1
|
Li C, Gao X, Liu Y, Yang B, Dai H, Zhao H, Li Y. The role of natural killer T cells in sepsis-associated acute kidney injury. Int Immunopharmacol 2025; 159:114953. [PMID: 40418883 DOI: 10.1016/j.intimp.2025.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/28/2025]
Abstract
The condition of sepsis, defined by the misregulation of the body's defensive mechanisms against infection, culminates in the potential for catastrophic organ damage and stands as a primary driver of mortality in Intensive Care Units (ICU) settings. Among patients in a critical condition, sepsis is a predominant factor in the development of acute kidney injury (AKI), and the death rate among those with both sepsis and AKI is considerably higher, underscoring the importance of addressing this health crisis. Sepsis-associated acute kidney injury (S-AKI) is a complex process involving inflammation, microcirculatory issues, and metabolic disorders. Among these, the inflammatory response has become a focal point of interest. Bridging the innate and adaptive immunity, natural killer T (NKT) cells can be rapidly activated in sepsis, contributing to sepsis-associated injury and downstream activation of inflammatory cells through the emission of Th1 or Th2 cytokines. They also contribute to S-AKI through the TNF-α/FasL and perforin pathways. Alpha-Galactosylceramide (α-GalCer), acting as a powerful activator for type I NKT (iNKT) cells, is able to regulate the secretory profile of iNKT cells, responding to the pro-inflammatory response and immunosuppressive profiles of sepsis. This review examines the part played by NKT cells in S-AKI and whether α-Galcer could function as a significant regulator in sepsis, based on studies of regression-related mechanisms.
Collapse
Affiliation(s)
- Cheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Xiaopo Gao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yuan Liu
- Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hongkai Dai
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yongshen Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China; Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Jin S, Zhao N, Wang K, Wang X, Wang Y, Ma W. Glioma raises periodontitis risk via CD8 upregulation on NKT cells: a Mendelian randomization study. Discov Oncol 2025; 16:812. [PMID: 40387952 PMCID: PMC12089579 DOI: 10.1007/s12672-025-02669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVES Gliomas, primary tumors of the central nervous system, and periodontitis, a chronic inflammatory disease impacting oral health, have both been subjects of extensive research due to their significant impact on patients' well-being. This study delves into the question of whether there is a causal relationship between glioma and periodontitis, mediated by systemic immunological changes. METHODS This research draws from a wealth of publicly available genetic data, including genome-wide association studies for glioma, periodontitis, and immune cell traits. A comprehensive Mendelian randomization (MR) analysis is conducted, incorporating multiple MR methods and statistical tests to assess causality and account for possible biases. RESULTS The findings indicate that individuals genetically predisposed to glioma face an increased risk of developing periodontitis. Furthermore, CD8 upregulation on NKT cells was identified as a mediator in this causal pathway, providing a partial explanation for the observed connection. This discovery aligns with clinical observations of glioma patients exhibiting a higher prevalence of poor periodontal health. CONCLUSIONS This study advances our understanding of the complex interplay between glioma and systemic diseases like periodontitis. It underscores feasible implications for patient care and opens avenues for future research to explore the mechanistic underpinnings of this relationship.
Collapse
Affiliation(s)
- Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ningrui Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Kaiming Wang
- Department of Statistics, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
3
|
Nater M, Brügger M, Cecconi V, Pereira P, Forni G, Köksal H, Dimakou D, Herbst M, Calvanese AL, Lucchiari G, Schneider C, Valenta T, van den Broek M. Hepatic iNKT cells facilitate colorectal cancer metastasis by inducing a fibrotic niche in the liver. iScience 2025; 28:112364. [PMID: 40292307 PMCID: PMC12032931 DOI: 10.1016/j.isci.2025.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
The liver is an important metastatic organ that contains many innate immune cells, yet little is known about their role in anti-metastatic defense. We investigated how invariant natural killer T (iNKT) cells influence colorectal cancer-derived liver metastasis using different models in immunocompetent mice. We found that hepatic iNKT cells promote metastasis by creating a supportive niche for disseminated cancer cells. Mechanistically, iNKT cells respond to disseminating cancer cells by producing the fibrogenic cytokines interleukin-4 (IL-4) and IL-13 in a T cell receptor-independent manner. Selective abrogation of IL-4 and IL-13 sensing in hepatic stellate cells prevented their transdifferentiation into extracellular matrix-producing myofibroblasts, which hindered metastatic outgrowth of disseminated cancer cells. This study highlights a novel tumor-promoting axis driven by iNKT cells in the initial stages of metastasis.
Collapse
Affiliation(s)
- Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Brügger
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Geo Forni
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Despoina Dimakou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Giulia Lucchiari
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Rezaeifar M, Shahbaz S, Peters AC, Gibson SB, Elahi S. Polyfunctional CD8 +CD226 +RUNX2 hi effector T cells are diminished in advanced stages of chronic lymphocytic leukemia. Mol Oncol 2025; 19:1347-1370. [PMID: 39777847 PMCID: PMC12077284 DOI: 10.1002/1878-0261.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
CD8+ T cells, a subset of T cells identified by the surface glycoprotein CD8, particularly those expressing the co-stimulatory molecule CD226, play a crucial role in the immune response to malignancies. However, their role in chronic lymphocytic leukemia (CLL), an immunosuppressive disease, has not yet been explored. We studied 64 CLL patients and 25 age- and sex-matched healthy controls (HCs). We analyzed the proportion of CD226-expressing cells among different CD8+ T cell subsets (including naïve, central memory, effector memory, and effectors) in CLL patients, stratified by Rai stage and immunoglobulin heavy-chain variable region gene (IgHV) mutation status. Additionally, we compared the effector functions of CD8+CD226+ cells and their CD226- counterparts. We also quantified cytokine and chemokine levels in the plasma of CLL and HCs. Furthermore, we reanalyzed the publicly available bulk RNA-seq on CD226+ and CD226-CD8+ T cells. Finally, we evaluated the impact of elevated cytokines/chemokines on CD226 expression. Our results showed that CD226-expressing cells were significantly decreased within the effector memory and effector CD8+ T cell subsets in CLL patients with advanced Rai stages and unmutated IgHV, a marker of poor prognosis. These cells displayed robust effector functions, including cytokine production, cytolytic activity, degranulation, proliferation, and migration capacity. In contrast, CD8+CD226- T cells displayed an exhausted phenotype with reduced Runt-related transcription factor 2 (RUNX2) expression. Elevated levels of interleukin-6 (IL-6) and macrophage inflammatory protein-1 beta (MIP-1β) were inversely correlated with the frequency of CD8+CD226+ T cells and may contribute to the downregulation of CD226, possibly leading to T cell dysfunction in CLL. Our findings highlight the critical role of CD8+CD226+RUNX2hi T cells in CLL and suggest that their reduction is associated with disease progression and poor clinical outcomes. This study also underscores the potential of targeting IL-6 and MIP-1β to preserve polyfunctional CD8+CD226+ T cells as a promising immunotherapy strategy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Female
- Male
- Middle Aged
- Aged
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytokines/blood
- Cytokines/metabolism
- T Lineage-Specific Activation Antigen 1
- Neoplasm Staging
- Case-Control Studies
Collapse
Affiliation(s)
- Maryam Rezaeifar
- Division of Foundational Sciences, Mike Petryk School of DentistryUniversity of AlbertaEdmontonCanada
| | - Shima Shahbaz
- Division of Foundational Sciences, Mike Petryk School of DentistryUniversity of AlbertaEdmontonCanada
| | - Anthea C. Peters
- Division of Medical Oncology, Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Spencer B. Gibson
- Division of Medical Oncology, Department of OncologyUniversity of AlbertaEdmontonCanada
- Department of Biochemistry and Medical GeneticsUniversity of AlbertaEdmontonCanada
| | - Shokrollah Elahi
- Division of Foundational Sciences, Mike Petryk School of DentistryUniversity of AlbertaEdmontonCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonCanada
- Women and Children Health Research InstituteUniversity of AlbertaEdmontonCanada
- Cancer Research Institute of Northern Alberta, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
5
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
6
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
7
|
Zhu Y, Yang Y, Yue L, Wan L, Ma X, Yang Q, Tian X, Li Y, Wang K, Wei S, Zuo D, Feng M. Efficacy of natural killer T and gammadelta T cells in mesothelin-targeted immunotherapy of pancreatic cancer. Front Immunol 2025; 16:1524899. [PMID: 39995672 PMCID: PMC11847856 DOI: 10.3389/fimmu.2025.1524899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Current pancreatic cancer immunotherapy focused on alphabeta (αβ) T cells, either through CD3-engaged bispecific antibodies or CAR-T. Despite their promise, dose-limited toxicity (DLT) remains a challenge in clinical practice. In light of these concerns, there is a growing interest in exploring alternative T cell types, natural killer T (NKT) cells and gammadelta (γδ) T cells, that possess the capacity to lyse tumors while potentially offering a safer therapeutic profile with fewer side effects. These cells present a compelling alternative that warrants a comprehensive evaluation of their therapeutic potential and safety profile. This study employed a MSLN/CD3 bispecific antibody to compare the anti-tumor activity of NKT and γδT cells with peripheral blood mononuclear cells (PBMCs) as controls, both in vitro and in vivo. This study demonstrated that MSLN/CD3 BsAb effectively activated and recruited PBMCs, NKT and γδT. Furthermore, under the influence of MSLN/CD3 BsAb, γδT and NKT cells exhibited notably superior anti-tumor activity compared to PBMCs, both in vitro and in vivo, while demonstrating low cytokine release. γδT cells showed almost negligible toxic side effects. In addition, the systemic administration of NKT and γδT cells activators, α-galactosylceramide (α-GalCer) and Zoledronate, could enhance the anti-tumor effect of MSLN/CD3 bsAb, with no apparent toxicity. NKT and γδT cells are promising synergistic therapeutic cell types that may overcome the limitations of CD3 bispecific antibodies in pancreatic tumor treatments, offering a new perspective for clinical applications in immunotherapy.
Collapse
Affiliation(s)
- Yuankui Zhu
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yaxi Yang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linghe Yue
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Wan
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuqian Ma
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Yang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuan Tian
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuguan Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ke Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gastrointestinal Oncology Surgery, Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, Hubei, China
- Department of Gastrointestinal Oncology Surgery, Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, Hubei, China
| | - Dianbao Zuo
- Research Center for Translational Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson’s Disease at Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Bie L, Chen G, Lei X, Xiao F, Xu Z, Xiang Z, Lu Z, Jiang X. B4GALNT1 Regulates Hepatocellular Carcinoma Cell Proliferation and Apoptosis via the PI3K-AKT-mTOR Pathway. J Clin Lab Anal 2025; 39:e25155. [PMID: 39829207 PMCID: PMC11848214 DOI: 10.1002/jcla.25155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear. METHODS By analyzing the TCGA_LIHC, GSE77509, and GSE135631 datasets, the levels of B4GALNT1 expression in HCC and surrounding non-cancerous tissues were compared. The prognostic implications of B4GALNT1 were assessed using the Cox regression analysis (CRA). The relationship of B4GALNT1 mutations with CpG island methylation levels and prognosis was examined by analyzing the cBioPortal and MethSurv databases. We sifted the evidence of B4GALNT1 expression correlating with 28 immune cell types' infiltration by harnessing the "GSVA" R package. To delve into the influences of genes associated with B4GALNT1 on HCC, we implemented gene set enrichment analysis (GSEA). We constructed a lentiviral vector expressing B4GALNT1 and knocked down B4GALNT1 in HepG2 cells. The resulting effects on HCC cell proliferation and apoptosis were analyzed via cell proliferation assays and flow cytometry. RESULTS HCC tissues presented significant B4GALNT1 overexpression relative to surrounding non-cancerous tissues, marking it as a standalone risk factor for HCC progression. Methylation levels of two CpG islands were high, suggesting poor prognosis. It was detectable that B4GALNT1 expression interrelated with the infiltration extent of natural killer T cells in HCC tissues. B4GALNT1-fueled cell proliferation and enhanced resistance to apoptosis in HCC cells. CONCLUSION B4GALNT1 is a strong regulator of HCC progression and holds promise as a marker for prognosis and a hallmark for therapy in HCC.
Collapse
Affiliation(s)
- Lihan Bie
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal‐Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xin Lei
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Feng Xiao
- Department of PathologyThe Seventh People's Hospital Affiliated to the Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zheng Xu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhouhong Xiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhicheng Lu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiudi Jiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
9
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
10
|
Nishio K, Hsu KS, Berzofsky JA, Olkhanud PB. NKT Hybridoma Cell Stimulation Assays to Evaluate Glycolipid Specificity and Processing. Methods Mol Biol 2025; 2930:93-102. [PMID: 40402450 DOI: 10.1007/978-1-0716-4558-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Natural Killer T (NKT) cells, a specialized subset of T cells, play a pivotal role in immune surveillance. They recognize lipid antigens presented by the MHC class I-like molecule CD1d, bridging innate and adaptive immunity. NKT cells exhibit both pro-inflammatory and immunoregulatory properties, impacting various pathological states, including infections, autoimmune diseases, and cancer. The NKT hybridoma cell stimulation assay is a powerful tool for detecting and characterizing NKT cells, as well as screening natural and synthetic lipid antigens, potentially leading to novel therapeutic interventions. Here, we describe two complementary methods (cell-free and cell-based) to stimulate NKT hybridoma cells to secrete cytokine, which serves as an indirect measure of NKT cell activation. These assays provide insight into the intricate interplay between NKT cells, lipids, and other immune cell subsets, including antigen-presenting cells, and their impact on immune regulation and disease progression.
Collapse
Affiliation(s)
- Kumiko Nishio
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kevin S Hsu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Purevdorj B Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
Praveena T, Le Nours J. State of play in the molecular presentation and recognition of anti-tumor lipid-based analogues. Front Immunol 2024; 15:1479382. [PMID: 39669569 PMCID: PMC11635198 DOI: 10.3389/fimmu.2024.1479382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The Natural Killer T cells (NKT) are a unique subset of T lymphocytes that recognize lipid-based antigens that are presented by the monomorphic MHC-I-like molecule, CD1d. Over 30 years ago, the discovery of the glycolipid α-Galactosylceramide (α-GalCer) from the marine sponge Agelas mauritianus, as a potent activator of the invariant Natural Killer T (iNKT) cells, has attracted great attention for its use in cancer immunotherapy. However, α-GalCer can initiate both pro-inflammatory T helper cell 1 (Th1) and anti-inflammatory Th2 type immune responses that can result in either enhanced or suppressed immunity in a somewhat unpredictable manner. Th1 polarized immune response is often correlated with an optimal anti-tumor immunity, and therefore α-GalCer did not fully offer the desired potential as an anti-tumor therapeutic. Over the past decades, considerable efforts have then been invested into the design and development of novel synthetic α-GalCer analogues that will direct a more efficient immune response towards the production of Th1 biased cytokines. In this minireview, we will discuss how subtle modifications in the chemical nature of a number of α-GalCer derivatives varied immune responses. Whilst some of these analogues showed potential in enhancing stability within CD1d and directing favourable immune responses for tumor immunotherapy, their responses in mice also highlighted the need for further research in humanized models to overcome translational challenges and optimize therapeutic efficacy.
Collapse
Affiliation(s)
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Ai N, Zhang Y, Yang J, Zhang Y, Zhao X, Feng H. Genetically predicted blood metabolites mediate the association between circulating immune cells and severe COVID-19: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40509. [PMID: 39560514 PMCID: PMC11575977 DOI: 10.1097/md.0000000000040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Investigating the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19 and revealing the role of blood metabolite-mediated circulating immune cells in disease onset and progression. Genetic variation data of 731 circulating immune cells, 1400 blood metabolites, and severe COVID-19 from genome-wide association study open-access database (https://gwas.mrcieu.ac.uk) were used as instrumental variables for bidirectional and two-step Mendelian randomization analysis. The study identified 11 circulating immune cells with unidirectional causality to severe COVID-19. Two-step Mendelian randomization analysis showed 10 blood metabolites were causally associated with severe COVID-19, and blood Myristate and Citrulline to phosphate ratio mediated the association of circulating effector memory double negative % DN and CD8dim natural killer T cell % T cells, respectively, with severe COVID-19 (Myristate mediated effect ratio was 10.20%, P = .011; Citrulline to phosphate ratio mediated effect ratio was -9.21%, P = .017). This study provides genetic evidence assessing the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19, elucidates the role of blood metabolite-mediated circulating immune cells in severe COVID-19 development, and offers new insights into severe COVID-19 etiology and related preventive and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ning Ai
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejing Zhao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
14
|
Zhou X, Wang Y, Dou Z, Delfanti G, Tsahouridis O, Pellegry CM, Zingarelli M, Atassi G, Woodcock MG, Casorati G, Dellabona P, Kim WY, Guo L, Savoldo B, Tsagaratou A, Milner JJ, Metelitsa LS, Dotti G. CAR-redirected natural killer T cells demonstrate superior antitumor activity to CAR-T cells through multimodal CD1d-dependent mechanisms. NATURE CANCER 2024; 5:1607-1621. [PMID: 39354225 PMCID: PMC12002392 DOI: 10.1038/s43018-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2024] [Indexed: 10/03/2024]
Abstract
Human natural killer T (NKT) cells have been proposed as a promising cell platform for chimeric antigen receptor (CAR) therapy in solid tumors. Here we generated murine CAR-NKT cells and compared them with CAR-T cells in immune-competent mice. Both CAR-NKT cells and CAR-T cells showed similar antitumor effects in vitro, but CAR-NKT cells showed superior antitumor activity in vivo via CD1d-dependent immune responses in the tumor microenvironment. Specifically, we show that CAR-NKT cells eliminate CD1d-expressing M2-like macrophages. In addition, CAR-NKT cells promote epitope spreading and activation of endogenous T cell responses against tumor-associated neoantigens. Finally, we observed that CAR-NKT cells can co-express PD1 and TIM3 and show an exhaustion phenotype in a model of high tumor burden. PD1 blockade as well as vaccination augmented the antitumor activity of CAR-NKT cells. In summary, our results demonstrate the multimodal function of CAR-NKT cells in solid tumors, further supporting the rationale for developing CAR-NKT therapies in the clinic.
Collapse
Affiliation(s)
- Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Wang
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manuela Zingarelli
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - J Justin Milner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Mousavi-Salehi A, Ghafourian M, Amari A, Zargar M. Evaluation of NKT Cell Percentage and Function and Its Relationship with Serum IFN-γ and Vitamin D Levels in Women with Recurrent Spontaneous Abortion and Recurrent Implantation Failure. J Obstet Gynaecol India 2024; 74:391-397. [PMID: 39568976 PMCID: PMC11573966 DOI: 10.1007/s13224-023-01894-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/24/2023] [Indexed: 11/22/2024] Open
Abstract
Background Mothers experiencing recurrent spontaneous abortion (RSA) along with repeated implantation failures (RIF) could potentially have abnormalities in their immune systems. Vitamin D is known as a crucial immunomodulatory agent. This study aimed to assess the ratio of Natural Killer T-cells (NKTs) and the correlation between this ratio with serum vitamin D levels among women with RSA and RIF. Methods In this research, blood samples were collected from both patients and a group of healthy individuals. The flow cytometry technique was used to determine the proportion of NKT and activated NKT cells. Additionally, Vitamin D and IFN-γ levels were measured using the ELISA technique. Results The mean ratio of NKT cells and IFN-γ levels increased significantly in those women with RSA relative to our healthy control group [(P < 0.018) and (p < 0.031), respectively]. Nevertheless, women in the RIF and control groups did not show any significant differences. Serum vitamin D levels significantly decreased in RIF (p < 0.04) and RSA (p < 0.01) groups relative to the control group. Conclusions It was found that increasing ratio as well as inflammatory activity of NKT cells correlated with repeated miscarriage. Reduced vitamin D levels could cause immune system disorder along with pregnancy complications.
Collapse
Affiliation(s)
- Abdolah Mousavi-Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, P.O. Box 6135715794, Iran
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, P.O. Box 6135715794, Iran
| | - Afshin Amari
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, P.O. Box 6135715794, Iran
- Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Zargar
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Carriero F, Rubino V, Gelzo M, Scalia G, Raia M, Ciccozzi M, Gentile I, Pinchera B, Castaldo G, Ruggiero G, Terrazzano G. Immune Profile in COVID-19: Unveiling T R3-56 Cells in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:10465. [PMID: 39408792 PMCID: PMC11477006 DOI: 10.3390/ijms251910465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of COronaVIrus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presented a global health challenge since its identification in December 2019. With clinical manifestations ranging from mild respiratory symptoms to severe multi-organ dysfunction, COVID-19 continues to affect populations worldwide. The complex interactions between SARS-CoV-2 variants and the human immune system are crucial for developing effective therapies, vaccines, and preventive measures. Understanding these immune responses highlights the intricate nature of COVID-19 pathogenesis. This retrospective study analyzed, by flow cytometry approach, a cohort of patients infected with SARS-CoV-2 during the initial pandemic waves from 2020 to 2021. It focused on untreated individuals at the time of hospital admission and examined the presence of TR3-56 cells in their immune profiles during the anti-viral immune response. Our findings provide additional insights into the complex immunological dynamics of SARS-CoV-2 infection and highlight the potential role of TR3-56 cells as crucial components of the immune response. We suggest that TR3-56 cells could serve as valuable biomarkers for identifying more severe cases of COVID-19, aiding in the assessment and management of the disease.
Collapse
Affiliation(s)
- Flavia Carriero
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giulia Scalia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
| | - Massimo Ciccozzi
- Unità di Epidemiologia e Statistica Medica, Università Campus Biomedico, 00128 Rome, Italy;
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (I.G.); (B.P.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy; (M.G.); (G.S.); (M.R.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze della Salute, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| |
Collapse
|
17
|
Raybould MIJ, Greenshields-Watson A, Agarwal P, Aguilar-Sanjuan B, Olsen TH, Turnbull OM, Quast NP, Deane CM. The Observed T Cell Receptor Space database enables paired-chain repertoire mining, coherence analysis, and language modeling. Cell Rep 2024; 43:114704. [PMID: 39216000 DOI: 10.1016/j.celrep.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
T cell activation is governed through T cell receptors (TCRs), heterodimers of two sequence-variable chains (often an α and β chain) that synergistically recognize antigen fragments presented on cell surfaces. Despite this, there only exist repositories dedicated to collecting single-chain, not paired-chain, TCR sequence data. We addressed this gap by creating the Observed TCR Space (OTS) database, a source of consistently processed and annotated, full-length, paired-chain TCR sequences. Currently, OTS contains 5.35 million redundant (1.63 million non-redundant), predominantly human sequences from across 50 studies and at least 75 individuals. Using OTS, we identify pairing biases, public TCRs, and distinct chain coherence patterns relative to antibodies. We also release a paired-chain TCR language model, providing paired embedding representations and a method for residue in-filling conditional on the partner chain. OTS will be updated as a central community resource and is freely downloadable and available as a web application.
Collapse
Affiliation(s)
- Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| | - Alexander Greenshields-Watson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Parth Agarwal
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Broncio Aguilar-Sanjuan
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Oliver M Turnbull
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Nele P Quast
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| |
Collapse
|
18
|
Zhou S, Yang Y, Jing Y, Zhu X. Generating advanced CAR-based therapy for hematological malignancies in clinical practice: targets to cell sources to combinational strategies. Front Immunol 2024; 15:1435635. [PMID: 39372412 PMCID: PMC11449748 DOI: 10.3389/fimmu.2024.1435635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been a milestone breakthrough in the treatment of hematological malignancies, offering an effective therapeutic option for multi-line therapy-refractory patients. So far, abundant CAR-T products have been approved by the United States Food and Drug Administration or China National Medical Products Administration to treat relapsed or refractory hematological malignancies and exhibited unprecedented clinical efficiency. However, there were still several significant unmet needs to be progressed, such as the life-threatening toxicities, the high cost, the labor-intensive manufacturing process and the poor long-term therapeutic efficacy. According to the demands, many researches, relating to notable technical progress and the replenishment of alternative targets or cells, have been performed with promising results. In this review, we will summarize the current research progress in CAR-T eras from the "targets" to "alternative cells", to "combinational drugs" in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical Medical College, Wuhan University, Wuhan, China
| | - Yulu Jing
- The Second Clinical Medical College, Wuhan University, Wuhan, China
| | - Xiaoying Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Rajashekar V, Stern L, Almeida CF, Slobedman B, Abendroth A. The surveillance of viral infections by the unconventional Type I NKT cell. Front Immunol 2024; 15:1472854. [PMID: 39355244 PMCID: PMC11442276 DOI: 10.3389/fimmu.2024.1472854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Type I NKT cells, also known as Invariant Natural Killer T (iNKT) cells, are a subpopulation of unconventional, innate-like T (ILT) cells which can proficiently influence downstream immune effector functions. Type I NKT cells express a semi-invariant αβ T cell receptor (TCR) that recognises lipid-based ligands specifically presented by the non-classical cluster of differentiation (CD1) protein d (CD1d) molecule. Due to their potent immunomodulatory functional capacity, type I NKT cells are being increasingly considered in prophylactic and therapeutic approaches towards various diseases, including as vaccine-adjuvants. As viruses do not encode lipid synthesis, it is surprising that many studies have shown that some viruses can directly impede type I NKT activation through downregulating CD1d expression. Therefore, in order to harness type I NKT cells for potential anti-viral therapeutic uses, it is critical that we fully appreciate how the CD1d-iNKT cell axis interacts with viral immunity. In this review, we examine clinical findings that underpin the importance of type I NKT cell function in viral infections. This review also explores how certain viruses employ immunoevasive mechanisms and directly encode functions to target CD1d expression and type I NKT cell function. Overall, we suggest that the CD1d-iNKT cell axis may hold greater gravity within viral infections than what was previously appreciated.
Collapse
Affiliation(s)
- Varshini Rajashekar
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases , University of Sydney, Sydney, NSW, Australia
| | - Lauren Stern
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases , University of Sydney, Sydney, NSW, Australia
| | - Catarina F. Almeida
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases , University of Sydney, Sydney, NSW, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases , University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Iwabuchi K, Van Kaer L. Editorial: Community series in the role of CD1- and MR1-restricted T cells in immunity and disease, volume II. Front Immunol 2024; 15:1490010. [PMID: 39351217 PMCID: PMC11439791 DOI: 10.3389/fimmu.2024.1490010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
21
|
Wang Y, Wang Y, Ge Y, Wu Z, Yue X, Li C, Liang X, Ma C, Wang P, Gao L. Tim-4 alleviates acute hepatic injury by modulating homeostasis and function of NKT cells. Clin Exp Immunol 2024; 218:101-110. [PMID: 39036980 PMCID: PMC11404119 DOI: 10.1093/cei/uxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is an immune checkpoint molecule, which involves in numerous inflammatory diseases. Tim-4 is mainly expressed on antigen-presenting cells. However, increasing evidence has shown that Tim-4 is also expressed on natural killer T (NKT) cells. The role of Tim-4 in maintaining NKT cell homeostasis and function remains unknown. In this study, we explored the effect of Tim-4 on NKT cells in acute liver injury. This study found that Tim-4 expression on hepatic NKT cells was elevated during acute liver injury. Tim-4 deficiency enhanced IFN-γ, TNF-α expression while impaired IL-4 production in NKT cells. Loss of Tim-4 drove NKT-cell effector lineages to be skewed to NKT1 subset. Furthermore, Tim-4 KO mice were more susceptible to α-Galactosylceramide (α-GalCer) challenge. In conclusion, our findings indicate that Tim-4 plays an important role in regulating homeostasis and function of NKT cells in acute liver injury. Therefore, Tim-4 might become a new regulator of NKT cells and a potential target for the therapy of acute hepatitis.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Pin Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University. Jinan, Shandong 250033, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
22
|
O’Neal J, Mavers M, Jayasinghe RG, DiPersio JF. Traversing the bench to bedside journey for iNKT cell therapies. Front Immunol 2024; 15:1436968. [PMID: 39170618 PMCID: PMC11335525 DOI: 10.3389/fimmu.2024.1436968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| | - Melissa Mavers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
23
|
Heffernan DS, Chun TT, Monaghan SF, Chung CS, Ayala A. invariant Natural Killer T Cells Modulate the Peritoneal Macrophage Response to Polymicrobial Sepsis. J Surg Res 2024; 300:211-220. [PMID: 38824851 PMCID: PMC11246799 DOI: 10.1016/j.jss.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION A dysregulated immune system is a major driver of the mortality and long-term morbidity from sepsis. With respect to macrophages, it has been shown that phenotypic changes are critical to effector function in response to acute infections, including intra-abdominal sepsis. Invariant natural killer T cells (iNKT cells) have emerged as potential central regulators of the immune response to a variety of infectious insults. Specifically, various iNKT cell:macrophage interactions have been noted across a spectrum of diseases, including acute events such as sepsis. However, the potential for iNKT cells to affect peritoneal macrophages during an abdominal septic event is as yet unknown. METHODS Cecal ligation and puncture (CLP) was performed in both wild type (WT) and invariant natural killer T cell knockout (iNKT-/-) mice. 24 h following CLP or sham operation, peritoneal macrophages were collected for analysis. Analysis of macrophage phenotype and function was undertaken to include analysis of bactericidal activity and cytokine or superoxide production. RESULTS Within iNKT-/- mice, a greater degree of intraperitoneal macrophages in response to the sepsis was noted. Compared to WT mice, within iNKT-/- mice, CLP did induce an increase in CD86+ and CD206+, but no difference in CD11b+. Unlike WT mice, intra-abdominal sepsis within iNKT-/- mice induced an increase in Ly6C-int (5.2% versus 14.9%; P < 0.05) and a decrease in Ly6C-high on peritoneal macrophages. Unlike phagocytosis, iNKT cells did not affect macrophage bactericidal activity. Although iNKT cells did not affect interleukin-6 production, iNKT cells did affect IL-10 production and both nitrite and superoxide production from peritoneal macrophages. CONCLUSIONS The observations indicate that iNKT cells affect specific phenotypic and functional aspects of peritoneal macrophages during polymicrobial sepsis. Given that pharmacologic agents that affect iNKT cell functioning are currently in clinical trial, these findings may have the potential for translation to critically ill surgical patients with abdominal sepsis.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island.
| | - Tristen T Chun
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
24
|
Li J, Moresco P, Fearon DT. Intratumoral NKT cell accumulation promotes antitumor immunity in pancreatic cancer. Proc Natl Acad Sci U S A 2024; 121:e2403917121. [PMID: 38980903 PMCID: PMC11260137 DOI: 10.1073/pnas.2403917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a potentially lethal disease lacking effective treatments. Its immunosuppressive tumor microenvironment (TME) allows it to evade host immunosurveillance and limits response to immunotherapy. Here, using the mouse KRT19-deficient (sgKRT19-edited) PDA model, we find that intratumoral accumulation of natural killer T (NKT) cells is required to establish an immunologically active TME. Mechanistically, intratumoral NKT cells facilitate type I interferon (IFN) production to initiate an antitumor adaptive immune response, and orchestrate the intratumoral infiltration of T cells, dendritic cells, natural killer cells, and myeloid-derived suppressor cells. At the molecular level, NKT cells promote the production of type I IFN through the interaction of their CD40L with CD40 on myeloid cells. To evaluate the therapeutic potential of these observations, we find that administration of folinic acid to mice bearing PDA increases NKT cells in the TME and improves their response to anti-PD-1 antibody treatment. In conclusion, NKT cells have an essential role in the immune response to mouse PDA and are potential targets for immunotherapy.
Collapse
Affiliation(s)
- Jiayun Li
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Philip Moresco
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794
| | - Douglas T. Fearon
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
25
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Di Domenico M, Serretiello E, Smimmo A, Vieira e Silva FF, Raimondi SA, Pascariello C, Marino MM, Lo Muzio L, Caponio VCA, Cantore S, Ballini A. Monitoring of Immune Memory by Phenotypical Lymphocyte Subsets Identikit: An Observational Study in a Blood Donors' Cohort. J Pers Med 2024; 14:733. [PMID: 39063987 PMCID: PMC11277854 DOI: 10.3390/jpm14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The cross-talk between the innate and adaptive immune response represents the first defense weapon against the threat of pathogens. Substantial evidence has shown a relationship between immune phenotype lymphocytes and COVID-19 disease severity and/or implication in susceptibility to SARS-CoV-2 infection. Recently, belonging to ABO blood groups has been investigated as a correlation factor to COVID-19 disease. This pilot study investigated lymphocyte typing in a cohort of blood donors to understand the underlying mechanism in SARS-CoV-2 infection linked to the blood group. The study cohort consisted of 20-64-year-old subjects, without comorbidities, from both sexes, who were COVID-19 vaccinated with previous or no infection history. Whole blood samples, collected at A.O.R.N. Sant'Anna and San Sebastiano Hospital (Campania Region), were processed by multiparametric cytofluorimetric assay, to characterize CD4+ helper and CD8+ cytotoxic T cell CD3+ subpopulations. The CD45RA, CCR7, CD27, CD28, CD57 and PD-1 markers were investigated to delineate the peripheral T-cell maturation stages. Differences were detected in ABO blood types in CD3+, CD4+ gated on CD3+, CD8+ and CD8+ gated on CD3+ percentage. These results contribute to identifying a memory cell "identikit" profile in COVID-19 disease, thus leading to a useful tool in precision medicine.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Enrica Serretiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| | - Annafrancesca Smimmo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Fábio França Vieira e Silva
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Sonia Anna Raimondi
- Azienda Ospedaliera “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy; (S.A.R.); (C.P.)
| | - Caterina Pascariello
- Azienda Ospedaliera “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy; (S.A.R.); (C.P.)
| | - Maria Michela Marino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (V.C.A.C.)
| | - Vito Carlo Alberto Caponio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (V.C.A.C.)
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (E.S.); (A.S.); (F.F.V.e.S.); (M.M.M.); (A.B.)
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (L.L.M.); (V.C.A.C.)
| |
Collapse
|
27
|
Petrovic A, Jovanovic I, Stojanovic B, Dimitrijevic Stojanovic M, Stojanovic BS, Jurisevic M, Simovic Markovic B, Jovanovic M, Jovanovic M, Jovanovic M, Gajovic N. Harnessing Metformin's Immunomodulatory Effects on Immune Cells to Combat Breast Cancer. Int J Mol Sci 2024; 25:5869. [PMID: 38892058 PMCID: PMC11172298 DOI: 10.3390/ijms25115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Metformin, a medication known for its anti-glycemic properties, also demonstrates potent immune system activation. In our study, using a 4T1 breast cancer model in BALB/C WT mice, we examined metformin's impact on the functional phenotype of multiple immune cells, with a specific emphasis on natural killer T (NKT) cells due to their understudied role in this context. Metformin administration delayed the appearance and growth of carcinoma. Furthermore, metformin increased the percentage of IFN-γ+ NKT cells, and enhanced CD107a expression, as measured by MFI, while decreasing PD-1+, FoxP3+, and IL-10+ NKT cells in spleens of metformin-treated mice. In primary tumors, metformin increased the percentage of NKp46+ NKT cells and increased FasL expression, while lowering the percentages of FoxP3+, PD-1+, and IL-10-producing NKT cells and KLRG1 expression. Activation markers increased, and immunosuppressive markers declined in T cells from both the spleen and tumors. Furthermore, metformin decreased IL-10+ and FoxP3+ Tregs, along with Gr-1+ myeloid-derived suppressor cells (MDSCs) in spleens, and in tumor tissue, it decreased IL-10+ and FoxP3+ Tregs, Gr-1+, NF-κB+, and iNOS+ MDSCs, and iNOS+ dendritic cells (DCs), while increasing the DCs quantity. Additionally, increased expression levels of MIP1a, STAT4, and NFAT in splenocytes were found. These comprehensive findings illustrate metformin's broad immunomodulatory impact across a variety of immune cells, including stimulating NKT cells and T cells, while inhibiting Tregs and MDSCs. This dynamic modulation may potentiate its use in cancer immunotherapy, highlighting its potential to modulate the tumor microenvironment across a spectrum of immune cell types.
Collapse
Affiliation(s)
- Andjela Petrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Otorhinolaryngology, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Mihailo Jovanovic
- Clinic for Orthopaedics and Traumatology, University Clinical Center, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
28
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
29
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
30
|
Xu X, Zhang J, Xing H, Han L, Li X, Wu P, Tang J, Jing L, Luo J, Luo J, Liu L. Identification of metabolism-related key genes as potential biomarkers for pathogenesis of immune thrombocytopenia. Sci Rep 2024; 14:9040. [PMID: 38641637 PMCID: PMC11031595 DOI: 10.1038/s41598-024-59493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
Immune thrombocytopenia (ITP), an acquired autoimmune disease, is characterized by immune-mediated platelet destruction. A biomarker is a biological entity that contributes to disease pathogenesis and reflects disease activity. Metabolic alterations are reported to be associated with the occurrence of various diseases. As metabolic biomarkers for ITP have not been identified. This study aimed to identify metabolism-related differentially expressed genes as potential biomarkers for pathogenesis of ITP using bioinformatic analyses.The microarray expression data of the peripheral blood mononuclear cells were downloaded from the Gene Expression Omnibus database (GSE112278 download link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112278 ). Key module genes were intersected with metabolism-related genes to obtain the metabolism-related key candidate genes. The hub genes were screened based on the degree function in the coytoscape sofware. The key ITP-related genes were subjected to functional enrichment analysis. Immune infiltration analysis was performed using a single-sample gene set enrichment analysis algorithm to evaluate the differential infiltration levels of immune cell types between ITP patient and control. Molecular subtypes were identified based on the expression of hub genes. The expression of hub genes in the ITP patients was validated using quantitative real-time polymerase chain reaction analysis. This study identified five hub genes (ADH4, CYP7A1, CYP1A2, CYP8B1, and NR1H4), which were be associated with the pathogenesis of ITP, and two molecular subtypes of ITP. Among these hub genes, CYP7A1 and CYP8B1 involved in cholesterol metabolism,were further verified in clinical samples.
Collapse
Affiliation(s)
- Xiangmei Xu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jiamin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Hongyun Xing
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Liying Han
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Pengqiang Wu
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jirui Tang
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Jing
- Department of Hematology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jie Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Jing Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
31
|
Saavedra-Avila NA, Pigni NB, Caldwell DR, Chena-Becerra F, Intano J, Ng TW, Chennamadhavuni D, Porcelli SA, Gascón JA, Howell AR. A Humanized Mouse Model Coupled with Computational Analysis Identifies Potent Glycolipid Agonist of Invariant NKT Cells. ACS Chem Biol 2024; 19:926-937. [PMID: 38477945 PMCID: PMC11075374 DOI: 10.1021/acschembio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Invariant natural killer T (iNKT) cells play an important role in many innate and adaptive immune responses, with potential applications in cancer immunotherapy. The glycolipid KRN7000, an α-galactosylceramide, potently activates iNKT cells but has shown limited anticancer effects in human clinical trials conducted so far. In spite of almost three decades of structure-activity relationship studies, no alternative glycolipid has yet emerged as a superior clinical candidate. One reason for the slow progress in this area is that standard mouse models do not accurately reflect the specific ligand recognition by human iNKT cells and their requirements for activation. Here we evaluated a series of KRN7000 analogues using a recently developed humanized mouse model that expresses a human αTCR chain sequence and human CD1d. In this process, a more stimulatory, previously reported but largely overlooked glycolipid was identified, and its activity was probed and rationalized via molecular simulations.
Collapse
Affiliation(s)
- Noemi A. Saavedra-Avila
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - Natalia B. Pigni
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC CONICET-UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | | | - Florencia Chena-Becerra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - Jose Intano
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| | - Tony W. Ng
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | | | - Steven A. Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - José A. Gascón
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| |
Collapse
|
32
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
33
|
Kamii Y, Hayashizaki K, Kanno T, Chiba A, Ikegami T, Saito M, Akeda Y, Ohteki T, Kubo M, Yoshida K, Kawakami K, Oishi K, Araya J, Kuwano K, Kronenberg M, Endo Y, Kinjo Y. IL-27 regulates the differentiation of follicular helper NKT cells via metabolic adaptation of mitochondria. Proc Natl Acad Sci U S A 2024; 121:e2313964121. [PMID: 38394242 PMCID: PMC10907256 DOI: 10.1073/pnas.2313964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that express an invariant T cell receptor α chain and contribute to bridging innate and acquired immunity with rapid production of large amounts of cytokines after stimulation. Among effecter subsets of iNKT cells, follicular helper NKT (NKTFH) cells are specialized to help B cells. However, the mechanisms of NKTFH cell differentiation remain to be elucidated. In this report, we studied the mechanism of NKTFH cell differentiation induced by pneumococcal surface protein A and α-galactosylceramide (P/A) vaccination. We found that Gr-1+ cells helped iNKT cell proliferation and NKTFH cell differentiation in the spleen by producing interleukin-27 (IL-27) in the early phase after vaccination. The neutralization of IL-27 impaired NKTFH cell differentiation, which resulted in compromised antibody production and diminished protection against Streptococcus pneumoniae infection by the P/A vaccine. Our data indicated that Gr-1+ cell-derived IL-27 stimulated mitochondrial metabolism, meeting the energic demand required for iNKT cells to differentiate into NKTFH cells. Interestingly, Gr-1+ cell-derived IL-27 was induced by iNKT cells via interferon-γ production. Collectively, our findings suggest that optimizing the metabolism of iNKT cells was essential for acquiring specific effector functions, and they provide beneficial knowledge on iNKT cell-mediated vaccination-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba292-0818, Japan
| | - Akio Chiba
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Taku Ikegami
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo162-8640, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo113-8510, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba278-0022, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi980-8575, Japan
| | | | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA92037
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba292-0818, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
34
|
Takami M, Aoki T, Nishimura K, Tanaka H, Onodera A, Motohashi S. Anti-Vα24Jα18 TCR Antibody Tunes iNKT Cell Responses to Target and Kill CD1d-negative Tumors in an FcγRII (CD32)-dependent Manner. CANCER RESEARCH COMMUNICATIONS 2024; 4:446-459. [PMID: 38319156 PMCID: PMC10875981 DOI: 10.1158/2767-9764.crc-23-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Invariant natural killer T (iNKT) cells play an essential role in antitumor immunity by exerting cytotoxicity and producing massive amounts of cytokines. iNKT cells express invariant T-cell receptors (TCR) to recognize their cognate glycolipid antigens such as α-galactosylceramide (α-GalCer) presented on CD1d. We recently reported that iNKT cells recognize CD1d-negative leukemia cell line K562 in a TCR-dependent manner. However, it remains controversial how iNKT cells use TCRs to recognize and exhibit cytotoxic activity toward CD1d-negative tumors cells without CD1d restriction. Here, we report that iNKT cells exerted cytotoxicity toward K562 cells via a carried over anti-Vα24 TCR mAb from positive selection by magnetic bead sorting. We found that addition of the anti-Vα24Jα18 TCR mAb (6B11 mAb) rendered iNKT cells cytotoxic to K562 cells in an FcγRII (CD32)-dependent manner. Moreover, iNKT cells treated with 6B11 mAb became cytotoxic to other CD32+ cell lines (U937 and Daudi). In addition, iNKT cells treated with 6B11 mAb suppressed K562 cell growth in a murine xenograft model in vivo. These data suggest that anti-iNKT TCR mAb treatment of iNKT cells can be applied as a therapeutic strategy to treat CD32+ cancers such as leukemia, lymphoma, and lung cancer. SIGNIFICANCE Our findings unveiled that iNKT cells recognize and kill CD1d-negative target tumors via the anti-iNKT TCR mAb bound to CD32 at the tumor site, thereby bridging iNKT cells and CD1d-negative tumors. These findings shed light on the therapeutic potential of anti-iNKT TCR mAbs in NKT cell-based immunotherapy to treat CD1d-negative CD32+ cancers.
Collapse
Affiliation(s)
- Mariko Takami
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Aoki
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Nishimura
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidekazu Tanaka
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Onodera
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Research Institute for Disaster Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
35
|
Kronenberg M, Engel I. NKT cells in the antitumor response: the β version? J Clin Invest 2024; 134:e177663. [PMID: 38357925 PMCID: PMC10866647 DOI: 10.1172/jci177663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
NKT cells recognize glycolipids presented by CD1d-expressing antigen-presenting cells (APCs) and include type I NKT cells with antitumor function and type II NKT cells, which have been reported to suppress the antitumor response. Some type II NKT cells recognize sulfatide, a glycosphingolipid with a sulfate modification of the sugar. Type I NKT cells recognize different glycosphingolipids. In this issue of the JCI, Nishio and colleagues showed that APCs could process sulfatide antigens, analogous to protein processing for peptide-reactive T cells. Antigen processing in lysosomes removed sulfate to generate a glycosphingolipid that stimulated type I NKT cells and thereby turned an antigen with no antitumor activity into one that not only stimulated type I NKT cells but also stimulated antitumor responses. These findings may extend to the development of glycolipid antigens that could stimulate anticancer responses via antigen processing by APCs.
Collapse
|
36
|
Pathak VK, Singh I, Sharma B, Turankar RP, Arora M, Singh SV, Sengupta U. Unveiling the role of NK cells, NKT-like cells, and γδ cells in pathogenesis of type 1 reactions in leprosy. Heliyon 2024; 10:e25254. [PMID: 38327455 PMCID: PMC10847912 DOI: 10.1016/j.heliyon.2024.e25254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Leprosy is a disease with spectral clinical manifestations along with two types of reactions, type 1 reaction (T1R) and type 2 reaction (T2R). T1R especially occurs because of the defensive upgradation of cell-mediated immunity (CMI) to M. leprae antigens. T1R is the main cause of disability in leprosy. The role of conventional adaptive T cells has been well studied to understand T1R. A comprehensive understanding of the role of unconventional T cells in the manifestation of inflammation during T1R is crucial and has not been studied. In our study, we found significantly higher plasma levels of TNFα, IL1β, IL17, and IP10 in T1R when compared to non-reaction (NR). Gene expression for cytokines in blood circulation by qPCR showed significantly higher expression of IFNγ, IP10, TNFα, IL6, IL17A and chemokines CCL3, CCR1, CCR5, and CXCR3 in T1R as compared to NR. Frequencies of NKT-like cells (48.7 %) and NK cells (22.3 %) were found significantly higher in T1R in comparison to NR (36.9 %, 18.3 %, respectively) (p = 0.0001). Significantly lower levels of γδT cells (3.32 %) were observed in T1R in comparison to NR (5.16 %). The present study has provided evidence for the first time on the role of plausible unconventional T cells in the immunopathogenesis of T1R in leprosy.
Collapse
Affiliation(s)
- Vinay Kumar Pathak
- Stanley Browne Laboratory, TLM Community Hospital, Nand Nagari, Delhi, India
- Department of Biotechnology, GLA University, Mathura, UP, India
| | - Itu Singh
- Stanley Browne Laboratory, TLM Community Hospital, Nand Nagari, Delhi, India
| | - Bhawna Sharma
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India
| | | | - Mamta Arora
- Clinical Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra, India
| | - Shoor Vir Singh
- Department of Biotechnology, GLA University, Mathura, UP, India
| | - Utpal Sengupta
- Stanley Browne Laboratory, TLM Community Hospital, Nand Nagari, Delhi, India
| |
Collapse
|
37
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
38
|
Lu Z, Chai X, Pan Y, Li S. The causality between CD8 +NKT cells and CD16 -CD56 on NK cells with hepatocellular carcinoma: a Mendelian randomization study. Infect Agent Cancer 2024; 19:3. [PMID: 38245747 PMCID: PMC10799464 DOI: 10.1186/s13027-024-00565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), which is featured with high morbidity and mortality worldwide, is a primary malignant tumor of the liver. Recently, there is a wealth of supporting evidence revealing that NK cell-related immune traits are strongly associated with the development of HCC, but the causality between them has not been proven. METHODS Two-sample Mendelian randomization (MR) study was performed to probe the causal correlation between NK cell-related immune traits and HCC. Genetic variations in NK cell-related immune traits were extracted from recent genome-wide association studies (GWAS) of individuals with European blood lineage. HCC data were derived from the UK Biobank Consortium's GWAS summary count data, including a total of 372,184 female and male subjects, with 168 cases and 372,016 controls, all of whom are of European ancestry. Sensitivity analysis was mainly used for heterogeneity and pleiotropy testing. RESULTS Our research indicated the causality between NK cell-related immune traits and HCC. Importantly, CD8+NKT cells had protective causal effects on HCC (OR = 0.9996;95%CI,0.9993-0.9999; P = 0.0489). CD16-CD56 caused similar effects on NK cells (OR = 0.9997;95%CI,0.9996-0.9999; P = 0.0117) as CD8+NKT cells. Intercepts from Egger showed no pleiotropy and confounding factors. Furthermore, insufficient evidence was found to support the existence of heterogeneity by Cochran's Q test. CONCLUSION MR analysis suggested that low CD8+NKT cells and CD16-CD56 expression on NK cells were linked with a higher risk of HCC.
Collapse
Affiliation(s)
- Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Xiaowei Chai
- Tongji Hospital Affiliated to Tongji University, Shanghai, 200040, China
| | - Yong Pan
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China.
| |
Collapse
|
39
|
Deng Z, Ouyang Z, Mei S, Zhang X, Li Q, Meng F, Hu Y, Dai X, Zhou S, Mao K, Huang C, Dai J, Yi C, Tan N, Feng T, Long H, Tian X. Enhancing NKT cell-mediated immunity against hepatocellular carcinoma: Role of XYXD in promoting primary bile acid synthesis and improving gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116945. [PMID: 37490989 DOI: 10.1016/j.jep.2023.116945] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Xiayuxue decoction' (XYXD) is a traditional Chinese medicine compound, composing of three natural medicines: Rheum officinale Baill., Prunus persica (L.) Batsch and Eupolyphaga sinensis Walker. It is derived from the famous traditional Chinese medical classics 'Jingui Yaolue' and has been used for thousands of years. In the Guidelines for the Diagnosis and Treatment of Primary liver Cancer issued by China's Health Commission, XYXD was applied in the treatment of primary liver cancer. AIM OF THE STUDY To clarify the pharmacodynamic material basis and mechanism of XYXD in the treatment of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Firstly, the active components of XYXD and its distribution in vivo were identified by Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Then, the effective components and mechanism of XYXD against HCC were explored by network pharmacology combined with cell experiments in vitro. Furthermore, the anti-HCC effect of XYXD was determined by animal experiments in vivo. Metagenomic sequencing was used to detect its effect in gut microbiota, and targeted metabolism was used to detect the changes of bile acids in the liver. Finally, the related targets of NKT cell immune function activation were detected by RT-qPCR and Elisa. RESULTS A total of 113 active ingredients in XYXD were identified, and the distribution of active ingredients in blood, liver, tumor, cecum, intestinal contents and feces was clarified. The circulation process and active ingredient group of XYXD were preliminarily clarified. In addition, we found five anti-HCC active ingredients in XYXD through network pharmacology combined with cell experiments in vitro, among which aloe emodin had the most significant effect, and predicted the potential mechanism of XYXD against HCC through NKT cell pathway. Moreover, the inhibitory effect of XYXD on liver tumor growth was clarified by animal experiments in vivo. The mechanism was mainly to promote the production of bile salt hydrolase (BSH) by increasing the abundance of Bacteroides and Lactobacillus, BSH converts conjugated bile acids into primary bile acids, and reduces the conversion of primary bile acids to secondary bile acids by reducing the abundance of Eubacterium, thereby increasing the content of primary bile acids. Primary bile acids trigger NKT cells in the liver to produce interferon-γ to exert anti-HCC immune effects. CONCLUSION This study found that the traditional Chinese herbal formula XYXD can trigger the immune effect of NKT cells against HCC by regulating the interaction between gut microbiota and bile acids.
Collapse
Affiliation(s)
- Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Zhaoguang Ouyang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, Tianjin Province, China; Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xue Zhang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Qian Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Fanying Meng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Yuxing Hu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xinjun Dai
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Siqian Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan Province, China
| | - Kexin Mao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan Province, China
| | - Caizhi Huang
- Laboratory Department of Hunan Children's Hospital, Changsha, 410007, Hunan province, China
| | - Jingjing Dai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Nianhua Tan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Ting Feng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan Province, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China; Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention &Treatment, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
40
|
Xiao L, Xian M, Zhang C, Guo Q, Yi Q. Lipid peroxidation of immune cells in cancer. Front Immunol 2024; 14:1322746. [PMID: 38259464 PMCID: PMC10800824 DOI: 10.3389/fimmu.2023.1322746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Growing evidence indicates that cellular metabolism is a critical determinant of immune cell viability and function in antitumor immunity and lipid metabolism is important for immune cell activation and adaptation to the tumor microenvironment (TME). Lipid peroxidation is a process in which oxidants attack lipid-containing carbon-carbon double bonds and is an important part of lipid metabolism. In the past decades, studies have shown that lipid peroxidation participates in signal transduction to control cell proliferation, differentiation, and cell death, which is essential for cell function execution and human health. More importantly, recent studies have shown that lipid peroxidation affects immune cell function to modulate tumor immunity and antitumor ability. In this review, we briefly overview the effect of lipid peroxidation on the adaptive and innate immune cell activation and function in TME and discuss the effectiveness and sensitivity of the antitumor ability of immune cells by regulating lipid peroxidation.
Collapse
Affiliation(s)
| | | | | | | | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, United States
| |
Collapse
|
41
|
Zhao W, Li M, Song S, Zhi Y, Huan C, Lv G. The role of natural killer T cells in liver transplantation. Front Cell Dev Biol 2024; 11:1274361. [PMID: 38250325 PMCID: PMC10796773 DOI: 10.3389/fcell.2023.1274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Natural killer T cells (NKTs) are innate-like lymphocytes that are abundant in the liver and participate in liver immunity. NKT cells express both NK cell and T cell markers, modulate innate and adaptive immune responses. Type I and Type II NKT cells are classified according to the TCR usage, while they recognize lipid antigen in a non-classical major histocompatibility (MHC) molecule CD1d-restricted manner. Once activated, NKT cells can quickly produce cytokines and chemokines to negatively or positively regulate the immune responses, depending on the different NKT subsets. In liver transplantation (LTx), the immune reactions in a series of processes determine the recipients' long-term survival, including ischemia-reperfusion injury, alloresponse, and post-transplant infection. This review provides insight into the research on NKT cells subpopulations in LTx immunity during different processes, and discusses the shortcomings of the current research on NKT cells. Additionally, the CD56-expressing T cells are recognized as a NK-like T cell population, they were also discussed during these processes.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
42
|
Aoki T, Motohashi S. Progress in Natural Killer T Cell-Based Immunotherapy for Cancer: Use of Allogeneic and Gene-Edited Cells. Crit Rev Oncog 2024; 29:1-9. [PMID: 38421710 DOI: 10.1615/critrevoncog.2023049526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Immune cell therapy has received attention in the clinical setting. However, current chimeric antigen receptor T cell therapies require individualized manufacturing based on patient cells, resulting in high costs and long processing times. Allogeneic immune cell therapy, which involves the use of immune cells from other donors, is emerging as a promising alternative that offers multiple advantages, including off-the-shelf availability, standardized manufacturing, and potentially stronger effector functions. Natural killer T (NKT) cells are a type of T cell that can be activated without being restricted by HLA, indicating their potential use in allogeneic cell immunotherapy. They exhibit cytotoxic activity against various cancer targets. However, their low frequency in blood limits their use in ex vivo amplification for treatment. This has led researchers to focus on allogeneic NKT cells as a potential treatment agent. In this study, we review the research on NKT cell-based immunotherapy and focus on the recent progress in clinical trials related to NKT cell-based immunotherapy worldwide. NKT cell-based therapy is not limited to specific cancer types and has been investigated in many ways worldwide over the past decade. Some clinical trials targeting NKT cells have shown promising results; however, the number of trials is low compared to those using T and natural killer cells. The use of allogeneic NKT cells may revolutionize the treatment of cancer and other diseases. However, further research and clinical trials are necessary to fully understand their efficacy, safety, and long-term benefits.
Collapse
Affiliation(s)
- Takahiro Aoki
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
Heuser-Loy C, Baumgart AK, Hackstein CP, Courrèges CJF, Philipp MS, Thaiss CA, Holland T, Evaristo C, Garbi N, Kurts C. Conditional NKT Cell Depletion in Mice Reveals a Negative Feedback Loop That Regulates CTL Cross-Priming. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:35-42. [PMID: 38019126 DOI: 10.4049/jimmunol.2300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
NKT cells are unconventional T cells whose biological role is incompletely understood. Similar to TH cells, activated NKT cells can cause dendritic cell (DC) maturation, which is required for effective CTL responses. However, it is unclear whether and how NKT cells affect CTLs downstream of the DC maturation phase. This is partially due to the lack of techniques to conditionally deplete NKT cells in vivo. To overcome this problem, we have developed two approaches for this purpose in mice: the first is based on mixed bone marrow chimeras where Jα18 knockout and depletable CD90 congenic bone marrow is combined, and the second used PLZFCre × iDTR bone marrow chimeras, which target innate-like T cells. Using these tools, we found that NKT cell depletion at 20 h, that is, after initial DC activation, did not render CTLs helpless, as CD40L signaling by non-NKT cells sufficed. Instead, NKT cell depletion even augmented CD8 T cell expansion and cytotoxicity by mechanisms distinct from reduced STAT6 signaling. These findings revealed a negative feedback loop by which NKT cells control CTL cross-priming downstream of DC maturation. The techniques described in this study expand the toolbox to study NKT cells and other unconventional T cell subsets in vivo and uncovered a hidden immunoregulatory mechanism.
Collapse
Affiliation(s)
- Christoph Heuser-Loy
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Ann-Kathrin Baumgart
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Carl-Philipp Hackstein
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Christina J F Courrèges
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Marie-Sophie Philipp
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Christoph A Thaiss
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Tristan Holland
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - César Evaristo
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rhenish Friedrich Wilhelm University, Bonn, Germany
- The Peter Doherty Institute of Infection and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Abstract
Natural killer T (NKT) cells are a population of innate-like T cells capable of enhancing both innate and adaptive immune responses. Co-delivering an NKT cell agonist and antigen can provide molecular signals to antigen-presenting cells, such as dendritic and B cells, that facilitate strong antigen-specific adaptive immune responses. Accordingly, there has been a significant number of developmental NKT cell-dependent vaccine therapies developed, particularly in the last decade, with many incorporating cancer antigens. In this review, we summarize studies that chemically conjugate the NKT cell agonist and antigen as an effective strategy for agonist-antigen co-delivery to drive antitumor responses.
Collapse
Affiliation(s)
- Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
45
|
Das R. T Cell Receptor-Engaging Monoclonal Antibodies Mobilize the Anti-Tumor Functions of Invariant Natural Killer T Cells. Crit Rev Oncog 2024; 29:69-81. [PMID: 38421715 PMCID: PMC11062185 DOI: 10.1615/critrevoncog.2023049947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Invariant natural killer T cells (iNKTs) are innate-type T lymphocytes that directly kill tumor cells or tumor-growth promoting immunosuppressive cells such astumor-associated macrophages. Additionally, iNKTs robustly transactivate the antitumor functions of T, B, natural killer, and dendritic cells as well as reinvigorate exhausted immune cells in the tumor microenvironment. As such, iNKTs make excellent candidates for inclusion in anti-cancer cellular therapies. However, to capitalize on the potential benefits of iNKT cell-based approaches, it is imperative that we develop new and clinically viable strategies to enhance their antitumor function. To that end, two novel monoclonal antibodies (mAbs) that selectively bind to the human (NKTT320) or murine (NKT14m) invariant T cell receptor have been recently developed and characterized. Studies using purified human iNKTs (in vitro) and a model of non-human primate (in vivo) reveal that NKTT320 promotes swift, vigorous and sustained iNKT cell activation that is accompanied by robust production of inflammatory mediators and bystander immune cell activation. Furthermore, NKTT320 augments expression of cytotoxic markers and human iNKT cell degranulation. Similarly, NKT14m prompts dramatic murine iNKT cell activation and functional response both in vitro and in vivo. However, antitumor efficacy of a single dose of NKT14m injection in tumor-bearing mice is limited and tumor-model dependent. In contrast, combination treatment of NKT14m with either low dose interleukin (IL)-12 or the chemotherapeutic agent, cyclophosphamide results in a superior antitumor response in vivo. This is evident by activation of both iNKTs and other immune cells, prolonged survival of the tumor-challenged mice, and long-lasting immunity. Collectively, these recent studies justify further development of anti-iTCR mAbs that can be used alone or in conjunction with immunomodulatory agents to enhance iNKT cell antitumor immunity against various cancers.
Collapse
Affiliation(s)
- Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
46
|
Nishio K, Pasquet L, Camara K, DiSapio J, Hsu KS, Kato S, Bloom A, Richardson SK, Welsh JA, Jiang T, Jones JC, Cardell S, Watarai H, Terabe M, Olkhanud PB, Howell AR, Berzofsky JA. Lysosomal processing of sulfatide analogs alters target NKT cell specificity and immune responses in cancer. J Clin Invest 2023; 134:e165281. [PMID: 38127463 PMCID: PMC10866642 DOI: 10.1172/jci165281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding β-galactosylceramide (βGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.
Collapse
Affiliation(s)
- Kumiko Nishio
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lise Pasquet
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kaddy Camara
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Julia DiSapio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Kevin S. Hsu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shingo Kato
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Anja Bloom
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | - Joshua A. Welsh
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Tianbo Jiang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jennifer C. Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Poddighe D, Maulenkul T, Zhubanova G, Akhmaldtinova L, Dossybayeva K. Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research. Cells 2023; 12:2854. [PMID: 38132174 PMCID: PMC10742140 DOI: 10.3390/cells12242854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Natural killer T (NKT) cells are unconventional T cells that are activated by glycolipid antigens. They can produce a variety of inflammatory and regulatory cytokines and, therefore, modulate multiple aspects of the immune response in different pathological settings, including autoimmunity. NKT cells have also been implicated in the immunopathogenesis of autoimmune hepatitis, and in this review we summarize and analyze the main studies investigating the involvement and/or homeostasis of NKT cells in this disease. In detail, the evidence from both basic and clinical research has been specifically analyzed. Even though the experimental murine models supported a relevant role of NKT cells in immune-mediated hepatic injury, very few studies specifically investigated NKT cell homeostasis in patients with autoimmune hepatitis; however, these initial studies reported some alterations of NKT cells in these patients, which may also correlate with the disease activity to some extent. Further clinical studies are needed to investigate the potential role and use of NKT cell analysis as a disease marker of clinical relevance, and to better understand the precise cellular and molecular mechanisms by which NKT cells contribute to the pathogenesis of autoimmune hepatitis.
Collapse
Affiliation(s)
- Dimitri Poddighe
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| | - Tilektes Maulenkul
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| | - Gulsamal Zhubanova
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
| | - Lyudmila Akhmaldtinova
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
| | - Kuanysh Dossybayeva
- School of Medicine, Nazarbayev University, Kerei-Zhanibek Str. 5/1, Astana 010000, Kazakhstan
| |
Collapse
|
48
|
Carriero F, Rubino V, Leone S, Montanaro R, Brancaleone V, Ruggiero G, Terrazzano G. Regulatory T R3-56 Cells in the Complex Panorama of Immune Activation and Regulation. Cells 2023; 12:2841. [PMID: 38132162 PMCID: PMC10742044 DOI: 10.3390/cells12242841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The interplay between immune activation and immune regulation is a fundamental aspect of the functional harmony of the immune system. This delicate balance is essential to triggering correct and effective immune responses against pathogens while preventing excessive inflammation and the immunopathogenic mechanisms of autoimmunity. The knowledge of all the mechanisms involved in immune regulation is not yet definitive, and, probably, the overall picture is much broader than what has been described in the scientific literature so far. Given the plasticity of the immune system and the diversity of organisms, it is highly probable that numerous other cells and molecules are still to be ascribed to the immune regulation process. Here, we report a general overview of how immune activation and regulation interact, based on the involvement of molecules and cells specifically dedicated to these processes. In addition, we discuss the role of TR3-56 lymphocytes as a new cellular candidate in the immune regulation landscape.
Collapse
Affiliation(s)
- Flavia Carriero
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Valentina Rubino
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Stefania Leone
- Hematopoietic Stem Cell Transplantation Unit, Azienda Ospedaliera A. Cardarelli, 80131 Naples, Italy;
| | - Rosangela Montanaro
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Vincenzo Brancaleone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Giuseppina Ruggiero
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| |
Collapse
|
49
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Song M, Huang Y, Hong Y, Liu J, Zhu J, Lu S, Wang J, Sun F, Huang J, Xu J, Tang Y, Xia JC, Zhang Y. PD-L1-expressing natural killer cells predict favorable prognosis and response to PD-1/PD-L1 blockade in neuroblastoma. Oncoimmunology 2023; 13:2289738. [PMID: 38125723 PMCID: PMC10732605 DOI: 10.1080/2162402x.2023.2289738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
T/NK cell-based immunotherapy has achieved remarkable success in adult cancers but has limited efficacy in pediatric malignancies including high-risk neuroblastoma (NB). Immune defects of NB tumor microenvironment are poorly understood compared with adults. Here, we described the unique characteristics of NB immune contexture and determined the phenotype signatures of PD-L1-expressing CD8+ T and NK cells in NB tumors by systemically analyzing the spatial distribution of T and NK cells and the distinct expression of programmed death 1 (PD-1) and its ligand (PD-L1) in patients with NB. We found that PD-L1-expressing CD8+ T and NK cells in NB tumors were highly activated and functionally competent and associated with better clinical outcomes. Intratumoral NK cells were a favorable prognostic biomarker independent of CD8+ T cells, PD-1/PD-L1 expression, tumor stage, MYCN amplification, and risk classification. NK cells combined with anti-PD-1/PD-L1 antibodies showed potent antitumor activity against both MYCN-amplified and non-amplified NBs in vitro and in vivo, and PD-L1-expressing NK cells associated with improved antitumor efficacy. Collectively, we raise novel insights into the role of PD-L1 expression on CD8+ T-cell and NK-cell activation. We highlight the great potential of intratumoral NK cells in better defining risk stratification, and predicting survival and response to anti-PD-1/PD-L1 therapy in NB. These findings explain why single anti-PD-1/PD-L1 therapy may not be successful in NB, suggesting its combination with NK cell-adoptive cellular therapy as a promising strategy for relapsing/refractory NB. This study provides a potential prospect that patients with PD-L1-expressing NK cells may respond to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Mengjia Song
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ye Hong
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jia Zhu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suying Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feifei Sun
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junting Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaqian Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yizhuo Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|