1
|
Sherman ME, Michalski J, Das S, Yang H, Chandrasekaran L, O'Meara TR, Dowling DJ, Levy O, Barnoy S, Venkatesan M, Ernst RK. BECC-engineered live-attenuated Shigella vaccine candidates display reduced endotoxicity with robust immunogenicity in mice. Vaccine 2025; 50:126779. [PMID: 39946867 DOI: 10.1016/j.vaccine.2025.126779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 02/19/2025]
Abstract
Shigella spp. infection contributes significantly to the global disease burden, primarily affecting young children in developing countries. Currently, there are no FDA-approved vaccines against Shigella, and the prevalence of antibiotic resistance is increasing, making therapeutic options limited. Live-attenuated vaccine strains WRSs2 (S. sonnei) and WRSf2G12 (S. flexneri 2a) are highly immunogenic, making them promising vaccine candidates, but possess an inflammatory lipid A structure on their lipopolysaccharide (LPS; also known as endotoxin). Here, we utilized bacterial enzymatic combinatorial chemistry (BECC) to ectopically express lipid A modifying enzymes in WRSs2 and WRSf2G12, as well as their respective wild-type strains, generating targeted lipid A modifications across the Shigella backgrounds. Dephosphorylation of lipid A, rather than deacylation, reduced LPS-induced TLR4 signaling in vitro and dampened endotoxic effects in vivo. These BECC-modified vaccine strains retained the phenotypic traits of their parental strains, such as invasion of epithelial cells and immunogenicity in mice without adverse endotoxicity. Overall, our observations suggest that BECC-engineered live attenuated vaccines are a promising approach to safe and effective Shigella vaccines.
Collapse
Affiliation(s)
- Matthew E Sherman
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Jane Michalski
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD 21201, USA
| | - Sayan Das
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Hyojik Yang
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Lakshmi Chandrasekaran
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Shoshana Barnoy
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Malabi Venkatesan
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Robert K Ernst
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
3
|
Ruamsap N, Imerbsin R, Khanijou P, Gonwong S, Oransathit W, Barnoy S, Venkatesan MM, Chaudhury S, Islam D. A rhesus macaque intragastric challenge model for evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella dysenteriae 1 vaccine candidates. Front Microbiol 2024; 15:1454338. [PMID: 39309527 PMCID: PMC11413625 DOI: 10.3389/fmicb.2024.1454338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Shigellosis remains a significant global health challenge, particularly in Asia and Africa, where it is a major cause of morbidity and mortality among children. Despite the urgent need, the development of a licensed Shigella vaccine has been hindered, partly due to the lack of suitable animal models for preclinical evaluation. In this study, we used an intragastric adult rhesus macaque challenge model to evaluate the safety, immunogenicity, and efficacy of five live-attenuated Shigella dysenteriae 1 vaccine candidates, all derived from the 1617 parent strain. The vaccine strains included WRSd1, a previously tested candidate with deletions in virG(icsA), stxAB, and fnr, and four other strains-WRSd2, WRSd3, WRSd4, and WRSd5-each containing deletions in virG and stxAB, but retaining fnr. Additionally, WRSd3 and WRSd5 had further deletions in the Shigella enterotoxin gene senA and its paralog senB, with WRSd5 having an extra deletion in msbB2. Rhesus monkeys were immunized three times at two-day intervals with a target dose of 2 × 1010 CFU of the vaccine strains. Thirty days after the final immunization, all monkeys were challenged with a target dose of 2 × 109 CFU of the S. dysenteriae 1 1617 wild-type strain. Safety, immunogenicity, and efficacy were assessed through physical monitoring and the evaluation of immunologic and inflammatory markers following immunization and challenge. Initial doses of WRSd1, WRSd3, and WRSd5 led to mild adverse effects, such as vomiting and loose stools, but all five vaccine strains were well tolerated in subsequent doses. All strains elicited significant IgA and IgG antibody responses, as well as the production of antibody-secreting cells. Notably, none of the vaccinated animals exhibited shigellosis symptoms such as vomiting or loose/watery stool post-challenge, in stark contrast to the control group, where 39% and 61% of monkeys exhibited these symptoms, respectively. The aggregate clinical score used to evaluate Shigella attack rates post-challenge revealed a 72% attack rate in control animals, compared to only 13% in vaccinated animals, indicating a relative risk reduction of 81%. This study highlights the potential of this NHP model in evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella vaccine candidates, offering a valuable tool for preclinical assessment before advancing to Phase 1 or more advanced clinical trials.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Imerbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Patchariya Khanijou
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriphan Gonwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wilawan Oransathit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shoshana Barnoy
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Malabi M. Venkatesan
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sidhartha Chaudhury
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dilara Islam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
4
|
Datta LP, Dutta D, Mukherjee R, Das TK, Biswas S. Polyoxometalate-Polymer Directed Macromolecular Architectonics of Silver Nanoparticles as Effective Antimicrobials. Chem Asian J 2024; 19:e202400344. [PMID: 38822687 DOI: 10.1002/asia.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
A novel inorganic-organic-inorganic ternary bioactive material formulated on antimicrobial peptide-based polymer has been reported. Supramolecular approach has been employed to incorporate molecularly crowded tyrosine-based polymer stabilized silver nanoparticles into membrane bound vesicles exploiting polyoxometalate-triggered surface templating strategy. Utilizing the covalent reversible addition fragmentation chain transfer (RAFT) polymerization and exploiting templated supramolecular architectonics at biopolymer interface, the bioactive ternary polymeric nanohybrids have been designed against Shigellosis leveraging the antibacterial activities of silver nanoparticle, cationic amphiphilic tyrosine polymer and inorganic polyoxometalate. The detail investigation against Shigella flexneri 2a cell line demonstrates that the collaborative mechanism of the ternary hybrid composite enhances the bactericidal activity in comparison to only polyoxometalate and polymer stabilized silver nanoparticle with an altered mechanism of action which is established via detailed biological analysis.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Tapan Kumar Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Subharanjan Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| |
Collapse
|
5
|
Sherman ME, Michalski J, Das S, Yang H, Chandrasekaran L, O’Meara TR, Dowling DJ, Levy O, Barnoy S, Venkatesan M, Ernst RK. BECC-engineered live-attenuated Shigella vaccine candidates display reduced endotoxicity with robust immunogenicity in mice. RESEARCH SQUARE 2024:rs.3.rs-4448907. [PMID: 38946947 PMCID: PMC11213197 DOI: 10.21203/rs.3.rs-4448907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Shigella spp. infection contributes significantly to the global disease burden, primarily affecting young children in developing countries. Currently, there are no FDA-approved vaccines against Shigella, and the prevalence of antibiotic resistance is increasing, making therapeutic options limited. Live-attenuated vaccine strains WRSs2 (S. sonnei) and WRSf2G12 (S. flexneri 2a) are highly immunogenic, making them promising vaccine candidates, but possess an inflammatory lipid A structure on their lipopolysaccharide (LPS; also known as endotoxin). Here, we utilized bacterial enzymatic combinatorial chemistry (BECC) to ectopically express lipid A modifying enzymes in WRSs2 and WRSf2G12, as well as their respective wild-type strains, generating targeted lipid A modifications across the Shigella backgrounds. Dephosphorylation of lipid A, rather than deacylation, reduced LPS-induced TLR4 signaling in vitro and dampened endotoxic effects in vivo. These BECC-modified vaccine strains retained the phenotypic traits of their parental strains, such as invasion of epithelial cells and immunogenicity in mice without adverse endotoxicity. Overall, our observations suggest that BECC-engineered live attenuated vaccines are a promising approach to safe and effective Shigella vaccines.
Collapse
Affiliation(s)
- Matthew E Sherman
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201 USA
| | - Jane Michalski
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201 USA
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD 21201 USA
| | - Sayan Das
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201 USA
| | - Hyojik Yang
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201 USA
| | - Lakshmi Chandrasekaran
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910 USA
| | - Timothy R O’Meara
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115 USA
| | - David J Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142 USA
| | - Shoshana Barnoy
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910 USA
| | - Malabi Venkatesan
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910 USA
| | - Robert K Ernst
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201 USA
| |
Collapse
|
6
|
Lu T, Raju M, Howlader DR, Dietz ZK, Whittier SK, Varisco DJ, Ernst RK, Coghill LM, Picking WD, Picking WL. Vaccination with a Protective Ipa Protein-Containing Nanoemulsion Differentially Alters the Transcriptomic Profiles of Young and Elderly Mice following Shigella Infection. Vaccines (Basel) 2024; 12:618. [PMID: 38932347 PMCID: PMC11209624 DOI: 10.3390/vaccines12060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Shigella spp. are responsible for bacillary dysentery or shigellosis transmitted via the fecal-oral route, causing significant morbidity and mortality, especially among vulnerable populations. There are currently no licensed Shigella vaccines. Shigella spp. use a type III secretion system (T3SS) to invade host cells. We have shown that L-DBF, a recombinant fusion of the T3SS needle tip (IpaD) and translocator (IpaB) proteins with the LTA1 subunit of enterotoxigenic E. coli labile toxin, is broadly protective against Shigella spp. challenge in a mouse lethal pulmonary model. Here, we assessed the effect of LDBF, formulated with a unique TLR4 agonist called BECC470 in an oil-in-water emulsion (ME), on the murine immune response in a high-risk population (young and elderly) in response to Shigella challenge. Dual RNA Sequencing captured the transcriptome during Shigella infection in vaccinated and unvaccinated mice. Both age groups were protected by the L-DBF formulation, while younger vaccinated mice exhibited more adaptive immune response gene patterns. This preliminary study provides a step toward identifying the gene expression patterns and regulatory pathways responsible for a protective immune response against Shigella. Furthermore, this study provides a measure of the challenges that need to be addressed when immunizing an aging population.
Collapse
Affiliation(s)
- Ti Lu
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Murugesan Raju
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA (L.M.C.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Debaki R. Howlader
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Zackary K. Dietz
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Sean K. Whittier
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Lyndon M. Coghill
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA (L.M.C.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Wendy L. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| |
Collapse
|
7
|
Lu T, Ericsson AC, Dietz ZK, Cato AK, Coghill LM, Picking WD, Picking WL. Impact of an intranasal L-DBF vaccine on the gut microbiota in young and elderly mice. Gut Microbes 2024; 16:2426619. [PMID: 39520707 PMCID: PMC11552291 DOI: 10.1080/19490976.2024.2426619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Shigella spp. cause bacillary dysentery (shigellosis) with high morbidity and mortality in low- and middle-income countries. Infection occurs through the fecal-oral route and can be devastating for vulnerable populations, including infants and the elderly. These bacteria invade host cells using a type III secretion system (T3SS). No licensed vaccine yet exists for shigellosis, but we have generated a recombinant fusion protein, L-DBF, combining the T3SS needle tip protein (IpaD), translocator protein (IpaB), and the LTA1 subunit of enterotoxigenic E. coli labile toxin, which offers broad protection in a mouse model of lethal pulmonary infection. The L-DBF vaccine protects high-risk groups, including young and elderly mice. Here, we investigated how the gut microbiota of young and elderly mice responds to intranasal L-DBF vaccination formulated in an oil-in-water emulsion (ME). Samples from lungs, small intestines, and feces were collected on day 14 after 2 or 3 doses of L-DBF in ME. 16S rRNA gene sequencing revealed age-dependent changes in gut microbiota post-vaccination. The vaccine-induced changes were more prominent in the elderly mice and were most significant in the intestinal tract, indicating that vaccination by the intranasal route can have a tremendous impact on the gut environment. These findings provide insight into the communication between the intranasal mucosal surface following subunit vaccination and the microbiota at a distant mucosal site, thereby highlighting the impact of vaccination and the host's microbiome.
Collapse
Affiliation(s)
- Ti Lu
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- University of Missouri Metagenomics Center (MUMC), University of Missouri, Columbia, MO, USA
| | - Zackary K. Dietz
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Alexa K. Cato
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lyndon M. Coghill
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - William D. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Wendy L. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Gabor CE, Hazen TH, Delaine-Elias BC, Rasko DA, Barry EM. Genomic, transcriptomic, and phenotypic differences among archetype Shigella flexneri strains of serotypes 2a, 3a, and 6. mSphere 2023; 8:e0040823. [PMID: 37830809 PMCID: PMC10732043 DOI: 10.1128/msphere.00408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Given the genomic diversity between S. flexneri serotypes and the paucity of data to support serotype-specific phenotypic differences, we applied in silico and in vitro functional analyses of archetype strains of 2457T (Sf2a), J17B (Sf3a), and CH060 (Sf6). These archetype strains represent the three leading S. flexneri serotypes recommended for inclusion in multivalent vaccines. Characterizing the genomic and phenotypic variation among these clinically prevalent serotypes is an important step toward understanding serotype-specific host-pathogen interactions to optimize the efficacy of multivalent vaccines and therapeutics. This study underpins the importance for further large-scale serotype-targeted analyses.
Collapse
Affiliation(s)
- Caitlin E. Gabor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - BreOnna C. Delaine-Elias
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eileen M. Barry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Lu T, Howlader DR, Das S, Dietz ZK, Nagel AC, Whittier SK, Picking WD, Picking WL. The L-DBF vaccine cross protects mice against different Shigella serotypes after prior exposure to the pathogen. Microbiol Spectr 2023; 11:e0006223. [PMID: 37787548 PMCID: PMC10714971 DOI: 10.1128/spectrum.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Shigellosis is endemic to low- and middle-income regions of the world where children are especially vulnerable. In many cases, there are pre-existing antibodies in the local population and the effect of prior exposure should be considered in the development and testing of vaccines against Shigella infection. Our study shows that L-DBF-induced immune responses are not adversely affected by prior exposure to this pathogen. Moreover, somewhat different cytokine profiles were observed in the lungs of vaccinated mice not having been exposed to Shigella, suggesting that the immune responses elicited by Shigella infection and L-DBF vaccination follow different pathways.
Collapse
Affiliation(s)
- Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Pastor Y, Calvo A, Salvador-Erro J, Gamazo C. Refining Immunogenicity through Intradermal Delivery of Outer Membrane Vesicles against Shigella flexneri in Mice. Int J Mol Sci 2023; 24:16910. [PMID: 38069232 PMCID: PMC10706920 DOI: 10.3390/ijms242316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is cost-effective and accessible for limited-resource regions. Outer Membrane Vesicles (OMVs) have emerged in recent years as an alternative to live attenuated or whole-inactivated vaccines due to their immunogenicity and self-adjuvating properties. Previous works have demonstrated the safety and protective capacity of OMVs against Shigella flexneri infection in mouse models when administered through mucosal or intradermal routes. However, some immunological properties, such as the cellular response or cross-protection among different Shigella strains, remained unexplored. In this study, we demonstrate that intradermal immunization of OMVs with needle-free devices recruits a high number of immune cells in the dermis, leading to a robust cellular response marked by antigen-specific cytokine release and activation of effector CD4 T cells. Additionally, functional antibodies are generated, neutralizing various Shigella serotypes, suggesting cross-protective capacity. These findings highlight the potential of OMVs as a promising vaccine platform against shigellosis and support intradermal administration as a simple and painless vaccination strategy to address this health challenge.
Collapse
Affiliation(s)
| | | | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (Y.P.); (A.C.); (J.S.-E.)
| |
Collapse
|
11
|
Li S, Anvari S, Ptacek G, Upadhyay I, Kaminski RW, Sack DA, Zhang W. A broadly immunogenic polyvalent Shigella multiepitope fusion antigen protein protects against Shigella sonnei and Shigella flexneri lethal pulmonary challenges in mice. Infect Immun 2023; 91:e0031623. [PMID: 37795982 PMCID: PMC10652900 DOI: 10.1128/iai.00316-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shaghayegh Anvari
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Galen Ptacek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Robert W. Kaminski
- Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Duplessis C, Clarkson KA, Ross Turbyfill K, Alcala AN, Gutierrez R, Riddle MS, Lee T, Paolino K, Weerts HP, Lynen A, Oaks EV, Porter CK, Kaminski R. GMP manufacture of Shigella flexneri 2a Artificial Invaplex (Invaplex AR) and evaluation in a Phase 1 Open-label, dose escalating study administered intranasally to healthy, adult volunteers. Vaccine 2023; 41:6261-6271. [PMID: 37666695 DOI: 10.1016/j.vaccine.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Shigella species cause severe disease among travelers to, and children living in, endemic countries. Although significant efforts have been made to improve sanitation, increased antibiotic resistance and other factors suggest an effective vaccine is a critical need. Artificial Invaplex (InvaplexAR) is a subunit vaccine approach complexing Shigella LPS with invasion plasmid antigens. In pre-clinical studies, the InvaplexAR vaccine demonstrated increased immunogenicity as compared to the first generation product and was subsequently manufactured under cGMP for clinical testing in a first-in-human Phase 1 study. The primary objective of this study was the safety of S. flexneri 2a InvaplexAR given by intranasal (IN) immunization (without adjuvant) in a single-center, open-label, dose-escalating Phase 1 trial and secondarily to assess immunogenicity to identify a dose of InvaplexAR for subsequent clinical evaluations. Subjects received three IN immunizations of InvaplexAR, two weeks apart, in increasing dose cohorts (10 µg, 50 µg, 250 µg, and 500 μg). Adverse events were monitored using symptom surveillance, memory aids, and targeted physical exams. Samples were collected throughout the study to investigate vaccine-induced systemic and mucosal immune responses. There were no adverse events that met vaccination-stopping criteria. The majority (96%) of vaccine-related adverse events were mild in severity (most commonly nasal congestion, rhinorrhea, and post-nasal drip). Vaccination with InvaplexAR induced anti-LPS serum IgG responses and anti-Invaplex IgA and IgG antibody secreting cell (ASC) responses at vaccine doses ≥250 µg. Additionally, mucosal immune responses and functional antibody responses were seen from the serum bactericidal assay measurements. Notably, the responder rates and the kinetics of ASCs and antibody lymphocyte secretion (ALS) were similar, suggesting that either assay may be employed to identify IgG and IgA secreting cells. Further studies with InvaplexAR will evaluate alternative immunization routes, vaccination schedules and formulations to further optimize immunogenicity. (Clinical Trial Registry Number NCT02445963).
Collapse
Affiliation(s)
- Christopher Duplessis
- Naval Medical Research Command, Silver Spring, MD, USA; Current Affiliation: University of Nevada Reno, Reno, NV, USA
| | - Kristen A Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Current Affiliation: Horizon Therapeutics, Deerfield, IL, USA
| | - K Ross Turbyfill
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Ashley N Alcala
- Naval Medical Research Command, Silver Spring, MD, USA; Current Affiliation: Tigermed-BDM, Somerset, NJ, USA
| | - Ramiro Gutierrez
- Naval Medical Research Command, Silver Spring, MD, USA; Current Affiliation: Upstate Medical University, Syracuse, NY, USA
| | - Mark S Riddle
- Naval Medical Research Command, Silver Spring, MD, USA; Current Affiliation: University of Nevada Reno, Reno, NV, USA
| | - Tida Lee
- Naval Medical Research Command, Silver Spring, MD, USA
| | - Kristopher Paolino
- Clinical Trials Center, Division of Translational Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Current Affiliation: Upstate Medical University, Syracuse, NY, USA
| | - Hailey P Weerts
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Current Affiliation: National Institute of Allery and Infectious Diseases, Bethesda, MD, USA
| | - Amanda Lynen
- Naval Medical Research Command, Silver Spring, MD, USA
| | - Edwin V Oaks
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Current Affiliation: Patuxent Research and Consulting Group, Gambrills, MD, USA
| | - Chad K Porter
- Naval Medical Research Command, Silver Spring, MD, USA
| | - Robert Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Current Affiliation: Latham BioPharm Group, Cambridge, MA, USA
| |
Collapse
|
13
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
14
|
Lu T, Das S, Howlader DR, Jain A, Hu G, Dietz ZK, Zheng Q, Ratnakaram SSK, Whittier SK, Varisco DJ, Ernst RK, Picking WD, Picking WL. Impact of the TLR4 agonist BECC438 on a novel vaccine formulation against Shigella spp. Front Immunol 2023; 14:1194912. [PMID: 37744341 PMCID: PMC10512073 DOI: 10.3389/fimmu.2023.1194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Shigellosis (bacillary dysentery) is a severe gastrointestinal infection with a global incidence of 90 million cases annually. Despite the severity of this disease, there is currently no licensed vaccine against shigellosis. Shigella's primary virulence factor is its type III secretion system (T3SS), which is a specialized nanomachine used to manipulate host cells. A fusion of T3SS injectisome needle tip protein IpaD and translocator protein IpaB, termed DBF, when admixed with the mucosal adjuvant double-mutant labile toxin (dmLT) from enterotoxigenic E. coli was protective using a murine pulmonary model. To facilitate the production of this platform, a recombinant protein that consisted of LTA-1, the active moiety of dmLT, and DBF were genetically fused, resulting in L-DBF, which showed improved protection against Shigella challenge. To extrapolate this protection from mice to humans, we modified the formulation to provide for a multivalent presentation with the addition of an adjuvant approved for use in human vaccines. Here, we show that L-DBF formulated (admix) with a newly developed TLR4 agonist called BECC438 (a detoxified lipid A analog identified as Bacterial Enzymatic Combinatorial Chemistry candidate #438), formulated as an oil-in-water emulsion, has a very high protective efficacy at low antigen doses against lethal Shigella challenge in our mouse model. Optimal protection was observed when this formulation was introduced at a mucosal site (intranasally). When the formulation was then evaluated for the immune response it elicits, protection appeared to correlate with high IFN-γ and IL-17 secretion from mucosal site lymphocytes.
Collapse
Affiliation(s)
- Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Sadredinamin M, Yazdansetad S, Alebouyeh M, Yazdi MMK, Ghalavand Z. Shigella Flexneri Serotypes: O-antigen Structure, Serotype Conversion, and Serotyping Methods. Oman Med J 2023; 38:e522. [PMID: 37724320 PMCID: PMC10505279 DOI: 10.5001/omj.2023.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/04/2022] [Indexed: 09/20/2023] Open
Abstract
Shigella flexneri is the most common cause of shigellosis in developing countries. Up to now, 23 serotypes of S. flexneri have been reported. Different serotypes result from the addition of acetyl, glucosyl, or phosphatidylethanolamine groups on the O-antigen backbone and horizontal transfer of mentioned groups can lead to serotype conversion among S. flexneri strains. Serotype conversion causes either a circulation of pre-existing serotypes or is responsible for the emergence of new serotypes. Serotype conversion plays a pivotal role in the protection and evasion of S. flexneri from the host immune response. Furthermore, spreading any new serotype can provide evolutionary advantages. Hence, information about S. flexneri O-antigen structure, serotype conversion, and serotyping methods can be helpful to understand the disease that attributes distinct serotypes in order to apply control or prevention methods in accordance with predominant serotypes over the course of time. Thus, the scope of this review is to give an overview of the serotype structures, factors involved in O-antigen modification, molecular analysis, and epidemiological evidence for the benefits of serotype conversion for S. flexneri serotypes. We are also providing a review of the typing methods.
Collapse
Affiliation(s)
- Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Yazdansetad
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Muzembo BA, Kitahara K, Mitra D, Ohno A, Khatiwada J, Dutta S, Miyoshi SI. Burden of Shigella in South Asia: a systematic review and meta-analysis. J Travel Med 2023; 30:6798401. [PMID: 36331282 DOI: 10.1093/jtm/taac132] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Shigella remains one of the most common causes of diarrhoea in South Asia. Current estimates of the prevalence of Shigella are critical for guiding control measures. We estimated the prevalence of Shigella species and serogroups in South Asia. METHODS We performed a systematic review using PubMed, EMBASE, Google Scholar and Web of Science for peer-reviewed studies published between 2000 and 19 June 2022. We also manually searched the reference lists of the reviewed studies to identify additional studies. We included studies that detected the presence of Shigella in stool by culture or polymerase chain reaction (PCR). Studies associated with outbreaks were excluded. Two investigators independently reviewed the studies, extracted the data and performed quality assessment. A random-effects meta-analysis was performed to determine the pooled prevalence of Shigella. RESULTS Our search yielded 5707 studies, of which 91 studies from five South Asian countries were included in the systematic review, 79 in the meta-analysis of Shigella prevalence and 63 in the meta-analysis of Shigella serogroups prevalence. The pooled prevalence of Shigella was 7% [95% confidence interval (CI): 6-7%], with heterogeneity (I2 = 98.7; P < 0.01). The prevalence of Shigella was higher in children aged <5 years (10%; 95% CI: 8-11%), in rural areas (12%; 95% CI: 10-14%) and in studies using PCR (15%; 95% CI: 11-19%). Shigella flexneri (58%) was the most abundant serogroup, followed by Shigella sonnei (19%), Shigella boydii (10%) and Shigella dysenteriae (9%). Shigella flexneri 2a was the most frequently isolated serotype (36%), followed by serotype 3a (12%), serotype 6 (12%) and serotype 1b (6%). The prevalence of non-typeable Shigella was 10.0%. CONCLUSIONS Although the prevalence of Shigella in South Asia remains generally high, it varies by age group and geographical area, with data lacking in some countries. Effective Shigella vaccines would be advantageous for both endemic communities and travellers.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | - Debmalya Mitra
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | - Ayumu Ohno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Baruah N, Ahamad N, Halder P, Koley H, Katti DS. Facile synthesis of multi-faceted, biomimetic and cross-protective nanoparticle-based vaccines for drug-resistant Shigella: a flexible platform technology. J Nanobiotechnology 2023; 21:34. [PMID: 36710326 PMCID: PMC9884485 DOI: 10.1186/s12951-023-01780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND No commercial vaccines are available against drug-resistant Shigella due to serotype-specific/narrow-range of protection. Nanoparticle-based biomimetic vaccines involving stable, conserved, immunogenic proteins fabricated using facile chemistries can help formulate a translatable cross-protective Shigella vaccine. Such systems can also negate cold-chain transportation/storage thus overcoming challenges prevalent in various settings. METHODS We explored facile development of biomimetic poly (lactide-co-glycolide)/PLGA 50:50 based nanovaccines (NVs), encapsulating conserved stabilized antigen(s)/immunostimulant of S. dysenteriae 1 origin surface-modified using simple chemistries. All encapsulants (IpaC/IpaB/LPS) and nanoparticles (NPs)-bare and modified (NV), were thoroughly characterized. Effect of IpaC on cellular uptake of NPs was assessed in-vitro. Immunogenicity of the NVs was assessed in-vivo in BALB/c mice by intranasal immunization. Cross-protective efficacy was assessed by intraperitoneally challenging the immunized groups with a high dose of heterologous S. flexneri 2a and observing for visible diarrhea, weight loss and survival. Passive-protective ability of the simplest NV was assessed in the 5-day old progeny of vaccinated mice. RESULTS All the antigens and immunostimulant to be encapsulated were successfully purified and found to be stable both before and after encapsulation into NPs. The ~ 300 nm sized NPs with a zeta potential of ~ - 25 mV released ~ 60% antigen by 14th day suggesting an appropriate delivery kinetics. The NPs could be successfully surface-modified with IpaC and/or CpG DNA. In vitro experiments revealed that the presence of IpaC can significantly increase cellular uptake of NPs. All NVs were found to be cytocompatible and highly immunogenic. Antibodies in sera of NV-immunized mice could recognize heterologous Shigella. Immunized sera also showed high antibody and cytokine response. The immunized groups were protected from diarrhea and weight loss with ~ 70-80% survival upon heterologous Shigella challenge. The simplest NV showed ~ 88% survival in neonates. CONCLUSIONS Facile formulation of biomimetic NVs can result in significant cross-protection. Further, passive protection in neonates suggest that parental immunization could protect infants, the most vulnerable group in context of Shigella infection. Non-invasive route of vaccination can also lead to greater patient compliance making it amenable for mass-immunization. Overall, our work contributes towards a yet to be reported platform technology for facile development of cross-protective Shigella vaccines.
Collapse
Affiliation(s)
- Namrata Baruah
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India ,grid.417965.80000 0000 8702 0100The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| | - Nadim Ahamad
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| | - Prolay Halder
- grid.419566.90000 0004 0507 4551Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010 West Bengal India
| | - Hemanta Koley
- grid.419566.90000 0004 0507 4551Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010 West Bengal India
| | - Dhirendra S. Katti
- grid.417965.80000 0000 8702 0100Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India ,grid.417965.80000 0000 8702 0100The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh India
| |
Collapse
|
18
|
Das A, Doss K, Mandal J. CRISPR-cas heterogeneity and plasmid incompatibility types in relation to virulence determinants of Shigella. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Virulence factors (VFs) are the most potent weapon in the molecular armoury of
Shigella
. In bacteria, the mobile genetic elements (MGEs) are contributors to the evolution of different types of clustered regularly interspaced short palindromic repeats-CRISPR associated genes (CRISPR-cas) variants and plasmid incompatibility types. The present study explored the virulence potential of
Shigella
in relation to the CRISPR-cas pattern and incompatibility types among the isolates.
Hypothesis/Gap Statement. The profile of the CRISPR-cas systems among clinical isolates of
Shigella
in India has not been reported earlier. Limited knowledge is available on the pattern of plasmid incompatibility groups among clinical isolates
Shigella
. The bias is always towards studying the genetic elements associated with AMR, but the present study highlights CRISPR-cas and incompatibility types among
Shigella
in association with virulence.
Aim. We aimed to investigate the distribution of virulence factors, CRISPR-cas pattern followed by plasmid incompatibility types among
Shigella
isolates.
Methodology. Between 2012–2017, a total of 187 isolates of
Shigella
were included in the study. The virulence genes' distribution was carried out. CRISPR-cas profiling followed by analysis of the repeats and spacers was carried out. PCR-based replicon typing was used to determine the incompatibility types. The interplay was statistically determined using STATA.
Results. The distribution of virulence genes showed varied pattern with ipaH present in all the isolates followed by ompA (93.6 %), virF (66.8 %), ial and sen (60.4 %), set1A (39.6 %) and set1B (39 %). CRISPR 1, CRISPR 3 and Cas6-Cas5 region were dominantly conserved. Twenty-two types of spacers were identified. The CRISPR3 repeat appeared to have a highly conserved sequence. CRISPR2 being the least common CRISPR type showed a strong association with an array of virulence genes (ial-set1A-set1B-virF) while CRISPR1 being the most dominant showed the least association with virulence genes (sen-virF). The dominant plasmids were found to be belonging to the inc FII group. The incompatibility groups FII, IncIγ, U, FIIS, FIIK, K, A/C, I1alpha was found to be associated with a greater number of virulence genes.
Conclusion. The isolates showed increasing diversity in their gene content that contributes to increasing heterogeneity among the isolates, which is a known virulence strategy among pathogens.
Collapse
Affiliation(s)
- Ankita Das
- Department of Microbiology, Jawaharlal Nehru Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India
| | - Kamali Doss
- Jawaharlal Nehru Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India
| | - Jharna Mandal
- Department of Microbiology, Jawaharlal Nehru Institute of Postgraduate Medical Institute and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Pondicherry-605006, India
| |
Collapse
|
19
|
Xerri NL, Payne SM. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. mBio 2022; 13:e0236022. [PMID: 36102517 PMCID: PMC9600379 DOI: 10.1128/mbio.02360-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.
Collapse
Affiliation(s)
- Nicholas L. Xerri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
20
|
Bernshtein B, Ndungo E, Cizmeci D, Xu P, Kováč P, Kelly M, Islam D, Ryan ET, Kotloff KL, Pasetti MF, Alter G. Systems approach to define humoral correlates of immunity to Shigella. Cell Rep 2022; 40:111216. [PMID: 35977496 PMCID: PMC9396529 DOI: 10.1016/j.celrep.2022.111216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella infection is the second leading cause of death due to diarrheal disease in young children worldwide. With the rise of antibiotic resistance, initiatives to design and deploy a safe and effective Shigella vaccine are urgently needed. However, efforts to date have been hindered by the limited understanding of immunological correlates of protection against shigellosis. We applied systems serology to perform a comprehensive analysis of Shigella-specific antibody responses in sera obtained from volunteers before and after experimental infection with S. flexneri 2a in a series of controlled human challenge studies. Polysaccharide-specific antibody responses are infrequent prior to infection and evolve concomitantly with disease severity. In contrast, pre-existing antibody responses to type 3 secretion system proteins, particularly IpaB, consistently associate with clinical protection from disease. Linked to particular Fc-receptor binding patterns, IpaB-specific antibodies leverage neutrophils and monocytes, and complement and strongly associate with protective immunity. IpaB antibody-mediated functions improve with a subsequent rechallenge resulting in complete clinical protection. Collectively, our systems serological analyses indicate protein-specific functional correlates of immunity against Shigella in humans. Serological profiling of Shigella human challenge studies indicates protective markers Pre-existing IpaB-specific functional antibodies associate with less severe disease OPS immune responses post challenge are linked to less severe disease Shigella rechallenge boosts IpaB but not OPS functional antibody responses
Collapse
Affiliation(s)
| | - Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dilara Islam
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
21
|
Nasrin S, Haque MA, Palit P, Das R, Mahfuz M, Faruque ASG, Ahmed T. Incidence of Asymptomatic Shigella Infection and Association with the Composite Index of Anthropometric Failure among Children Aged 1–24 Months in Low-Resource Settings. Life (Basel) 2022; 12:life12050607. [PMID: 35629275 PMCID: PMC9147227 DOI: 10.3390/life12050607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/21/2022] Open
Abstract
Asymptomatic or subclinical infection by diarrheal enteropathogens during childhood has been linked to poor health and nutritional outcomes. In this study, we aimed to assess the impact of asymptomatic Shigella infection on different forms of childhood malnutrition including the composite index of anthropometric failure (CIAF). We used data from 1715 children enrolled in the multi-country birth cohort study, MAL-ED, from November 2009 to February 2012. Monthly non-diarrheal stools were collected and assessed using TaqMan Array Cards (TAC). Poisson regression was used to calculate incidence rates of asymptomatic Shigella infection. Generalized estimating equations (GEE) were used to assess the association between asymptomatic Shigella infection and nutritional indicators after adjusting for relevant covariates. Incidence rates per 100 child-months were higher in Tanzania, Bangladesh and Peru. Overall, after adjusting for relevant covariates, asymptomatic Shigella infection was significantly associated with stunting (aOR 1.60; 95% CI: 1.50, 1.70), wasting (aOR 1.26; 95% CI: 1.09, 1.46), underweight (aOR 1.45; 95% CI: 1.35, 1.56), and CIAF (aOR 1.55; 95% CI: 1.46, 1.65) in all the study sites except for Brazil. The high incidence rates of asymptomatic Shigella infection underscore the immediate need for Shigella vaccines to avert the long-term sequelae involving childhood growth.
Collapse
|
22
|
Palit P, Chowdhury FT, Baruah N, Sarkar B, Mou SN, Kamal M, Siddiqua TJ, Noor Z, Ahmed T. A Comprehensive Computational Investigation into the Conserved Virulent Proteins of Shigella species Unveils Potential Small-Interfering RNA Candidates as a New Therapeutic Strategy against Shigellosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061936. [PMID: 35335300 PMCID: PMC8950558 DOI: 10.3390/molecules27061936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Shigella species account for the second-leading cause of deaths due to diarrheal diseases among children of less than 5 years of age. The emergence of multi-drug-resistant Shigella isolates and the lack of availability of Shigella vaccines have led to the pertinence in the efforts made for the development of new therapeutic strategies against shigellosis. Consequently, designing small-interfering RNA (siRNA) candidates against such infectious agents represents a novel approach to propose new therapeutic candidates to curb the rampant rise of anti-microbial resistance in such pathogens. In this study, we analyzed 264 conserved sequences from 15 different conserved virulence genes of Shigella sp., through extensive rational validation using a plethora of first-generation and second-generation computational algorithms for siRNA designing. Fifty-eight siRNA candidates were obtained by using the first-generation algorithms, out of which only 38 siRNA candidates complied with the second-generation rules of siRNA designing. Further computational validation showed that 16 siRNA candidates were found to have a substantial functional efficiency, out of which 11 siRNA candidates were found to be non-immunogenic. Finally, three siRNA candidates exhibited a sterically feasible three-dimensional structure as exhibited by parameters of nucleic acid geometry such as: the probability of wrong sugar puckers, bad backbone confirmations, bad bonds, and bad angles being within the accepted threshold for stable tertiary structure. Although the findings of our study require further wet-lab validation and optimization for therapeutic use in the treatment of shigellosis, the computationally validated siRNA candidates are expected to suppress the expression of the virulence genes, namely: IpgD (siRNA 9) and OspB (siRNA 15 and siRNA 17) and thus act as a prospective tool in the RNA interference (RNAi) pathway. However, the findings of our study require further wet-lab validation and optimization for regular therapeutic use for treatment of shigellosis.
Collapse
Affiliation(s)
- Parag Palit
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (M.K.); (T.J.S.); (T.A.)
| | - Farhana Tasnim Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh; (F.T.C.); (B.S.); (S.N.M.)
| | - Namrata Baruah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India;
| | - Bonoshree Sarkar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh; (F.T.C.); (B.S.); (S.N.M.)
| | - Sadia Noor Mou
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh; (F.T.C.); (B.S.); (S.N.M.)
| | - Mehnaz Kamal
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (M.K.); (T.J.S.); (T.A.)
| | - Towfida Jahan Siddiqua
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (M.K.); (T.J.S.); (T.A.)
| | - Zannatun Noor
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (M.K.); (T.J.S.); (T.A.)
- Correspondence:
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (P.P.); (M.K.); (T.J.S.); (T.A.)
| |
Collapse
|
23
|
Sadredinamin M, Shabani M, Karimi A, Sohrabi MR, Karimi-Yazdi M, Ghalavand Z, Alebouyeh M. Virulence genes expression profiling of different Shigella flexneri serotypes in response to sub-inhibitory concentrations of azithromycin and ciprofloxacin. Gut Pathog 2022; 14:10. [PMID: 35193669 PMCID: PMC8864791 DOI: 10.1186/s13099-022-00483-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Shigellosis is a self-limiting disease that antibiotic therapy could decrease its complications and duration. However, sublethal levels of antibiotics, may lead to alteration in disease state, besides its role in the emergence of resistant variants. To understand this link, we investigated diversity of Shigella serogroups in children with diarrhea, diversity of S. flexneri serotypes, cytotoxic potential, resistance patterns to antibiotics, and alteration in transcriptional expression of main virulence genes in response to sub-inhibitory concentrations of azithromycin and ciprofloxacin. Results The most frequently isolated serogroups were S. sonnei (70.3%), followed by S. flexneri (29.1%) and S. boydii (0.6%). Ten serotypes were characterized among the S. flexneri isolates, including 2b, 1b, 2a, 1c, 4a, 3a, 3b, 6 and X and/or Xv. Antimicrobial susceptibility testing showed low frequency of multi-drug resistance phenotype among S. flexneri isolates with minimum inhibitory concentrations (MIC) of 0.5–64 and 0.25–8 µg/mL for azithromycin and ciprofloxacin, respectively. Gene expression analysis showed upregulation of icsA in serotype 4a after exposure with azithromycin, whereas other genes in the VirF pathway were downregulated, and downregulation of virB in serotypes 2a and 3a after exposure with ciprofloxacin, while upregulation of noted genes was detected. Conclusions Alteration in transcription of key virulence genes of S. flexneri serotypes was shown in response to sublethal concentration of antibiotics. The detected incongruency in the extent of gene transcription proposed that diverse regulatory pathways are possibly mediating response to sub-MIC concentrations of antibiotics in S. flexneri.
Collapse
Affiliation(s)
- Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Sohrabi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoud Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 2022; 7:251-261. [PMID: 35102306 PMCID: PMC8813619 DOI: 10.1038/s41564-021-01054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
| | - Adam J Simpkin
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
- Gastrointestinal Infections and Food Safety (One Health), United Kingdom Health Security Agency, London, UK
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Rigden
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Chakraborty S, Connor S, Velagic M. Development of a simple, rapid, and sensitive diagnostic assay for enterotoxigenic E. coli and Shigella spp applicable to endemic countries. PLoS Negl Trop Dis 2022; 16:e0010180. [PMID: 35089927 PMCID: PMC8827434 DOI: 10.1371/journal.pntd.0010180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) and Shigella spp (Shigella) are complex pathogens. The diagnostic assays currently used to detect these pathogens are elaborate or complicated, which make them difficult to apply in resource poor settings where these diseases are endemic. The culture methods used to detect Shigella are not sensitive, and the methods used to detect ETEC are only available in a few research labs. To address this gap, we developed a rapid and simple diagnostic assay–"Rapid LAMP based Diagnostic Test (RLDT)." The six minutes sample preparation method directly from the fecal samples with lyophilized reaction strips and using established Loop-mediated Isothermal Amplification (LAMP) platform, ETEC [heat labile toxin (LT) and heat stable toxins (STh, and STp) genes] and Shigella (ipaH gene) detection was made simple, rapid (<50 minutes), and inexpensive. This assay is cold chain and electricity free. Moreover, RLDT requires minimal equipment. To avoid any end user’s bias, a battery-operated, handheld reader was used to read the RLDT results. The results can be read as positive/negative or as real time amplification depending on the end user’s need. The performance specifications of the RLDT assay, including analytical sensitivity and specificity, were evaluated using fecal samples spiked with ETEC and Shigella strains. The limit of detection was ~105 CFU/gm of stool for LT, STh, and STp and ~104 CFU/gm of stool for the ipaH gene, which corresponds to about 23 CFU and 1 CFU respectively for ETEC and Shigella per 25uL reaction within 40 minutes. The RLDT assay from stool collection to result is simple, and rapid and at the same time sufficiently sensitive. RLDT has the potential to be applied in resource poor endemic settings for the rapid diagnosis of ETEC and Shigella. Enterotoxigenic E. coli and Shigella are the leading causes of moderate to severe diarrhea in the low-and middle-income countries (LMICs). A critical constraint to determine the ETEC and Shigella disease burden at the country or sub-national level, is the complex diagnostic methods currently required for detecting these pathogens. These methods are neither sufficiently sensitive nor standardized and are not feasible in the resource poor settings where these infections occur most commonly. We developed a simple and rapid diagnostic assay called "Rapid Loop-mediated isothermal amplification based Diagnostic Test (RLDT)" for the detection of these pathogens in low-resource settings. Using RLDT, ETEC and Shigella were detected directly from the stool, in less than 1 hour with minimal hands-on time. The assay does not require maintaining a cold chain and is electricity-free. Being rapid, simple, and sensitive, RLDT can be scaled up and is appropriate to apply in the LMICs where ETEC and Shigella diarrhea are endemic.
Collapse
Affiliation(s)
- Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Sean Connor
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mirza Velagic
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
26
|
Tsai CS, Lin KY, Liou BH, Chiou CS, Lin YC, Lee YT, Yang CJ, Tang HJ, Liao YS, Liu CE, Lee CH, Lu PL, Huang SH, Hung CC, Ko WC. Changing epidemiology of shigellosis in Taiwan, 2010-2019: an emerging threat to HIV-infected patients and men who have sex with men. Emerg Microbes Infect 2022; 11:498-506. [PMID: 35045788 PMCID: PMC8855726 DOI: 10.1080/22221751.2022.2031309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Shigellosis appears to increase in certain at-risk populations in developed countries. Based on the nationwide surveillance, the annual incidence of shigellosis in Taiwan (1999-2019) was 0.38-5.77 cases per 100,000 people. Indigenous shigellosis has mostly affected men who have sex with men (MSM) and people living with HIV (PLWH) since 2015. In this retrospective study, compared with those diagnosed before 2015, indigenous cases diagnosed during 2015-2019 mostly occurred in male adults (96.0% vs 47.1%, P < 0.001), with a longer hospital stay (median 5.0 vs 3.5 days, P = 0.029) and different coinfections. The predominant strains in 2015 and 2016 were ciprofloxacin-resistant Shigella sonnei and azithromycin non-susceptible Shigella flexneri (S. flexneri) 3a, which had been replaced by ciprofloxacin-resistant S. flexneri 2a since 2018. Notably, six indigenous cases were caused by cefotaxime-resistant S. flexneri. Inappropriate use of empiric antibiotic treatment was common. In conclusion, there is an ongoing spread of ciprofloxacin-resistant shigellosis among PLWH and MSM and cefotaxime-resistant S. flexneri is an emerging threat in Taiwan.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan
| | - Kuan-Yin Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Hospital, Taipei, Taiwan
| | - Bo-Huang Liou
- Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan
| | - Chien-Shun Chiou
- Centre for Diagnostics and Vaccine Development, Centres for Disease Control, Taichung, Taiwan
| | - Yi-Chun Lin
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yuan-Ti Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Jui Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Centre, Tainan, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Sciences, Tainan, Taiwan
| | - Ying-Shu Liao
- Centre for Diagnostics and Vaccine Development, Centres for Disease Control, Taichung, Taiwan
| | - Chun-Eng Liu
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chen-Hsiang Lee
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Hsi Huang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan.,Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Hospital, Taipei, Taiwan.,Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
27
|
Herod A, Ryu J, Rohde J. Lambda Red Recombineering in Shigella flexneri. Methods Mol Biol 2022; 2523:9-21. [PMID: 35759188 DOI: 10.1007/978-1-0716-2449-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shigellosis remains a major cause of severe diarrheal disease and death throughout the world. Vaccine development against shigellosis has been hampered by an incomplete understanding of the molecular mechanisms by which Shigella spp. causes disease and difficulties in manipulating Shigella spp. genomes. While homologous recombination protocols for the construction of precise gene deletions exist, construction of mutants in S. flexneri has not become commonplace. We describe the steps for construction of gene deletions using λ-red recombination using tools that we have developed in our laboratory.
Collapse
Affiliation(s)
- Adrian Herod
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, Canada
| | - Julie Ryu
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, Canada.
| |
Collapse
|
28
|
Baruah N, Ahamad N, Maiti S, Howlader DR, Bhaumik U, Patil VV, Chakrabarti MK, Koley H, Katti DS. Development of a Self-Adjuvanting, Cross-Protective, Stable Intranasal Recombinant Vaccine for Shigellosis. ACS Infect Dis 2021; 7:3182-3196. [PMID: 34734708 DOI: 10.1021/acsinfecdis.1c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the acquirement of antibiotic resistance, Shigella has resulted in multiple epidemics of shigellosis, an infectious diarrheal disease, causing thousands of deaths per year. Unfortunately, there are no licensed vaccines, primarily due to low or serotype-specific immunogenicity. Thus, conserved subunit vaccines utilizing recombinant invasion plasmid antigens (Ipa) have been explored as cross-protective vaccine candidates. However, achieving cross-protection against Shigella dysenteriae 1, which caused multiple pandemics/epidemics in the recent past, has been difficult. Therefore, a rational approach to improve cross-protection in the preparation for a possible pandemic should involve conserved proteins from S. dysenteriae 1 (Sd1). IpaC is one such conserved immunogenic protein that is less explored as an independent vaccine due to its instability/aggregation. Therefore, to improve cross-protection and potential immunogenicity and to be prepared for a future epidemic/pandemic, herein, we stabilized recombinant Sd1 IpaC, expressed without its chaperone, using a previously reported stabilizing detergent (LDAO) in a modified protocol and assessed its vaccine potential without an adjuvant. The protein assembled into heterogeneous complex spherical structures in the presence of LDAO and showed improved stability at storage temperatures of -80, -20, 4, 25, and 37 °C while providing enhanced yield and concentration. The protein could also be stably lyophilized and reconstituted, increasing the convenience of transportation and storage. Upon intranasal administration in BALB/c mice, the stabilized-IpaC-immunized groups generated significant antibody response and were not only protected against a high intraperitoneal dose of homologous S. dysenteriae 1 but also showed 100% survival against heterologous Shigella flexneri 2a without an adjuvant, while the control animals showed visible diarrhea (bloody-Sd1 challenge), lethargy, and weight loss with 0% survival. Overall, this work demonstrates that stabilized IpaC can be explored as a minimalist, self-adjuvanting, cross-protective, intranasal, single-antigen Shigella vaccine.
Collapse
Affiliation(s)
- Namrata Baruah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Nadim Ahamad
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Debaki R. Howlader
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Vinod V. Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manoj K. Chakrabarti
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
29
|
Affiliation(s)
- Heyu Li
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.,School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Citiulo F, Necchi F, Mancini F, Rossi O, Aruta MG, Gasperini G, Alfini R, Rondini S, Micoli F, Rappuoli R, Saul A, Martin LB. Rationalizing the design of a broad coverage Shigella vaccine based on evaluation of immunological cross-reactivity among S. flexneri serotypes. PLoS Negl Trop Dis 2021; 15:e0009826. [PMID: 34644291 PMCID: PMC8589205 DOI: 10.1371/journal.pntd.0009826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/12/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
No vaccine to protect against an estimated 238,000 shigellosis deaths per year is widely available. S. sonnei is the most prevalent Shigella, and multiple serotypes of S. flexneri, which change regionally and globally, also cause significant disease. The leading Shigella vaccine strategies are based on the delivery of serotype specific O-antigens. A strategy to minimize the complexity of a broadly-protective Shigella vaccine is to combine components from S. sonnei with S. flexneri serotypes that induce antibodies with maximum cross-reactivity between different serotypes. We used the GMMA-technology to immunize animal models and generate antisera against 14 S. flexneri subtypes from 8 different serotypes that were tested for binding to and bactericidal activity against a panel of 11 S. flexneri bacteria lines. Some immunogens induced broadly cross-reactive antibodies that interacted with most of the S. flexneri in the panel, while others induced antibodies with narrower specificity. Most cross-reactivity could not be assigned to modifications of the O-antigen, by glucose, acetate or phosphoethanolamine, common to several of the S. flexneri serotypes. This allowed us to revisit the current dogma of cross-reactivity among S. flexneri serotypes suggesting that a broadly protective vaccine is feasible with limited number of appropriately selected components. Thus, we rationally designed a 4-component vaccine selecting GMMA from S. sonnei and S. flexneri 1b, 2a and 3a. The resulting formulation was broadly cross-reactive in mice and rabbits, inducing antibodies that killed all S. flexneri serotypes tested. This study provides the framework for a broadly-protective Shigella vaccine which needs to be verified in human trials. A strategy to optimize the composition for a broadly-protective Shigella vaccine is to combine components directed against S. sonnei with S. flexneri serotypes to induce antibody responses with the maximum cross-reactivity between different serotypes. Based on mouse and rabbit immunogenicity, we selected 4 GMMA-immunogens, derived from S. sonnei and S. flexneri 1b, 2a and 3a, able to induce antibodies that were broadly bactericidal against most epidemiologically significant S. flexneri strains in mice and rabbits. This was not predicted on the basis of O-antigen modifications conferring serotype or group specificities and allowed revisiting the dogma of cross-protection among S. flexneri serotypes. Overall, this study provides a framework for the rational design of a broadly-protective vaccine that will be evaluated in upcoming human vaccine trials. It also tackles a key issue regarding Shigella vaccine development that is balancing a sufficient number of antigenic components in the vaccine to provide adequate coverage of serotype diversity while minimizing complexity.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
- * E-mail:
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | | | | | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | | | - Allan Saul
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | - Laura B. Martin
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| |
Collapse
|
31
|
Nickerson KP, Llanos-Chea A, Ingano L, Serena G, Miranda-Ribera A, Perlman M, Lima R, Sztein MB, Fasano A, Senger S, Faherty CS. A Versatile Human Intestinal Organoid-Derived Epithelial Monolayer Model for the Study of Enteric Pathogens. Microbiol Spectr 2021; 9:e0000321. [PMID: 34106568 PMCID: PMC8552518 DOI: 10.1128/spectrum.00003-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.
Collapse
Affiliation(s)
- Kourtney P. Nickerson
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandro Llanos-Chea
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Ingano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gloria Serena
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alba Miranda-Ribera
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Pilla G, Wu T, Grassel C, Moon J, Foulke-Abel J, Tang CM, Barry EM. Evaluation of a Live Attenuated S. sonnei Vaccine Strain in the Human Enteroid Model. Pathogens 2021; 10:1079. [PMID: 34578112 PMCID: PMC8468197 DOI: 10.3390/pathogens10091079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/19/2022] Open
Abstract
Shigella is a leading cause of bacillary dysentery worldwide, responsible for high death rates especially among children under five in low-middle income countries. Shigella sonnei prevails in high-income countries and is becoming prevalent in industrializing countries, where multi-drug resistant strains have emerged, as a significant public health concern. One strategy to combat drug resistance in S. sonnei is the development of effective vaccines. There is no licensed vaccine against Shigella, and development has been hindered by the lack of an effective small-animal model. In this work, we used human enteroids, for the first time, as a model system to evaluate a plasmid-stabilized S. sonnei live attenuated vaccine strain, CVD 1233-SP, and a multivalent derivative, CVD 1233-SP::CS2-CS3, which expresses antigens from enterotoxigenic Escherichia coli. The strains were also tested for immunogenicity and protective capacity in the guinea pig model, demonstrating their ability to elicit serum and mucosal antibody responses as well as protection against challenge with wild-type S. sonnei. These promising results highlight the utility of enteroids as an innovative preclinical model to evaluate Shigella vaccine candidates, constituting a significant advance for the development of preventative strategies against this important human pathogen.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (G.P.); (C.M.T.)
| | - Tao Wu
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1509, USA; (T.W.); (C.G.); (J.M.)
| | - Christen Grassel
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1509, USA; (T.W.); (C.G.); (J.M.)
| | - Jonathan Moon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1509, USA; (T.W.); (C.G.); (J.M.)
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21201, USA;
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (G.P.); (C.M.T.)
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1509, USA; (T.W.); (C.G.); (J.M.)
| |
Collapse
|
33
|
Hu Z, Benkoulouche M, Barel LA, Le Heiget G, Ben Imeddourene A, Le Guen Y, Monties N, Guerreiro C, Remaud-Siméon M, Moulis C, André I, Mulard LA. Convergent Chemoenzymatic Strategy to Deliver a Diversity of Shigella flexneri Serotype-Specific O-Antigen Segments from a Unique Lightly Protected Tetrasaccharide Core. J Org Chem 2021; 86:2058-2075. [PMID: 32700907 DOI: 10.1021/acs.joc.0c00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progress in glycoscience is strongly dependent on the availability of broadly diverse tailor-made, well-defined, and often complex oligosaccharides. Herein, going beyond natural resources and aiming to circumvent chemical boundaries in glycochemistry, we tackle the development of an in vitro chemoenzymatic strategy holding great potential to answer the need for molecular diversity characterizing microbial cell-surface carbohydrates. The concept is exemplified in the context of Shigella flexneri, a major cause of diarrhoeal disease. Aiming at a broad serotype coverage S. flexneri glycoconjugate vaccine, a non-natural lightly protected tetrasaccharide was designed for compatibility with (i) serotype-specific glucosylations and O-acetylations defining S. flexneri O-antigens, (ii) recognition by suitable α-transglucosylases, and (iii) programmed oligomerization following enzymatic α-d-glucosylation. The tetrasaccharide core was chemically synthesized from two crystalline monosaccharide precursors. Six α-transglucosylases found in the glycoside hydrolase family 70 were shown to transfer glucosyl residues on the non-natural acceptor. The successful proof of concept is achieved for a pentasaccharide featuring the glucosylation pattern from the S. flexneri type IV O-antigen. It demonstrates the potential of appropriately planned chemoenzymatic pathways involving non-natural acceptors and low-cost donor/transglucosylase systems to achieve the demanding regioselective α-d-glucosylation of large substrates, paving the way to microbial oligosaccharides of vaccinal interest.
Collapse
Affiliation(s)
- Zhaoyu Hu
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Louis-Antoine Barel
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Guillaume Le Heiget
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris 13, Sorbonne Paris Cité, 93430 Paris, France
| | - Akli Ben Imeddourene
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Yann Le Guen
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Nelly Monties
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Catherine Guerreiro
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Claire Moulis
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Laurence A Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
34
|
Bengtsson RJ, Dallman TJ, Allen H, De Silva PM, Stenhouse G, Pulford CV, Bennett RJ, Jenkins C, Baker KS. Accessory Genome Dynamics and Structural Variation of Shigella from Persistent Infections. mBio 2021; 12:e00254-21. [PMID: 33906921 PMCID: PMC8092226 DOI: 10.1128/mbio.00254-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Shigellosis is a diarrheal disease caused mainly by Shigella flexneri and Shigella sonnei Infection is thought to be largely self-limiting, with short- to medium-term and serotype-specific immunity provided following clearance. However, cases of men who have sex with men (MSM)-associated shigellosis have been reported where Shigella of the same serotype were serially sampled from individuals between 1 and 1,862 days apart, possibly due to persistent carriage or reinfection with the same serotype. Here, we investigate the accessory genome dynamics of MSM-associated S. flexneri and S. sonnei isolates serially sampled from individual patients at various days apart to shed light on the adaptation of these important pathogens during infection. We find that pairs likely associated with persistent infection/carriage and with a smaller single nucleotide polymorphism (SNP) distance, demonstrated significantly less variation in accessory genome content than pairs likely associated with reinfection, and with a greater SNP distance. We observed antimicrobial resistance acquisition during Shigella carriage, including the gain of an extended-spectrum beta-lactamase gene during carriage. Finally, we explored large chromosomal structural variations and rearrangements in seven (five chronic and two reinfection associated) pairs of S. flexneri 3a isolates from an MSM-associated epidemic sublineage, which revealed variations at several common regions across isolate pairs, mediated by insertion sequence elements and comprising a distinct predicted functional profile. This study provides insight on the variation of accessory genome dynamics and large structural genomic changes in Shigella during persistent infection/carriage. In addition, we have also created a complete reference genome and biobanked isolate of the globally important pathogen, S. flexneri 3a.IMPORTANCEShigella spp. are Gram-negative bacteria that are the etiological agent of shigellosis, the second most common cause of diarrheal illness among children under the age of five in low-income countries. In high-income countries, shigellosis is also a sexually transmissible disease among men who have sex with men. Within the latter setting, we have captured prolonged and/or recurrent infection with shigellae of the same serotype, challenging the belief that Shigella infection is short lived and providing an early opportunity to study the evolution of the pathogen over the course of infection. Using this recently emerged transmission scenario, we comprehensively characterize the genomic changes that occur over the course of individual infection with Shigella and uncover a distinct functional profile of variable genomic regions, findings that have relevance for other Enterobacteriaceae.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Timothy J Dallman
- National Infection Service, Public Health England, Colindale, London, United Kingdom
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Hester Allen
- National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - P Malaka De Silva
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - George Stenhouse
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Rebecca J Bennett
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Claire Jenkins
- National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Rogawski McQuade ET, Liu J, Kang G, Kosek MN, Lima AAM, Bessong PO, Samie A, Haque R, Mduma ER, Shrestha S, Leite JP, Bodhidatta L, Iqbal N, Page N, Kiwelu I, Bhutta Z, Ahmed T, Houpt ER, Platts-Mills JA. Protection From Natural Immunity Against Enteric Infections and Etiology-Specific Diarrhea in a Longitudinal Birth Cohort. J Infect Dis 2021; 222:1858-1868. [PMID: 31984416 PMCID: PMC7653087 DOI: 10.1093/infdis/jiaa031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The degree of protection conferred by natural immunity is unknown for many enteropathogens, but it is important to support the development of enteric vaccines. METHODS We used the Andersen-Gill extension of the Cox model to estimate the effects of previous infections on the incidence of subsequent subclinical infections and diarrhea in children under 2 using quantitative molecular diagnostics in the MAL-ED cohort. We used cross-pathogen negative control associations to correct bias due to confounding by unmeasured heterogeneity of exposure and susceptibility. RESULTS Prior rotavirus infection was associated with a 50% lower hazard (calibrated hazard ratio [cHR], 0.50; 95% confidence interval [CI], 0.41-0.62) of subsequent rotavirus diarrhea. Strong protection was evident against Cryptosporidium diarrhea (cHR, 0.32; 95% CI, 0.20-0.51). There was also protection due to prior infections for norovirus GII (cHR against diarrhea, 0.67; 95% CI, 0.49-0.91), astrovirus (cHR, 0.62; 95% CI, 0.48-0.81), and Shigella (cHR, 0.79; 95% CI, 0.65-0.95). Minimal protection was observed for other bacteria, adenovirus 40/41, and sapovirus. CONCLUSIONS Natural immunity was generally stronger for the enteric viruses than bacteria, potentially due to less antigenic diversity. Vaccines against major causes of diarrhea may be feasible but likely need to be more immunogenic than natural infection.
Collapse
Affiliation(s)
- Elizabeth T Rogawski McQuade
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virgina, USA.,Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| | - Jie Liu
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA.,Asociación Benéfica PRISMA, Iquitos, Peru
| | | | | | | | - Rashidul Haque
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | | | | | - Ladaporn Bodhidatta
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Nicola Page
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ireen Kiwelu
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Tahmeed Ahmed
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Eric R Houpt
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| | - James A Platts-Mills
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| |
Collapse
|
36
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
37
|
Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA, Lee AY, Lesser CF, Rauch I, Vance RE. NAIP-NLRC4-deficient mice are susceptible to shigellosis. eLife 2020; 9:e59022. [PMID: 33074100 PMCID: PMC7595732 DOI: 10.7554/elife.59022] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease that is a major cause of diarrhea-associated mortality in humans. Mice are highly resistant to Shigella and the lack of a tractable physiological model of shigellosis has impeded our understanding of this important human disease. Here, we propose that the differential susceptibility of mice and humans to Shigella is due to mouse-specific activation of the NAIP-NLRC4 inflammasome. We find that NAIP-NLRC4-deficient mice are highly susceptible to oral Shigella infection and recapitulate the clinical features of human shigellosis. Although inflammasomes are generally thought to promote Shigella pathogenesis, we instead demonstrate that intestinal epithelial cell (IEC)-specific NAIP-NLRC4 activity is sufficient to protect mice from shigellosis. In addition to describing a new mouse model of shigellosis, our results suggest that the lack of an inflammasome response in IECs may help explain the susceptibility of humans to shigellosis.
Collapse
Affiliation(s)
- Patrick S Mitchell
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Justin L Roncaioli
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elizabeth A Turcotte
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Roberto A Chavez
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Immunotherapeutics and Vaccine Research Initiative, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
38
|
Intranasal Immunization of Mice with Multiepitope Chimeric Vaccine Candidate Based on Conserved Autotransporters SigA, Pic and Sap, Confers Protection against Shigella flexneri. Vaccines (Basel) 2020; 8:vaccines8040563. [PMID: 33019492 PMCID: PMC7712744 DOI: 10.3390/vaccines8040563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Shigellosis is a diarrheal disease and the World Health Organization prompts the development of a vaccine against Shigella flexneri. The autotransporters SigA, Pic and Sap are conserved among Shigella spp. We previously designed an in silico vaccine with immunodominat epitopes from those autotransporters, and the GroEL protein of S. typhi as an adjuvant. Here, we evaluated the immunogenicity and protective efficacy of the chimeric multiepitope protein, named rMESF, in mice against lethal infection with S. flexneri. rMESF was administered to mice alone through the intranasal (i.n.) route or accompanied with Complete Freund’s adjuvant (CFA) intradermically (i.d.), subcutaneously (s.c.), and intramuscular (i.m.), as well as with Imject alum (i.m.). All immunized mice increased IgG, IgG1, IgG2a, IgA and fecal IgA titers compared to PBS+CFA and PBS+alum control groups. Furthermore, i.n. immunization of mice with rMESF alone presented the highest titers of serum and fecal IgA. Cytokine levels (IFN-γ, TNF-α, IL-4, and IL-17) and lymphocyte proliferation increased in all experimental groups, with the highest lymphoproliferative response in i.n. mice immunized with rMESF alone, which presented 100% protection against S. flexneri. In summary, this vaccine vests protective immunity and highlights the importance of mucosal immunity activation for the elimination of S. flexneri.
Collapse
|
39
|
León Y, Zapata L, Salas-Burgos A, Oñate A. In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigella flexneri. Mol Immunol 2020; 121:47-58. [DOI: 10.1016/j.molimm.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
|
40
|
Medeiros PHQS, Bolick DT, Ledwaba SE, Kolling GL, Costa DVS, Oriá RB, Lima AÂM, Barry EM, Guerrant RL. A bivalent vaccine confers immunogenicity and protection against Shigella flexneri and enterotoxigenic Escherichia coli infections in mice. NPJ Vaccines 2020; 5:30. [PMID: 32257392 PMCID: PMC7101394 DOI: 10.1038/s41541-020-0180-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccine studies for Shigella flexneri and enterotoxigenic Escherichia coli have been impaired by the lack of optimal animal models. We used two murine models to show that a S. flexneri 2a bivalent vaccine (CVD 1208S-122) expressing enterotoxigenic Escherichia coli colonization factor antigen-I (CFA/I) and the binding subunits A2 and B of heat labile-enterotoxin (LTb) is immunogenic and protects against weight loss and diarrhea. These findings document the immunogenicity and pre-clinical efficacy effects of CVD 1208S-122 vaccine and suggest that further work can help elucidate relevant immune responses and ultimately its clinical efficacy in humans.
Collapse
Affiliation(s)
- Pedro Henrique Q S Medeiros
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - David T Bolick
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Solanka E Ledwaba
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,3Department of Microbiology, University of Venda, Thohoyandou, Limpopo province South Africa
| | - Glynis L Kolling
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Deiziane V S Costa
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - Reinaldo B Oriá
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - Aldo Ângelo M Lima
- 2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - Eileen M Barry
- 4Center for Vaccine Development and Global Health, University of Maryland, Baltimore, MD USA
| | - Richard L Guerrant
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
41
|
Mukherjee T, Udupa VAV, Prakhar P, Chandra K, Chakravortty D, Balaji KN. Epidermal Growth Factor Receptor-Responsive Indoleamine 2,3-Dioxygenase Confers Immune Homeostasis During Shigella flexneri Infection. J Infect Dis 2020; 219:1841-1851. [PMID: 30615126 DOI: 10.1093/infdis/jiz009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022] Open
Abstract
The resolution of Shigella flexneri infection-associated hyperinflammation is crucial for host survival. Using in vitro and in vivo models of shigellosis, we found that S. flexneri induces the expression of indoleamine 2,3-dioxygenase 1 (IDO1) through the nucleotide oligomerization domain 2 (NOD2) and epidermal growth factor receptor (EGFR) signaling pathway. Congruently, abrogation of NOD2 or EGFR compromises the ability of S. flexneri to induce IDO1 expression. We observed that the loss of IDO1 function in vivo exacerbates shigellosis by skewing the inflammatory cytokine response, disrupting colon epithelial barrier integrity and consequently limiting the host life-span. Interestingly, administration of recombinant EGF rescued mice from IDO1 inhibition-driven aggravated shigellosis by restoring the cytokine balance and subsequently restricting bacterial growth. This is the first study that underscores the direct implication of the NOD2-EGFR axis in IDO1 production and its crucial homeostatic contributions during shigellosis. Together, these findings reveal EGF as a potential therapeutic intervention for infectious diseases.
Collapse
Affiliation(s)
- Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vibha A V Udupa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
42
|
Barel LA, Mulard LA. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 2020; 15:1338-1356. [PMID: 31158047 PMCID: PMC6663142 DOI: 10.1080/21645515.2019.1606972] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering “lattice”-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and “sun”-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.
Collapse
Affiliation(s)
- Louis-Antoine Barel
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France.,b Université Paris Descartes , Paris , France
| | - Laurence A Mulard
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France
| |
Collapse
|
43
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
44
|
Gilavand F, Marzban A, Ebrahimipour G, Soleimani N, Goudarzi M. Designation of chitosan nano-vaccine based on MxiH antigen of Shigella flexneri with increased immunization capacity. Carbohydr Polym 2019; 232:115813. [PMID: 31952611 DOI: 10.1016/j.carbpol.2019.115813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 12/31/2022]
Abstract
Shigella flexneri is a gram-negative pathogen that causes shigellosis in humans and primates. MxiH antigen is known as one of the invasive factors in most Gram-negative bacteria consisting of a needle-like structure in the main backbone of the type 3 secretory system. Recombinant MxiH antigen was produced by E. coli BL21 and purified antigen was loaded into chitosan nanoparticles (CS-MxiH). After 20thand 55th of intranasal vaccinations, the titers of IgG, IgA, IL-4, and IFN-γ were evaluated. The results indicated the successful synthesis of CS nanoparticles followed by the effective loading of MxiH antigen. The results of animal experiments showed that the intranasal administration of CS-MxiH increased IgG and IgA compared to control groups. Increased levels of IL-4 and IFN-γ in groups immunized with CS-MxiH are probably due to the activation of plasmacytoid and myeloid cells presenting antigen in nasal epithelial mucosa and stimulating B cells.
Collapse
Affiliation(s)
- Farhad Gilavand
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Barry EM, Levine MM. A tale of two bacterial enteropathogens and one multivalent vaccine. Cell Microbiol 2019; 21:e13067. [PMID: 31194282 DOI: 10.1111/cmi.13067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Shigella and enterotoxigenic Escherichia coli (ETEC) are among the top four enteric pathogens that cause diarrheal illness in young children in developing countries and are major etiologic agents of travellers' diarrhoea. A single vaccine that could target both of these pathogens would have significant public health impact. In this review, we highlight the many pivotal contributions of Phillippe Sansonetti to the identification of molecular mechanisms of pathogenesis of Shigella that paved the way for the development of rationally designed, novel vaccines candidates. The CVD developed a series of live attenuated Shigella vaccine strains based on the most prevalent serotypes associated with disease. Shigella vaccine strains were engineered to express critical ETEC antigens to form a broadly protective Shigella-ETEC multivalent vaccine.
Collapse
Affiliation(s)
- Eileen M Barry
- School of Medicine, Center for Vaccine Development and Global Health, University of Maryland, Baltimore, Maryland
| | - Myron M Levine
- School of Medicine, Center for Vaccine Development and Global Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
46
|
Platts-Mills JA, Amour C, Gratz J, Nshama R, Walongo T, Mujaga B, Maro A, McMurry TL, Liu J, Mduma E, Houpt ER. Impact of Rotavirus Vaccine Introduction and Postintroduction Etiology of Diarrhea Requiring Hospital Admission in Haydom, Tanzania, a Rural African Setting. Clin Infect Dis 2019; 65:1144-1151. [PMID: 28575304 PMCID: PMC5850044 DOI: 10.1093/cid/cix494] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023] Open
Abstract
Background No data are available on the etiology of diarrhea requiring hospitalization after rotavirus vaccine introduction in Africa. The monovalent rotavirus vaccine was introduced in Tanzania on 1 January 2013. We performed a vaccine impact and effectiveness study as well as a quantitative polymerase chain reaction (qPCR)–based etiology study at a rural Tanzanian hospital. Methods We obtained data on admissions among children <5 years to Haydom Lutheran Hospital between 1 January 2010 and 31 December 2015 and estimated the impact of vaccine introduction on all-cause diarrhea admissions. We then performed a vaccine effectiveness study using the test-negative design. Finally, we tested diarrheal specimens during 2015 by qPCR for a broad range of enteropathogens and calculated pathogen-specific attributable fractions (AFs). Results Vaccine introduction was associated with a 44.9% (95% confidence interval [CI], 17.6%–97.4%) reduction in diarrhea admissions in 2015, as well as delay of the rotavirus season. The effectiveness of 2 doses of vaccine was 74.8% (95% CI, –8.2% to 94.1%) using an enzyme immunoassay–based case definition and 85.1% (95% CI, 26.5%–97.0%) using a qPCR-based case definition. Among 146 children enrolled in 2015, rotavirus remained the leading etiology of diarrhea requiring hospitalization (AF, 25.8% [95% CI, 24.4%–26.7%]), followed by heat-stable enterotoxin-producing Escherichia coli (AF, 18.4% [95% CI, 12.9%–21.9%]), Shigella/enteroinvasive E. coli (AF, 14.5% [95% CI, 10.2%–22.8%]), and Cryptosporidium (AF, 7.9% [95% CI, 6.2%–9.3%]). Conclusions Despite the clear impact of vaccine introduction in this setting, rotavirus remained the leading etiology of diarrhea requiring hospitalization. Further efforts to maximize vaccine coverage and improve vaccine performance in these settings are warranted.
Collapse
Affiliation(s)
- James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Caroline Amour
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville.,Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Rosemary Nshama
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Thomas Walongo
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Buliga Mujaga
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Athanasia Maro
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; and
| | - Timothy L McMurry
- Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Estomih Mduma
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Eric R Houpt
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; and
| |
Collapse
|
47
|
Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 2019; 15:1317-1325. [PMID: 30964713 PMCID: PMC6663138 DOI: 10.1080/21645515.2019.1594132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The enteropathogen, Shigella, is highly virulent and remarkably adjusted to the intestinal environment of its almost exclusive human host. Key for Shigella pathogenicity is the injection of virulence effectors into the host cell via its type three secretion system (T3SS), initiating disease onset and progression by the vast diversity of the secreted T3SS effectors and their respective cellular targets. The multifaceted modulation of host signaling pathways exerted by Shigella T3SS effectors, which include the subversion of host innate immune defenses and the promotion of intracellular bacterial survival and dissemination, have been extensively reviewed in the recent past. This review focuses on the human species specificity of Shigella by discussing some possible evasion mechanisms towards the human, but not non-human or rodent gut innate defense barrier, leading to the lack of a relevant animal infection model. In addition, subversion mechanisms of the adaptive immune response are highlighted summarizing research advances of the recent years. In particular, the new paradigm of Shigella pathogenicity constituted of invasion-independent T3SS effector-mediated targeting of activated, human lymphocytes is discussed. Along with consequences on vaccine development, these findings offer new directions for future research endeavors towards a better understanding of immunity to Shigella infection.
Collapse
Affiliation(s)
- Katja Brunner
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Philippe J. Sansonetti
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| |
Collapse
|
48
|
Bacteriophage Therapy Testing Against Shigella flexneri in a Novel Human Intestinal Organoid-Derived Infection Model. J Pediatr Gastroenterol Nutr 2019; 68:509-516. [PMID: 30418409 PMCID: PMC6939622 DOI: 10.1097/mpg.0000000000002203] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Enteric bacterial pathogens cause diarrheal disease and mortality at significant rates throughout the world, particularly in children younger than 5 years. Our ability to combat bacterial pathogens has been hindered by antibiotic resistance, a lack of effective vaccines, and accurate models of infection. With the renewed interest in bacteriophage therapy, we sought to use a novel human intestinal model to investigate the efficacy of a newly isolated bacteriophage against Shigella flexneri. METHODS An S. flexneri 2457T-specific bacteriophage was isolated and assessed through kill curve experiments and infection assays with colorectal adenocarcinoma HT-29 cells and a novel human intestinal organoid-derived epithelial monolayer model. In our treatment protocol, organoids were generated from intestinal crypt stem cells, expanded in culture, and seeded onto transwells to establish 2-dimensional monolayers that differentiate into intestinal cells. RESULTS The isolated bacteriophage efficiently killed S. flexneri 2457T, other S. flexneri strains, and a strain of 2457T harboring an antibiotic resistance cassette. Analyses with laboratory and commensal Escherichia coli strains demonstrated that the bacteriophage was specific to S. flexneri, as observed under co-culture conditions. Importantly, the bacteriophage prevented both S. flexneri 2457T epithelial cell adherence and invasion in both infection models. CONCLUSIONS Bacteriophages offer feasible alternatives to antibiotics for eliminating enteric pathogens, confirmed here by the bacteriophage-targeted killing of S. flexneri. Furthermore, application of the organoid model has provided important insight into Shigella pathogenesis and bacteriophage-dependent intervention strategies. The screening platform described herein provides proof-of-concept analysis for the development of novel bacteriophage therapies to target antibiotic-resistant pathogens.
Collapse
|
49
|
Arizmendi O, Kumar P, Zheng Q, Stewart JP, Picking WD, Picking W, Martinez-Becerra FJ. Vaccination With Mouse Dendritic Cells Loaded With an IpaD-IpaB Fusion Provides Protection Against Shigellosis. Front Immunol 2019; 10:192. [PMID: 30800131 PMCID: PMC6376248 DOI: 10.3389/fimmu.2019.00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Diarrheal diseases are a major cause of morbidity and mortality worldwide. They are most prevalent in settings with inadequate sanitation, poor hygiene and contaminated water. An important diarrheal pathogen in such settings is Shigella. No commercially available vaccine exists against shigellosis and immunity to the pathogen is serotype-restricted. We have previously shown that a polypeptide fusion of the Type Three Secretion Apparatus (T3SA) proteins IpaB and IpaD (named DBF) was efficacious as a vaccine against Shigella. Vaccination using different administration routes indicated that protection conferred by DBF did not fully correlate with antibodies. To define the immune responses involved in protection, we studied cellular responses to intranasal immunization with the DBF and the adjuvant dmLT. We found dendritic cell (DC) activation at the nasal associated lymphoid tissue (NALT). Activation markers CD86 and MHCII significantly increase in cells from immunized mice. Antigen exposure in vitro further confirmed the upregulation of CD80 and CD40 in primary dendritic cells. Animals immunized with antigen-primed dendritic cells were protected against Shigella infection, at levels comparable to the efficacy of immunization with the protein vaccine formulation. Therefore, we show that antigen-primed DCs are enough to provide immunity, and propose a mechanism of protection against Shigella spp. based on DC-mediated antigen presentation to T cells.
Collapse
Affiliation(s)
- Olivia Arizmendi
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
| | - Prashant Kumar
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Jason P Stewart
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | |
Collapse
|
50
|
Q.S. Medeiros PH, Ledwaba SE, Bolick DT, Giallourou N, Yum LK, Costa DV, Oriá RB, Barry EM, Swann JR, Lima AÂM, Agaisse H, Guerrant RL. A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes 2019; 10:615-630. [PMID: 30712505 PMCID: PMC6748602 DOI: 10.1080/19490976.2018.1564430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella is one of the major enteric pathogens worldwide. We present a murine model of S. flexneri infection and investigate the role of zinc deficiency (ZD). C57BL/6 mice fed either standard chow (HC) or ZD diets were pretreated with an antibiotic cocktail and received S. flexneri strain 2457T orally. Antibiotic pre-treated ZD mice showed higher S. flexneri colonization than non-treated mice. ZD mice showed persistent colonization for at least 50 days post-infection (pi). S. flexneri-infected mice showed significant weight loss, diarrhea and increased levels of fecal MPO and LCN in both HC and ZD fed mice. S. flexneri preferentially colonized the colon, caused epithelial disruption and inflammatory cell infiltrate, and promoted cytokine production which correlated with weight loss and histopathological changes. Infection with S. flexneri ΔmxiG (critical for type 3 secretion system) did not cause weight loss or diarrhea, and had decreased stool shedding duration and tissue burden. Several biochemical changes related to energy, inflammation and gut-microbial metabolism were observed. Zinc supplementation increased weight gains and reduced intestinal inflammation and stool shedding in ZD infected mice. In conclusion, young antibiotic-treated mice provide a new model of oral S. flexneri infection, with ZD promoting prolonged infection outcomes.
Collapse
Affiliation(s)
- Pedro Henrique Q.S. Medeiros
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA,Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil,CONTACT Pedro Henrique Q.S. Medeiros Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, 345 Crispell Drive, MR6 Room 2711, Charlottesville, VA, USA
| | - Solanka E. Ledwaba
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA
| | - David T. Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA
| | - Natasa Giallourou
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Lauren K. Yum
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Deiziane V.S. Costa
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA,Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B. Oriá
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA,Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Eileen M. Barry
- Center for Vaccine Development, University of Maryland, Baltimore, USA
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Hervé Agaisse
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Richard L. Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA
| |
Collapse
|