meng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Bo Wang
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
- Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China
| |
Collapse
|
11
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Ivasyk I, Olivos-Cisneros L, Valdés-Rodríguez S, Droual M, Jang H, Schmitz RJ, Kronauer DJC. DNMT1 mutant ants develop normally but have disrupted oogenesis. Nat Commun 2023; 14:2201. [PMID: 37072475 PMCID: PMC10113331 DOI: 10.1038/s41467-023-37945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Although DNA methylation is an important gene regulatory mechanism in mammals, its function in arthropods remains poorly understood. Studies in eusocial insects have argued for its role in caste development by regulating gene expression and splicing. However, such findings are not always consistent across studies, and have therefore remained controversial. Here we use CRISPR/Cas9 to mutate the maintenance DNA methyltransferase DNMT1 in the clonal raider ant, Ooceraea biroi. Mutants have greatly reduced DNA methylation, but no obvious developmental phenotypes, demonstrating that, unlike mammals, ants can undergo normal development without DNMT1 or DNA methylation. Additionally, we find no evidence of DNA methylation regulating caste development. However, mutants are sterile, whereas in wild-type ants, DNMT1 is localized to the ovaries and maternally provisioned into nascent oocytes. This supports the idea that DNMT1 plays a crucial but unknown role in the insect germline.
Collapse
Affiliation(s)
- Iryna Ivasyk
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | | | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Marie Droual
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
13
|
Werner MS, Loschko T, King T, Reich S, Theska T, Franz-Wachtel M, Macek B, Sommer RJ. Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form. Nat Commun 2023; 14:2095. [PMID: 37055396 PMCID: PMC10102330 DOI: 10.1038/s41467-023-37734-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Development can be altered to match phenotypes with the environment, and the genetic mechanisms that direct such alternative phenotypes are beginning to be elucidated. Yet, the rules that govern environmental sensitivity vs. invariant development, and potential epigenetic memory, remain unknown. Here, we show that plasticity of nematode mouth forms is determined by histone 4 lysine 5 and 12 acetylation (H4K5/12ac). Acetylation in early larval stages provides a permissive chromatin state, which is susceptible to induction during the critical window of environmental sensitivity. As development proceeds deacetylation shuts off switch gene expression to end the critical period. Inhibiting deacetylase enzymes leads to fixation of prior developmental trajectories, demonstrating that histone modifications in juveniles can carry environmental information to adults. Finally, we provide evidence that this regulation was derived from an ancient mechanism of licensing developmental speed. Altogether, our results show that H4K5/12ac enables epigenetic regulation of developmental plasticity that can be stored and erased by acetylation and deacetylation, respectively.
Collapse
Affiliation(s)
- Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Loschko
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | - Thomas King
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Shelley Reich
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, USA
| | - Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, 72076, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
14
|
Sumner S, Favreau E, Geist K, Toth AL, Rehan SM. Molecular patterns and processes in evolving sociality: lessons from insects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220076. [PMID: 36802779 PMCID: PMC9939270 DOI: 10.1098/rstb.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 02/21/2023] Open
Abstract
Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour-superorganismality-among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Katherine Geist
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Sandra M. Rehan
- Department of Biology, York University, Toronto, Canada M3J 1P3
| |
Collapse
|
15
|
Kang DS, Kim Y, Stanley D. What is in a model? ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21972. [PMID: 36164283 DOI: 10.1002/arch.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
After reading contradictory claims of model status for some insect species, we feel a brief discussion of the topic may be useful. Here, we document a few examples where clarity on model status seems to be lacking, briefly review work on widely recognized models, and offer criteria for including any given species as a model organism.
Collapse
Affiliation(s)
- David S Kang
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| |
Collapse
|
16
|
Lowe R, Wojciechowski M, Ellis N, Hurd PJ. Chromatin accessibility-based characterisation of brain gene regulatory networks in three distinct honey bee polyphenisms. Nucleic Acids Res 2022; 50:11550-11562. [PMID: 36330958 PMCID: PMC9723623 DOI: 10.1093/nar/gkac992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The honey bee genome has the capacity to produce three phenotypically distinct organisms (two diploid female castes: queen and worker, and a haploid male drone). Previous studies have implicated metabolic flux acting via epigenetic regulation in directing nutrition-driven phenotypic plasticity in the honey bee. However, the cis-acting DNA regulatory elements that establish tissue and polyphenism -specific epigenomes and gene expression programmes, remain unclear. Using a high resolution multiomic approach including assay for transposase-accessible chromatin by sequencing (ATAC-seq), RNA-seq and ChIP-seq, we produce the first genome-wide maps of the regulatory landscape across all three adult honey bee phenotypes identifying > 5000 regulatory regions in queen, 7500 in worker and 6500 in drone, with the vast majority of these sites located within intronic regions. These regions are defined by positive enrichment of H3K27ac and depletion of H3K4me3 and show a positive correlation with gene expression. Using ATAC-seq footprinting we determine queen, worker and drone -specific transcription factor occupancy and uncover novel phenotype-specific regulatory networks identifying two key nuclear receptors that have previously been implicated in caste-determination and adult behavioural maturation in honey bees; ecdysone receptor and ultraspiracle. Collectively, this study provides novel insights into key gene regulatory networks that are associated with these distinct polyphenisms in the honey bee.
Collapse
Affiliation(s)
- Robert Lowe
- RER Consultants, 28 Worbeck Road, London SE20 7SW, UK
| | - Marek Wojciechowski
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Nancy Ellis
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
17
|
Costa CP, Okamoto N, Orr M, Yamanaka N, Woodard SH. Convergent Loss of Prothoracicotropic Hormone, A Canonical Regulator of Development, in Social Bee Evolution. Front Physiol 2022; 13:831928. [PMID: 35242055 PMCID: PMC8887954 DOI: 10.3389/fphys.2022.831928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The evolution of insect sociality has repeatedly involved changes in developmental events and their timing. Here, we propose the hypothesis that loss of a canonical regulator of moulting and metamorphosis, prothoracicotropic hormone (PTTH), and its receptor, Torso, is associated with the evolution of sociality in bees. Specifically, we posit that the increasing importance of social influences on early developmental timing in social bees has led to their decreased reliance on PTTH, which connects developmental timing with abiotic cues in solitary insects. At present, the evidence to support this hypothesis includes the absence of genes encoding PTTH and Torso from all fully-sequenced social bee genomes and its presence in all available genomes of solitary bees. Based on the bee phylogeny, the most parsimonious reconstruction of evolutionary events is that this hormone and its receptor have been lost multiple times, across independently social bee lineages. These gene losses shed light on possible molecular and cellular mechanisms that are associated with the evolution of social behavior in bees. We outline the available evidence for our hypothesis, and then contextualize it in light of what is known about developmental cues in social and solitary bees, and the multiple precedences of major developmental changes in social insects.
Collapse
Affiliation(s)
- Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Naoki Okamoto
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
18
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
19
|
Aluru N, Fields DM, Shema S, Skiftesvik AB, Browman HI. Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod, Acartia clausi, to elevated CO 2. Ecol Evol 2021; 11:16776-16785. [PMID: 34938472 PMCID: PMC8668794 DOI: 10.1002/ece3.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species-copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Steven Shema
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Howard I. Browman
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| |
Collapse
|
20
|
Glastad KM, Ju L, Berger SL. Tramtrack acts during late pupal development to direct ant caste identity. PLoS Genet 2021; 17:e1009801. [PMID: 34550980 PMCID: PMC8489709 DOI: 10.1371/journal.pgen.1009801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Linyang Ju
- Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| |
Collapse
|
21
|
Cardoso-Júnior CAM, Yagound B, Ronai I, Remnant EJ, Hartfelder K, Oldroyd BP. DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Mol Ecol 2021; 30:4804-4818. [PMID: 34322926 DOI: 10.1111/mec.16098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
The presence of DNA methylation marks within genic intervals, also called gene body methylation, is an evolutionarily-conserved epigenetic hallmark of animal and plant methylomes. In social insects, gene body methylation is thought to contribute to behavioural plasticity, for example between foragers and nurse workers, by modulating gene expression. However, recent studies have suggested that the majority of DNA methylation is sequence-specific, and therefore cannot act as a flexible mediator between environmental cues and gene expression. To address this paradox, we examined whole-genome methylation patterns in the brains and ovaries of young honey bee workers that had been subjected to divergent social contexts: the presence or absence of the queen. Although these social contexts are known to bring about extreme changes in behavioral and reproductive traits through differential gene expression, we found no significant differences between the methylomes of workers from queenright and queenless colonies. In contrast, thousands of regions were differentially methylated between colonies, and these differences were not associated with differential gene expression in the subset of genes examined. Methylation patterns were highly similar between brain and ovary tissues and only differed in nine regions. These results strongly indicate that DNA methylation is not a driver of differential gene expression between tissues or behavioral morphs. Finally, despite the lack of difference in methylation patterns, queen presence affected the expression of all four DNA methyltransferase genes, suggesting that these enzymes have roles beyond DNA methylation. Therefore, the functional role of DNA methylation in social insect genomes remains an open question.
Collapse
Affiliation(s)
- Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil.,Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
22
|
Richard G, Jaquiéry J, Le Trionnaire G. Contribution of Epigenetic Mechanisms in the Regulation of Environmentally-Induced Polyphenism in Insects. INSECTS 2021; 12:insects12070649. [PMID: 34357309 PMCID: PMC8304038 DOI: 10.3390/insects12070649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Polyphenism is a widespread phenomenon in insects that allows organisms to produce alternative and discrete phenotypes in response to environmental conditions. Epigenetic mechanisms, including histone post-translational modifications, DNA methylation and non-coding RNAs, are essential mechanisms that can promote rapid and flexible changes in the expression of transcriptional programs associated with the production of alternative phenotypes. This review summarizes knowledge regarding the contribution of those mechanisms in the regulation of the most-studied examples of polyphenism in insects. Abstract Many insect species display a remarkable ability to produce discrete phenotypes in response to changes in environmental conditions. Such phenotypic plasticity is referred to as polyphenism. Seasonal, dispersal and caste polyphenisms correspond to the most-studied examples that are environmentally-induced in insects. Cues that induce such dramatic phenotypic changes are very diverse, ranging from seasonal cues, habitat quality changes or differential larval nutrition. Once these signals are perceived, they are transduced by the neuroendocrine system towards their target tissues where gene expression reprogramming underlying phenotypic changes occur. Epigenetic mechanisms are key regulators that allow for genome expression plasticity associated with such developmental switches. These mechanisms include DNA methylation, chromatin remodelling and histone post-transcriptional modifications (PTMs) as well as non-coding RNAs and have been studied to various extents in insect polyphenism. Differential patterns of DNA methylation between phenotypes are usually correlated with changes in gene expression and alternative splicing events, especially in the cases of dispersal and caste polyphenism. Combinatorial patterns of histone PTMs provide phenotype-specific epigenomic landscape associated with the expression of specific transcriptional programs, as revealed during caste determination in honeybees and ants. Alternative phenotypes are also usually associated with specific non-coding RNA profiles. This review will provide a summary of the current knowledge of the epigenetic changes associated with polyphenism in insects and highlights the potential for these mechanisms to be key regulators of developmental transitions triggered by environmental cues.
Collapse
|
23
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
24
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
25
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
26
|
10-hydroxy-2E-decenoic acid (10HDA) does not promote caste differentiation in Melipona scutellaris stingless bees. Sci Rep 2021; 11:9882. [PMID: 33972627 PMCID: PMC8110752 DOI: 10.1038/s41598-021-89212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
In bees from genus Melipona, differential feeding is not enough to fully explain female polyphenism. In these bees, there is a hypothesis that in addition to the environmental component (food), a genetic component is also involved in caste differentiation. This mechanism has not yet been fully elucidated and may involve epigenetic and metabolic regulation. Here, we verified that the genes encoding histone deacetylases HDAC1 and HDAC4 and histone acetyltransferase KAT2A were expressed at all stages of Melipona scutellaris, with fluctuations between developmental stages and castes. In larvae, the HDAC genes showed the same profile of Juvenile Hormone titers-previous reported-whereas the HAT gene exhibited the opposite profile. We also investigated the larvae and larval food metabolomes, but we did not identify the putative queen-fate inducing compounds, geraniol and 10-hydroxy-2E-decenoic acid (10HDA). Finally, we demonstrated that the histone deacetylase inhibitor 10HDA-the major lipid component of royal jelly and hence a putative regulator of honeybee caste differentiation-was unable to promote differentiation in queens in Melipona scutellaris. Our results suggest that epigenetic and hormonal regulations may act synergistically to drive caste differentiation in Melipona and that 10HDA is not a caste-differentiation factor in Melipona scutellaris.
Collapse
|
27
|
Westwick RR, Rittschof CC. Insects Provide Unique Systems to Investigate How Early-Life Experience Alters the Brain and Behavior. Front Behav Neurosci 2021; 15:660464. [PMID: 33967715 PMCID: PMC8097038 DOI: 10.3389/fnbeh.2021.660464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Early-life experiences have strong and long-lasting consequences for behavior in a surprising diversity of animals. Determining which environmental inputs cause behavioral change, how this information becomes neurobiologically encoded, and the functional consequences of these changes remain fundamental puzzles relevant to diverse fields from evolutionary biology to the health sciences. Here we explore how insects provide unique opportunities for comparative study of developmental behavioral plasticity. Insects have sophisticated behavior and cognitive abilities, and they are frequently studied in their natural environments, which provides an ecological and adaptive perspective that is often more limited in lab-based vertebrate models. A range of cues, from relatively simple cues like temperature to complex social information, influence insect behavior. This variety provides experimentally tractable opportunities to study diverse neural plasticity mechanisms. Insects also have a wide range of neurodevelopmental trajectories while sharing many developmental plasticity mechanisms with vertebrates. In addition, some insects retain only subsets of their juvenile neuronal population in adulthood, narrowing the targets for detailed study of cellular plasticity mechanisms. Insects and vertebrates share many of the same knowledge gaps pertaining to developmental behavioral plasticity. Combined with the extensive study of insect behavior under natural conditions and their experimental tractability, insect systems may be uniquely qualified to address some of the biggest unanswered questions in this field.
Collapse
Affiliation(s)
- Rebecca R Westwick
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
28
|
Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, Reinberg D, Liebig J. Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant ( Harpegnathos saltator). Proc Biol Sci 2021; 288:20210141. [PMID: 33849311 DOI: 10.1098/rspb.2021.0141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kevin L Haight
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
29
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
30
|
Ennis CC, Haeffner NN, Keyser CD, Leonard ST, Macdonald-Shedd AC, Savoie AM, Cronin TJ, Veldsman WP, Barden P, Chak STC, Baeza JA. Comparative mitochondrial genomics of sponge-dwelling snapping shrimps in the genus Synalpheus: Exploring differences between eusocial and non-eusocial species and insights into phylogenetic relationships in caridean shrimps. Gene 2021; 786:145624. [PMID: 33798681 DOI: 10.1016/j.gene.2021.145624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
The genus Synalpheus is a cosmopolitan clade of marine shrimps found in most tropical regions. Species in this genus exhibit a range of social organizations, including pair-forming, communal breeding, and eusociality, the latter only known to have evolved within this genus in the marine realm. This study examines the complete mitochondrial genomes of seven species of Synalpheus and explores differences between eusocial and non-eusocial species considering that eusociality has been shown before to affect the strength of purifying selection in mitochondrial protein coding genes. The AT-rich mitochondrial genomes of Synalpheus range from 15,421 bp to 15,782 bp in length and comprise, invariably, 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. A 648 bp to 994 bp long intergenic space is assumed to be the D-loop. Mitochondrial gene synteny is identical among the studied shrimps. No major differences occur between eusocial and non-eusocial species in nucleotide composition and codon usage profiles of PCGs and in the secondary structure of tRNA genes. Maximum likelihood phylogenetic analysis of the complete concatenated PCG complement of 90 species supports the monophyly of the genus Synalpheus and its family Alpheidae. Moreover, the monophyletic status of the caridean families Alvinocaridae, Atyidae, Thoridae, Lysmatidae, Palaemonidae, and Pandalidae within caridean shrimps are fully or highly supported by the analysis. We therefore conclude that mitochondrial genomes contain sufficient phylogenetic information to resolve relationships at high taxonomic levels within the Caridea. Our analysis of mitochondrial genomes in the genus Synalpheus contributes to the understanding of the coevolution between genomic architecture and sociality in caridean shrimps and other marine organisms.
Collapse
Affiliation(s)
- Caroline C Ennis
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Nariah N Haeffner
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Cameron D Keyser
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Shannon T Leonard
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | | | - Avery M Savoie
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Timothy J Cronin
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Werner P Veldsman
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| | - Solomon T C Chak
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY 11568, USA.
| | - J Antonio Baeza
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA; Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, USA; Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
31
|
Opachaloemphan C, Mancini G, Konstantinides N, Parikh A, Mlejnek J, Yan H, Reinberg D, Desplan C. Early behavioral and molecular events leading to caste switching in the ant Harpegnathos. Genes Dev 2021; 35:410-424. [PMID: 33602869 PMCID: PMC7919410 DOI: 10.1101/gad.343699.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ant societies show a division of labor in which a queen is in charge of reproduction while nonreproductive workers maintain the colony. In Harpegnathos saltator, workers retain reproductive ability, inhibited by the queen pheromones. Following the queen loss, the colony undergoes social unrest with an antennal dueling tournament. Most workers quickly abandon the tournament while a few workers continue the dueling for months and become gamergates (pseudoqueens). However, the temporal dynamics of the social behavior and molecular mechanisms underlining the caste transition and social dominance remain unclear. By tracking behaviors, we show that the gamergate fate is accurately determined 3 d after initiation of the tournament. To identify genetic factors responsible for this commitment, we compared transcriptomes of different tissues between dueling and nondueling workers. We found that juvenile hormone is globally repressed, whereas ecdysone biosynthesis in the ovary is increased in gamergates. We show that molecular changes in the brain serve as earliest caste predictors compared with other tissues. Thus, behavioral and molecular data indicate that despite the prolonged social upheaval, the gamergate fate is rapidly established, suggesting a robust re-establishment of social structure.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Apurva Parikh
- Department of Biology, New York University, New York, New York 10003, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, New York 10003, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
32
|
Araujo NDS, Arias MC. Gene expression and epigenetics reveal species-specific mechanisms acting upon common molecular pathways in the evolution of task division in bees. Sci Rep 2021; 11:3654. [PMID: 33574391 PMCID: PMC7878513 DOI: 10.1038/s41598-020-75432-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023] Open
Abstract
A striking feature of advanced insect societies is the existence of workers that forgo reproduction. Two broad types of workers exist in eusocial bees: nurses who care for their young siblings and the queen, and foragers who guard the nest and forage for food. Comparisons between these two worker subcastes have been performed in honeybees, but data from other bees are scarce. To understand whether similar molecular mechanisms are involved in nurse-forager differences across distinct species, we compared gene expression and DNA methylation profiles between nurses and foragers of the buff-tailed bumblebee Bombus terrestris and the stingless bee Tetragonisca angustula. These datasets were then compared to previous findings from honeybees. Our analyses revealed that although the expression pattern of genes is often species-specific, many of the biological processes and molecular pathways involved are common. Moreover, the correlation between gene expression and DNA methylation was dependent on the nucleotide context, and non-CG methylation appeared to be a relevant factor in the behavioral changes of the workers. In summary, task specialization in worker bees is characterized by a plastic and mosaic molecular pattern, with species-specific mechanisms acting upon broad common pathways across species.
Collapse
Affiliation(s)
- Natalia de Souza Araujo
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil.
- Department of Evolutionary Biology and Ecology, Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Maria Cristina Arias
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
33
|
Palli SR. Epigenetic regulation of post-embryonic development. CURRENT OPINION IN INSECT SCIENCE 2021; 43:63-69. [PMID: 33068783 PMCID: PMC8044252 DOI: 10.1016/j.cois.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Modifications to DNA and core histones influence chromatin organization and expression of the genome. DNA methylation plays a significant role in the regulation of multiple biological processes that regulate behavior and caste differentiation in social insects. Histone modifications play significant roles in the regulation of development and reproduction in other insects. Genes coding for acetyltransferases, deacetylases, methyltransferases, and demethylases that modify core histones have been identified in genomes of multiple insects. Studies on the function and mechanisms of action of some of these enzymes uncovered their contribution to post-embryonic development. The results from studies on epigenetic modifiers could help in the identification of inhibitors of epigenetic modifiers that could be developed to control pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, United States.
| |
Collapse
|
34
|
Duan Y, Dou S, Porath HT, Huang J, Eisenberg E, Lu J. A-to-I RNA editing in honeybees shows signals of adaptation and convergent evolution. iScience 2021; 24:101983. [PMID: 33458624 PMCID: PMC7797907 DOI: 10.1016/j.isci.2020.101983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Social insects exhibit extensive phenotypic diversities among the genetically similar individuals, suggesting a role for the epigenetic regulations beyond the genome level. The ADAR-mediated adenosine-to-inosine (A-to-I) RNA editing, an evolutionarily conserved mechanism, facilitates adaptive evolution by expanding proteomic diversities. Here, we characterize the A-to-I RNA editome of honeybees (Apis mellifera), identifying 407 high-confidence A-to-I editing sites. Editing is most abundant in the heads and shows signatures for positive selection. Editing behavior differs between foragers and nurses, suggesting a role for editing in caste differentiation. Although only five sites are conserved between bees and flies, an unexpectedly large number of genes exhibit editing in both species, albeit at different locations, including the nonsynonymous auto-editing of Adar. This convergent evolution, where the same target genes independently acquire recoding events in distant diverged clades, together with the signals of adaptation observed in honeybees alone, further supports the notion of recoding being adaptive. Nonsynonymous editing sites in honeybees were under positive selection Differential editing may contribute to the phenotypic diversity between sub-castes Target genes acquire editing in different clades, suggesting convergent evolution
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Cardoso-Junior CAM, Ronai I, Hartfelder K, Oldroyd BP. Queen pheromone modulates the expression of epigenetic modifier genes in the brain of honeybee workers. Biol Lett 2020; 16:20200440. [PMID: 33290662 DOI: 10.1098/rsbl.2020.0440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pheromones are used by many insects to mediate social interactions. In the highly eusocial honeybee (Apis mellifera), queen mandibular pheromone (QMP) is involved in the regulation of the reproductive and other behaviour of workers. The molecular mechanisms by which QMP acts are largely unknown. Here, we investigate how genes responsible for epigenetic modifications to DNA, RNA and histones respond to the presence of QMP in the environment. We show that several of these genes are upregulated in the honeybee brain when workers are exposed to artificial QMP. We propose that pheromonal communication systems, such as those used by social insects, evolved to respond to environmental signals by making use of existing epigenomic machineries.
Collapse
Affiliation(s)
- Carlos Antônio Mendes Cardoso-Junior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| |
Collapse
|
36
|
Chen P, Xiao WF, Pan MH, Xiao JS, Feng YJ, Dong ZQ, Zou BX, Zhou L, Zhang YH, Lu C. Comparative genome-wide DNA methylation analysis reveals epigenomic differences in response to heat-humidity stress in Bombyx mori. Int J Biol Macromol 2020; 164:3771-3779. [PMID: 32891645 DOI: 10.1016/j.ijbiomac.2020.08.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 11/26/2022]
Abstract
DNA methylation is an important epigenetic modification and has been shown to be involved in the response to abiotic stress. However, there are few studies on DNA methylation in insect response to environmental signals. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles between two silkworm strains with significantly different resistance to heat and humidity by whole-genome bisulfite sequencing (WGBS). We identified, in total, 2934 differentially methylated regions (DMRs) between RT_48h (resistant strain with high-temperature/humidity treatment for 48 h) and ST_48h (sensitive strain with high-temperature/humidity treatment for 48 h) under cytosine context (CG), which corresponded to 1230 DMR-related genes (DMGs), and the DMRs were primarily located in the gene body (exon and intron) region. Gene ontology (GO) and KEGG analysis showed that these DMGs were most significantly enriched in binding, cellular metabolic process, and RNA transport pathways. Moreover, 10 DMGs have been revealed to be involved in the heat-humidity stress response in the silkworm. The results of this study indicated that DNA methylation plays crucial roles in silkworm response to environmental stressors and provides important clues to identify key resistance genes in silkworm under high-temperature/humidity stress response.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Jin-Shu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bang-Xing Zou
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Li Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - You-Hong Zhang
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
37
|
Identification, expression, and artificial selection of silkworm epigenetic modification enzymes. BMC Genomics 2020; 21:740. [PMID: 33096977 PMCID: PMC7585183 DOI: 10.1186/s12864-020-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetic basis of phenotype variations during domestication and breeding is of great interest. Epigenetics and epigenetic modification enzymes (EMEs) may play a role in phenotypic variations; however, no comprehensive study has been performed to date. Domesticated silkworm (Bombyx mori) may be utilized as a model in determining how EMEs influence domestication traits. Results We identified 44 EMEs in the genome of silkworm (Bombyx mori) using homology searching. Phylogenetic analysis showed that genes in a subfamily among different animals were well clustered, and the expression pattern of EMEs is constant among Bombyx mori, Drosophila melanogaster, and Mus musculus. These are most highly expressed in brain, early embryo, and internal genitalia. By gene-related selective sweeping, we identified five BmEMEs under artificial selection during the domestication and breeding of silkworm. Among these selected genes, BmSuv4–20 and BmDNMT2 harbor selective mutations in their upstream regions that alter transcription factor-binding sites. Furthermore, these two genes are expressed higher in the testis and ovary of domesticated silkworm compared to wild silkworms, and correlations between their expression pattern and meiosis of the sperm and ova were observed. Conclusions The domestication of silkworm has induced artificial selection on epigenetic modification markers that may have led to phenotypic changes during domestication. We present a novel perspective to understand the genetic basis underlying animal domestication and breeding. Supplementary information Supplementary information accompanies this paper at 10.1186/s12864-020-07155-z.
Collapse
|
38
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
39
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
40
|
de Paula Freitas FC, Lourenço AP, Nunes FMF, Paschoal AR, Abreu FCP, Barbin FO, Bataglia L, Cardoso-Júnior CAM, Cervoni MS, Silva SR, Dalarmi F, Del Lama MA, Depintor TS, Ferreira KM, Gória PS, Jaskot MC, Lago DC, Luna-Lucena D, Moda LM, Nascimento L, Pedrino M, Oliveira FR, Sanches FC, Santos DE, Santos CG, Vieira J, Barchuk AR, Hartfelder K, Simões ZLP, Bitondi MMG, Pinheiro DG. The nuclear and mitochondrial genomes of Frieseomelitta varia - a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics 2020; 21:386. [PMID: 32493270 PMCID: PMC7268684 DOI: 10.1186/s12864-020-06784-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.
Collapse
Affiliation(s)
- Flávia C. de Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Anete P. Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG Brazil
| | - Francis M. F. Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | - Fabiano C. P. Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fábio O. Barbin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Luana Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Carlos A. M. Cardoso-Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Mário S. Cervoni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| | - Fernanda Dalarmi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Marco A. Del Lama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Thiago S. Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Kátia M. Ferreira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Paula S. Gória
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Michael C. Jaskot
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Denyse C. Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Livia M. Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Leonardo Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Matheus Pedrino
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Franciene Rabiço Oliveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fernanda C. Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Douglas E. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Carolina G. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Joseana Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Angel R. Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| |
Collapse
|
41
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|
42
|
Mitaka Y, Tasaki E, Nozaki T, Fuchikawa T, Kobayashi K, Matsuura K. Transcriptomic analysis of epigenetic modification genes in the termite Reticulitermes speratus. INSECT SCIENCE 2020; 27:202-211. [PMID: 30203565 DOI: 10.1111/1744-7917.12640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Eusocial insects display a caste system in which different castes are morphologically and physiologically specialized for different tasks. Recent studies have revealed that epigenetic modifications, including DNA methylation and histone modification, mediate caste determination and differentiation, longevity, and polyethism in eusocial insects. Although there has been a growing interest in the relationship between epigenetic mechanisms and phenotypic plasticity in termites, there is little information about differential expression levels among castes and expression sites for these genes in termites. Here we show royal-tissue-specific expression of epigenetic modification genes in the termite Reticulitermes speratus. Using RNA-seq, we identified 74 genes, including three DNA methyltransferases, seven sirtuins, 48 Trithorax group proteins, and 16 Polycomb group proteins. Among these genes, 15 showed king-specific expression, and 52 showed age-dependent differential expression in kings and queens. Quantitative real-time PCR revealed that DNA methyltransferase 3 is expressed specifically in the king's testis and fat body, whereas some histone modification genes are remarkably expressed in the king's testis and queen's ovary. These findings imply that epigenetic modification plays important roles in the gamete production process in termite kings and queens.
Collapse
Affiliation(s)
- Yuki Mitaka
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
- Applied Entomology Laboratory, Center for Bioresource Field Science, Kyoto Institute of Technology, Ukyo-ku, Kyoto, Japan
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomonari Nozaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Taro Fuchikawa
- Laboratory of Animal Physiology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Kazuya Kobayashi
- Hokkaido Forest Research Station, Field Science Education and Research Center, Kyoto University, Kawakami-gun, Hokkaido, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
43
|
Methoprene-Induced Genes in Workers of Formosan Subterranean Termites ( Coptotermes formosanus Shiraki). INSECTS 2020; 11:insects11020071. [PMID: 31973177 PMCID: PMC7074503 DOI: 10.3390/insects11020071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Termites have a distinct polyphenism controlled by concise hormonal and molecular mechanisms. Workers undergo double molts to transform into soldiers (worker–presoldier–soldier). Juvenile hormone analogs, such as methoprene, can induce workers to transform into presoldiers. However, the molecular mechanism underlying the worker-to-presoldier transformation in Coptotermes formosanus Shiraki is still not clear. We sequenced the transcriptome of workers four days after they had fed on methoprene-treated filter paper and control group workers, which fed on acetone-treated filter paper. The transcriptome of C. formosanus was assembled using the de novo assembly method. Expression levels of unigenes in the methoprene-treated group and the control group were compared. The differentially expressed genes were further analyzed by Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Tetrapyrrole binding, oxidoreductase activity, and metal ion binding were the only three enriched GO terms. Juvenile hormone synthesis was the first ranked enriched pathway. Carbohydrate, amino acid, and lipid metabolism pathways were also enriched. These three pathways may be related to fat body development, which is critical for presoldier formation. Our results have demonstrated the significance of JH synthesis pathways, and pathways related to fat body development in the artificial induction of presoldiers.
Collapse
|
44
|
Jiang Q, Lin D, Huang H, Wang G, Ye H. DNA Methylation Inhibits the Expression of CFSH in Mud Crab. Front Endocrinol (Lausanne) 2020; 11:163. [PMID: 32328029 PMCID: PMC7160318 DOI: 10.3389/fendo.2020.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Crustacean female sex hormone (CFSH) is a key regulator of crustacean sex differentiation. The expression of Sp-CFSH in the mud crab Scylla paramamosain showed a tissue-specific and gender-variant pattern. To explore the role of DNA methylation in Sp-CFSH expression, the 5'-flanking region of Sp-CFSH was cloned, and one CpG island containing 12 CpG sites was found. Results of sodium bisulfite sequencing and methylated DNA immunoprecipitation showed that CpG island methylation was stable in the eyestalk ganglion during ovarian development of the females, which was significantly lower than that in the muscle of the females and in the eyestalk ganglion of the males. Such results suggested that the involvement of DNA methylation in regulating Sp-CFSH expression followed an eyestalk ganglion-specific and gender-variant pattern. The analysis of CpG dinucleotide site methylation and activity of the site-directed mutation (SDM) reporter vector further demonstrated that methylation inhibited Sp-CFSH expression by blocking the binding of transcription factor Sp1. The finding suggested for the first time the involvement of CpG methylation in the regulation of Sp-CFSH expression.
Collapse
|
45
|
Tokita CK, Tarnita CE. Social influence and interaction bias can drive emergent behavioural specialization and modular social networks across systems. J R Soc Interface 2020; 17:20190564. [PMID: 31910771 PMCID: PMC7014790 DOI: 10.1098/rsif.2019.0564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
In social systems ranging from ant colonies to human society, behavioural specialization-consistent individual differences in behaviour-is commonplace: individuals can specialize in the tasks they perform (division of labour (DOL)), the political behaviour they exhibit (political polarization) or the non-task behaviours they exhibit (personalities). Across these contexts, behavioural specialization often co-occurs with modular and assortative social networks, such that individuals tend to associate with others that have the same behavioural specialization. This raises the question of whether a common mechanism could drive co-emergent behavioural specialization and social network structure across contexts. To investigate this question, here we extend a model of self-organized DOL to account for social influence and interaction bias among individuals-social dynamics that have been shown to drive political polarization. We find that these same social dynamics can also drive emergent DOL by forming a feedback loop that reinforces behavioural differences between individuals, a feedback loop that is impacted by group size. Moreover, this feedback loop also results in modular and assortative social network structure, whereby individuals associate strongly with those performing the same task. Our findings suggest that DOL and political polarization-two social phenomena not typically considered together-may actually share a common social mechanism. This mechanism may result in social organization in many contexts beyond task performance and political behaviour.
Collapse
Affiliation(s)
- Christopher K. Tokita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
46
|
Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL. Epigenetic Regulator CoREST Controls Social Behavior in Ants. Mol Cell 2019; 77:338-351.e6. [PMID: 31732456 DOI: 10.1016/j.molcel.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.
Collapse
Affiliation(s)
- Karl M Glastad
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riley J Graham
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linyang Ju
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Roessler
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cristina M Brady
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
High-Quality Genome Assemblies Reveal Long Non-coding RNAs Expressed in Ant Brains. Cell Rep 2019; 23:3078-3090. [PMID: 29874592 PMCID: PMC6023404 DOI: 10.1016/j.celrep.2018.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022] Open
Abstract
Ants are an emerging model system for neuroepigenetics, as embryos with virtually identical genomes develop into different adult castes that display diverse physiology, morphology, and behavior. Although a number of ant genomes have been sequenced to date, their draft quality is an obstacle to sophisticated analyses of epigenetic gene regulation. We reassembled de novo high-quality genomes for two ant species, Camponotus floridanus and Harpegnathos saltator. Using long reads enabled us to span large repetitive regions and improve genome contiguity, leading to comprehensive and accurate protein-coding annotations that facilitated the identification of a Gp-9-like gene as differentially expressed in Harpegnathos castes. The new assemblies also enabled us to annotate long non-coding RNAs in ants, revealing caste-, brain-, and developmental-stage-specific long non-coding RNAs (lncRNAs) in Harpegnathos. These upgraded genomes, along with the new gene annotations, will aid future efforts to identify epigenetic mechanisms of phenotypic and behavioral plasticity in ants.
Collapse
|
48
|
Mathers TC, Mugford ST, Percival-Alwyn L, Chen Y, Kaithakottil G, Swarbreck D, Hogenhout SA, van Oosterhout C. Sex-specific changes in the aphid DNA methylation landscape. Mol Ecol 2019; 28:4228-4241. [PMID: 31472081 PMCID: PMC6857007 DOI: 10.1111/mec.15216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Aphids present an ideal system to study epigenetics as they can produce diverse, but genetically identical, morphs in response to environmental stimuli. Here, using whole genome bisulphite sequencing and transcriptome sequencing of the green peach aphid (Myzus persicae), we present the first detailed analysis of cytosine methylation in an aphid and investigate differences in the methylation and transcriptional landscapes of male and asexual female morphs. We found that methylation primarily occurs in a CG dinucleotide (CpG) context and that exons are highly enriched for methylated CpGs, particularly at the 3' end of genes. Methylation is positively associated with gene expression, and methylated genes are more stably expressed than unmethylated genes. Male and asexual female morphs have distinct methylation profiles. Strikingly, these profiles are divergent between the sex chromosome and the autosomes; autosomal genes are hypomethylated in males compared to asexual females, whereas genes belonging to the sex chromosome, which is haploid in males, are hypermethylated. Overall, we found correlated changes in methylation and gene expression between males and asexual females, and this correlation was particularly strong for genes located on the sex chromosome. Our results suggest that differential methylation of sex-biased genes plays a role in aphid sexual differentiation.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Yazhou Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
49
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
50
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|