1
|
Valaparambil KA, Fasaludeen A, Priya L, Menon RN, Menon R, Sundaram S. Clinical Utility of Proband Only Clinical Exome Sequencing in Neurodevelopmental Disorders. Indian J Pediatr 2025; 92:185-190. [PMID: 37943464 DOI: 10.1007/s12098-023-04916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Chromosomal microarray is recommended as the first line of investigation in neurodevelopmental disorders (NDDs). However, advances in next-generation sequencing have unraveled more than 900 genes associated with NDDs, thus improving the genetic diagnosis. Therefore, this study was conducted to explore the utility of clinical exome sequencing (CES) in NDDs from a tertiary care centre in India. A retrospective observational analysis of 78 children with NDDs for whom CES was performed between 2017 and 2021 was conducted. The American College of Medical Genetics and Genomics (ACMG) criteria were used to classify the variants. The mean age was 5.8 ± 3.6 y, and 42 (53%) were male. Pathogenic, likely pathogenic, and variants of uncertain significance (VUS) were observed in 22 (28.2%), 10 (12.8%), and 26 (33.3%) patients, respectively, which included five copy number variants. The diagnostic yield for pathogenic and likely pathogenic variants in NDDs by CES was 41%, which was reasonably high.
Collapse
Affiliation(s)
- Karthika Ajit Valaparambil
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Alfiya Fasaludeen
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Priya
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramshekhar N Menon
- Pediatric Neurology and Neurodevelopmental Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramesh Menon
- Department of Bioinformatics, MedGenome Labs, Bangalore, India
| | - Soumya Sundaram
- Pediatric Neurology and Neurodevelopmental Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
2
|
Moeinifar N, Hojati Z. Novel mutations found in genes involved in global developmental delay and intellectual disability by whole-exome sequencing, homology modeling, and systems biology. World J Biol Psychiatry 2025:1-16. [PMID: 39853208 DOI: 10.1080/15622975.2025.2453198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Genes associated with global developmental delay (GDD) and intellectual disability (ID) are increasingly being identified through next-generation sequencing (NGS) technologies. This study aimed to identify novel mutations in GDD/ID phenotypes through whole-exome sequencing (WES) and additional in silico analyses. MATERIAL AND METHODS WES was performed on 27 subjects, among whom 18 were screened for potential novel mutations. In silico analyses included protein-protein interactions (PPIs), gene-miRNA interactions (GMIs), and enrichment analyses. The identified novel variants were further modelled using I-Tasser-MTD and SWISS-MODEL, with structural superimposition performed. RESULTS Novel mutations were detected in 18 patients, with 10 variants reported for the first time. Among these, three were classified as pathogenic (DNMT1:c.856dup, KCNQ2:c.1635_1636insT, and TMEM94:c.2598_2599insC), and six were likely pathogenic. DNMT1 and MRE11 were highlighted as key players in PPIs and GMIs. GMIs analysis emphasised the roles of hsa-miR-30a-5p and hsa-miR-185-5p. The top-scoring pathways included the neuronal system (R-HSA-112316, p = 7.73E-04) and negative regulation of the smooth muscle cell apoptotic process (p = 3.37E-06). Homology modelling and superimposition revealed a significant functional loss in the mutated DNMT1 enzyme structure. CONCLUSION This study identified 10 novel pathogenic/likely pathogenic variants associated with GDD/ID, supported by clinical findings and in silico analyses focused on DNMT1 mutations.
Collapse
Affiliation(s)
- Nafiseh Moeinifar
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Wu D, Chen R, Zhang J, Yan W, Chen M, Xia D, Li X, Dai Y, Chen Y, Li R. DNA copy number variations and craniofacial abnormalities in 1,457 children with neurodevelopmental disorders. Ital J Pediatr 2025; 51:9. [PMID: 39849549 PMCID: PMC11756179 DOI: 10.1186/s13052-025-01839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND This study aimed to investigate deoxyribonucleic acid (DNA) copy number variations (CNVs) in children with neurodevelopmental disorders and their association with craniofacial abnormalities. METHODS A total of 1,457 children who visited the Child Health Department of our hospital for unexplained Neurodevelopmental disorders (NDDs) between November 2019 and December 2022 were enrolled. Peripheral venous blood samples (2 mL) were collected from the children and their parents for whole-exome sequencing. Positive results were verified through Sanger sequencing for locus and pedigree validation. Simultaneously, a specific sign-scoring scale was created to evaluate characteristics related to the developments of eyes, nose, ears, eyebrows, head, mouth, face, trunk, limbs, and reproductive, urinary, and cardiovascular systems. RESULTS A total of 536 children (36.78%, 536/1,457) were found to have genetic variations, with 379 (70.71%, 379/536) exhibiting pathogenic monogenic mutations. Furthermore, 157 children (29.29%, 157/536) harbored DNA copy number variants, encompassing microdeletions (68.15%, 107/157) and microduplications (31.85%, 50/157). Regarding the pathogenicity of CNVs, 91 (57.96%, 91/157) were identified as pathogenic, 28 (17.83%, 28/157) as variants of uncertain clinical significance (VOUS), and 38 (24.20%, 38/157) as benign according to the American College of Medical Genetics and Genomics (ACMG).Using a specific sign-scoring scale, the proportion of pathogenic CNVs in children graded 1 point or higher (64%, 58/91) was significantly higher than that of non-pathogenic CNVs (43%, 29/66) (P < 0.05). Furthermore, the proportion of microdeletions in children graded 1 point or higher (60.75%, 65/107) was significantly higher than those carrying microduplications (44%, 22/50) (P < 0.05). The proportion of pathogenic microdeletions in children graded 1 point or higher (73.43%,47/64) was significantly higher than those carrying pathogenic microduplications (40.74%, 11/27) (P < 0.05). CONCLUSION The positive rate of whole-exome sequencing for children with combined craniofacial abnormalities and NDDs exceeds the international average in our study cohort. Thus, whole-exome sequencing may be recommended for precise diagnosis of neurogenetic diseases in such cases.
Collapse
Affiliation(s)
- Dandan Wu
- Child Mental Health Deparment, Children's Hospital of Nanjing Medical University, NanjingJiangsu, 210008, China
| | - Ran Chen
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China
| | - Jerry Zhang
- Basis International School Nanjing, Nanjing, Jiangsu, 210008, China
| | - Wu Yan
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China
| | - Mengyin Chen
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China
| | - Dongqing Xia
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China
| | - Xiaonan Li
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China
| | - Yanyan Dai
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China
| | - Yinhua Chen
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China.
| | - Rong Li
- Child Healthcare Department, Children's Hospital of Nanjing Medical University, Jiangdong South No.8 Road, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
4
|
Shu Y, Chen X, Wei Z, Chen C. Dias-Logan syndrome with a de novo p.Leu360Profs*212 heterozygous pathogenic variant of BCL11A in a Chinese patient: A case report. SAGE Open Med Case Rep 2025; 13:2050313X251314069. [PMID: 39835253 PMCID: PMC11744616 DOI: 10.1177/2050313x251314069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Dias-Logan syndrome, also known as intellectual developmental disorder with persistence of fetal hemoglobin (HbF), or BCL11A-related intellectual developmental disorder, is an extremely rare neurogenetic disorder characterized by intellectual disability (ID), delayed psychomotor development, variable dysmorphic features, and asymptomatic persistence of fetal hemoglobin. The prevalence and incidence of this condition are currently unknown. We report an 8-year-old Han Chinese male patient with Dias-Logan syndrome who carries a de novo heterozygous pathogenic variant, c.1078dupC (p.Leu360Profs*212), in the BCL11A gene, leading to ID and γ-globin suppression, identified through trio-based whole exome sequencing (trio-WES). All his blood parameters were normal except for an elevated HbF level, which was 19.9% of total hemoglobin. Given the negative family history for ID, epilepsy, and alcohol consumption, de novo inheritance was presumed. Consequently, trio-WES analysis (parents and child) was conducted as it can identify potential new causal variants in the offspring. So far, a comprehensive understanding of the phenotypic spectrum of Dias-Logan syndrome and the impact of genotypic variation on disease severity is still lacking. Therefore, our case report enriches the existing literature on the clinical spectrum and genotype-phenotype correlations of BCL11A-related syndrome and provides some helpful information for diagnosis, management, and genetic counseling.
Collapse
Affiliation(s)
- Yizhuo Shu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoling Chen
- Department of Biochemistry, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhuoqun Wei
- Department of Acupuncture and Massage, The Third Clinical Medical College-Rehabilitation College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Chunyue Chen
- Department of Reproductive Medicine, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine & Hangzhou Red Cross Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Qian G, Yang N, Deng F, Zhang M, Pan X, Tan B, Liu L, Zhang X, Yao H, Dong X. SNV/Indel and CNV Analysis in Trio-WES for Intellectual and Developmental Disabilities: Diagnostic Yield & Cost-Effectiveness. Clin Genet 2025. [PMID: 39829082 DOI: 10.1111/cge.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/22/2025]
Abstract
Intellectual and developmental disabilities (IDD) are clinically and genetically heterogeneous disorders of global concern. While whole exome sequencing (WES) is used to identify single nucleotide variants (SNVs) and small insertions/deletions (Indels) in IDD patients, its detection rate is limited. This study evaluated the value of integrating copy number variation (CNV) analysis into traditional SNV/Indel analysis based on trio-WES. One hundred eighty seven patients with IDD in 140 families from southwest China were incorporated into the study cohort. The overall diagnostic rate was 40.11% (75/187), with 33.16% (62/187) from SNV/Indel analysis and 6.95% (13/187) from CNV analysis. SNV/Indel analysis identified 52 variants in 42 genes, including 30 novel and 22 reported variants; CNV analysis identified 11 CNVs, comprising 1 repeat and 10 deletions, with sizes ranging from 1313 to 55 184 kb. 39.29% (55/140) families benefited from this study for their clinical diagnosis, treatment, and reproduction. Furthermore, our strategy, with an incremental cost-effectiveness ratio (ICER) of $2546.22/diagnosis, had demonstrated significant advantages in terms of cost-effectiveness and detection speed compared to previous methods. In general, by incorporating SNV/Indel and CNV analysis based on trio-WES, a robust, cost-effective, and time-saving approach for diagnosing IDD has been developed.
Collapse
Affiliation(s)
- Guanhua Qian
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanyan Yang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingze Zhang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Pan
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Tan
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Liu
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Bandi V, Rennie M, Koch I, Gill P, Pacheco OD, Berg AD, Cui H, Ward DI, Bustos F. RLIM-specific activity reporters define variant pathogenicity in Tonne-Kalscheuer syndrome. HGG ADVANCES 2025; 6:100378. [PMID: 39482882 PMCID: PMC11617870 DOI: 10.1016/j.xhgg.2024.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Tonne-Kalscheuer syndrome (TOKAS; MIM: 300978) is an X-linked recessive disorder with devastating consequences for patients, such as intellectual disability, developmental delay, and multiple congenital abnormalities. TOKAS is associated with hemizygous variants in the RLIM gene, which encodes a RING-type E3 ubiquitin ligase. The current sustained increase in reported RLIM variants of uncertain significance creates an urgent need to develop assays that can screen these variants and experimentally determine their pathogenicity and disease association. Here, we engineered flow cytometry-based RLIM-specific reporters to measure RLIM activity in TOKAS. This paper describes the design and use of RLIM-specific reporters to determine the pathogenicity of a TOKAS RLIM gene variant. Our data demonstrate that RLIM-specific flow cytometry reporters based on either the full length or a degron region of the substrate REX1 measure RLIM activity in cells. Further, we describe the TOKAS variant RLIM p.Asn581Lys and, using reporter assays, determine that it disrupts RLIM catalytic activity. These data reveal how the p.Asn581Lys variant impairs RLIM function and suggests pathogenic mechanisms. The use of RLIM-specific reporters will greatly accelerate the resolution of variants of uncertain significance and disease association in TOKAS.
Collapse
Affiliation(s)
| | - Martin Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Intisar Koch
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Polly Gill
- Coordination of Rare Diseases at Sanford (CoRDS), Sanford Research, Sioux Falls, SD, USA
| | - Oscar D Pacheco
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Aaron D Berg
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA; Sanford Medical Center, Sioux Falls, SD, USA
| | - Hong Cui
- GeneDx, Gaithersburg, MD 20877, USA
| | - D Isum Ward
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA; Sanford Children's Specialty Clinic, Sioux Falls, SD, USA; Sanford Imagenetics, Sioux Falls, SD, USA
| | - Francisco Bustos
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
7
|
Fujimoto T, Mori M, Tonosaki M, Yaoi T, Nakano K, Okamura T, Itoh K. Characterization of Dystrophin Dp71 Expression and Interaction Partners in Embryonic Brain Development: Implications for Duchenne/Becker Muscular Dystrophy. Mol Neurobiol 2025:10.1007/s12035-024-04676-6. [PMID: 39760982 DOI: 10.1007/s12035-024-04676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters. Here, we aim to characterize the expression of the shortest product, Dp71, during embryonic brain development and to identify its interaction proteins by using Dp71-specific tag-insertion mice. We showed that Dp71 and Dp140 were major dystrophin products significantly detectable in the mouse embryonic brains and Dp71 was the only dystrophin product derived from intron-62 gene promoter in the physiological mouse brains. Although both Dp71f (exon 78-exclusive form) and Dp71d (exon 78-inclusive form) existed in the embryonic brains, Dp71f and Dp71d were dominant forms in the prenatal and postnatal periods, respectively. We histologically found that Dp71 was prominently expressed in the neuroepithelium of the dorsal and medial telencephalon, which gives rise to the primordial cerebral cortex and hippocampus. Deeper analysis using in vitro primary culture verified Dp71 expressions in Nestin-positive neural stem/progenitor, Fabp7-positive radial glia, and Gfap-positive astrocytic cell populations. Interestingly, Dp71 was downregulated upon neuronal differentiation from stem/progenitor cells into TuJ1-positive immature neurons; however, Dp71 became detectable at Gephyrin-positive inhibitory postsynapses within mature neurons. Importantly, interactome analysis revealed dystroglycan, dystrobrevins, and syntrophins as dominant Dp71-partners in the embryonic neural stem/progenitor cells. Thus, the presence of Dp71-dystroglycan macromolecular complex was clearly established at an early stage of embryonic brain development, which sheds light on relations between fetal abnormalities and intellectual disabilities in DMD/BMD.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| | - Miyuki Mori
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Madoka Tonosaki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| |
Collapse
|
8
|
Fifield K, Veerakanjana K, Hodsoll J, Kuntsi J, Tye C, Simblett S. Completion Rates of Smart Technology Ecological Momentary Assessment (EMA) in Populations With a Higher Likelihood of Cognitive Impairment: A Systematic Review and Meta-Analysis. Assessment 2025:10731911241306364. [PMID: 39749768 DOI: 10.1177/10731911241306364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ecological Momentary Assessment using smartphone technology (smart EMA) has grown substantially over the last decade. However, little is known about the factors associated with completion rates in populations who have a higher likelihood of cognitive impairment. A systematic review of Smart EMA studies in populations who have a higher likelihood of cognitive impairment was carried out (PROSPERO; ref no CRD42022375829). Smartphone EMA studies in neurological, neurodevelopmental and neurogenetic conditions were included. Six databases were searched, and bias was assessed using Egger's test. Completion rates and moderators were analyzed using meta-regression. Fifty-five cohorts were included with 18 cohorts reporting confirmed cognitive impairment. In the overall cohort, the completion rate was 74.4% and EMA protocol characteristics moderated completion rates. Participants with cognitive impairment had significantly lower completion rates compared with those without (p = .021). There were no significant moderators in the cognitive impairment group. Limitations included significant methodological issues in reporting of completion rates, sample characteristics, and associations with completion and dropout rates. These findings conclude that smart EMA is feasible for people with cognitive impairment. Future research should focus on the efficacy of using smart EMA within populations with cognitive impairment to develop an appropriate methodological evidence base.
Collapse
Affiliation(s)
- Kate Fifield
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kanyakorn Veerakanjana
- Social Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Hodsoll
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London UK
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Charlotte Tye
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sara Simblett
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Fattahi Z, Shokouhian E, Peymani F, Babanejad M, Beheshtian M, Edizadeh M, Molaei N, Alagha P, Ghodratpour F, Keshavarzi F, Moghadam MG, Arzhangi S, Kahrizi K, Najmabadi H. Improved Diagnostic Yield in Recessive Intellectual Disability Utilizing Systematic Whole Exome Sequencing Data Reanalysis. Clin Genet 2025. [PMID: 39748273 DOI: 10.1111/cge.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Recent advances in next generation sequencing (NGS) have positioned whole exome sequencing (WES) as an efficient first-tier method in genetic diagnosis. However, despite the diagnostic yield of 35%-50% in intellectual disability (ID) many patients still remain undiagnosed due to inherent limitations and bioinformatic short-comings. In this study, we reanalyzed WES data from 159 Iranian families showing recessively inherited ID. The reanalysis was conducted with an initial clinical re-evaluation of the patients and their families, followed by data reanalysis using two updated bioinformatic pipelines. In the first phase, the BWA-GATK pipeline was utilized for alignment and variant calling, with subsequent variant annotation by the ANNOVAR tool. This approach yielded causative variants in 17 families (10.6%). Among these, six genes (MAZ, ACTR5, AKTIP, MIX23, SERPINB12, and CDC25B) were identified as novel candidates potentially associated with ID, supported by bioinformatics functional annotation and segregation analysis. In the second phase, families with negative results were reassessed using the Illumina DRAGEN Bio-IT platform for variant-calling, and Ilyome, a newly developed web-based tool, for annotation. The second phase identified likely pathogenic variants in two additional families, increasing the total diagnostic yield to 11.9% which is consistent with other studies conducted on cohorts of patients with ID. In conclusion, identification of co-segregating variants in six novel candidate genes in this study, emphasizes once more on the potential of WES reanalysis to uncover previously unknown gene-disease associations. Notably, it demonstrates that systematic reanalysis of WES data using updated bioinformatic tools and a thorough review of the literature for new gene-disease associations while performing phenotypic re-evaluation, can improve diagnostic outcome of WES in recessively inherited ID. Consequently, if performed within a 1-3 year period, it can reduce the number of cases that may require other costly diagnostic methods such as whole genome sequencing.
Collapse
Affiliation(s)
- Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ebrahim Shokouhian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Peymani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Edizadeh
- Department of Bioinformatics, Genoks Genetic Diagnosis Center, Ankara, Turkey
| | - Negar Molaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Parnian Alagha
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Keshavarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
10
|
Xu J, Su W, Wang Y, Luo Y, Ye F, Xu Y, Chen L, Li H. Genetic analysis of 280 children with unexplained developmental delay or intellectual disability using whole exome sequencing. BMC Pediatr 2024; 24:766. [PMID: 39587513 PMCID: PMC11587547 DOI: 10.1186/s12887-024-05245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
INTRODUCTION Developmental delay (DD) and intellectual disability (ID) are key manifestations of neurodevelopmental disorders (NDDs), characterized by considerable clinical and genetic variability, which complicates genetic diagnosis. Whole exome sequencing (WES) has become an effective method for uncovering genetic causes in patients with unexplained DD/ID. METHODS We retrospectively analyzed WES data from 280 patients diagnosed with unexplained DD/ID. Demographic information and genetic variants identified through WES were assessed, along with an evaluation of clinical factors that might influence the detection of genetic causes. RESULTS Pathogenic variants were detected in 73 cases (36.07%), including 25 cases involving pathogenic chromosomal copy number variations. Clinical factors such as age, sex, gestational age, birth weight, anoxia, jaundice, associated symptoms, family history, muscle strength, muscle tone, epilepsy, brain MRI findings, EEG results, and the severity of DD/ID did not significantly impact the WES outcomes. However, a significant correlation was observed between delivery mode and positive WES results, with a higher diagnostic yield among patients delivered via caesarean section. CONCLUSIONS WES is a valuable approach for identifying genetic causes in patients with unexplained DD/ID, providing benefits for patient management, family genetic counseling, and long-term prognosis assessment. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jinbo Xu
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Wei Su
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Yishan Wang
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Yuanyuan Luo
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Fuling Ye
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Yanhong Xu
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Lulu Chen
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China
| | - Hong Li
- Department of rehabilitation, Anhui Provincial Children's Hospital, No.39, Wangjiang Road, Baohe District, Hefei, 230051, China.
| |
Collapse
|
11
|
Libé-Philippot B, Iwata R, Recupero AJ, Wierda K, Bernal Garcia S, Hammond L, van Benthem A, Limame R, Ditkowska M, Beckers S, Gaspariunaite V, Peze-Heidsieck E, Remans D, Charrier C, Theys T, Polleux F, Vanderhaeghen P. Synaptic neoteny of human cortical neurons requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition. Neuron 2024; 112:3602-3617.e9. [PMID: 39406239 PMCID: PMC11546603 DOI: 10.1016/j.neuron.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Human-specific (HS) genes have been implicated in brain evolution, but their impact on human neuron development and diseases remains unclear. Here, we study SRGAP2B/C, two HS gene duplications of the ancestral synaptic gene SRGAP2A, in human cortical pyramidal neurons (CPNs) xenotransplanted in the mouse cortex. Downregulation of SRGAP2B/C in human CPNs led to strongly accelerated synaptic development, indicating their requirement for the neoteny that distinguishes human synaptogenesis. SRGAP2B/C genes promoted neoteny by reducing the synaptic levels of SRGAP2A,thereby increasing the postsynaptic accumulation of the SYNGAP1 protein, encoded by a major intellectual disability/autism spectrum disorder (ID/ASD) gene. Combinatorial loss-of-function experiments in vivo revealed that the tempo of synaptogenesis is set by the reciprocal antagonism between SRGAP2A and SYNGAP1, which in human CPNs is tipped toward neoteny by SRGAP2B/C. Thus, HS genes can modify the phenotypic expression of genetic mutations leading to ID/ASD through the regulation of human synaptic neoteny.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Ryohei Iwata
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Aleksandra J Recupero
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Keimpe Wierda
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sergio Bernal Garcia
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Luke Hammond
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neurology, The Ohio State University, Wexner Medical School, Columbus, OH, USA
| | - Anja van Benthem
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Ridha Limame
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Martyna Ditkowska
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eugénie Peze-Heidsieck
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Daan Remans
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris 75005, France
| | - Tom Theys
- Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Pierre Vanderhaeghen
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
12
|
Smal N, Majdoub F, Janssens K, Reyniers E, Meuwissen MEC, Ceulemans B, Northrup H, Hill JB, Liu L, Errichiello E, Gana S, Strong A, Rohena L, Franciskovich R, Murali CN, Huybrechs A, Sulem T, Fridriksdottir R, Sulem P, Stefansson K, Bai Y, Rosenfeld JA, Lalani SR, Streff H, Kooy RF, Weckhuysen S. Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes. Eur J Hum Genet 2024; 32:1378-1386. [PMID: 38965372 DOI: 10.1038/s41431-024-01661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.
Collapse
Affiliation(s)
- Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, University of Sfax, Sfax, Tunisia
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Marije E C Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Berten Ceulemans
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Jeremy B Hill
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Lingying Liu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - An Huybrechs
- Department of Pediatrics, Heilig Hart Ziekenhuis, Lier, Belgium
| | - Telma Sulem
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | - Yan Bai
- GeneDx, Gaithersburg, MD, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
14
|
Tanaka T, Hirai S, Manabe H, Endo K, Shimbo H, Nishito Y, Horiuchi J, Yoshitane H, Okado H. Minocycline prevents early age-related cognitive decline in a mouse model of intellectual disability caused by ZBTB18/RP58 haploinsufficiency. J Neuroinflammation 2024; 21:260. [PMID: 39396010 PMCID: PMC11471036 DOI: 10.1186/s12974-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/01/2024] [Indexed: 10/14/2024] Open
Abstract
Haploinsufficiency of the transcriptional repressor ZBTB18/RP58 is associated with intellectual disability. However, the mechanisms causing this disability are unknown, and preventative measures and treatments are not available. Here, we assessed multiple behaviors in Zbtb18/Rp58 heterozygous-knockout mice, and examined local field potentials, DNA fragmentation, mitochondrial morphology, and performed histochemical and transcriptome analyses in the hippocampus to evaluate chronic inflammation. In wild-type mice, object location memory was present at a similar level at 2 and 4-5 months of age, and became impaired at 12-18 months. In contrast, Zbtb18/Rp58 heterozygous-knockout mice displayed early onset impairments in object location memory by 4-5 months of age. These mice also exhibited earlier accumulation of DNA and mitochondrial damage, and activated microglia in the dentate gyrus, which are associated with defective DNA repair. Notably, chronic minocycline therapy, which has neuroprotective and anti-inflammatory effects, attenuated age-related phenotypes, including accumulation of DNA damage, increased microglial activation, and impairment of object location memory. Our results suggest that Zbtb18/Rp58 activity is required for DNA repair and its reduction results in DNA and mitochondrial damage, increased activation of microglia, and inflammation, leading to accelerated declines in cognitive functions. Minocycline has potential as a therapeutic agent for the treatment of ZBTB18/RP58 haploinsufficiency-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Shinobu Hirai
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroyuki Manabe
- Department of Neurophysiology, Nara Medical University, Nara, 634-8521, Japan
| | - Kentaro Endo
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroko Shimbo
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasumasa Nishito
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Junjiro Horiuchi
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hikari Yoshitane
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Haruo Okado
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
15
|
Brattig-Correia R, Almeida JM, Wyrwoll MJ, Julca I, Sobral D, Misra CS, Di Persio S, Guilgur LG, Schuppe HC, Silva N, Prudêncio P, Nóvoa A, Leocádio AS, Bom J, Laurentino S, Mallo M, Kliesch S, Mutwil M, Rocha LM, Tüttelmann F, Becker JD, Navarro-Costa P. The conserved genetic program of male germ cells uncovers ancient regulators of human spermatogenesis. eLife 2024; 13:RP95774. [PMID: 39388236 PMCID: PMC11466473 DOI: 10.7554/elife.95774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.
Collapse
Affiliation(s)
- Rion Brattig-Correia
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Joana M Almeida
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Margot Julia Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University LisbonLisbonPortugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University LisbonCaparicaPortugal
| | - Chandra Shekhar Misra
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-UniversityGiessenGermany
| | - Neide Silva
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Ana Nóvoa
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - Joana Bom
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Luis M Rocha
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Jörg D Becker
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Paulo Navarro-Costa
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| |
Collapse
|
16
|
Aschauer E, Yazdi SI, Aschauer H. A survey in Austria supports the significance of genetic counseling and pharmacogenetic testing for mental illness. Front Psychiatry 2024; 15:1436875. [PMID: 39421071 PMCID: PMC11484073 DOI: 10.3389/fpsyt.2024.1436875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Genetic counseling and testing in psychiatry warrant attention, but research results on attitude, knowledge, personal experience and interest are limited. There are only a few studies that have compared the opinions of the general population and experts regarding genetic counseling and genetic testing in mental illness. Methods This study aimed to investigate these gaps through a cross-sectional survey conducted in Austria, involving a sample of the web-active population, representative according to gender, age and geographical location (n=1,000, 24.5% of them had a psychiatric diagnosis), and experts (n=145, 83.4% of them psychiatrists). Two questionnaires were developed. Pearson chi-square statistics were used to compare responses, and regression analyses were employed to measure the strength of psycho-sociodemographic influences on answers. Results The findings revealed that public considered genetic counseling to be more important than experts did (68.8% versus 54.2%; Pearson chi-square 12.183; df=1; p<0.001). The general population believed that genetic testing is useful for diagnosing mental disorders, which contrasted with experts' opinions (67.9% versus 17.2%; Pearson chi-square 137.236; df=1; p<0.001). Both groups agreed on the potential benefits of pharmacogenetic testing (79% versus 80%). A small number of individuals from the public had sought genetic counseling (8%), and only a minority of experts had specific training and experience in this field (28%). Discussion This is the first survey study on the topic conducted in Austria, with limited international studies available. Austrian experts place less value on genetic counseling compared to their counterparts in other countries. Despite recognized importance placed on genetic counseling and testing, utilization rates remain low. The value of pharmacogenetics is predicted to increase in the future. Consequently, it is crucial for medical training programs to emphasize the significance of genetic counseling and enhance the understanding of genetic aspects related to mental illnesses to enable experts to provide adequate psychoeducation and personalized care to the extent possible to patients and their families.
Collapse
Affiliation(s)
- Elena Aschauer
- Allgemein Psychiatrische Abteilung, Klinik Landstrasse, Wiener Gesundheitsverbund, Vienna, Austria
| | - Shahriar Izadi Yazdi
- Erste Psychiatrische Abteilung mit Zentrum für Psychotherapie und Psychosomatik, Klinik Penzing, Wiener Gesundheitsverbund, Vienna, Austria
| | - Harald Aschauer
- Biopsychosocial Corporation, BioPsyc, Non-profit Association for Research Funding Ltd, Vienna, Austria
| |
Collapse
|
17
|
Luo C, Wen E, Liu Y, Wang H, Jia B, Chen L, Wu X, Geng Q, Wen H, Li S, Liu B, Wu W, Zhong M. Application of Whole-Exome Sequencing in the Prenatal Diagnosis of Foetuses With Central Nervous System Abnormalities. Mol Genet Genomic Med 2024; 12:e70016. [PMID: 39359128 PMCID: PMC11447275 DOI: 10.1002/mgg3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE To investigate the clinical value of whole-exome sequencing (WES) in the diagnosis of foetuses with central nervous system (CNS) abnormalities but having a normal karyotyping and chromosomal microarray result. METHOD During the period of 2016-2022, there were a total of 149 foetuses with CNS abnormalities but having negative karyotyping and chromosomal microarray analysis results; WES was performed on these foetuses and their parents. Variants were classified according to ACMG guidelines, and the association of pathogenic variants with specific types of CNS abnormalities was explored. RESULTS Among these 149 foetuses, three categories of abnormalities, namely, single CNS abnormality, multiple CNS abnormalities, CNS abnormalities along with other organ system abnormalities were identified, for which the detection rate of P/LP variants is 17.4% (12/69), 28.6% (14/49) and 54.8% (17/31), respectively. CONCLUSION WES brought about an increase of 28.9% in diagnostic yield in the prenatal evaluation of foetuses with CNS abnormalities but having negative karyotyping and chromosome array results. WES may also be of benefit for the diagnosis of foetuses with isolated CNS abnormalities, as well as for making more informed interpretations of imaging findings and for providing better genetic counselling.
Collapse
Affiliation(s)
- Caiqun Luo
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Erya Wen
- Shenzhen Center for Chronic Disease ControlShenzhenGuangdongChina
| | - Yang Liu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Hui Wang
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Bei Jia
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liyuan Chen
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Xiaoxia Wu
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Qian Geng
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Huaxuan Wen
- Ultrasound DepartmentShenzhen Maternity and Child Healthcare HospitalShenzhenGuangdongChina
| | - Shengli Li
- Ultrasound DepartmentShenzhen Maternity and Child Healthcare HospitalShenzhenGuangdongChina
| | - Bingguang Liu
- Department of Medical ImagingShenzhen Maternity and Child Healthcare HospitalShenzhenGuangdongChina
| | - Weiqing Wu
- Medical Genetic Center, Shenzhen Maternity and Child Healthcare HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Lou Y, Wu L, Cai W, Deng H, Sang R, Xie S, Xu X, Yuan X, Wu C, Xu M, Ge W, Xi Y, Yang X. The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells. J Mol Cell Biol 2024; 16:mjae017. [PMID: 38719542 PMCID: PMC11467811 DOI: 10.1093/jmcb/mjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
Collapse
Affiliation(s)
- Yuhan Lou
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Litao Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Wanlin Cai
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Huan Deng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rong Sang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Xie
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yuan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Man Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanzhong Ge
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohang Yang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
19
|
Thurman AJ, Nunnally AD, Nguyen V, Berry-Kravis E, Sterling A, Edgin J, Hamilton D, Aschkenasy J, Abbeduto L. Short-term and Long-term Stability of the Autism Diagnostic Observation Schedule (ADOS-2) Calibrated Comparison Scores (CCS) and Classification Scores in Youth with Down Syndrome or Fragile X Syndrome with Intellectual Disability. J Autism Dev Disord 2024:10.1007/s10803-024-06535-8. [PMID: 39251531 DOI: 10.1007/s10803-024-06535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Autism diagnosis in individuals with fragile X syndrome (FXS) or Down syndrome (DS) with co-occurring intellectual disability is complex since clinicians often must consider other co-occurring behavioral features. Understanding how best to assess the features of autism in individuals with these conditions is crucial. In this study, we consider the short-term and long-term psychometric consistency of the Autism Diagnostic Observation Schedule-2 (ADOS-2) calibrated comparison scores (CCSs) and ASD classifications in individuals with FXS or DS. 76 individuals with DS (39 males; Mage = 15.27) and 90 individuals with FXS (71 males; Mage = 14.52 years) completed an assessment battery (ADOS-2, abbreviated IQ assessment and semi-structured language sample) at three timepoints (initial visit, short-term stability visit, long-term stability visit). All CCSs were found to have short-and long-term consistency for both groups, with lowest reliability scores for the repetitive behaviors (RRB) CCSs. Decreased reliability of RRB CCSs was found in the DS group than the FXS group. Variable short- and long-term ASD classifications were observed in both groups, with significantly higher variability in the DS group. Across groups, participants with variable classifications had lower ADOS-2 CCSs and higher language scores than those with stable ASD classifications. In the FXS group, those with variable classifications earned higher cognitive scores than did participants with stable ASD classifications. These findings highlight the high incidence of autism symptomatology in individuals with DS or FXS and co-occurring intellectual disability, while elucidating the short- and long-term variability of symptom expression in the context of structured observational tasks such as the ADOS-2.
Collapse
Affiliation(s)
- Angela John Thurman
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA.
| | - Amanda Dimachkie Nunnally
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA
| | - Vivian Nguyen
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, USA
| | - Audra Sterling
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, USA
| | - Jamie Edgin
- Department of Psychology, Virginia Tech, Blacksburg, USA
| | - Debra Hamilton
- Department of Human Genetics, Emory University, Atlanta, USA
| | | | - Leonard Abbeduto
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA
| |
Collapse
|
20
|
Li W, Li Z, Fu J, Xu K, Mei D, Wang X, Li T, Du X. Case report: Second report of neuromuscular syndrome caused by biallelic variants in ASCC3. Front Genet 2024; 15:1382275. [PMID: 39286456 PMCID: PMC11402803 DOI: 10.3389/fgene.2024.1382275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Activating Signal Cointegrator 1 Complex, Subunit 3 (ASCC3) has been implicated in the pathogenesis of neurodevelopmental disorders and neuromuscular diseases (MIM: 620700). This paper analyzes the clinical manifestations of three patients with developmental delay caused by ASCC3 genetic variation. Additionally, we discuss the previously reported clinical features of these patients along with our own findings, thereby enhancing our understanding of these genetic disorders and providing valuable insights into diagnosis, treatment, and potential interventions for affected individuals. Methods In this study, we utilized trio-whole-exome sequencing (Trio-WES) and trio-copy number variations sequencing (Trio-CNV-seq) to analyze three unique families diagnosed with developmental delay caused by variation in ASCC3. Additionally, we retrospectively examined eleven previously reported ASCC3 genetic variations exhibiting similar clinical features. Results Proband I (family 1) and Proband III (family 3) exhibited global developmental delays, characterized by intellectual disability, motor impairment, language retardation, lower muscle strength, and reduced muscle tone in their extremities. Proband II (family 2) presented poor response and dysphagia during feeding within 7 days after birth, clinical examination displayed short limbs, long trunk proportions, and clenched fists frequently observed alongside high muscle tone in his limbs -all indicative signs of developmental delay. Trio-WES revealed compound heterozygous variants in ASCC3 inherited from their parents. Proband I carried c. [489 dup]; [1897C>T], proband II carried c. [2314C>T]; [5002T>A], and proband III carried c. [5113G>T]; [718delG] variations, respectively. Conclusion This study present the first report of Chinese children carrying compound heterozygous genetic variants in ASCC3 with LOF variants, elucidating the relationship between these variants and various aspects of intellectual disability. This novel finding expands the existing spectrum of ASCC3 variations.
Collapse
Affiliation(s)
- Wang Li
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Henan Children's Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhongliang Li
- Department of Neonatology, Weifang Maternity and Child Care Hospital, Weifang, China
| | - Junhui Fu
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Rehabilitation Medicine, Zhoukou Sixth People's Hospital, Zhoukou, China
| | - Kaili Xu
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Henan Children's Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Henan Children's Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaona Wang
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospita Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Taisong Li
- Beijing Chigene Translational Medical Research Center, Beijing, China
| | - Xilong Du
- Beijing Chigene Translational Medical Research Center, Beijing, China
| |
Collapse
|
21
|
Cernigliaro F, Santangelo A, Nardello R, Lo Cascio S, D'Agostino S, Correnti E, Marchese F, Pitino R, Valdese S, Rizzo C, Raieli V, Santangelo G. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life (Basel) 2024; 14:1084. [PMID: 39337868 PMCID: PMC11433086 DOI: 10.3390/life14091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
According to the DSM-5, neurodevelopmental disorders represent a group of heterogeneous conditions, with onset during the developmental period, characterized by an alteration of communication and social skills, learning, adaptive behavior, executive functions, and psychomotor skills. These deficits determine an impairment of personal, social, scholastic, or occupational functioning. Neurodevelopmental disorders are characterized by an increased incidence and a multifactorial etiology, including genetic and environmental components. Data largely explain the role of genetic and environmental factors, also through epigenetic modifications such as DNA methylation and miRNA. Despite genetic factors, nutritional factors also play a significant role in the pathophysiology of these disorders, both in the prenatal and postnatal period, underscoring that the control of modifiable factors could decrease the incidence of neurodevelopmental disorders. The preventive role of nutrition is widely studied as regards many chronic diseases, such as diabetes, hypertension, and cancer, but actually we also know the effects of nutrition on embryonic brain development and the influence of prenatal and preconceptional nutrition in predisposition to various pathologies. These factors are not limited only to a correct caloric intake and a good BMI, but rather to an adequate and balanced intake of macro and micronutrients, the type of diet, and other elements such as exposure to heavy metals. This review represents an analysis of the literature as regards the physiopathological mechanisms by which food influences our state of health, especially in the age of development (from birth to adolescence), through prenatal and preconceptional changes, underlying how controlling these nutritional factors should improve mothers' nutritional state to significantly reduce the risk of neurodevelopmental disorders in offspring. We searched key words such as "maternal nutrition and neurodevelopmental disorders" on Pubmed and Google Scholar, selecting the main reviews and excluding individual cases. Therefore, nutrigenetics and nutrigenomics teach us the importance of personalized nutrition for good health. So future perspectives may include well-established reference values in order to determine the correct nutritional intake of mothers through food and integration.
Collapse
Affiliation(s)
- Federica Cernigliaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Andrea Santangelo
- Pediatrics Department, AOUP Santa Chiara Hospital, 56126 Pisa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Salvatore Lo Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Sofia D'Agostino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Edvige Correnti
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | | | - Renata Pitino
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Silvia Valdese
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Carmelo Rizzo
- A.I.Nu.C-International Academy of Clinical Nutrition, 00166 Rome, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| | - Giuseppe Santangelo
- Child Neuropsychiatry Department, ISMEP-ARNAS Civico-Di Cristina Benfratelli, Di Cristina Pediatric Hospital, 90134 Palermo, Italy
| |
Collapse
|
22
|
Hou K, Zheng X. A 10-Year Review on Advancements in Identifying and Treating Intellectual Disability Caused by Genetic Variations. Genes (Basel) 2024; 15:1118. [PMID: 39336708 PMCID: PMC11431063 DOI: 10.3390/genes15091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Intellectual disability (ID) is a prevalent neurodevelopmental disorder characterized by neurodevelopmental defects such as the congenital impairment of intellectual function and restricted adaptive behavior. However, genetic studies have been significantly hindered by the extreme clinical and genetic heterogeneity of the subjects under investigation. With the development of gene sequencing technologies, more genetic variations have been discovered, assisting efforts in ID identification and treatment. In this review, the physiological basis of gene variations in ID is systematically explained, the diagnosis and therapy of ID is comprehensively described, and the potential of genetic therapies and exercise therapy in the rehabilitation of individuals with intellectual disabilities are highlighted, offering new perspectives for treatment approaches.
Collapse
Affiliation(s)
- Kexin Hou
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu, Shanghai 200438, China
| | - Xinyan Zheng
- School of Exercise and Health, Shanghai University of Sport, 200 Hengren Road, Yangpu, Shanghai 200438, China
| |
Collapse
|
23
|
Cave DGW, Wands ZE, Cromie K, Hough A, Johnson K, Mon-Williams M, Bentham JR, Feltbower RG, Glaser AW. Educational attainment of children with congenital heart disease in the United Kingdom. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2024; 10:456-466. [PMID: 37985703 PMCID: PMC11307196 DOI: 10.1093/ehjqcco/qcad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Educational attainment in children with congenital heart disease (CHD) within the UK has not been reported, despite the possibility of school absences and disease-specific factors creating educational barriers. METHODS AND RESULTS Children were prospectively recruited to the Born in Bradford birth cohort between March 2007 and December 2010. Diagnoses of CHD were identified through linkage to the congenital anomaly register and independently verified by clinicians. Multivariable regression accounted for relevant confounders. Our primary outcome was the odds of 'below expected' attainment in maths, reading, and writing at ages 4-11 years.Educational records of 139 children with non-genetic CHD were compared with 11 188 age-matched children with no major congenital anomaly. Children with CHD had significantly higher odds of 'below expected' attainment in maths at age 4-5 years [odds ratio (OR) 1.64, 95% confidence interval (CI) 1.07-2.52], age 6-7 (OR 2.03, 95% CI 1.32-3.12), and age 10-11 (OR 2.28, 95% CI 1.01-5.14). Odds worsened with age, with similar results for reading and writing. The odds of receiving special educational needs support reduced with age for children with CHD relative to controls [age 4-5: OR 4.84 (2.06-11.40); age 6-7: OR 3.65 (2.41-5.53); age 10-11: OR 2.73 (1.84-4.06)]. Attainment was similar for children with and without exposure to cardio-pulmonary bypass. Lower attainment was strongly associated with the number of pre-school hospital admissions. CONCLUSION Children with CHD have lower educational attainment compared with their peers. Deficits are evident from school entry and increase throughout primary school.
Collapse
Affiliation(s)
- Daniel G W Cave
- Leeds Institute for Data Analytics (LIDA), School of Medicine, University of Leeds, Clarendon Way, Leeds, West Yorkshire LS2 9JT, UK
- Leeds Children's Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| | - Zoë E Wands
- Leeds Institute for Data Analytics (LIDA), School of Medicine, University of Leeds, Clarendon Way, Leeds, West Yorkshire LS2 9JT, UK
| | - Kirsten Cromie
- Leeds Institute for Data Analytics (LIDA), School of Medicine, University of Leeds, Clarendon Way, Leeds, West Yorkshire LS2 9JT, UK
| | - Amy Hough
- Born in Bradford, Bradford Institute of Health Research, Bradford Royal Infirmary, Bradford, West Yorkshire, UK
| | - Kathryn Johnson
- Leeds Children's Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
- National Congenital Anomaly and Rare Disease Registration Service (NCARDRS), National Health Service, UK
| | - Mark Mon-Williams
- Leeds Institute for Data Analytics (LIDA), School of Medicine, University of Leeds, Clarendon Way, Leeds, West Yorkshire LS2 9JT, UK
- Born in Bradford, Bradford Institute of Health Research, Bradford Royal Infirmary, Bradford, West Yorkshire, UK
| | - James R Bentham
- Leeds Children's Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| | - Richard G Feltbower
- Leeds Institute for Data Analytics (LIDA), School of Medicine, University of Leeds, Clarendon Way, Leeds, West Yorkshire LS2 9JT, UK
| | - Adam W Glaser
- Leeds Institute for Data Analytics (LIDA), School of Medicine, University of Leeds, Clarendon Way, Leeds, West Yorkshire LS2 9JT, UK
- Leeds Children's Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| |
Collapse
|
24
|
Ren Z, Tang H, Zhang W, Guo M, Cui J, Wang H, Xie B, Yu J, Chen Y, Zhang M, Han C, Chu T, Liang Q, Zhao S, Huang Y, He X, Liu K, Liu C, Chen C. The Role of KDM2A and H3K36me2 Demethylation in Modulating MAPK Signaling During Neurodevelopment. Neurosci Bull 2024; 40:1076-1092. [PMID: 38060137 PMCID: PMC11306490 DOI: 10.1007/s12264-023-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/13/2023] [Indexed: 12/08/2023] Open
Abstract
Intellectual disability (ID) is a condition characterized by cognitive impairment and difficulties in adaptive functioning. In our research, we identified two de novo mutations (c.955C>T and c.732C>A) at the KDM2A locus in individuals with varying degrees of ID. In addition, by using the Gene4Denovo database, we discovered five additional cases of de novo mutations in KDM2A. The mutations we identified significantly decreased the expression of the KDM2A protein. To investigate the role of KDM2A in neural development, we used both 2D neural stem cell models and 3D cerebral organoids. Our findings demonstrated that the reduced expression of KDM2A impairs the proliferation of neural progenitor cells (NPCs), increases apoptosis, induces premature neuronal differentiation, and affects synapse maturation. Through ChIP-Seq analysis, we found that KDM2A exhibited binding to the transcription start site regions of genes involved in neurogenesis. In addition, the knockdown of KDM2A hindered H3K36me2 binding to the downstream regulatory elements of genes. By integrating ChIP-Seq and RNA-Seq data, we made a significant discovery of the core genes' remarkable enrichment in the MAPK signaling pathway. Importantly, this enrichment was specifically linked to the p38 MAPK pathway. Furthermore, disease enrichment analysis linked the differentially-expressed genes identified from RNA-Seq of NPCs and cerebral organoids to neurodevelopmental disorders such as ID, autism spectrum disorder, and schizophrenia. Overall, our findings suggest that KDM2A plays a crucial role in regulating the H3K36me2 modification of downstream genes, thereby modulating the MAPK signaling pathway and potentially impacting early brain development.
Collapse
Affiliation(s)
- Zongyao Ren
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Haiyan Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Minghui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Jingjie Cui
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Changsha, 410007, China
| | - Bin Xie
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Jing Yu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Yonghao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Ming Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Cong Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Tianyao Chu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Qiuman Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Shunan Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Yingjie Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China.
| | - Kefu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, 410028, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Changsha, 410000, China.
| |
Collapse
|
25
|
Zha J, Chen Y, Cao F, Yu Y, Wang R, Zhong J. Identification of a novel METTL23 gene variant in a patient with an intellectual development disorder: a literature review and case report. Front Pediatr 2024; 12:1328063. [PMID: 39026940 PMCID: PMC11254747 DOI: 10.3389/fped.2024.1328063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
METTL23 belongs to a family of protein lysine methyltransferases that methylate non-histone proteins. Recently, the METTL23 gene has been reported to be related to an intellectual developmental disorder, autosomal recessive 44. Patients present with developmental delay, intellectual disability (ID), and variable dysmorphic features. Here, we report on a Chinese girl who presented with global developmental delay, abnormal brain structure, and multiple facial deformities, including a short/upturned nose with a sunken bridge, thin lips, and flat occiput. Whole-exome sequencing identified a novel variant (NM_001080510.5: c.322+1del) on the METTL23 gene. This variant was not collected on public human variants databases such as gnomAD, predicted to influence the splicing as a classical splicing variant, and classified as Pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Since patients with METTL23-related ID are rare, we summarize and compare the clinical phenotype of reported patients with METTL23 variants. Our report further expands the METTL23 variants and provides new evidence for clinical diagnosis of METTL23-related ID.
Collapse
Affiliation(s)
- Jian Zha
- Department of Neurology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Yong Chen
- Department of Neurology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Fangfang Cao
- Department of Neurology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Yanghong Yu
- Department of Radiology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ruiyan Wang
- Department of Neurology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| |
Collapse
|
26
|
Hussain SI, Muhammad N, Shah SA, Rehman AU, Khan SA, Saleha S, Khan YM, Muhammad N, Khan S, Wasif N. Variants in HCFC1 and MN1 genes causing intellectual disability in two Pakistani families. BMC Med Genomics 2024; 17:176. [PMID: 38956580 PMCID: PMC11221130 DOI: 10.1186/s12920-024-01943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Intellectual disability (ID) is a neurodevelopmental condition affecting around 2% of children and young adults worldwide, characterized by deficits in intellectual functioning and adaptive behavior. Genetic factors contribute to the development of ID phenotypes, including mutations and structural changes in chromosomes. Pathogenic variants in the HCFC1 gene cause X-linked mental retardation syndrome, also known as Siderius type X-linked mental retardation. The MN1 gene is necessary for palate development, and mutations in this gene result in a genetic condition called CEBALID syndrome. METHODS Exome sequencing was used to identify the disease-causing variants in two affected families, A and B, from various regions of Pakistan. Affected individuals in these two families presented ID, developmental delay, and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS In an X-linked family A, a novel hemizygous missense variant (c.5705G > A; p.Ser1902Asn) in the HCFC1 gene (NM_005334.3) was identified, while in family B exome sequencing revealed a heterozygous nonsense variant (c.3680 G > A; p. Trp1227Ter) in exon-1 of the MN1 gene (NM_032581.4). Sanger sequencing confirmed the segregation of these variants with ID in each family. CONCLUSIONS The investigation of two Pakistani families revealed pathogenic genetic variants in the HCFC1 and MN1 genes, which cause ID and expand the mutational spectrum of these genes.
Collapse
Affiliation(s)
- Syeda Iqra Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahbaz Ali Shah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil U Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Computer Science and Bioinformatics, Khushal Khan Khatak University, Karak, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Yar Muhammad Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
27
|
Russ JB, Stone AC, Maney K, Morris L, Wright CF, Hurst JH, Cohen JL. Pathogenic variants associated with speech/cognitive delay and seizures affect genes with expression biases in excitatory neurons and microglia in developing human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601597. [PMID: 39005386 PMCID: PMC11245013 DOI: 10.1101/2024.07.01.601597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background & Objective Congenital brain malformations and neurodevelopmental disorders (NDDs) are common pediatric neurological disorders and result in chronic disability. With the expansion of genetic testing, new etiologies for NDDs are continually uncovered, with as many as one third attributable to single-gene pathogenic variants. While our ability to identify pathogenic variants has continually improved, we have little understanding of the underlying cellular pathophysiology in the nervous system that results from these variants. We therefore integrated phenotypic information from subjects with monogenic diagnoses with two large, single-nucleus RNA-sequencing (snRNAseq) datasets from human cortex across developmental stages in order to investigate cell-specific biases in gene expression associated with distinct neurodevelopmental phenotypes. Methods Phenotypic data was gathered from 1) a single-institution cohort of 84 neonates with pathogenic single-gene variants referred to Duke Pediatric Genetics, and 2) a cohort of 4,238 patients with neurodevelopmental disorders and pathogenic single-gene variants enrolled in the Deciphering Developmental Disorders (DDD) study. Pathogenic variants were grouped into genesets by neurodevelopmental phenotype and geneset expression across cortical cell subtypes was compared within snRNAseq datasets from 86 human cortex samples spanning the 2nd trimester of gestation to adulthood. Results We find that pathogenic variants associated with speech/cognitive delay or seizures involve genes that are more highly expressed in cortical excitatory neurons than variants in genes not associated with these phenotypes (Speech/cognitive: p=2.25×10-7; Seizures: p=7.97×10-12). A separate set of primarily rare variants associated with speech/cognitive delay or seizures, distinct from those with excitatory neuron expression biases, demonstrated expression biases in microglia. We also found that variants associated with speech/cognitive delay and an excitatory neuron expression bias could be further parsed by the presence or absence of comorbid seizures. Variants associated with speech/cognitive delay without seizures tended to involve calcium regulatory pathways and showed greater expression in extratelencephalic neurons, while those associated with speech/cognitive delay with seizures tended to involve synaptic regulatory machinery and an intratelencephalic neuron expression bias (ANOVA by geneset p<2×10-16). Conclusions By combining extensive phenotype datasets from subjects with neurodevelopmental disorders with massive human cortical snRNAseq datasets across developmental stages, we identified cell-specific expression biases for genes in which pathogenic variants are associated with speech/cognitive delay and seizures. The involvement of genes with enriched expression in excitatory neurons or microglia highlights the unique role both cell types play in proper sculpting of the developing brain. Moreover, this information begins to shed light on distinct cortical cell types that are more likely to be impacted by pathogenic variants and that may mediate the symptomatology of resulting neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Department of Pediatrics, Division of Neurology, Duke University, USA
| | - Alexa C Stone
- Department of Pediatrics, Pediatric Neurology Residency Program, Duke University, USA
| | - Kayli Maney
- Department of Pediatrics, Pediatric Neurology Residency Program, Duke University, USA
| | - Lauren Morris
- Department of Pediatrics, Pediatric Neurology Residency Program, Duke University, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, UK
| | - Jillian H Hurst
- Department of Pediatrics, Children's Health & Discovery Initiative, Duke University, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, USA
| |
Collapse
|
28
|
Zhang J, Xu Y, Liu Y, Yue L, Jin H, Chen Y, Wang D, Wang M, Chen G, Yang L, Zhang G, Zhang X, Li S, Zhao H, Zhao Y, Niu G, Gao Y, Cai Z, Yang F, Zhu C, Zhu D. Genetic Testing for Global Developmental Delay in Early Childhood. JAMA Netw Open 2024; 7:e2415084. [PMID: 38837156 PMCID: PMC11154162 DOI: 10.1001/jamanetworkopen.2024.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Importance Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.
Collapse
Affiliation(s)
- Jiamei Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Liu
- Kunming Children’s Hospital, Kunming, China
| | - Ling Yue
- Department of Neurological Rehabilitation, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Hongfang Jin
- Qinghai Provincial Women and Children’s Hospital, Xining, China
| | | | - Dong Wang
- Department of Pediatric Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Mingmei Wang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongxun Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatric Neurology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sansong Li
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxia Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijun Cai
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Dengna Zhu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Maliszewski-Makowka D, Wieczorek D. Implementation of human genetic counseling in the MZEB (Medical Center for Adults with disabilities) at the psychiatric LVR Clinic Bedburg-Hau. MED GENET-BERLIN 2024; 36:103-109. [PMID: 38854638 PMCID: PMC11154173 DOI: 10.1515/medgen-2024-2026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Outpatient diagnostics for adult patients with intellectual disabilities and developmental disorders were significantly improved when 'Medical Centers for Adults with Disabilities' (MZEB) were established in 2015 in accordance with a new law (§ 119c SGB V). Due to the multi-professional nature of these MZEBs, cooperation with various specialized centers can be initiated. Accordingly, in 2023, a cooperation between the MZEB in the LVR-Clinic Bedburg-Hau and the Institute of Human Genetics, Heinrich-Heine University (HHU) Düsseldorf was initiated. Interdisciplinary consultation hours for adult patients have been established in Bedburg-Hau offering genetic counselling and testing to identify the underlying genetic entity. We will introduce this new structure and report preliminary results.
Collapse
Affiliation(s)
| | - Dagmar Wieczorek
- Institute of Human GeneticsMedical Faculty and University, Hospital DusseldorfMoorenstr. 540225DusseldorfGermany
| |
Collapse
|
30
|
Wu R, Li X, Meng Z, Li P, He Z, Liang L. Phenotypic and genetic analysis of children with unexplained neurodevelopmental delay and neurodevelopmental comorbidities in a Chinese cohort using trio-based whole-exome sequencing. Orphanet J Rare Dis 2024; 19:205. [PMID: 38764027 PMCID: PMC11103872 DOI: 10.1186/s13023-024-03214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Trio-based whole-exome sequencing (trio-WES) enables identification of pathogenic variants, including copy-number variants (CNVs), in children with unexplained neurodevelopmental delay (NDD) and neurodevelopmental comorbidities (NDCs), including autism spectrum disorder (ASD), epilepsy, and attention deficit hyperactivity disorder. Further phenotypic and genetic analysis on trio-WES-tested NDD-NDCs cases may help to identify key phenotypic factors related to higher diagnostic yield of using trio-WES and novel risk genes associated with NDCs in clinical settings. METHODS In this study, we retrospectively performed phenotypic analysis on 163 trio-WES-tested NDD-NDCs children to determine the phenotypic differences between genetically diagnosed and non-genetically diagnosed groups. Additionally, we conducted genetic analysis of ASD genes with the help of Simons Foundation for Autism Research Institute (SFARI) Gene database to identify novel possible ASD-risk genes underlying genetic NDD conditions. RESULTS Among these 163 patients, pathogenic variants were identified in 82 cases (82/163, 50.3%), including 20 cases with CNVs. By comparing phenotypic variables between genetically diagnosed group (82 cases) and non-genetically diagnosed group (81 cases) with multivariate binary logistic regression analysis, we revealed that NDD-NDCs cases presenting with severe-profound NDD [53/82 vs 17/81, adjusted-OR (95%CI): 4.865 (2.213 - 10.694), adjusted-P < 0.001] or having multiple NDCs [26/82 vs 8/81, adjusted-OR (95%CI): 3.731 (1.399 - 9.950), adjusted-P = 0.009] or accompanying ASD [64/82 vs 35/81, adjusted-OR (95%CI): 3.256 (1.479 - 7.168), adjusted-P = 0.003] and head circumference abnormality [33/82 vs 11/81, adjusted-OR (95%CI): 2.788 (1.148 - 6.774), adjusted-P = 0.024] were more likely to have a genetic diagnosis using trio-WES. Moreover, 37 genes with monogenetic variants were identified in 48 patients genetically diagnosed with NDD-ASD, and 15 dosage-sensitive genes were identified in 16 individuals with NDD-ASD carrying CNVs. Most of those genes had been proven to be ASD-related genes. However, some of them (9 genes) were not proven sufficiently to correlate with ASD. By literature review and constructing protein-protein interaction networks among these 9 candidate ASD-risk genes and 102 established ASD genes obtained from the SFARI Gene database, we identified CUL4B, KCNH1, and PLA2G6 as novel possible ASD-risk genes underlying genetic NDD conditions. CONCLUSIONS Trio-WES testing is recommended for patients with unexplained NDD-NDCs that have severe-profound NDD or multiple NDCs, particularly those with accompanying ASD and head circumference abnormality, as these independent factors may increase the likelihood of genetic diagnosis using trio-WES. Moreover, NDD patients with pathogenic variants in CUL4B, KCNH1 and PLA2G6 should be aware of potential risks of developing ASD during their disease courses.
Collapse
Affiliation(s)
- Ruohao Wu
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Xiaojuan Li
- Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhe Meng
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Pinggan Li
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Zhanwen He
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.
| | - Liyang Liang
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.
| |
Collapse
|
31
|
Hauser MJ, Kohn R. Forensic psychiatric issues in intellectual disability. BEHAVIORAL SCIENCES & THE LAW 2024; 42:205-220. [PMID: 38459744 DOI: 10.1002/bsl.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Forensic psychiatrists and neuropsychiatrists are likely to encounter individuals with intellectual disability as they are over-represented in the judicial system. These individuals may have the full range of mental illnesses and comorbid conditions, including physical infirmity, sensory deficits, language impairment, and maladaptive behaviors. They are frequently disadvantaged in the judicial system due to lack of comprehension, lack of accommodations, and stigmatization. Decision making capacity may need to be assessed for health care, sexual autonomy, marriage, financial management, making a will, and need for guardianship. The usual approach to conducting an evaluation needs adaptation to fit the unique characteristics and circumstances of the individual with intellectual disability. The forensic consultant can assist attorneys, defendants, and victims in recommending accommodations and the expert witness can provide education to juries.
Collapse
Affiliation(s)
- Mark J Hauser
- Department of Psychiatry, Harvard Medical School, Newton, Massachusetts, USA
| | - Robert Kohn
- Brown University School of Public Health, Providence, Rhode Island, USA
| |
Collapse
|
32
|
Yu H, Liu D, Zhang Y, Tang R, Fan X, Mao S, Lv L, Chen F, Qin H, Zhang Z, van Aalten DMF, Yang B, Yuan K. Tissue-specific O-GlcNAcylation profiling identifies substrates in translational machinery in Drosophila mushroom body contributing to olfactory learning. eLife 2024; 13:e91269. [PMID: 38619103 PMCID: PMC11018347 DOI: 10.7554/elife.91269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Dandan Liu
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Yaowen Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Xunan Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan UniversityChangshaChina
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Daan MF van Aalten
- Department of Molecular Biology and Genetics, University of AarhusAarhusDenmark
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
33
|
Wigdor EM, Samocha KE, Eberhardt RY, Chundru VK, Firth HV, Wright CF, Hurles ME, Martin HC. Investigating the role of common cis-regulatory variants in modifying penetrance of putatively damaging, inherited variants in severe neurodevelopmental disorders. Sci Rep 2024; 14:8708. [PMID: 38622173 PMCID: PMC11018828 DOI: 10.1038/s41598-024-58894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their effects by modifying gene expression, using multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a transcriptome-wide association study for NDDs using 6987 probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found one gene, RAB2A, that passed multiple testing correction (p = 6.7 × 10-7). We then investigated whether cis-eQTLs modify the penetrance of putatively damaging, rare coding variants inherited by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that unaffected parents transmitting putatively damaging coding variants had higher genetically-predicted expression of the variant-harboring gene than their child. In probands carrying putatively damaging variants in constrained genes, the genetically-predicted expression of these genes in blood was lower than in controls (p = 2.7 × 10-3). However, results for proband-control comparisons were inconsistent across different sets of genes, variant filters and tissues. We find limited evidence that common cis-eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.
Collapse
Affiliation(s)
- Emilie M Wigdor
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Kaitlin E Samocha
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
| | - Ruth Y Eberhardt
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - V Kartik Chundru
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Helen V Firth
- Department of Medical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
34
|
Choi H, Kim JA, Cho KO, Kim HJ, Park MH. Case Report: Intellectual disability and borderline intellectual functioning in two sisters with a 12p11.22 loss. Front Genet 2024; 15:1355823. [PMID: 38628577 PMCID: PMC11018894 DOI: 10.3389/fgene.2024.1355823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Multiple genome sequencing studies have identified genetic abnormalities as major causes of severe intellectual disability (ID). However, many children affected by mild ID and borderline intellectual functioning (BIF) lack a genetic diagnosis because known causative ID genetic mutations have not been identified or the role of genetic variants in mild cases is less understood. Genetic variant testing in mild cases is necessary to provide information on prognosis and risk of occurrence. In this study, we report two sibling patients who were 5 years 9 months old and 3 years 3 months old and presented to the hospital due to developmental delay. Clinical assessment and chromosomal microarray analysis were performed. The patients were diagnosed with mild intellectual disability (ID) and borderline intellectual functioning (BIF). Genetic analysis identified a loss of 12p11.22, including the OVCH1-AS1, OVCH1, and TMTC1 genes, which was the only variant that occurred in both sisters. Identical variants were found in their father with probable BIF. Neither patient presented any brain structural abnormalities or dysmorphism, and no exogenous factors or parenting problems were reported. Thus, loss of 12p11.22 may be associated with our patients' cognitive impairment. The OVCH1, OVCH1-AS1 and TMTC1 variants identified in this study are the most likely disease-causing genes in the sisters. Our findings may expand as yet limited knowledge on mild ID and BIF causative variants, which would further support the diagnosis even if the severity is mild.
Collapse
Affiliation(s)
- Haemi Choi
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-A. Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Neuroscience Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Institute for Aging and Metabolic Diseases, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Division of Psychotic Disorders, McLean Hospital, Belmont, MA, United States
| | - Min-Hyeon Park
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
35
|
Lee JY, Oh SH, Keum C, Lee BL, Chung WY. Clinical application of prospective whole-exome sequencing in the diagnosis of genetic disease: Experience of a regional disease center in South Korea. Ann Hum Genet 2024; 88:101-112. [PMID: 37795942 DOI: 10.1111/ahg.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Next-generation sequencing helps clinicians diagnose patients with suspected genetic disorders. The current study aimed to investigate the diagnostic yield and clinical utility of prospective whole-exome sequencing (WES) in rare diseases. METHODS WES was performed in 92 patients who presented with clinical symptoms suggestive of genetic disorders. The WES data were analyzed using an in-house developed software. The patients' phenotypic characteristics were classified according to the human phenotype ontology. RESULTS WES detected 64 variants, 13 were classified as pathogenic, 26 as likely pathogenic, and 25 as variants of uncertain significance. In 57 patients with these variants, 30 were identified as causal variants. The diagnostic yield was higher in patients with abnormalities in joint mobility and skin morphology than in those with cerebellar hypoplasia/atrophy, epilepsy, global developmental delay, dysmorphic features/facial dysmorphisms, and chronic kidney disease/abnormal renal morphology. CONCLUSION In this study, a WES-based variant interpretation system was employed to provide a definitive diagnosis for 28.3% of the patients suspected of having genetic disorders. WES is particularly useful for diagnosing rare diseases with symptoms that affect more than one system, when targeted genetic panels are difficult to employ.
Collapse
Affiliation(s)
- Ja Young Lee
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, South Korea
| | - Seung-Hwan Oh
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | | | - Bo Lyun Lee
- Department of Pediatrics, Inje University College of Medicine, Busan, South Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
36
|
Pang N, Li K, Tan S, Chen M, He F, Chen C, Yang L, Zhang C, Deng X, Yang L, Mao L, Wang G, Duan H, Wang X, Zhang W, Guo H, Peng J, Yin F, Xia K. Targeted sequencing identifies risk variants in 202 candidate genes for neurodevelopmental disorders. Gene 2024; 897:148071. [PMID: 38081334 DOI: 10.1016/j.gene.2023.148071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
With the continuous deepening of genetic research on neurodevelopmental disorders (NDDs), more patients have been identified the causal or candidate genes. However, it is still urgent needed to increase the sample size to confirm the associations between variants and clinical manifestations. We previously performed molecular inversion probe sequencing of autism spectrum disorder (ASD) candidate genes in 1543 ASD patients. In this study, we used the same method to detect de novo variants (DNVs) in 665 NDD patients with intellectual disability (ID) and/or epilepsy (EP) for genetic analysis and diagnosis. We compared findings from ID/EP and ASD patients to improve our understanding of different subgroups of NDDs. We identified 72 novel variants and 39 DNVs. A totally of 5.71 % (38/665) of the patients were genetically diagnosed by this sequencing strategy. ID/EP patients demonstrated a higher prevalence of likely gene disruptive DNVs in ASD genes than the healthy population. Regarding high-risk genes, SCN1A and CKDL5 were more frequently mutated in ID/EP patients than in ASD patients. Our data provide an overview of the mutation burden in ID/EP patients from the perspective of high risk ASD genes, indicating the differences and association of NDDs subgroups.
Collapse
Affiliation(s)
- Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Senwei Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Meilin Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Leilei Mao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Hengyang Medical School, 421001, University of South, China.
| |
Collapse
|
37
|
Koch I, Slovik M, Zhang Y, Liu B, Rennie M, Konz E, Cogne B, Daana M, Davids L, Diets IJ, Gold NB, Holtz AM, Isidor B, Mor-Shaked H, Neira Fresneda J, Niederhoffer KY, Nizon M, Pfundt R, Simon M, Stegmann A, Guillen Sacoto MJ, Wevers M, Barakat TS, Yanovsky-Dagan S, Atanassov BS, Toth R, Gao C, Bustos F, Harel T. USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms. Life Sci Alliance 2024; 7:e202302258. [PMID: 38182161 PMCID: PMC10770416 DOI: 10.26508/lsa.202302258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024] Open
Abstract
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.
Collapse
Affiliation(s)
- Intisar Koch
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Maya Slovik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Yuling Zhang
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Bingyu Liu
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Martin Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily Konz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem, Israel
| | - Laura Davids
- Department of Neurosciences, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander M Holtz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | | | - Mathilde Nizon
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Meh Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Apa Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Marijke Wevers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Boyko S Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chengjiang Gao
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Francisco Bustos
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, USA
| | - Tamar Harel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
38
|
Asghari Sarfaraz A, Jabbarpour N, Bonyadi M, Khalaj-Kondory M. Identification and bioinformatics analysis of a novel variant in the HERC2 gene in a patient with intellectual developmental disorder. J Neurogenet 2024; 38:19-25. [PMID: 38884635 DOI: 10.1080/01677063.2024.2365634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
HERC2-associated neurodevelopmental-disorders(NDD) encompass a cluster of medical conditions that arise from genetic mutations occurring within the HERC2 gene. These disorders can manifest a spectrum of symptoms that impact the brain and nervous system, including delayed psychomotor development, severe mental retardation, seizures and autistic features. Whole-Exome-Sequencing(WES) was performed on a ten-year-old male patient referred to the genetic center for genetic analysis. Blood samples were collected from the proband, his parents, and his sister to extract DNA. PCR-Sanger-sequencing was utilized to validate the findings obtained from WES. In order to obtain a more thorough understanding of the impact of the mutation, an extensive analysis was conducted using bioinformatics tools. WES data analysis identified a homozygous single nucleotide change(C > T) at position c14215 located in exon ninety-two of the HERC2 gene (NC_000015.10(NM_004667.6):c.14215C > T). The absence of this mutation among our cohort composed of four hundred normal healthy adults from the same ethnic group, and its absence in any other population database, confirms the pathogenicity of the mutation. This study revealed that the substitution of arginine with a stop codon within the Hect domain caused a premature stop codon at position 4739(p.Arg4739Ter). This mutation significantly results in the production of a truncated HERC2 protein with an incomplete HECT domain. In the final stage of ubiquitin attachment, HECT E3 ubiquitin ligases play a catalytic role by creating a thiolester intermediate using their conserved catalytic cysteine (Cys4762). This intermediate is formed before ubiquitin is transferred to a substrate protein. The truncation of the HERC2 protein is expected to disrupt its ability to perform this function, which could potentially hinder important regulatory processes related to the development and maintenance of synapses. The identification of a novel pathogenic variant, NC_000015.10(NM_004667.6):c.14215C > T, located within the ninety-two exon of the HERC2 gene, is notable for its association with an autosomal recessive inheritance pattern in cases of Intellectual Developmental Disorder(IDD). In the end, this variant could potentially play a part in the underlying mechanisms leading to the onset of intellectual developmental disorder.
Collapse
Affiliation(s)
- Asal Asghari Sarfaraz
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Neda Jabbarpour
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mortaza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
39
|
Krakowski A, Hoang N, Trost B, Summers J, Ambrozewicz P, Vorstman J. Global developmental delay and a de novo deletion of the 16p13.13 region. BMJ Case Rep 2024; 17:e251521. [PMID: 38423574 PMCID: PMC10910685 DOI: 10.1136/bcr-2022-251521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Many rare genetic variants are associated with the risk of atypical neurodevelopmental trajectories. In this study, we report a patient with developmental delay, autistic traits and multiple congenital anomalies, including congenital heart anomalies and orofacial cleft, with a 0.832 Mb de novo deletion of the 16p13.13 region classified as a variant of uncertain significance. Comparison of similar sized deletions and duplications overlapping the same genes in the DECIPHER database, revealed seven reports of copy number variants (CNVs), four duplications and three deletions. A neurodevelopmental phenotype including learning disability and intellectual disability was noted in some of the DECIPHER entries where phenotype was provided. Although the association between a deletion in this region and an atypical neurodevelopmental trajectory remains to be elucidated, the overlapping CNVs with neurodevelopmental phenotypes suggests possible candidate genes within the 16p13.13 region.
Collapse
Affiliation(s)
- Aneta Krakowski
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ny Hoang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane Summers
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
| | - Patricia Ambrozewicz
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
| | - Jacob Vorstman
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Autism Research Unit, Hospital For Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Garg P, Jamal F, Srivastava P. Comparative Transcriptomics Data Profiling Reveals E2F Targets as an Important Biological Pathway Overexpressed in Intellectual Disability Disorder. Bioinform Biol Insights 2024; 18:11779322231224665. [PMID: 38357659 PMCID: PMC10865946 DOI: 10.1177/11779322231224665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
Intellectual disability (ID) is an early childhood neurodevelopmental disorder that is characterized by impaired intellectual functioning and adaptive behavior. It is one of the major concerns in the field of neurodevelopmental disorders across the globe. Diversified approaches have been put forward to overcome this problem. Among all these approaches, high throughput transcriptomic analysis has taken an important dimension. The identification of genes causing ID rapidly increased over the past 3 to 5 years owing to the use of sophisticated high throughput sequencing platforms. Early monitoring and preventions are much important for such disorder as their progression occurs during fetal development. This study is an attempt to identify differentially expressed genes (DEGs) and upregulated biological processes involved in development of ID patients through comparative analysis of available transcriptomics data. A total of 7 transcriptomic studies were retrieved from National Center for Biotechnology Information (NCBI) and were subjected to quality check and trimming prior to alignment. The normalization and differential expression analysis were carried out using DESeq2 and EdgeR packages of Rstudio to identify DEGs in ID. In progression of the study, functional enrichment analysis of the results obtained from both DESeq2 and EdgeR was done using gene set enrichment analysis (GSEA) tool to identify major upregulated biological processes involved in ID. Our findings concluded that monitoring the level of E2F targets, estrogen, and genes related to oxidative phosphorylation, DNA repair, and glycolysis during the developmental stage of an individual can help in the early detection of ID disorder.
Collapse
Affiliation(s)
- Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Farrukh Jamal
- Department of Biochemistry, Dr Rammanohar Lohia Avadh University, Ayodhya, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| |
Collapse
|
41
|
Li H, Qi Z, Xie L, Hao C, Li W. The first Chinese intellectual developmental disorder, autosomal recessive 57 patient with two novel MBOAT7 variants. Mol Genet Genomic Med 2024; 12:e2391. [PMID: 38407511 PMCID: PMC10844841 DOI: 10.1002/mgg3.2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Intellectual disability (ID) is a con neurodevelopmental disorder in children. The genetic etiology of ID is complex, but more subtypes are defined due to the broad application of next-generation sequencing. METHODS Whole-exome sequencing (WES) and Sanger sequencing was applied in a family with ID. RESULTS We report a Chinese 7.5-year-old boy, born to non-consanguineous parents. He showed severe intellectual disability, seizures and autistic features. Two previously unreported variants in MBOAT7, c.669C>G (p.(Tyr223*)) and c.1095C>G (p.(Ser365Arg)) were identified by trio-WES. His mother is a heterozygous carrier of the c.1095C>G variant. The c.669C>G variant is a de novo variant which was undetected in his parents. By construction of the full-length cDNA of the patient's MBOAT7, we verified that these two variants were trans-compound heterozygous variants, which support the genetic etiology of this patient. CONCLUSION This patient is the first Chinese case of intellectual developmental disorder (IDD), autosomal recessive 57 (OMIM:617188) with two unreported MBOAT7 variants.
Collapse
Affiliation(s)
- Huimin Li
- Department of Genetics and Reproductive MedicineShunyi Maternal and Children's Hospital of Beijing Children's HospitalBeijingChina
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Limin Xie
- Department of Genetics and Reproductive MedicineShunyi Maternal and Children's Hospital of Beijing Children's HospitalBeijingChina
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in ChildrenBeijing Children's Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
42
|
Sun L, Yang X, Khan A, Yu X, Zhang H, Han S, Habulieti X, Sun Y, Wang R, Zhang X. Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in TMEM141, DDHD2, and LHFPL5. Front Med 2024; 18:81-97. [PMID: 37837560 DOI: 10.1007/s11684-023-1006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/27/2023] [Indexed: 10/16/2023]
Abstract
Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.
Collapse
Affiliation(s)
- Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, National Key Clinical Speciality Construction Project (Obstetrics and Gynecology), Chongqing Health Center for Women and Children, Chongqing, 400013, China
- Chongqing Clinical Research Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Amjad Khan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, Khyber Pakhtunkhwa, 28420, Pakistan.
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany.
- Alexander von Humboldt fellowship Foundation, Berlin, 10117, Germany.
| | - Xue Yu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Han Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Laboratory Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shirui Han
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yang Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
43
|
Li D, Wang Q, Bayat A, Battig MR, Zhou Y, Bosch DG, van Haaften G, Granger L, Petersen AK, Pérez-Jurado LA, Aznar-Laín G, Aneja A, Hancarova M, Bendova S, Schwarz M, Kremlikova Pourova R, Sedlacek Z, Keena BA, March ME, Hou C, O’Connor N, Bhoj EJ, Harr MH, Lemire G, Boycott KM, Towne M, Li M, Tarnopolsky M, Brady L, Parker MJ, Faghfoury H, Parsley LK, Agolini E, Dentici ML, Novelli A, Wright M, Palmquist R, Lai K, Scala M, Striano P, Iacomino M, Zara F, Cooper A, Maarup TJ, Byler M, Lebel RR, Balci TB, Louie R, Lyons M, Douglas J, Nowak C, Afenjar A, Hoyer J, Keren B, Maas SM, Motazacker MM, Martinez-Agosto JA, Rabani AM, McCormick EM, Falk MJ, Ruggiero SM, Helbig I, Møller RS, Tessarollo L, Tomassoni Ardori F, Palko ME, Hsieh TC, Krawitz PM, Ganapathi M, Gelb BD, Jobanputra V, Wilson A, Greally J, Jacquemont S, Jizi K, Bruel AL, Quelin C, Misra VK, Chick E, Romano C, Greco D, Arena A, Morleo M, Nigro V, Seyama R, Uchiyama Y, Matsumoto N, Taira R, Tashiro K, Sakai Y, Yigit G, Wollnik B, Wagner M, Kutsche B, Hurst AC, Thompson ML, Schmidt R, Randolph L, Spillmann RC, Shashi V, Higginbotham EJ, Cordeiro D, Carnevale A, Costain G, Khan T, Funalot B, Tran Mau-Them F, Fernandez Garcia Moya L, García-Miñaúr S, Osmond M, Chad L, Quercia N, Carrasco D, Li C, Sanchez-Valle A, Kelley M, Nizon M, Jensson BO, Sulem P, Stefansson K, Gorokhova S, Busa T, Rio M, Hadj Habdallah H, Lesieur-Sebellin M, Amiel J, Pingault V, Mercier S, Vincent M, Philippe C, Fatus-Fauconnier C, Friend K, Halligan RK, Biswas S, Rosser J, Shoubridge C, Corbett M, Barnett C, Gecz J, Leppig K, Slavotinek A, Marcelis C, Pfundt R, de Vries BB, van Slegtenhorst MA, Brooks AS, Cogne B, Rambaud T, Tümer Z, Zackai EH, Akizu N, Song Y, Hakonarson H. Spliceosome malfunction causes neurodevelopmental disorders with overlapping features. J Clin Invest 2024; 134:e171235. [PMID: 37962958 PMCID: PMC10760965 DOI: 10.1172/jci171235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniëlle G.M. Bosch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Andrea K. Petersen
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Luis A. Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Genetic Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Aznar-Laín
- Universitat Pompeu Fabra, Barcelona, Spain
- Pediatric Neurology, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anushree Aneja
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radka Kremlikova Pourova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Beth A. Keena
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Elizabeth J. Bhoj
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Gabrielle Lemire
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Megan Li
- Invitae, San Francisco, California, USA
| | - Mark Tarnopolsky
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Michael J. Parker
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, United Kingdom
| | | | - Lea Kristin Parsley
- University of Illinois College of Medicine, Mercy Health Systems, Rockford, Illinois, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Meredith Wright
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Khanh Lai
- Division of Pediatric Pulmonary and Sleep Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Annina Cooper
- Department of Genetics, Southern California Permanente Medical Group, Kaiser Permanente, San Diego, California, USA
| | - Timothy J. Maarup
- Department of Genetics, Kaiser Permanente, Los Angeles, California, USA
| | - Melissa Byler
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert Roger Lebel
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Tugce B. Balci
- Division of Genetics, Department of Paediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Raymond Louie
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Michael Lyons
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jessica Douglas
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Catherine Nowak
- Division of Genetics and Metabolism, Mass General Hospital for Children, Boston, Massachusetts, USA
| | - Alexandra Afenjar
- APHP. SU, Reference Center for Intellectual Disabilities Caused by Rare Causes, Department of Genetics and Medical Embryology, Hôpital Trousseau, Paris, France
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Keren
- Department of Genetics, Hospital Pitié-Salpêtrière, Paris, France
| | - Saskia M. Maas
- Department of Human Genetics, Academic Medical Center, and
| | - Mahdi M. Motazacker
- Laboratory of Genome Diagnostics, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ahna M. Rabani
- Division of Medical Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Marni J. Falk
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Sarah M. Ruggiero
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ingo Helbig
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rikke S. Møller
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Francesco Tomassoni Ardori
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Mary Ellen Palko
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M. Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Mythily Ganapathi
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, New York, USA
| | - Vaidehi Jobanputra
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - John Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sébastien Jacquemont
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Khadijé Jizi
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ange-Line Bruel
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Translational Medicine in Developmental Anomalies, CHU Dijon Bourgogne, Dijon, France
| | - Chloé Quelin
- Medical Genetics Department, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Vinod K. Misra
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
- Central Michigan University College of Medicine, Discipline of Pediatrics, Mount Pleasant, Michigan, USA
| | - Erika Chick
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Tashiro
- Department of Pediatrics, Karatsu Red Cross Hospital, Saga, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Michael Wagner
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Barbara Kutsche
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Anna C.E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Ryan Schmidt
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Linda Randolph
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Division of Medical Genetics, Children’s Hospital Los Angeles, California, USA
| | - Rebecca C. Spillmann
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Carnevale
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tayyaba Khan
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benoît Funalot
- Department of Genetics, Hôpital Henri-Mondor APHP and CHI Creteil, University Paris Est Creteil, IMRB, Inserm U.955, Creteil, France
| | - Frederic Tran Mau-Them
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | | | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Chad
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nada Quercia
- Department of Genetic Counselling, Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Ottawa, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Diana Carrasco
- Department of Clinical Genetics, Cook Children’s Hospital, Fort Worth, Texas, USA
| | - Chumei Li
- Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Meghan Kelley
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Svetlana Gorokhova
- Aix Marseille University, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Hamza Hadj Habdallah
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
| | - Véronique Pingault
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Marie Vincent
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Christophe Philippe
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | - Jane Rosser
- Department of General Medicine, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Mark Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Christopher Barnett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- Pediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kathleen Leppig
- Genetic Services, Kaiser Permenante of Washington, Seattle, Washington, USA
| | - Anne Slavotinek
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Thomas Rambaud
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Hussain SI, Muhammad N, Khan N, Khan M, Fardous F, Tahir R, Yasin M, Khan SA, Saleha S, Muhammad N, Wasif N, Khan S. Molecular insight into CREBBP and TANGO2 variants causing intellectual disability. J Gene Med 2024; 26:e3591. [PMID: 37721116 DOI: 10.1002/jgm.3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.
Collapse
Affiliation(s)
- Syeda Iqra Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Niamatullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mobeen Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Fardous Fardous
- Department of Medical Lab Technology, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
45
|
Zolzaya S, Narumoto A, Katsuyama Y. Genomic variation in neurons. Dev Growth Differ 2024; 66:35-42. [PMID: 37855730 DOI: 10.1111/dgd.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ayano Narumoto
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
46
|
Malarbi S, Chisholm AK, Gunn-Charlton JK, Burnett AC, Tan TY, Cheng SSW, Pellicano A, Shand J, Heggie A, Hunt RW. Intellectual Functioning of Children With Isolated PRS, PRS-Plus, and Syndromic PRS. Cleft Palate Craniofac J 2024; 61:33-39. [PMID: 35898178 DOI: 10.1177/10556656221115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Describe the intelligence quotient (IQ) of children with Pierre Robin sequence (PRS). DESIGN Prospective cohort study. SETTING Neurodevelopmental follow-up clinic within a hospital. PATIENTS Children with PRS (n = 45) who had been in the Neonatal Intensive Care Unit (NICU) were classified by a geneticist into 3 subgroups of isolated PRS (n = 20), PRS-plus additional medical features (n = 8), and syndromic PRS (n = 17) based on medical record review and genetic testing. MAIN OUTCOME MEASURE Children with PRS completed IQ testing at 5 or 8 years of age with the Wechsler Preschool and Primary Scale of Intelligence, Third Edition (WPPSI-III) or Fourth Edition (WPPSI-IV) or the Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV) or Fifth Edition (WISC-V). RESULTS IQ scores were more than 1 to 2 standard deviations below the mean for 36% of the overall sample, which was significantly greater compared to test norms (binomial test P = .001). There was a significant association between PRS subtype and IQ (Fisher's exact P = .026). While only 20% of children with isolated PRS were within 1 standard deviation below average and 35% of children with syndromic PRS were below 1 to 2 standard deviations, 75% of PRS-plus children scored lower than 1 to 2 standard deviations below the mean. CONCLUSION PRS subgroups can help identify children at risk for cognitive delay. The majority of children with PRS-plus had low intellectual functioning, in contrast to the third of children with syndromic PRS who had low IQ and the majority of children with isolated PRS who had average or higher IQ.
Collapse
Affiliation(s)
- Stephanie Malarbi
- The Royal Children's Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Dr Malarbi and Ms Chisholm are co-first authors and have contributed equally to this work
| | - Anita K Chisholm
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Dr Malarbi and Ms Chisholm are co-first authors and have contributed equally to this work
| | - Julia K Gunn-Charlton
- The Royal Children's Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Alice C Burnett
- The Royal Children's Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Tiong Yang Tan
- University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Shirley S W Cheng
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Jocelyn Shand
- Plastic and Maxillofacial Surgery Section, The Royal Children's Hospital, Melbourne, Australia
| | - Andrew Heggie
- Plastic and Maxillofacial Surgery Section, The Royal Children's Hospital, Melbourne, Australia
| | - Rod W Hunt
- The Royal Children's Hospital, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Monash University, Melbourne, Australia
| |
Collapse
|
47
|
Kim J, Lee J, Jang DH. Combining chromosomal microarray and clinical exome sequencing for genetic diagnosis of intellectual disability. Sci Rep 2023; 13:22807. [PMID: 38129582 PMCID: PMC10739828 DOI: 10.1038/s41598-023-50285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the current widespread use of chromosomal microarray analysis (CMA) and exome/genome sequencing for the genetic diagnosis of unexplained intellectual disability (ID) in children, gaining improved diagnostic yields and defined guidelines remains a significant challenge. This is a cohort study of children with unexplained ID. We analyzed the diagnostic yield and its correlation to clinical phenotypes in children with ID who underwent concurrent CMA and clinical exome sequencing (CES). A total of 154 children were included (110 [71.4%] male; mean [SD] age, 51.9 [23.1] months). The overall diagnosis yield was 26.0-33.8%, with CMA contributing 12.3-14.3% and CES contributing 13.6-19.4%, showing no significant difference. The diagnostic rate was significantly higher when gross motor delay (odds ratio, 6.69; 95% CI, 3.20-14.00; P < 0.001), facial dysmorphism (odds ratio, 9.34; 95% CI 4.29-20.30; P < 0.001), congenital structural anomaly (odds ratio 3.62; 95% CI 1.63-8.04; P = 0.001), and microcephaly or macrocephaly (odds ratio 4.87; 95% CI 2.05-11.60; P < 0.001) were presented. Patients with only ID without any other concomitant phenotype (63/154, 40.9%) exhibited a 6.3-11.1% diagnostic rate.
Collapse
Affiliation(s)
- Jaewon Kim
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Hyun Jang
- Department of Physical Medicine and Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Medical Genetics and Rare Disease Center, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Tuon L, Tramontin NS, Custódio I, Comim VH, Costa B, Tietbohl LTW, Muller AP. Serum Biomarkers to Mild Cognitive Deficits in Children and Adolescents. Mol Neurobiol 2023; 60:7080-7087. [PMID: 37526895 DOI: 10.1007/s12035-023-03536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Intellectual disability (ID) is a condition characterized by significant limitations in both cognitive development and adaptive behavior. The diagnosis is made through clinical assessment, standardized tests, and intelligence quotient (IQ). Genetic, inflammation, oxidative stress, and diet have been suggested to contribute to ID, and biomarkers could potentially aid in diagnosis and treatment. Study included children and adolescents aged 6-16 years. The ID group (n = 16) and the control group (n = 18) underwent the Wechsler Intelligence Scale for Children (WISC-IV) test, and blood samples were collected. Correlations between biomarker levels and WISC-IV test scores were analyzed. The ID group had an IQ score below 75, and the values of four domains (IQ, IOP, IMO, and IVP) were lower compared to the control group. Serum levels of FKN, NGF-β, and vitamin B12 were decreased in the ID group, while DCFH and nitrite levels were increased. Positive correlations were found between FKN and the QIT and IOP domains, NGF and the QIT and IMO domains, and vitamin B12 and the ICV domain. TNF-α showed a negative correlation with the ICV domain. Our study identified FKN, NGF-β, and vitamin B12 as potential biomarkers specific to ID, which could aid in the diagnosis and treatment of ID. TNF-α and oxidative stress biomarkers suggest that ID has a complex etiology, and further research is needed to better understand this condition and develop effective treatments. Future studies could explore the potential implications of these biomarkers and develop targeted interventions based on their findings.
Collapse
Affiliation(s)
- Lisiane Tuon
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | | | - Isis Custódio
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Vitor Hugo Comim
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Barbara Costa
- Pós-Graduação em Saúde Coletiva, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | | | - Alexandre Pastoris Muller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Post-Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
49
|
Dai W, Wang H, Zhan Y, Li N, Li F, Wang J, Yan H, Zhang Y, Wang J, Wu L, Liu H, Fan Y, Tao Y, Mo X, Yang JJ, Sun K, Chen G, Yu Y. CCNK Gene Deficiency Influences Neural Progenitor Cells Via Wnt5a Signaling in CCNK-Related Syndrome. Ann Neurol 2023; 94:1136-1154. [PMID: 37597256 DOI: 10.1002/ana.26766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Li
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingmin Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Huifang Yan
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Zhang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Junyu Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yue Tao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Center of Clinical Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
50
|
Shin S, Lee J, Kim YG, Ha C, Park JH, Kim JW, Lee J, Jang JH. Genetic Diagnosis of Children With Neurodevelopmental Disorders Using Whole Genome Sequencing. Pediatr Neurol 2023; 149:44-52. [PMID: 37776660 DOI: 10.1016/j.pediatrneurol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) have diverse phenotypes. Their genetic diagnoses are often challenged by difficulties of targeting causative genes due to heterogeneous genetic etiologies. The objective of this study was to perform genetic diagnosis of children with NDDs using whole genome sequencing. METHODS This study included 78 pediatric patients with NDDs and their 152 family members for whole genome sequencing (WGS). All cases except one were families with at least two members. Seventy-five patients had previously undergone other genetic tests besides WGS. Detected variants were classified according to the guidelines of the American College of Medical Genetics and Genomics. RESULTS Among 78 probands, 26 patients were genetically diagnosed with NDDs through WGS, showing a diagnostic rate of 33.3%. Of them, 22 cases had de novo variants (DNVs) identified through trio analysis. Of these DNVs, half were novel variants. Three structural variants, including a multiexon deletion, a contiguous gene deletion involving 13 Mb, and a retrotransposon insertion, were revealed by WGS. All cases except one had defects in different genes, consistent with the phenotypically diverse nature of NDDs. In addition, three patients were inconclusive, two of them had one likely pathogenic variant in a gene associated with autosomal recessive disease and the other one had no clinical phenotypes associated with the detected DNV. CONCLUSIONS Our experience demonstrates the advantage of WGS in the diagnosis of NDDs, including detection of copy number variations and also the advantage of trio sequencing for interpretation of DNVs.
Collapse
Affiliation(s)
- Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhee Ha
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Ho Park
- Clinical Genomics Center, Samsung Medical Center, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|