1
|
Li Q, Shi G, Li Y, Lu R, Liu Z. Integrated analysis of disulfidoptosis-related genes identifies NRP1 as a novel biomarker promoting proliferation of gastric cancer via glutamine mediated energy metabolism. Discov Oncol 2024; 15:337. [PMID: 39110136 PMCID: PMC11306494 DOI: 10.1007/s12672-024-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The incidence and mortality of gastric cancer rank fifth and fourth worldwide among all malignancies, respectively. Additionally, disulfidoptosis, a recently identified form of cellular demise, is closely linked to the initiation and advancement of malignancies. This study aims to create a novel signature of disulfidptosis-related genes (DRGs) and to further explore its association with the tumor immune microenvironment. Based on our comprehensive study, a prognostic signature consisting of 31 DRGs in stomach adenocarcinoma (STAD) was identified and characterized. Through the integrative analyses involving gene expression profiling, machine learning algorithms, and Cox regression models, the prognostic significance of these DRGs was demonstrated. Our findings highlight their strong predictive power in assessing overall survival across diverse patient datasets, and their better performance than traditional clinicopathological factors. Moreover, the DRGs signature showed association with the characteristics of the tumor microenvironment, which has implications for the immune modulation and therapeutic strategies in STAD. Specifically, NRP1 emerged as a key DRG with elevated expression in STAD, showing correlation with the advanced stages of diseases and poorer outcomes. Functional studies further revealed the role of NRP1 in promoting STAD cell proliferation through the modulation of glutamine metabolism. Overall, our study underscores the clinical relevance of DRGs as biomarker and potential therapeutic targets in STAD management, providing insights into disease biology and personalized treatments.
Collapse
Affiliation(s)
- Qiuhua Li
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110033, Liaoning, People's Republic of China
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, Guangdong, People's Republic of China
| | - Guofeng Shi
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, Guangdong, People's Republic of China
| | - Yuebo Li
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110033, Liaoning, People's Republic of China
| | - Ren Lu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110033, Liaoning, People's Republic of China.
| | - Zhaozhe Liu
- Department of Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Li S, Hu Y, Xu X, Cui J, Li S, Li Z, Ji J, Xing R. Multi-regional sequencing reveals the genetic and immune heterogeneity of non-cancerous tissues in gastric cancer. J Pathol 2024; 263:454-465. [PMID: 38845115 DOI: 10.1002/path.6297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 07/09/2024]
Abstract
Gastric cancer (GC) is one of the most heterogeneous tumors. However, research on normal tissue adjacent to the tumor (NAT) is very limited. We performed multi-regional omics sequencing on 150 samples to assess the genetic basis and immune microenvironment in NAT and matched primary tumor or lymph node metastases. NATs demonstrated different mutated genes compared with GC, and NAT genomes underwent independent evolution with low variant allele frequency. Mutation profiles were predominated by aging and smoking-associated signatures in NAT instead of signatures associated with genetic instability. Although the immune microenvironment within NATs shows substantial intra-patient heterogeneity, the proportion of shared TCR clones among NATs is five times higher than that of tumor regions. These findings support the notion that subclonal expansion is not pronounced in NATs. We also demonstrated remarkable intra-patient heterogeneity of GCs and revealed heterogeneity of focal amplification of CD274 (encoding PD-L1) that leads to differential expression. Finally, we identified that monoclonal seeding is predominant in GC, which is followed by metastasis-to-metastasis dissemination in individual lymph nodes. These results provide novel insights into GC carcinogenesis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yong Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Shen Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Yingqi Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Xiao Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Jiantao Cui
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Shuaicheng Li
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Rui Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Tumor Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| |
Collapse
|
3
|
Aydinlou ZH, Rajabi A, Emami A, Tayefeh-Gholami S, Teimourian S, Nargesi MM, Banan-Khojasteh SM, Safaralizadeh R. Three possible diagnostic biomarkers for gastric cancer: miR-362-3p, miR-362-5p and miR-363-5p. Biomark Med 2024; 18:567-579. [PMID: 39072355 PMCID: PMC11364078 DOI: 10.1080/17520363.2024.2352419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: MicroRNAs can be regarded as biomarkers for gastric cancer (GC) diagnosis in the early stages. This study assesses the expression levels of miR-362-3p, miR-362-5p and miR-363-5p as potential biomarkers for GC.Materials & methods: The expression levels of the miRNAs in 90 pairs of GC and adjacent normal tissue samples were analyzed by quantitative real-time reverse transcription PCR (qRT-PCR) and some bioinformatics tools were utilized for analyzing the target genes and possible molecular pathways in which these miRNAs participate.Results & conclusion: There was a significant overexpression of the miRNAs in GC cells and an outstanding correlation between their overexpression with some clinicopathological features of the patients.
Collapse
Affiliation(s)
| | - Ali Rajabi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Ali Emami
- Medical School Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, Québec
| | | | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mirsaed Miri Nargesi
- Department of Pathology & Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health, New Zealand
| | | | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
5
|
Li X, Wang C, Wang Y, Chen X, Li Z, Wang J, Liu Y. Integrated analysis of the role of PR/SET domain 14 in gastric cancer. BMC Cancer 2024; 24:685. [PMID: 38840106 PMCID: PMC11151633 DOI: 10.1186/s12885-024-12424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common tumors worldwide, and most patients are deprived of treatment options when diagnosed at advanced stages. PRDM14 has carcinogenic potential in breast and non-small cell lung cancer. however, its role in gastric cancer has not been elucidated. METHODS We aimed to elucidate the expression of PRDM14 using pan-cancer analysis. We monitored the expression of PRDM14 in cells and patients using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. We observed that cell phenotypes and regulatory genes were influenced by PRDM14 by silencing PRDM14. We evaluated and validated the value of the PRDM14-derived prognostic model. Finally, we predicted the relationship between PRDM14 and small-molecule drug responses using the Connectivity Map and The Genomics of Drug Sensitivity in Cancer databases. RESULTS PRDM14 was significantly overexpressed in gastric cancer, which identified in cell lines and patients' tissues. Silencing the expression of PRDM14 resulted in apoptosis promotion, cell cycle arrest, and inhibition of the growth and migration of GC cells. Functional analysis revealed that PRDM14 acts in epigenetic regulation and modulates multiple DNA methyltransferases or transcription factors. The PRDM14-derived differentially expressed gene prognostic model was validated to reliably predict the patient prognosis. Nomograms (age, sex, and PRDM14-risk score) were used to quantify the probability of survival. PRDM14 was positively correlated with sensitivity to small-molecule drugs such as TPCA-1, PF-56,227, mirin, and linsitinib. CONCLUSIONS Collectively, our findings suggest that PRDM14 is a positive regulator of gastric cancer progression. Therefore, it may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xiao Li
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Cong Wang
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Youcai Wang
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhi Li
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianwei Wang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China.
| | - Yingjun Liu
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
6
|
Pepke ML, Hansen SB, Limborg MT. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol 2024:S0966-842X(24)00137-9. [PMID: 38839511 DOI: 10.1016/j.tim.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Recent studies of dynamic interactions between epigenetic modifications of a host organism and the composition or activity of its associated gut microbiota suggest an opportunity for the host to shape its microbiome through epigenetic alterations that lead to changes in gene expression and noncoding RNA activity. We use insights from microbiota-induced epigenetic changes to review the potential of the host to epigenetically regulate its gut microbiome, from which a bidirectional 'epigenome-microbiome axis' emerges. This axis embeds environmentally induced variation, which may influence the adaptive evolution of host-microbe interactions. We furthermore present our perspective on how the epigenome-microbiome axis can be understood and investigated within a holo-omic framework with potential applications in the applied health and food sciences.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| |
Collapse
|
7
|
Kuwata T. Molecular classification and intratumoral heterogeneity of gastric adenocarcinoma. Pathol Int 2024; 74:301-316. [PMID: 38651937 DOI: 10.1111/pin.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Gastric cancers frequently harbor striking histological complexity and diversity between lesions as well as within single lesions, known as inter- and intratumoral heterogeneity, respectively. The latest World Health Organization Classification of Tumors designated more than 30 histological subtypes for gastric epithelial tumors, assigning 12 subtypes for gastric adenocarcinoma (GAD). Meanwhile, recent advances in genome-wide analyses have provided molecular aspects to the histological classification of GAD, and consequently revealed different molecular traits underlying these histological subtypes. Moreover, accumulating knowledge of comprehensive molecular profiles has led to establishing molecular classifications of GAD, which are often associated with clinical biomarkers for therapeutics and prognosis. However, most of our knowledge of GAD molecular profiles is based on inter-tumoral heterogeneity, and the molecular profiles underlying intratumoral heterogeneity are yet to be determined. In this review, recently established molecular classifications of GAD are introduced in the aspect of pathological diagnosis and are discussed in the context of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|
8
|
Wu M, Yuan S, Liu K, Wang C, Wen F. Gastric Cancer Signaling Pathways and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241271935. [PMID: 39376170 PMCID: PMC11468335 DOI: 10.1177/15330338241271935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor and ranks as the second leading cause of death among cancer patients worldwide. Due to its hidden nature and difficulty in detection, GC has a high incidence and poor prognosis. Traditional treatment methods such as systemic chemotherapy, radiotherapy, and surgical resection are commonly used, but they often fail to achieve satisfactory curative effects, resulting in a very low 5-year survival rate for GC patients. Currently, targeted therapy and immunotherapy are prominent areas of research both domestically and internationally. These methods hold promise for the treatment of GC. This article focuses on the signaling pathways associated with the development of GC, as well as the recent advancements and applications of targeted therapy and immunotherapy. The aim is to provide fresh insights for the clinical treatment of GC.
Collapse
Affiliation(s)
- Mingfang Wu
- The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
9
|
Wu Z, Li G, Wang W, Zhang K, Fan M, Jin Y, Lin R. Immune checkpoints signature-based risk stratification for prognosis of patients with gastric cancer. Cell Signal 2024; 113:110976. [PMID: 37981068 DOI: 10.1016/j.cellsig.2023.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Until now, few researches have comprehensive explored the role of immune checkpoints (ICIs) and tumor microenvironment (TME) in gastric cancer (GC) patients based on the genomic data. RNA-sequence data and clinical information were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) database, GSE84437 and GSE84433. Univariate Cox analysis identified 60 ICIs with prognostic values, and these genes were then subjected to NMF cluster analysis and the GC samples (n = 804) were classified into two distinct subtypes (Cluster 1: n = 583; Cluster 2: n = 221). The Kaplan-Meier curves for OS analysis indicated that C1 predicted a poorer prognosis. The C2 subtype illustrated a relatively better prognosis and characteristics of "hot tumors," including high immune score, overexpression of immune checkpoint molecules, and enriched tumor-infiltrated immune cells, indicating that the NMF clustering in GC was robust and stable. Regarding the patient's heterogeneity, an ICI-score was constructed to quantify the ICI patterns in individual patients. Moreover, the study found that the low ICI-score group contained mostly MSI-low events, and the high ICI-score group contained predominantly MSI-high events. In addition, the ICI-score groups had good responsiveness to CTLA4 and PD-1 based on The Cancer Immunome Atlas (TCIA) database. Our research firstly constructed ICIs signature, as well as identified some hub genes in GC patients.
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Usui G, Matsusaka K, Huang KK, Zhu F, Shinozaki T, Fukuyo M, Rahmutulla B, Yogi N, Okada T, Minami M, Seki M, Sakai E, Fujibayashi K, Kwok Tsao SK, Khor C, Ang TL, Abe H, Matsubara H, Fukayama M, Gunji T, Matsuhashi N, Morikawa T, Ushiku T, Yeoh KG, Tan P, Kaneda A. Integrated environmental, lifestyle, and epigenetic risk prediction of primary gastric neoplasia using the longitudinally monitored cohorts. EBioMedicine 2023; 98:104844. [PMID: 38251469 PMCID: PMC10755115 DOI: 10.1016/j.ebiom.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND DNA methylation accumulates in non-malignant gastric mucosa after exposure to pathogens. To elucidate how environmental, methylation, and lifestyle factors interplay to influence primary gastric neoplasia (GN) risk, we analyzed longitudinally monitored cohorts in Japan and Singapore. METHODS Asymptomatic subjects who underwent a gastric mucosal biopsy on the health check-up were enrolled. We analyzed the association between clinical factors and GN development using Cox hazard models. We further conducted comprehensive methylation analysis on selected tissues, including (i) mucosae from subjects developing GN later, (ii) mucosae from subjects not developing GN later, and (iii) GN tissues and surrounding mucosae. We also use the methylation data of mucosa collected in Singapore. The association between methylation and GN risk, as well as lifestyle and methylation, were analyzed. FINDINGS Among 4234 subjects, GN was developed in 77 subjects. GN incidence was correlated with age, drinking, smoking, and Helicobacter pylori (HP) status. Accumulation of methylation in biopsied gastric mucosae was predictive of higher future GN risk and shorter duration to GN incidence. Whereas methylation levels were associated with HP positivity, lifestyle, and morphological alterations, DNA methylation remained an independent GN risk factor through multivariable analyses. Pro-carcinogenic epigenetic alterations initiated by HP exposure were amplified by unfavorable but modifiable lifestyle choices. Adding DNA methylation to the model with clinical factors improved the predictive ability for the GN risk. INTERPRETATION The integration of environmental, lifestyle, and epigenetic information can provide increased resolution in the stratification of primary GN risk. FUNDING The funds are listed in Acknowledgements section.
Collapse
Affiliation(s)
- Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tomohiro Shinozaki
- Faculty of Engineering, Department of Information and Computer Technology, Tokyo University of Science, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norikazu Yogi
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoka Okada
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mizuki Minami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Cancer Genomics Center, Chiba University Hospital, Chiba, Japan
| | - Eiji Sakai
- Department of Gastroenterology, NTT Medical Center Tokyo, Tokyo, Japan; Division of Gastroenterology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Kazutoshi Fujibayashi
- Center for Preventive Medicine, NTT Medical Center Tokyo, Tokyo, Japan; Department of General Medicine, Juntendo University Hospital, Tokyo, Japan
| | - Stephen Kin Kwok Tsao
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christopher Khor
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Gunji
- Center for Preventive Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | | | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore.
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Genome Institute of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan.
| |
Collapse
|
11
|
Deng C, Ye C, Liao X, Zhou F, Shi Y, Zhong H, Huang J. KMT2A maintains stemness of gastric cancer cells through regulating Wnt/β-catenin signaling-activated transcriptional factor KLF11. Open Med (Wars) 2023; 18:20230764. [PMID: 38025523 PMCID: PMC10655684 DOI: 10.1515/med-2023-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
The molecular mechanisms of epigenetic regulation in gastric cancer development are not yet well established. In this study, we demonstrated that KMT2A was highly expressed in gastric cancer and associated with poor outcomes of patients and revealed that KMT2A was significantly associated with stemness and increased nuclear β-catenin in gastric cancer. Mechanistically, KMT2A activated the translocation of β-catenin into the nucleus of gastric cancer cells, and then, β-catenin served as a coactivator of KLF11, which promoted the expression of specific gastric cancer stemness-related molecules, including SOX2 and FOXM1. Together, KMT2A is an important epigenetic regulator of gastric cancer stemness, which provides a novel insight to the potential application of targeting against KMT2A in treating gastric cancer.
Collapse
Affiliation(s)
- Chongwen Deng
- Department of General Surgery, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People’s Republic of China
| | - Chunhua Ye
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Xiwang Liao
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Fuyin Zhou
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Youxiong Shi
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Hong Zhong
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Junbiao Huang
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| |
Collapse
|
12
|
Xie M, Zhang L, Han L, Huang L, Huang Y, Yang M, Zhang N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene 2023; 42:3435-3445. [PMID: 37805663 DOI: 10.1038/s41388-023-02855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Gastric cancer (GC) is one of the most leading cause of malignancies. However, the molecular mechanisms underlying stomach carcinogenesis remain incompletely understood. Dysregulated genetic and epigenetic alternations significantly contribute to GC development. Here, we report that ASH1L and its antisense lncRNA ASH1L-AS1, which are transcribed from the most significant GC-risk signal at 1q22, act as novel oncogenes. The high levels of ASH1L or lncRNA ASH1L-AS1 expression in GC specimens are associated with worse prognosis of patients. In line with this, ASH1L and ASH1L-AS1 are functionally important in promoting GC disease progression. LncRNA ASH1L-AS1 up-regulates ASH1L transcription, increases histone methyltransferase ASH1L expression and elevates genome-wide H3K4me3 modification levels in GC cells. Furthermore, ASH1L-AS1 directly interacts with transcription factor NME1 protein to form the ASH1L-AS1-NME1 ribonucleoprotein, which transcriptionally promotes expression of ASH1L, ASH1L-AS1, KRAS and RAF1, and activates the RAS signaling pathway in GC cells. Taken together, our data demonstrated that the ASH1L-AS1-ASH1L regulatory axis controls histone modification reprogram and activation of the RAS signaling in cancers. Thus, ASH1L-AS1 might be a novel targets of GC therapeutics and diagnosis in the clinic.
Collapse
Affiliation(s)
- Mengyu Xie
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nasha Zhang
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
13
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
14
|
Zhao H, Jiang R, Zhang C, Feng Z, Wang X. The regulatory role of cancer stem cell marker gene CXCR4 in the growth and metastasis of gastric cancer. NPJ Precis Oncol 2023; 7:86. [PMID: 37679408 PMCID: PMC10484911 DOI: 10.1038/s41698-023-00436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) are increasingly used for screening genes involved in carcinogenesis due to their capacity for dissecting cellular heterogeneity. This study aims to reveal the molecular mechanism of the cancer stem cells (CSCs) marker gene CXCR4 in gastric cancer (GC) growth and metastasis through scRNA-seq combined with bulk RNA-seq. GC-related scRNA-seq data were downloaded from the GEO database, followed by UMAP cluster analysis. Non-malignant cells were excluded by the K-means algorithm. Bulk RNA-seq data and clinical sample information were downloaded from the UCSC Xena database. GO and KEGG pathway analyses validated the correlation between genes and pathways. In vitro and in vivo functional assays were used to examine the effect of perturbed CXCR4 on malignant phenotypes, tumorigenesis, and liver metastasis. A large number of highly variable genes were identified in GC tissue samples. The top 20 principal components were selected, and the cells were clustered into 6 cell types. The C4 cell cluster from malignant epithelial cells might be CSCs. CXCR4 was singled out as a marker gene of CSCs. GC patients with high CXCR4 expression had poor survival. Knockdown of CXCR4 inhibited the malignant phenotypes of CSCs in vitro and curtailed tumorigenesis and liver metastasis in nude mice. CSC marker gene CXCR4 may be a key gene facilitating malignant phenotypes of CSCs, which thus promotes tumor growth and liver metastasis of GC.
Collapse
Affiliation(s)
- Hongying Zhao
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, PR China.
| | - Rongke Jiang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, PR China
| | | | | | - Xue Wang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, 221000, PR China
| |
Collapse
|
15
|
Irie T, Yamada H, Takeuchi C, Liu YY, Charvat H, Shimazu T, Ando T, Maekita T, Abe S, Takamaru H, Kodama M, Murakami K, Sugimoto K, Sakamoto K, Ushijima T. The methylation level of a single cancer risk marker gene reflects methylation burden in gastric mucosa. Gastric Cancer 2023; 26:667-676. [PMID: 37219707 DOI: 10.1007/s10120-023-01399-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Gastric cancer risk can be accurately predicted by measuring the methylation level of a single marker gene in gastric mucosa. However, the mechanism is still uncertain. We hypothesized that the methylation level measured reflects methylation alterations in the entire genome (methylation burden), induced by Helicobacter pylori (H. pylori) infection, and thus cancer risk. METHODS Gastric mucosa of 15 healthy volunteers without H. pylori infection (G1), 98 people with atrophic gastritis (G2), and 133 patients with gastric cancer (G3) after H. pylori eradication were collected. Methylation burden of an individual was obtained by microarray analysis as an inverse of the correlation coefficient between the methylation levels of 265,552 genomic regions in the person's gastric mucosa and those in an entirely healthy mucosa. RESULTS The methylation burden significantly increased in the order of G1 (n = 4), G2 (n = 18), and G3 (n = 19) and was well correlated with the methylation level of a single marker gene (r = 0.91 for miR124a-3). The average methylation levels of nine driver genes tended to increase according to the risk levels (P = 0.08 between G2 vs G3) and was also correlated with the methylation level of a single marker gene (r = 0.94). Analysis of more samples (14 G1, 97 G2, and 131 G3 samples) yielded significant increases of the average methylation levels between risk groups. CONCLUSIONS The methylation level of a single marker gene reflects the methylation burden, which includes driver gene methylation, and thus accurately predicts cancer risk.
Collapse
Affiliation(s)
- Takahiro Irie
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
- Department of Coloproctological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Harumi Yamada
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
- Department of Surgery, Kyoto University, Kyoto, Japan
| | - Chihiro Takeuchi
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Yu-Yu Liu
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Hadrien Charvat
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Taichi Shimazu
- Division of Behavioral Sciences, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Takao Maekita
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | | | - Masaaki Kodama
- Department of Gastroenterology Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology Faculty of Medicine, Oita University, Oita, Japan
| | - Kiichi Sugimoto
- Department of Coloproctological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshikazu Ushijima
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan.
| |
Collapse
|
16
|
Miao R, Yao Z, Hu B, Jin T, Zhu D, Shi Y, Gong Y, Shao S, Shao C. A novel long non-coding RNA XLOC_004787, is associated with migration and promotes cancer cell proliferation by downregulating mir-203a-3p in gastric cancer. BMC Gastroenterol 2023; 23:280. [PMID: 37573302 PMCID: PMC10422700 DOI: 10.1186/s12876-023-02912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been identified as important regulatory factors implicated in a wide array of diseases, including various forms of cancer. However, the roles of most lncRNAs in the progression of gastric cancer (GC) remain largely unexplored. This study investigates the biological function and underlying mechanism of a novel lncRNA, XLOC_004787 in GC. METHODS The location of XLOC_004787 in GES-1 cells and HGC-27 cells were detected by fluorescence in situ hybridization (FISH) assay. The expression levels of XLOC_004787 were assessed using quantitative real-time fluorescence PCR (qRT-PCR) in various cell lines, including GES-1, MGC-803, MKN-45, BGC-823, SGC-7901, and HGC-27 cells. Functional assays such as Transwell migration, cell counting kit-8 (CCK-8), and colony formation experiments were employed to analyze the effects of XLOC_004787 and miR-203a-3p on cell migration and proliferation. Protein levels associated with GC in these cell lines were examined by Western blotting. The intracellular localization of β-catenin and P-Smad2/3 was assessed using immunofluorescence (IF) assay. Additionally, the interaction between XLOC_004787 and miR-203a-3p was investigated using a dual luciferase assay. RESULTS XLOC_004787 was localized at both the cytoplasm and nucleus of GES-1 cells and HGC-27 cells. Compared to normal tissues and GES-1 cells, XLOC_004787 expression was significantly upregulated in GC tissues and cells, with the highest and lowest expression observed in SGC-7901 and HGC-27 cells, respectively. Furthermore, a reduced expression of XLOC_004787 was seen to inhibit migration and proliferation in SGC-7901 cells. Western blotting analysis revealed that a decrease in XLOC_004787 expression correspondingly decreased the expression of N-cadherin, mmp2, mmp9, Snail, Vimentin, β-catenin, C-myc, Cyclin D1, and TGF-β, while concurrently increasing E-cadherin expression. This was also associated with diminished expression of P-Smad2/3 in relation to Smad2/3, and reduced P-Gsk3β expression in comparison to Gsk3β. Additionally, the nuclear entry of P-Smad2/3 and β-catenin was reduced by lower XLOC_004787 expression. Amplifying XLOC_004787 expression via pcDNA_XLOC_004787 suggested a potential for cancer promotion. Notably, XLOC_004787 was found to negatively regulate mir-203a-3p expression, with potential binding sites identified between the two. Higher mir-203a-3p expression was observed to decrease migration and proliferation, and enhance E-cadherin expression. Conversely, suppression of mir-203a-3p expression suggested a potential promotion of proliferation and migration in GC cells. CONCLUSIONS These results suggest that XLOC_004787, found to be upregulated in GC tissues, potentially promotes proliferation and migration in GC cells. This occurs through the activation of TGF-β and Wnt/β-catenin signaling pathways and the expression of EMT-related proteins. Additionally, XLOC_004787 may influence cell migration and proliferation by modulating the signaling pathway via the adsorption and inhibition of mir-203a-3p.
Collapse
Affiliation(s)
- Renjie Miao
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Zhendong Yao
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Bingheng Hu
- The Affiliated Hospital of Jiangsu University, Yizheng Road, Zhenjiang, 212013, Jiangsu, China
| | - Tao Jin
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Donglai Zhu
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yun Shi
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Yuhua Gong
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Shihe Shao
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Chen Shao
- The Affiliated Hospital of Jiangsu University, Yizheng Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
17
|
Zeng Y, Ma G, Cai F, Wang P, Liang H, Zhang R, Deng J, Liu Y. SMYD3 drives the proliferation in gastric cancer cells via reducing EMP1 expression in an H4K20me3-dependent manner. Cell Death Dis 2023; 14:386. [PMID: 37386026 PMCID: PMC10310787 DOI: 10.1038/s41419-023-05907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Protein lysine methyltransferase SET and MYND domain-containing 3 (SMYD3) is aberrantly expressed in various cancer settings. The mechanisms that SMYD3 activates the expression of critical pro-tumoral genes in an H3K4me3-dependent manner have been well described in previous reports. Besides H3K4me3, H4K20me3 is another catalytic product of SMYD3, however it is a transcriptionally repressive hallmark. Since it is not clear that how SMYD3-elicited transcriptionally repressive program functions in cancer, we used gastric cancer (GC) as a model to investigate the roles of SMYD3-H4K20me3. Herein, online bioinformatics tools, quantitative PCR, western blotting and immunohistochemistry assays demonstrated that SMYD3 expression was markedly increased in GC tissues from our institutional and The Cancer Genome Atlas (TCGA) cohort. Additionally, aberrantly increased SMYD3 expression was closely associated with aggressive clinical characteristics and poor prognosis. Depletion of endogenous SMYD3 expression using shRNAs significantly attenuates the proliferation in GC cells and Akt signaling pathway in vitro and in vivo. Mechanistically, chromatin immunoprecipitation (ChIP) assay showed that SMYD3 epigenetically repressed the expression of epithelial membrane protein 1 (EMP1) in an H4K20me3-dependent manner. Gain-of-function and rescue experiments validated that EMP1 inhibited the propagation of GC cells and reduced p-Akt (S473) level. Based on these data, pharmaceutical inhibition of SMYD3 activity using the small inhibitor BCI-121 deactivated Akt signaling pathway in GC cells and further impaired the cellular viability in vitro and in vivo. Together, these results demonstrate that SMYD3 promotes the proliferation in GC cells and may be a valid target for therapeutic intervention of patients with GC.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350000, Fujian, PR China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Pengliang Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| | - Yong Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| |
Collapse
|
18
|
Liu D, Liu Y, Zhu W, Lu Y, Zhu J, Ma X, Xing Y, Yuan M, Ning B, Wang Y, Jia Y. Helicobacter pylori-induced aberrant demethylation and expression of GNB4 promotes gastric carcinogenesis via the Hippo-YAP1 pathway. BMC Med 2023; 21:134. [PMID: 37016382 PMCID: PMC10073623 DOI: 10.1186/s12916-023-02842-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection causes aberrant DNA methylation and contributes to the risk of gastric cancer (GC). Guanine nucleotide-binding protein subunit beta-4 (GNB4) is involved in various tumorigenic processes. We found an aberrant methylation level of GNB4 in H. pylori-induced GC in our previous bioinformatic analysis; however, its expression and underlying molecular mechanisms are poorly understood. METHODS The expression, underlying signaling pathways, and clinical significance of GNB4 were analyzed in a local cohort of 107 patients with GC and several public databases. H. pylori infection was induced in in vitro and in vivo models. Methylation-specific PCR, pyrosequencing, and mass spectrometry analysis were used to detect changes in methylation levels. GNB4, TET1, and YAP1 were overexpressed or knocked down in GC cell lines. We performed gain- and loss-of-function experiments, including CCK-8, EdU, colony formation, transwell migration, and invasion assays. Nude mice were injected with genetically manipulated GC cells, and the growth of xenograft tumors and metastases was measured. Real-time quantitative PCR, western blotting, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and co-immunoprecipitation experiments were performed to elucidate the underlying molecular mechanisms. RESULTS GNB4 expression was significantly upregulated in GC and correlated with aggressive clinical characteristics and poor prognosis. Increased levels of GNB4 were associated with shorter survival times. Infection with H. pylori strains 26695 and SS1 induced GNB4 mRNA and protein expression in GC cell lines and mice. Additionally, silencing of GNB4 blocked the pro-proliferative, metastatic, and invasive ability of H. pylori in GC cells. H. pylori infection remarkably decreased the methylation level of the GNB4 promoter region, particularly at the CpG#5 site (chr3:179451746-179451745). H. pylori infection upregulated TET1 expression via activation of the NF-κB. TET binds to the GNB4 promoter region which undergoes demethylation modification. Functionally, we identified that GNB4 induced oncogenic behaviors of tumors via the Hippo-YAP1 pathway in both in vitro and in vivo models. CONCLUSIONS Our findings demonstrate that H. pylori infection activates the NF-κB-TET1-GNB4 demethylation-YAP1 axis, which may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yi Lu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Mingjie Yuan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
19
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
20
|
Zhou H, Nie C, Tian W, Han X, Wang J, Du X, Wang Q, Zhu X, Xiang G, Zhao Y. Joint Effects Between CDKN2B/P15 Methylation and Environmental Factors on the Susceptibility to Gastric Cancer. Dig Dis Sci 2023:10.1007/s10620-023-07917-1. [PMID: 36961670 DOI: 10.1007/s10620-023-07917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/14/2022] [Indexed: 03/25/2023]
Abstract
BACKGROUND The incidence of gastric cancer has long been at a high level in China, seriously affecting the health of Chinese people. AIMS This case‒control study was performed to identify gene methylation biomarkers of gastric cancer susceptibility. METHODS A total of 393 gastric cancer cases and 397 controls were included in this study. Gene methylation in peripheral blood leukocytes was detected by a methylation-sensitive high-resolution melting method, and the Helicobacter pylori antibody presence was semi-quantified in serum by ELISA. RESULTS Individuals with total methylation of CDKN2B/P15 had a 1.883-fold (95%CI: 1.166-3.040, P = 0.010) risk of gastric cancer compared with unmethylated individuals. Individuals with both CDKN2B/P15 and NEUROG1 methylation had a higher risk of gastric cancer (OR = 2.147, 95% CI: 1.137-4.073, P = 0.019). The interaction between CDKN2B/P15 and NEUROG1 total methylation on gastric cancer risk was affected by the pattern of adjustment. In addition, the joint effects between CDKN2B/P15 total methylation and environmental factors, such as freshwater fish intake (OR = 6.403, 95% CI = 2.970-13.802, P < 0.001), irregular diet (OR = 5.186, 95% CI = 2.559-10.510, P < 0.001), unsanitary water intake (OR = 2.238, 95% CI = 1.144-4.378, P = 0.019), smoking (OR = 2.421, 95% CI = 1.456-4.026, P = 0.001), alcohol consumption(OR = 2.163, 95% CI = 1.309-3.576, P = 0.003), and garlic intake(OR = 0.373, 95% CI = 0.196-0.709, P = 0.003) on GC risk were observed, respectively. However, CDKN2B/P15 and NEUROG1 total methylation were not associated with gastric cancer prognosis. CONCLUSION CDKN2B/P15 methylation in peripheral blood may be a potential biomarker for evaluating susceptibility to gastric cancer. The joint effects between CDKN2B/P15 methylation and environmental factors may also contribute to gastric cancer susceptibility.
Collapse
Affiliation(s)
- Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Chuang Nie
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jing Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xinyu Du
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Qi Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xiaojie Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Guanghui Xiang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
21
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Ge L, Zhao G, Lan C, Song H, Qi D, Huang P, Ke X, Cui H. MESP2 binds competitively to TCF4 to suppress gastric cancer progression by regulating the SKP2/p27 axis. Cell Death Discov 2023; 9:79. [PMID: 36854722 PMCID: PMC9975210 DOI: 10.1038/s41420-023-01367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Gastric cancer (GC) is a major cause of human deaths worldwide, and is notorious for its high incidence and mortality rates. Mesoderm Posterior Basic Helix-loop-helix (bHLH) transcription factor 2 (MESP2) acts as a transcription factor with a conserved bHLH domain. However, whether MESP2 contributes to tumorigenesis and its potential molecular mechanisms, remain unexplored. Noticeably, MESP2 expression levels are decreased in GC tissues and cell lines compared to those in normal tissue. Further, in vitro and in vivo experiments have confirmed that MESP2 overexpression suppresses GC cell growth, migration, and invasion, whereas MESP2 knockdown results in the exact opposite. Here, we present the first report that MESP2 binds to transcription factor 7-like 2 (TCF7L2/TCF4) to inhibit the activation of the TCF4/beta-catenin transcriptional complex, decrease the occupancy of the complex on the S-phase kinase Associated Protein 2 (SKP2) promoter, and promote p27 accumulation. MESP2 knockdown facilitated tumorigenesis, which was partially suppressed by SKP2 knockdown. Taken together, we conclude that MESP2 binds competitively to TCF4 to suppress GC progression by regulating the SKP2/p27 axis, thus offering a potential therapeutic strategy for future treatment.
Collapse
Affiliation(s)
- Lingjun Ge
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Gaichao Zhao
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Chao Lan
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Houji Song
- grid.263906.80000 0001 0362 4044Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716 China
| | - Dan Qi
- grid.263906.80000 0001 0362 4044Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716 China
| | - Pan Huang
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
23
|
Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med 2023; 55:22-31. [PMID: 36653445 PMCID: PMC9898530 DOI: 10.1038/s12276-023-00926-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers in the world. It is a multifactorial disease highly influenced by environmental factors, which include radiation, smoking, diet, and infectious pathogens. Accumulating evidence suggests that epigenetic regulators are frequently altered in GC, playing critical roles in gastric tumorigenesis. Epigenetic regulation involves DNA methylation, histone modification, and noncoding RNAs. While it is known that environmental factors cause widespread alterations in DNA methylation, promoting carcinogenesis, the chromatin- and noncoding RNA-mediated mechanisms of gastric tumorigenesis are still poorly understood. In this review, we focus on discussing recent discoveries addressing the roles of histone modifiers and noncoding RNAs and the mechanisms of their interactions in gastric tumorigenesis. A better understanding of epigenetic regulation would likely facilitate the development of novel therapeutic approaches targeting specific epigenetic regulators in GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lexin Zhu
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
24
|
Evaluation of pH-Sensitive Polymeric Micelles Using Citraconic Amide Bonds for the Co-Delivery of Paclitaxel, Etoposide, and Rapamycin. Pharmaceutics 2023; 15:pharmaceutics15010154. [PMID: 36678783 PMCID: PMC9866473 DOI: 10.3390/pharmaceutics15010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Paclitaxel (PTX), etoposide (ETP), and rapamycin (RAPA) have different mechanisms, allowing multiple pathways to be targeted simultaneously, effectively treating various cancers. However, these drugs have a low hydrosolubility, limiting clinical applications. Therefore, we used pH-sensitive polymeric micelles to effectively control the drug release in cancer cells and to improve the water solubility of PTX, ETP, and RAPA. The synergistic effect of PTX, ETP, and RAPA was evaluated in gastric cancer, and the combination index values were evaluated. Thin-film hydration was used to prepare PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles, and various physicochemical properties of these micelles were evaluated. In vitro cytotoxicity, pH-sensitivity, drug release profiles, in vivo pharmacokinetics, and biodistribution studies of PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles were evaluated. In the pH-sensitivity evaluation, the size of the micelles increased more rapidly at a pH of 5.5 than at a pH of 7.4. The release rate of each drug increased with decreasing pH values in PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles. In vitro and in vivo studies demonstrated that PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles exhibit different drug release behaviors depending on the pH of the tumor and normal tissues and increased bioavailability and circulation time in the blood than solutions. Therefore, we propose that PTX/ETP/RAPA- loaded mPEG-pH-PCL micelles are advantageous for gastric cancer treatment in drug delivery systems.
Collapse
|
25
|
Wen J, Deng S, Bi Y, Qiao L, Xu H. Association between multiple gene promoter hypermethylation and the risk of gastric cancer: A systematic review and meta-analysis. Dig Liver Dis 2023; 55:40-45. [PMID: 35450814 DOI: 10.1016/j.dld.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Several studies have demonstrated an association between multiple gene hypermethylation and gastric cancer. However, the intrinsic mechanisms remain elusive and highly debatable. To this end, our study aims to investigate the correlation between the methylation status of multiple gene promoters and gastric cancer. METHODS PubMed, EMBASE, CNKI, WanFang, Cqvip, and Cochrane Library were queried from inception to May 2021, and the relationship between the methylation status of the CpG islands and gastric cancer risk was systematically assessed under the inclusion and exclusion criteria. The incidence of DNA methylation between tumor and non-tumor tissues was compared, and the clinicopathological significance of DNA methylation in gastric carcinoma was further evaluated. The odds ratio (OR) was estimated with a 95% confidence interval (CI), and forest plots were generated using the fixed-effects or random-effects model. RESULTS In total, 201 studies were enrolled, and a higher frequency of CpG islands methylation was identified in gastric cancer tissues than in non-neoplastic tissues. This suggests that aberrant polygene methylation might be associated with the initial onset and progression of gastric cancer. CONCLUSION This study sheds light on the significance of polygene methylation status in gastric cancer. The DNA methylation of these genes may serve as underlying epigenetic biomarkers, providing a promising molecular diagnostic approach for human gastric cancer clinical diagnosis. More large randomized trials are needed to confirm the findings.
Collapse
Affiliation(s)
- JianRu Wen
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - SiXiu Deng
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu 610083, China; College of Medicine, Southwest Medical University, Luzhou 646000, China
| | - YuHua Bi
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - LiJuan Qiao
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hui Xu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
26
|
Sugimachi K, Araki H, Saito H, Masuda T, Miura F, Inoue K, Shimagaki T, Mano Y, Iguchi T, Morita M, Toh Y, Yoshizumi T, Ito T, Mimori K. Persistent epigenetic alterations in transcription factors after a sustained virological response in hepatocellular carcinoma. JGH Open 2022; 6:854-863. [PMID: 36514506 PMCID: PMC9730721 DOI: 10.1002/jgh3.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background and Aim The risk of hepatocellular carcinoma (HCC) persists in a condition of sustained virologic response (SVR) after hepatitis C virus (HCV) eradication. Comprehensive molecular analyses were performed to test the hypothesis that epigenetic abnormalities present after an SVR play a role in hepatocarcinogenesis. Methods Whole-genome methylome and RNA sequencing were performed on HCV, SVR, and healthy liver tissue. Integrated analysis of the sequencing data focused on expression changes in transcription factors and their target genes, commonly found in HCV and SVR. Identified expression changes were validated in demethylated cultured HCC cell lines and an independent validation cohort. Results The coincidence rates of the differentially methylated regions between the HCV and SVR groups were 91% in the hypomethylated and 71% in the hypermethylated regions in tumorous tissues, and 37% in the hypomethylated and 36% in the hypermethylated regions in non-tumorous tissues. These results indicate that many epigenomic abnormalities persist even after an SVR was achieved. Integrated analysis identified 61 transcription factors and 379 other genes that had methylation abnormalities and gene expression changes in both groups. Validation cohort specified gene expression changes for 14 genes, and gene ontology pathway analysis revealed apoptotic signaling and inflammatory response were associated with these genes. Conclusion This study demonstrates that DNA methylation abnormalities, retained after HCV eradication, affect the expression of transcription factors and their target genes. These findings suggest that DNA methylation in SVR patients may be functionally important in carcinogenesis, and could serve as biomarkers to predict HCC occurrence.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Hiromitsu Araki
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Business and Technology Management, Faculty of EconomicsKyushu UniversityFukuokaJapan
| | - Hideyuki Saito
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kentaro Inoue
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomonari Shimagaki
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yohei Mano
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomohiro Iguchi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Masaru Morita
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yasushi Toh
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| |
Collapse
|
27
|
Huang G, Cai G, Hu D, Li J, Xu Q, Chen Z, Xu B. Low SP1 SUMOylation-dependent SNHG17 upregulation promotes drug resistance of gastric cancer through impairing hsa-miR-23b-3p-induced Notch2 inhibition. Cell Oncol (Dordr) 2022; 45:1329-1346. [PMID: 36214997 DOI: 10.1007/s13402-022-00722-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Specificity protein 1 (SP1), a transcription factor mediated by SUMOylation modifiers, is upregulated in gastric cancer (GC) and shares negative correlation with patient prognosis. Here, we paid main attention to the role of SP1 SUMOylation in the drug resistance of GC cells and the possible long non-coding RNA (lncRNA) SNHG17/microRNA-23b-3p (miR-23b-3p)/Notch2 network engaged in this process. METHODS Tumor tissues and non-tumor tissues were isolated from GC patients who received treatment with capecitabine and cisplatin (DDP). Co-immunoprecipitation was utilized to detect the SUMOylation level of SP1. Using gain- and loss-of-function approaches, we assessed the impacts of SNHG17/miR-23b-3p/Notch2 on sensitivity of DDP-resistant GC cells in vitro and in vivo. A series of assays such as luciferase activity detection and RNA pull-down were conducted for mechanistic exploration. RESULTS SP1 expression was increased due to low SP1 SUMOylation level in the recurrent GC tissues. This increase led to upregulated SNHG17 expression and SP1 binding sites existed in the SNHG17 promoter. In addition, SNHG17 could bind to miR-23b-3p while miR-23b-3p targeted Notch2. Loss of SNHG17 reduced the resistance of DDP-resistant GC cells to DDP, which was achieved through miR-23b-3p-dependent Notch2 inhibition. Finally, SP1 silencing attenuated the resistance of GC to DDP in mice. CONCLUSION Low SP1 SUMOylation induces SNHG17 upregulation and blocks miR-23b-3p-induced Notch2 inhibition, contributing to the resistance of GC to DDP. This study may aid in the development of therapeutic targets overcoming the chemoresistance of GC.
Collapse
Affiliation(s)
- Guoyu Huang
- Department of AnoRectal Surgery, Hainan General Hospital, Hainan, 570105, Haikou, People's Republic of China
| | - Guohao Cai
- Department of AnoRectal Surgery, Hainan General Hospital, Hainan, 570105, Haikou, People's Republic of China
| | - Dongwei Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, Wenzhou, People's Republic of China
| | - Jinjie Li
- Department of Hepato-pancreato-biliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, South Baixiang Street, Ouhai District, Zhejiang, 325000, Wenzhou, People's Republic of China
| | - Qigang Xu
- Department of Hepato-pancreato-biliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, South Baixiang Street, Ouhai District, Zhejiang, 325000, Wenzhou, People's Republic of China
| | - Zongjing Chen
- Department of Hepato-pancreato-biliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, South Baixiang Street, Ouhai District, Zhejiang, 325000, Wenzhou, People's Republic of China
| | - Bo Xu
- Department of Hepato-pancreato-biliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, South Baixiang Street, Ouhai District, Zhejiang, 325000, Wenzhou, People's Republic of China.
| |
Collapse
|
28
|
Bhattacharya J, Magness P, Kulldorff M. Understanding the exceptional pre-vaccination Era East Asian COVID-19 outcomes. Adv Biol Regul 2022; 86:100916. [PMID: 36328937 PMCID: PMC9575551 DOI: 10.1016/j.jbior.2022.100916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022]
Abstract
During the first year of the pandemic, East Asian countries have reported fewer infections, hospitalizations, and deaths from COVID-19 disease than most countries in Europe and the Americas. Our goal in this paper is to generate and evaluate hypothesis that may explain this striking fact. We consider five possible explanations: (1) population age structure (younger people tend to have less severe COVID-19 disease upon infection than older people); (2) the early adoption of lockdown strategies to control disease spread; (3) genetic differences between East Asian population and European and American populations that confer protection against COVID-19 disease; (4) seasonal and climactic contributors to COVID-19 spread; and (5) immunological differences between East Asian countries and the rest of the world. The evidence suggests that the first four hypotheses are unlikely to be important in explaining East Asian COVID-19 exceptionalism. Lockdowns, in particular, fail as an explanation because East Asian countries experienced similarly good infection outcomes despite vast differences in lockdown policies adopted by different countries to control the COVID-19 epidemic. The evidence to date is consistent with our fifth hypothesis - pre-existing immunity unique to East Asia - but there are still essential parts of this story left for scientists to check.
Collapse
Affiliation(s)
- Jay Bhattacharya
- Stanford University School of Medicine, National Bureau of Economic Research, USA.
| | | | | |
Collapse
|
29
|
Sogutlu F, Pekerbas M, Biray Avci C. Epigenetic signatures in gastric cancer: current knowledge and future perspectives. Expert Rev Mol Diagn 2022; 22:1063-1075. [PMID: 36522183 DOI: 10.1080/14737159.2022.2159381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common malignancy in the world and accounts for 7.7% of all cancer-related deaths. Early diagnosis of GC is critical in terms of prognosis, and aberrations at the molecular level, especially epigenetic alterations, manifest much earlier than histological findings. In recent years, there has been a great deal of research on the epigenomic profile of GC, and epigenetic alterations seem to play a more important role than genetic factors. With the introduction of epigenetic drugs into clinical use in the last decade, the importance of the epigenetic background of GC has increased considerably. AREAS COVERED In this review, we summarize the role of methylation changes, histone modifications, and non-coding RNAs in the pathogenesis of GC and how these signatures can be used as diagnostic and therapeutic targets in clinical management. EXPERT OPINION Epigenetic alterations take place before most genetic aberrations observed in GC and may have an initiating role in the pathogenesis of GC. They can be used as biomarkers in risk calculation, early diagnosis, and evaluation of prognosis of GC, as well as treatment targets.
Collapse
Affiliation(s)
- Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Mert Pekerbas
- Department of Medical Genetics, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
30
|
Jin W, Liu J, Yang J, Feng Z, Feng Z, Huang N, Yang T, Yu L. Identification of a key ceRNA network associated with ferroptosis in gastric cancer. Sci Rep 2022; 12:20088. [PMID: 36418919 PMCID: PMC9684404 DOI: 10.1038/s41598-022-24402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis, a newly discovered irondependent form of regulated cell death caused by excessive accumulation of lipid peroxides, is linked to the development and treatment response of various types of cancer, including gastric cancer (GC). Noncoding RNAs (ncRNAs), as key regulators in cancer, have both oncogenic and tumor suppressive roles. However, studies on ferroptosis-related ncRNA networks in GC are still lacking. Here, we first identified 61 differentially expressed genes associated with ferroptosis in GC by computing and analyzing gene expression profile of tumor and normal tissues for GC. Then, upstream lncRNAs and miRNAs interacting with them were found through miRNet and miRBase databases, and hub lncRNAs and miRNAs were obtained through topological analysis. Finally, the ceRNA regulatory network linked to ferroptosis in GC was established, which includes two ferroptosis marker genes (TXNIP and TSC22D3), one driver gene (GABARAPL1), and one suppressor gene (CAV1). Kaplan-Meier survival analysis showed that changes in the expression of these genes were associated with the survival of GC patients. Furthermore, our study revealed that this ceRNA network may influence the progression of GC by regulating ferroptosis process. These results will help experimental researchers to design an experiment study to further explore the roles of this regulatory network in GC ferroptosis.
Collapse
Affiliation(s)
- Wen Jin
- grid.440229.90000 0004 1757 7789Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, 010010 China
| | - Jianli Liu
- grid.162107.30000 0001 2156 409XSchool of Water Resource and Environment Engineering, China University of Geosciences, Beijing, 100083 China
| | - Jie Yang
- grid.440229.90000 0004 1757 7789Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, 010010 China
| | - Zongqi Feng
- grid.440229.90000 0004 1757 7789Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, 010010 China
| | - Zhenxing Feng
- grid.411648.e0000 0004 1797 7993College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051 China
| | - Na Huang
- grid.440229.90000 0004 1757 7789Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, 010010 China
| | - Tingyu Yang
- grid.440229.90000 0004 1757 7789Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, 010010 China
| | - Lan Yu
- grid.440229.90000 0004 1757 7789Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, 010010 China
| |
Collapse
|
31
|
Peng G, Chen S, Zheng N, Tang Y, Su X, Wang J, Dong R, Wu D, Hu M, Zhao Y, Liu M, Wu H. Integrative proteomics and m6A microarray analyses of the signatures induced by METTL3 reveals prognostically significant in gastric cancer by affecting cellular metabolism. Front Oncol 2022; 12:996329. [PMID: 36465351 PMCID: PMC9709115 DOI: 10.3389/fonc.2022.996329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/27/2022] [Indexed: 10/13/2023] Open
Abstract
METTL3-mediated RNA N6-methyladenosine (m6A) is the most prevalent modification that participates in tumor initiation and progression via governing the expression of their target genes in cancers. However, its role in tumor cell metabolism remains poorly characterized. In this study, m6A microarray and quantitative proteomics were employed to explore the potential effect and mechanism of METTL3 on the metabolism in GC cells. Our results showed that METTL3 induced significant alterations in the protein and m6A modification profile in GC cells. Gene Ontology (GO) enrichment indicated that down-regulated proteins were significantly enriched in intracellular mitochondrial oxidative phosphorylation (OXPHOS). Moreover, the protein-protein Interaction (PPI) network analysis found that these differentially expressed proteins were significantly associated with OXPHOS. A prognostic model was subsequently constructed based on the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, and the high-risk group exhibited a worse prognosis in GC patients. Meanwhile, Gene Set Enrichment Analysis (GSEA) demonstrated significant enrichment in the energy metabolism signaling pathway. Then, combined with the results of the m6A microarray analysis, the intersection molecules of DEPs and differential methylation genes (DMGs) were significantly correlated with the molecules of OXPHOS. Besides, there were significant differences in prognosis and GSEA enrichment between the two clusters of GC patients classified according to the consensus clustering algorithm. Finally, highly expressed and highly methylated molecules regulated by METTL3 were analyzed and three (AVEN, DAZAP2, DNAJB1) genes were identified to be significantly associated with poor prognosis in GC patients. These results signified that METTL3-regulated DEPs in GC cells were significantly associated with OXPHOS. After combined with m6A microarray analysis, the results suggested that these proteins might be implicated in cell energy metabolism through m6A modifications thus influencing the prognosis of GC patients. Overall, our study revealed that METTL3 is involved in cell metabolism through an m6A-dependent mechanism in GC cells, and indicated a potential biomarker for prognostic prediction in GC.
Collapse
Affiliation(s)
- Guisen Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ni Zheng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yuan Tang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xu Su
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Jing Wang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Di Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Mingjie Hu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yunli Zhao
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
32
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
33
|
MC180295 Inhibited Epstein–Barr Virus-Associated Gastric Carcinoma Cell Growth by Suppressing DNA Repair and the Cell Cycle. Int J Mol Sci 2022; 23:ijms231810597. [PMID: 36142506 PMCID: PMC9500863 DOI: 10.3390/ijms231810597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
DNA methylation of both viral and host DNA is one of the major mechanisms involved in the development of Epstein–Barr virus-associated gastric carcinoma (EBVaGC); thus, epigenetic treatment using demethylating agents would seem to be promising. We have verified the effect of MC180295, which was discovered by screening for demethylating agents. MC180295 inhibited cell growth of the EBVaGC cell lines YCCEL1 and SNU719 in a dose-dependent manner. In a cell cycle analysis, growth arrest and apoptosis were observed in both YCCEL1 and SNU719 cells treated with MC180295. MKN28 cells infected with EBV were sensitive to MC180295 and showed more significant inhibition of cell growth compared to controls without EBV infection. Serial analysis of gene expression analysis showed the expression of genes belonging to the role of BRCA1 in DNA damage response and cell cycle control chromosomal replication to be significantly reduced after MC180295 treatment. We confirmed with quantitative PCR that the expression levels of BRCA2, FANCM, RAD51, TOP2A, and CDC45 were significantly decreased by MC180295. LMP1 and BZLF1 are EBV genes with expression that is epigenetically regulated, and MC180295 could up-regulate their expression. In conclusion, MC180295 inhibited the growth of EBVaGC cells by suppressing DNA repair and the cell cycle.
Collapse
|
34
|
Chiang TH, Cheng HC, Chuang SL, Chen YR, Hsu YH, Hsu TH, Lin LJ, Lin YW, Chu CH, Wu MS, Lee YC. Mass screening and eradication of Helicobacter pylori as the policy recommendations for gastric cancer prevention. J Formos Med Assoc 2022; 121:2378-2392. [PMID: 36085264 DOI: 10.1016/j.jfma.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Gastric cancer is an inflammation-related cancer triggered by Helicobacter pylori infection. Understanding of the natural disease course has prompted the hypothesis that gastric cancer can be prevented by administering a short-course antibiotic treatment to eradicate the H. pylori infection and interrupt this carcinogenic cascade. Results from randomized controlled trials and cohort studies have repeatedly confirmed this concept, which has moved attention from individual management of H. pylori infection to population-wide implementation of screening programs. Such a paradigm shift follows a three-tier architecture. First, healthcare policy-makers determine the most feasible and applicable eligibility, invitation, testing, referral, treatment, and evaluation methods for an organized screening program to maximize the population benefits and cost-effectiveness. Second, provision of knowledge and effective feedback to frontline general practitioners, including choice of diagnostic tests, selection of eradication regimens, and the indication of endoscopic examination, ensures the quality of care and increases the likelihood of desired treatment responses. Third, initiatives to raise population awareness are designed regarding the impact of H. pylori infection and risky lifestyle habits on the stomach health. These programs, with increased accessibility and geographic coverage in progress, will accelerate the decline in morbidity, mortality, and associated costs of this preventable malignancy.
Collapse
Affiliation(s)
- Tsung-Hsien Chiang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Chi Cheng
- Department of Internal Medicine, Institute of Clinical Medicine, Institute of Molecular Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Shu-Lin Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ru Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Hsu
- Health Promotion Administration, Ministry of Health and Welfare, Taiwan
| | - Tsui-Hsia Hsu
- Health Promotion Administration, Ministry of Health and Welfare, Taiwan
| | - Li-Ju Lin
- Health Promotion Administration, Ministry of Health and Welfare, Taiwan
| | - Yu-Wen Lin
- Public Health Bureau, Taitung County, Taiwan
| | | | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chia Lee
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
35
|
Association of TP53 rs1042522 C>G Polymorphism with Glioma Risk in Chinese Children. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2712808. [PMID: 35996546 PMCID: PMC9392611 DOI: 10.1155/2022/2712808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Glioma is the most common intracranial malignancy. TP53 is a crucial tumor suppressor gene that plays an essential regulatory role in cell growth, apoptosis, and DNA repair. The TP53 rs1042522 C>G polymorphism has been reported to be strongly associated with various tumor risks. To assess the TP53 rs1042522 C>G polymorphism with glioma risk in Chinese children, we determined the genotypes of the TP53 rs1042522 C>G polymorphism in 171 glioma patients and 228 cancer-free controls by Taqman assay. We assessed the association of the polymorphism with glioma risk using odds ratio (OR) and 95% confidence interval (CI) generated by logistic regression models. We also performed stratified analyses by age, gender, tumor subtypes, and clinical stages, but no significant association was detected between TP53 rs1042522 C>G polymorphism and childhood glioma risk. These results suggest that the TP53 rs1042522 C>G polymorphism is not associated with glioma risk in Chinese children. Subsequent studies with a larger sample size are needed to validate our results.
Collapse
|
36
|
Xiao S, Yao X, Ye J, Tian X, Yin Z, Zhou L. Epigenetic modification facilitates proline synthase PYCR1 aberrant expression in gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194829. [PMID: 35654390 DOI: 10.1016/j.bbagrm.2022.194829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation contributes to the progression of gastric cancer (GC) and indicates poor survival. However, PYCR1 expression profile in GC subtypes and the mechanism behind its upregulation are not well-studied. METHODS PYCR1 expression profiles in GC subtypes and different stages of gastric carcinogenesis were assessed in different GC cohorts. Genetic alterations and epigenetic modulation in PYCR1 regulation were further investigated using bioinformatics analysis and in vitro experiments. RESULTS PYCR1 expression was significantly higher in intestinal-type GC and associated molecular subtypes in TCGA and ACRG GC cohorts. During the cascade of intestinal-type GC, PYCR1 was continuously increased from normal gastric tissues through to atrophic gastritis, to intraepithelial neoplasia, and to GC. Copy number alterations in PYCR1 were associated with PYCR1 transcript expression. One CpG island was observed in PYCR1 promoter region, and the hypomethylation occurred at this region could contribute to PYCR1 transcriptional activation in GC. Besides, H3K27ac combination was found in PYCR1 promoter, and acetyltransferase p300 induced H3K27ac could promote PYCR1 expression in GC. CONCLUSIONS PYCR1 expression varies across GC subtypes, with intestinal-type GC and associated molecular subtypes having the highest expression. Hypomethylation at CpG sites and p300-induced H3K27ac modification within PYCR1 promoter could contribute to maintaining PYCR1 overexpression in GC. These results provide us with a new insight into epigenetic modulation in mitochondrial proline metabolism.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Xingyu Yao
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Juxiang Ye
- Department of Pathology, School of Basic Medical Science, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, China
| | - Xueli Tian
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Zhihao Yin
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Beijing, China; Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, 49 North Garden Road, Beijing, China.
| |
Collapse
|
37
|
Yamaguchi K, Chen X, Oji A, Hiratani I, Defossez PA. Large-Scale Chromatin Rearrangements in Cancer. Cancers (Basel) 2022; 14:cancers14102384. [PMID: 35625988 PMCID: PMC9139990 DOI: 10.3390/cancers14102384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancers have many genetic mutations such as nucleotide changes, deletions, amplifications, and chromosome gains or losses. Some of these genetic alterations directly contribute to the initiation and progression of tumors. In parallel to these genetic changes, cancer cells acquire modifications to their chromatin landscape, i.e., to the marks that are carried by DNA and the histone proteins it is associated with. These “epimutations” have consequences for gene expression and genome stability, and also contribute to tumoral initiation and progression. Some of these chromatin changes are very local, affecting just one or a few genes. In contrast, some chromatin alterations observed in cancer are more widespread and affect a large part of the genome. In this review, we present different types of large-scale chromatin rearrangements in cancer, explain how they may occur, and why they are relevant for cancer diagnosis and treatment. Abstract Epigenetic abnormalities are extremely widespread in cancer. Some of them are mere consequences of transformation, but some actively contribute to cancer initiation and progression; they provide powerful new biological markers, as well as new targets for therapies. In this review, we examine the recent literature and focus on one particular aspect of epigenome deregulation: large-scale chromatin changes, causing global changes of DNA methylation or histone modifications. After a brief overview of the one-dimension (1D) and three-dimension (3D) epigenome in healthy cells and of its homeostasis mechanisms, we use selected examples to describe how many different events (mutations, changes in metabolism, and infections) can cause profound changes to the epigenome and fuel cancer. We then present the consequences for therapies and briefly discuss the role of single-cell approaches for the future progress of the field.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Xiaoying Chen
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Asami Oji
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Pierre-Antoine Defossez
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
- Correspondence: ; Tel.: +33-157278916
| |
Collapse
|
38
|
Wei W, Ying X, Chen L, Sun Q, Lu X, Xia Y, Xu R, Zhu Z, Zhang D, Tang Q, Li L, Xie J, Yu H. RecQ mediated genome instability 2 ( RMI2): a potential prognostic and immunological biomarker for pan-cancers. Aging (Albany NY) 2022; 14:4107-4136. [PMID: 35552266 PMCID: PMC9134953 DOI: 10.18632/aging.204076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Background: RecQ mediated genome instability 2 (RMI2) is an essential component of the BLM-TopoIIIa-RMI1-RMI2 (BTR) complex. However, the mysterious veil of the potential immunological relationship of RMI2 in tumorigenesis and development has not been revealed. Methods: We conducted the differential expression (DE) analysis of the RMI2 in pan-cancer using data onto Oncomine, TIMER, and GEPIA databases. Afterward, survival analysis and clinical-stage correlation analysis were performed via the TCGA database. Subsequently, we used R software to further explore the relationship between the expression level of RMI2 and tumor mutation burden (TMB), microsatellite instability (MSI), tumor microenvironment (TME), tumor immune-infiltrated cells (TILs), immune checkpoints (ICP), mismatch repairs (MMRs) -related genes, m6A-related genes, DNA methylation-related genes. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional networks were also performed for annotation via gene set enrichment analysis (GSEA). Results: The RMI2 expressed remarkably high in most cancer types compared to cancer adjacent normal tissues (P < 0.05). High expression of RMI2 was linked to unfavorable prognosis and advanced stage of disease, especially in LIHC and PAAD. RMI2 expression was related to TMB in 16 cancer types and MSI in 8 cancer types. Furthermore, it is significant positive correlations between RMI2 and stromal and immune cells, ICP-related genes, MMRs-related genes, m6A-related genes, and DNA methylation-related genes. Finally, GSEA analysis revealed that RMI2 was engaged in a variety of signaling pathways in pan-cancers. Conclusions: RMI2 may serve as a potential biological target and probably assume a crucial part in tumorigenesis and progression.
Collapse
Affiliation(s)
- Wei Wei
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| | - Xiaomei Ying
- Department of General Surgery, Suzhou Hospital of Anhui Medical University, Suzhou 234000, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| | - Qingmei Sun
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaohuan Lu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yang Xia
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Rubin Xu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| | - Zhechen Zhu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| |
Collapse
|
39
|
Zhang S, Kuang G, Huang Y, Huang X, Wang W, Wang G. Cross talk between RNA modification writers and tumor development as a basis for guiding personalized therapy of gastric cancer. Hum Genomics 2022; 16:14. [PMID: 35449086 PMCID: PMC9027049 DOI: 10.1186/s40246-022-00386-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Gastric cancer (GC) shows high metastasis and low survival. RNA modification writers play critical roles in tumor development. This study examined the clinical significance of RNA modification writers in GC prognosis based on four types of adenosine modifications (m1A, m6A, APA and A-to-I). Results Writers demonstrated high mutation and expression in GC patients. Different expressions of 26 RNA modification writers were differentially associated with GC prognosis. High-WM score group appeared worse overall survival, higher immune infiltration and activation of EMT pathways than low-WM score group. WM score was correlated with both miRNAs-targeted signaling pathways and patients’ sensitivity to chemotherapeutic drugs and efficacy of immunotherapy. Conclusions This study further revealed the close association between adenosine-related RNA modifications and progression of GC. A cross talk between EMT and RNA modification was identified to be one of the mechanisms underlying GC development. Our WM scoring system could serve as a clinical indicator for predicting GC prognosis. Importantly, the WM score could guide personalized treatments such as chemotherapy and immunotherapy for GC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00386-z.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong, China
| | - Guanghao Kuang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong, China
| | - Yao Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong, China
| | - Xinxin Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong, China
| | - Weiyu Wang
- Department of Oncology, HaploX Biotechnology, Co., Ltd., Shenzhen, 518057, China
| | - Guoqiang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
40
|
Wang T, Zhang P, Li C, Liu W, Shen Q, Yang L, Xie G, Bai J, Li R, Tao K, Yin Y. MUS81 Inhibition Enhances the Anticancer Efficacy of Talazoparib by Impairing ATR/CHK1 Signaling Pathway in Gastric Cancer. Front Oncol 2022; 12:844135. [PMID: 35480096 PMCID: PMC9035870 DOI: 10.3389/fonc.2022.844135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
MUS81 is a critical endonuclease involved in heterodimer formation with Eme1/Mms4 and an important DNA damage repair regulatory molecule. Our previous study suggested that MUS81 was overexpressed and its high expression was positively correlated with gastric cancer metastasis. However, the therapeutic potential of targeting MUS81 in gastric cancer requires further exploration. Therefore, in this study, the Cancer Genome Atlas (TCGA) data were analyzed and showed that MUS81 is a key regulator of cell cycle distribution and DNA damage repair in gastric cancer. In vitro and in vivo, MUS81 knockdown significantly enhanced the anticancer effect of the PARP inhibitor talazoparib. Mechanistically, MUS81 inhibition impaired the activation of the ATR/CHK1 cell cycle signaling pathway and promoted gastric cancer cells with talazoparib-induced DNA damage to continue mitosis. Moreover, addition of the bromodomain-containing protein 4 inhibitor AZD5153 increased the anticancer effect of talazoparib via MUS81 inhibition in gastric cancer cells, and this combination effect was largely impaired when MUS81 was knocked down. In conclusion, these data suggested that MUS81 regulated ATR/CHK1 activation, a key signaling pathway in the G2M checkpoint, and targeting MUS81 enhanced the antitumor efficacy of talazoparib. Therefore, AZD5153 combined with talazoparib may represent a promising therapeutic strategy for patients with MUS81 proficient gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuping Yin
- *Correspondence: Yuping Yin, ; Kaixiong Tao,
| |
Collapse
|
41
|
Chen YX, He LL, Xiang XP, Shen J, Qi HY. O 6-methylguanine DNA methyltransferase is upregulated in malignant transformation of gastric epithelial cells via its gene promoter DNA hypomethylation. World J Gastrointest Oncol 2022; 14:664-677. [PMID: 35321285 PMCID: PMC8919019 DOI: 10.4251/wjgo.v14.i3.664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the mispairing base O6-methyl-guanine induced by environmental and experimental carcinogens. It can transfer the alkyl group to a cysteine residue in its active site and became inactive. The chemical carcinogen N-nitroso compounds (NOCs) can directly bind to the DNA and induce the O6-methylguanine adducts, which is an important cause of gene mutation and tumorigenesis. However, the underlying regulatory mechanism of MGMT involved in NOCs-induced tumorigenesis, especially in the initiation phase, remains largely unclear.
AIM To investigate the molecular regulatory mechanism of MGMT in NOCs-induced gastric cell malignant transformation and tumorigenesis.
METHODS We established a gastric epithelial cell malignant transformation model induced by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) or N-methyl-N-nitroso-urea (MNU) treatment. Cell proliferation, colony formation, soft agar, cell migration, and xenograft assays were used to verify the malignant phenotype. By using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis, we detected the MGMT expression in malignant transformed cells. We also confirmed the MGMT expression in early stage gastric tumor tissues by qPCR and immunohistochemistry. MGMT gene promoter DNA methylation level was analyzed by methylation-specific PCR and bisulfite sequencing PCR. The role of MGMT in cell malignant transformation was analyzed by colony formation and soft agar assays.
RESULTS We observed a constant increase in MGMT mRNA and protein expression in gastric epithelial cell malignant transformation induced by MNNG or MNU treatment. Moreover, we found a reduction of MGMT gene promoter methylation level by methylation-specific PCR and bisulfite sequencing PCR in MNNG/MNU-treated cells. Inhibition of the MGMT expression by O6-benzylguanine promoted the MNNG/MNU-induced malignant phenotypes. Overexpression of MGMT partially reversed the cell malignant transformation process induced by MNNG/MNU. Clinical gastric tissue analysis showed that MGMT was upregulated in the precancerous lesions and metaplasia tissues, but downregulated in the gastric cancer tissues.
CONCLUSION Our finding indicated that MGMT upregulation is induced via its DNA promoter hypomethylation. The highly expressed MGMT prevents the NOCs-induced cell malignant transformation and tumorigenesis, which suggests a potential novel approach for chemical carcinogenesis intervention by regulating aberrant epigenetic mechanisms.
Collapse
Affiliation(s)
- Yue-Xia Chen
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Pathology, Third Hospital of Nanchang, Nanchang 330000, Jiangxi Province, China
| | - Lu-Lu He
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Ping Xiang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Shen
- Department of Pathology and Pathophysiology andDepartment of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Hong-Yan Qi
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
42
|
Li B, Chen Y, Liang L, Wang Y, Huang W, Zhao K, Liu S, Deng G, Chen J. Tumor-derived extracellular vesicles shuttle c-Myc to promote gastric cancer growth and metastasis via the KCNQ1OT1/miR-556-3p/CLIC1 axis. Cell Death Dis 2022; 13:217. [PMID: 35260554 PMCID: PMC8904444 DOI: 10.1038/s41419-021-04446-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is a heterogeneous disease with poor prognosis. Tumor-derived extracellular vesicles (EVs) assume a role in intercellular communication by carrying various molecules, including proteins, RNA, and DNAs, which has been identified to exhibit oncogenic effect in GC. Therefore, this research aimed to figure out whether tumor-derived EVs transmit c-Myc to orchestrate the growth and metastasis of GC. KCNQ1OT1, microRNA (miR)-556-3p and CLIC1 expression of GC tissues was detected through RT-qPCR. EVs were isolated from GC cells, followed by RT-qPCR and Western blot analysis of c-Myc expression in EVs and GC cells. Next, GC cells were incubated with EVs or transfected with a series of mimic, inhibitor, or siRNAs to assess their effects on cell viability, migrative, invasive, and apoptotic potential. Relationship among c-Myc, KCNQ1OT1, miR-556-3p, and CLIC1 was evaluated by dual-luciferase reporter assay. PI3K/AKT pathway-related proteins were assessed through Western blot analysis. KCNQ1OT1 and CLIC1 were highly expressed but miR-556-3p in GC tissues. c-Myc was high-expressed in tumor-derived EVs and GC cells. Mechanistically, c-Myc could induce KCNQ1OT1 expression, and KCNQ1OT1 bound to miR-556-3p that negatively targeted CLIC1 to inactivate PI3K/AKT pathway. Tumor-derived EVs, EVs-c-Myc, KCNQ1OT1 or CLIC1 overexpression, or miR-556-3p inhibition promoted GC cell proliferative, invasive, and migrative capacities but repressed their apoptosis through activating PI3K/AKT pathway. Collectively, tumor-derived EVs carrying c-Myc activated KCNQ1OT1 to downregulate miR-556-3p, thus elevating CLIC1 expression to activate the PI3K/AKT pathway, which facilitated the growth and metastasis of GC.
Collapse
Affiliation(s)
- Bopei Li
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, P.R. China
| | - Yeyang Chen
- Departments of Gastrointestinal Surgery, The First People's Hospital of Yulin, 537000, Yulin, P.R. China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, 530007, Nanning, P.R. China
| | - Ye Wang
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China
| | - Weijia Huang
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China
| | - Kun Zhao
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China
| | - Siyu Liu
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China
| | - Guofei Deng
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China
| | - Junqiang Chen
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, P.R. China. .,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, P.R. China.
| |
Collapse
|
43
|
Takeuchi C, Sato J, Yamashita S, Sasaki A, Akahane T, Aoki R, Yamamichi M, Liu YY, Ito M, Furuta T, Nakajima S, Sakaguchi Y, Takahashi Y, Tsuji Y, Niimi K, Tomida S, Fujishiro M, Yamamichi N, Ushijima T. Autoimmune gastritis induces aberrant DNA methylation reflecting its carcinogenic potential. J Gastroenterol 2022; 57:144-155. [PMID: 35034200 DOI: 10.1007/s00535-021-01848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Autoimmune gastritis (AIG) is a chronic inflammatory condition in gastric mucosa and is associated with increased cancer risk, though not as high as that by Helicobacter pylori (H. pylori)-associated gastritis (HPG). Although aberrant DNA methylation is induced by HPG and the level correlates with the risk of gastric cancer, DNA methylation induction by AIG is unknown. METHODS Gastric mucosa samples from the corpus were collected from 12 people with AIG without H. pylori infection, 10 people with HPG, and eight healthy volunteers. Genome-wide DNA methylation analysis was conducted using Infinium Methylation EPIC array. Gene expression was analyzed by quantitative RT-PCR. RESULTS The AIG samples had extensive aberrant DNA methylation but presented unique methylation profiles against the HPG samples after correction of leucocyte fractions. Comparison between the AIG and HPG samples showed that AIG induced methylation, but less than HPG, in overall CpG sites and also in promoter CpG islands. Promoter CpG islands of tumor-suppressor genes in the pathway of cell cycle, cell adhesion, p53, and WNT were highly methylated in the AIG samples, but more so in the HPG samples. The expression levels of IL1B and IL8, secreted by macrophage, were significantly lower in the AIG samples than in the HPG samples, suggesting that a difference in inflammatory response affected the degree and patterns of aberrant DNA methylation. CONCLUSIONS AIG induced aberrant DNA methylation in gastric mucosa. However, the degree of DNA methylation was less than that by HPG, which reflected carcinogenic risk.
Collapse
Affiliation(s)
- Chihiro Takeuchi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Junichi Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Sasaki
- Department of Gastroenterology, Medicine Center, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Rika Aoki
- Tokushima Health Screening Center, Tokushima, Japan
| | - Mitsue Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Masayoshi Ito
- Department of Gastroenterology, Yotsuya Medical Cube, Tokyo, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shigemi Nakajima
- Department of General Medicine, Consortium for Community Medicine, Japan Community Healthcare Organization Shiga Hospital, Shiga University of Medical Science, Shiga, Japan
| | - Yoshiki Sakaguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tsuji
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Niimi
- Center for Epidemiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutake Yamamichi
- Center for Epidemiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
44
|
The intricate roles of RCC1 in normal cells and cancer cells. Biochem Soc Trans 2022; 50:83-93. [PMID: 35191966 DOI: 10.1042/bst20210861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
RCC1 (regulator of chromosome condensation 1) is a highly conserved chromatin-binding protein and the only known guanine-nucleotide exchange factor of Ran (a nuclear Ras homolog). RCC1 plays an essential role in the regulation of cell cycle-related activities such as nuclear envelope formation, nuclear pore complex and spindle assembly, and nucleocytoplasmic transport. Over the last decade, increasing evidence has emerged highlighting the potential relevance of RCC1 to carcinogenesis, especially cervical, lung, and breast cancer. In this review, we briefly discuss the roles of RCC1 in both normal and tumor cells based on articles published in recent years, followed by a brief overview of future perspectives in the field.
Collapse
|
45
|
Chen S, Yu Y, Li T, Ruan W, Wang J, Peng Q, Yu Y, Cao T, Xue W, Liu X, Chen Z, Yu J, Fan JB. A novel DNA methylation signature associated with lymph node metastasis status in early gastric cancer. Clin Epigenetics 2022; 14:18. [PMID: 35115040 PMCID: PMC8811982 DOI: 10.1186/s13148-021-01219-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background Lymph node metastasis (LNM) is an important factor for both treatment and prognosis of early gastric cancer (EGC). Current methods are insufficient to evaluate LNM in EGC due to suboptimal accuracy. Herein, we aim to identify methylation signatures for LNM of EGC, facilitate precision diagnosis, and guide treatment modalities. Methods For marker discovery, genome-wide methylation sequencing was performed in a cohort (marker discovery) using 47 fresh frozen (FF) tissue samples. The identified signatures were subsequently characterized for model development using formalin-fixed paraffin-embedded (FFPE) samples by qPCR assay in a second cohort (model development cohort, n = 302, training set: n = 151, test set: n = 151). The performance of the established model was further validated using FFPE samples in a third cohorts (validation cohort, n = 130) and compared with image-based diagnostics, conventional clinicopathology-based model (conventional model), and current standard workups. Results Fifty LNM-specific methylation signatures were identified de novo and technically validated. A derived 3-marker methylation model for LNM diagnosis was established that achieved an AUC of 0.87 and 0.88, corresponding to the specificity of 80.9% and 85.7%, sensitivity of 80.6% and 78.1%, and accuracy of 80.8% and 83.8% in the test set of model development cohort and validation cohort, respectively. Notably, this methylation model outperformed computed tomography (CT)-based imaging with a superior AUC (0.88 vs. 0.57, p < 0.0001) and individual clinicopathological features in the validation cohort. The model integrated with clinicopathological features demonstrated further enhanced AUCs of 0.89 in the same cohort. The 3-marker methylation model and integrated model reduced 39.4% and 41.5% overtreatment as compared to standard workups, respectively. Conclusions A novel 3-marker methylation model was established and validated that shows diagnostic potential to identify LNM in EGC patients and thus reduce unnecessary gastrectomy in EGC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01219-x.
Collapse
Affiliation(s)
- Shang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanqi Yu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Ruan
- AnchorDx Medical Co., Ltd, Unit 502, No. 8, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Jun Wang
- AnchorDx Medical Co., Ltd, Unit 502, No. 8, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Quanzhou Peng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, Shenzhen People's Hospital, Shennan Dong Lu, Luohu District, Shenzhen, 518002, China
| | - Yingdian Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tianfeng Cao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenyuan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Liu
- AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA, 94538, USA
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd, Unit 502, No. 8, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China.,AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA, 94538, USA
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Bing Fan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,AnchorDx Medical Co., Ltd, Unit 502, No. 8, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China.
| |
Collapse
|
46
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
47
|
Soltani R, Amini M, Mazaheri Moghaddam M, Jebelli A, Ahmadiyan S, Bidar N, Baradaran B, MotieGhader H, Asadi M, Mokhtarzadeh A. LncRNA DLGAP1-AS2 overexpression associates with gastric tumorigenesis: a promising diagnostic and therapeutic target. Mol Biol Rep 2022; 49:6817-6826. [PMID: 34981339 DOI: 10.1007/s11033-021-07038-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aberrant expression of long noncoding RNAs (lncRNAs) is associated with the progression of human cancers, including gastric cancer (GC). The function of lncRNA DLGAP1-AS2, as a promising oncogene, has been identified in several human cancers. Therefore, this study was aimed to explore the association of DLGAP1-AS2 with gastric tumorigenesis, as well. METHODS AND RESULTS The expression level of DLGAP1-AS2 was initially pre-evaluated in GC datasets from Gene Expression Omnibus (GEO). Moreover, qRT-PCR experiment was performed on 25 GC and 25 adjacent normal tissue samples. The Cancer Genome Atlas (TCGA) data were also analyzed for further validation. Consistent with data obtained from GEO datasets, qRT-PCR results revealed that DLGAP1-AS2 was significantly (p < 0.0032) upregulated in GC specimens compared to normal samples, which was additionally confirmed using TCGA analysis (p < 0.0001). DLGAP1-AS2 expression level was also correlated with age (p = 0.0008), lymphatic and vascular invasion (p = 0.0415) in internal samples as well as poor survival of GC patients (p = 0.00074) in GEO datasets. Also, Gene Ontology analysis illustrated that DLGAP1-AS2 may be involved in the cellular process, including hippo signaling, regulated by YAP1, as its valid downstream target, in GC samples. Moreover, ROC curve analysis showed the high accuracy of the DLGAP1-AS2 expression pattern as a diagnostic biomarker for GC. CONCLUSION Our findings indicated that DLGAP1-AS2 might display oncogenic properties through gastric tumorigenesis and could be suggested as a therapeutic, diagnostic, and prognostic target.
Collapse
Affiliation(s)
- Rogayeh Soltani
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Asiyeh Jebelli
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Sahar Ahmadiyan
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Negar Bidar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib MotieGhader
- Department of Bioinformatics, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Hypomethylation-activated cancer-testis gene LIN28B promotes cell proliferation and metastasis in gastric cancer. Gene 2021; 813:146115. [PMID: 34902508 DOI: 10.1016/j.gene.2021.146115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies have revealed the significance of several cancer/testis (CT) genes in gastric cancer (GC). Here, we identified candidate CT oncogenes in GC, which were activated by the promoter (p) hypomethylation. METHODS Transcriptome profiling and DNA methylation data of stomach adenocarcinoma (STAD) were downloaded from The Cancer Genome Atlas (TCGA) database. We applied multiple Cox regression analysis to identify survival-related CT genes. CpG sites associated with hypomethylated activation were defined by Spearman's rank correlation analysis. We used the CRISPR/dCas9 technique to accurately mediate p hypomethylation in a GC cell line (HGC27) and verify the effect of targeted CpG sites on gene expression. Finally, we verified the function via gain- and loss-of-function assays in vitro. RESULTS We recognized LIN28B as a highly activated CT gene in GC, whose high expression was associated with poor prognosis of GC patients [hazard ratio (HR) = 1.90, 95 %CI:1.26-2.87, P = 2.14 × 10-3]. Bioinformatics analysis found that hypomethylation of four CpG sites at LIN28B p were negatively correlated with its elevated expression, and we verified that p hypomethylation could activate LIN28B expression via accurately mediated p methylation. Moreover, knockout of LIN28B markedly repressed proliferation, metastasis, and invasion of GC cells in vitro. In contrast, LIN28B over-expression could promote metastasis and invasion of GC cells. CONCLUSION In summary, we found that CT gene LIN28B could be activated by p hypomethylation in GC, which suggested that hypomethylation of specific CpG sites could be a potential molecular marker for prognosis prediction and individualized treatment among GC patients.
Collapse
|
49
|
Chen Z, Xie Y, Chen W, Li T, Chen X, Liu B. RETRACTED: microRNA-6785-5p-loaded human umbilical cord mesenchymal stem cells-derived exosomes suppress angiogenesis and metastasis in gastric cancer via INHBA. Life Sci 2021; 284:119222. [PMID: 33609542 DOI: 10.1016/j.lfs.2021.119222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1D+F, 2G, 3C, 4C and 6C, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yong Xie
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Weidong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Tiegang Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xianyu Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
50
|
Herrera-Pariente C, Montori S, Llach J, Bofill A, Albeniz E, Moreira L. Biomarkers for Gastric Cancer Screening and Early Diagnosis. Biomedicines 2021; 9:biomedicines9101448. [PMID: 34680565 PMCID: PMC8533304 DOI: 10.3390/biomedicines9101448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most common cancers worldwide, with a bad prognosis associated with late-stage diagnosis, significantly decreasing the overall survival. This highlights the importance of early detection to improve the clinical course of these patients. Although screening programs, based on endoscopic or radiologic approaches, have been useful in countries with high incidence, they are not cost-effective in low-incidence populations as a massive screening strategy. Additionally, current biomarkers used in daily routine are not specific and sensitive enough, and most of them are obtained invasively. Thus, it is imperative to discover new noninvasive biomarkers able to diagnose early-stage gastric cancer. In this context, liquid biopsy is a promising strategy. In this review, we briefly discuss some of the potential biomarkers for gastric cancer screening and diagnosis identified in blood, saliva, urine, stool, and gastric juice.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Sheyla Montori
- UPNA, IdiSNA, Navarrabiomed Biomedical Research Center, Gastrointestinal Endoscopy Research Unit, 31008 Pamplona, Spain; (S.M.); (E.A.)
| | - Joan Llach
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Alex Bofill
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Eduardo Albeniz
- UPNA, IdiSNA, Navarrabiomed Biomedical Research Center, Gastrointestinal Endoscopy Research Unit, 31008 Pamplona, Spain; (S.M.); (E.A.)
- Endoscopy Unit, Gastroenterology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
- Correspondence:
| |
Collapse
|