1
|
Lyu A, Nam SH, Humphrey RS, Horton TM, Ehrlich LIR. Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL). Exp Mol Med 2024:10.1038/s12276-024-01335-7. [PMID: 39482533 DOI: 10.1038/s12276-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
2
|
Thériault S, Li Z, Abner E, Luan J, Manikpurage HD, Houessou U, Zamani P, Briend M, Boudreau DK, Gaudreault N, Frenette L, Argaud D, Dahmene M, Dagenais F, Clavel MA, Pibarot P, Arsenault BJ, Boekholdt SM, Wareham NJ, Esko T, Mathieu P, Bossé Y. Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation. Nat Commun 2024; 15:2407. [PMID: 38494474 PMCID: PMC10944835 DOI: 10.1038/s41467-024-46639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
There is currently no medical therapy to prevent calcific aortic valve stenosis (CAVS). Multi-omics approaches could lead to the identification of novel molecular targets. Here, we perform a genome-wide association study (GWAS) meta-analysis including 14,819 cases among 941,863 participants of European ancestry. We report 32 genomic loci, among which 20 are novel. RNA sequencing of 500 human aortic valves highlights an enrichment in expression regulation at these loci and prioritizes candidate causal genes. Homozygous genotype for a risk variant near TWIST1, a gene involved in endothelial-mesenchymal transition, has a profound impact on aortic valve transcriptomics. We identify five genes outside of GWAS loci by combining a transcriptome-wide association study, colocalization, and Mendelian randomization analyses. Using cross-phenotype and phenome-wide approaches, we highlight the role of circulating lipoproteins, blood pressure and inflammation in the disease process. Our findings pave the way for the development of novel therapies for CAVS.
Collapse
Affiliation(s)
- Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.
| | - Zhonglin Li
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hasanga D Manikpurage
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Ursula Houessou
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Pardis Zamani
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Mewen Briend
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Dominique K Boudreau
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Lily Frenette
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Déborah Argaud
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Manel Dahmene
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - François Dagenais
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Pibarot
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit J Arsenault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Alsaidalani AA, García-Solís B, Bukhari E, Van Den Rym A, López-Collazo E, Sánchez-Ramón S, Corvillo F, López-Lera A, de Andrés A, Martínez-Barricarte R, Perez de Diego R. Inherited Human BCL10 Deficiencies. J Clin Immunol 2023; 44:13. [PMID: 38129623 PMCID: PMC10966939 DOI: 10.1007/s10875-023-01619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
Human BCL10 deficiency causes combined immunodeficiency with bone marrow transplantation as its only curative option. To date, there are four homozygous mutations described in the literature that were identified in four unrelated patients. Here, we describe a fifth patient with a novel mutation and summarize what we have learned about BCL10 deficiency. Due to the severity of the disease, accurate knowledge of its clinical and immunological characteristics is instrumental for early diagnosis and adequate clinical management of the patients.
Collapse
Affiliation(s)
- Ashwag A Alsaidalani
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Esraa Bukhari
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department and IdSSC, San Carlos Clinical Hospital, 28040, Madrid, Spain
| | - Fernando Corvillo
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, 28046, Madrid, Spain
| | - Alberto López-Lera
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, 28046, Madrid, Spain
| | - Ana de Andrés
- Immunology Department, Hospital Ramon y Cajal, 28034, Madrid, Spain
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Immunology, and Inflammation, Vanderbilt Institute for Infection, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain.
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain.
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
5
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
6
|
Zheng Y, Yu M, Chen Y, Xue L, Zhu W, Fu G, Morris SW, Wen R, Wang D. CARD19, a Novel Regulator of the TAK1/NF-κB Pathway in Self-Reactive B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1222-1235. [PMID: 36961449 PMCID: PMC10156913 DOI: 10.4049/jimmunol.2200639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The caspase recruitment domain family member (CARD)11-Bcl10-Malt1 signalosome controls TGF-β-activated kinase 1 (TAK1) activation and regulates BCR-induced NF-κB activation. In this study, we discovered that CARD19 interacted with TAK1 and inhibited TAB2-mediated TAK1 ubiquitination and activation. Although CARD19 deficiency in mice did not affect B cell development, it enhanced clonal deletion, receptor editing, and anergy of self-reactive B cells, and it reduced autoantibody production. Mechanistically, CARD19 deficiency increased BCR/TAK1-mediated NF-κB activation, leading to increased expression of transcription factors Egr2/3, as well as the E3 ubiquitin ligases c-Cbl/Cbl-b, which are known inducers of B cell tolerance in self-reactive B cells. RNA sequencing analysis revealed that although CARD19 deficiency did not affect the overall Ag-induced gene expression in naive B cells, it suppressed BCR signaling and increased hyporesponsiveness of self-reactive B cells. As a result, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus. In summary, CARD19 negatively regulates BCR/TAK1-induced NF-κB activation and its deficiency increases Egr2/3 and c-Cbl/Cbl-b expression in self-reactive B cells, thereby enhancing B cell tolerance.
Collapse
Affiliation(s)
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Guoping Fu
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
7
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. Androgen Receptor Upregulates Mucosa-Associated Lymphoid Tissue 1 to Induce NF-κB Activity via Androgen-Dependent and -Independent Pathways in Prostate Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24076245. [PMID: 37047218 PMCID: PMC10093854 DOI: 10.3390/ijms24076245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The androgen-dependent or -independent pathways are regarded as primary therapeutic targets for the neoplasm of the prostate. Mucosa-associated lymphoid tissue 1 (MALT1) acting as a paracaspase in the regulation of nuclear factor κB (NF-κB) signal transduction plays a central role in inflammation and oncogenesis in cancers. This study confirmed the potential linkages between androgen and NF-κB activation by inducing MALT1 in the androgen receptor-full length (ARFL)-positive LNCaP and 22Rv1 prostate cancer cells. Although androgen did not stimulate MALT1 expression in AR-null or ectopic ARFL-overexpressed PC-3 cells, the ectopic overexpression of the AR splicing variant 7 (ARv7) upregulated MALT1 to activate NF-κB activities in 22Rv1 and PC-3 cells. Since the nuclear translocation of p50 and p65 was facilitated by ARv7 to motivate NF-κB activity, the expressions of MALT1, prostate-specific antigen (PSA), and N-myc downstream regulated 1 (NDRG1) were therefore induced in ectopic ARv7-overexpressed prostate cancer cells. Ectopic ARv7 overexpression not only enhanced 22Rv1 or PC-3 cell growth and invasion in vitro but also the tumor growth of PC-3 cells in vivo. These results indicate that an androgen receptor induces MALT1 expression androgen-dependently and -independently in ARFL- or ARv7-overexpressed prostate cancer cells, suggesting a novel ARv7/MALT1/NF-κB-signaling pathway may exist in the cells of prostate cancer.
Collapse
|
8
|
Zhou B, Mo Z, Lai G, Chen X, Li R, Wu R, Zhu J, Zheng F. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-𝜅B-IL-6 axis of tumor-associated macrophages. J Exp Clin Cancer Res 2023; 42:48. [PMID: 36797769 PMCID: PMC9936722 DOI: 10.1186/s13046-023-02620-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have important regulatory functions in cancer, but the role of circRNAs in the tumor microenvironment (TME) remains unclear. Moreover, we also explore the effects of si-circRNAs loaded in nanoparticles as therapeutic agent for anti-tumor in vivo. METHODS We conducted bioinformatics analysis, qRT-PCR, EdU assays, Transwell assays, co-culture system and multiple orthotopic xenograft models to investigate the expression and function of circRNAs. Additionally, PLGA-based nanoparticles loaded with si-circRNAs were used to evaluate the potential of nanotherapeutic strategy in anti-tumor response. RESULTS We identified oncogene SERPINE2 derived circRNA, named as cSERPINE2, which was notably elevated in breast cancer and was closely related to poor clinical outcome. Functionally, tumor exosomal cSERPINE2 was shuttled to tumor associated macrophages (TAMs) and enhanced the secretion of Interleukin-6 (IL-6), leading to increased proliferation and invasion of breast cancer cells. Furthermore, IL-6 in turn increased the EIF4A3 and CCL2 levels within tumor cells in a positive feedback mechanism, further enhancing tumor cSERPINE2 biogenesis and promoting the recruitment of TAMs. More importantly, we developed a PLGA-based nanoparticle loaded with si-cSERPINE2, which effectively attenuated breast cancer progression in vivo. CONCLUSIONS Our study illustrates a novel mechanism that tumor exosomal cSERPINE2 mediates a positive feedback loop between tumor cells and TAMs to promote cancer progression, which may serve as a promising nanotherapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Boxuan Zhou
- grid.452437.3Department of Breast Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China ,grid.412536.70000 0004 1791 7851Medical Research Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhaohong Mo
- grid.412558.f0000 0004 1762 1794Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630 China
| | - Guie Lai
- grid.452437.3Department of Breast Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China
| | - Xiaohong Chen
- grid.452437.3Department of Laboratory, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China
| | - Ruixi Li
- grid.12981.330000 0001 2360 039XDepartment of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 China
| | - Runxin Wu
- grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Jia Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Fang Zheng
- Medical Research Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Jiang VC, Liu Y, Lian J, Huang S, Jordan A, Cai Q, Lin R, Yan F, McIntosh J, Li Y, Che Y, Chen Z, Vargas J, Badillo M, Bigcal JN, Lee HH, Wang W, Yao Y, Nie L, Flowers CR, Wang M. Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma. J Clin Invest 2023; 133:165694. [PMID: 36719376 PMCID: PMC9888382 DOI: 10.1172/jci165694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a proven target in mantle cell lymphoma (MCL), an aggressive subtype of non-Hodgkin lymphoma. However, resistance to BTK inhibitors is a major clinical challenge. We here report that MALT1 is one of the top overexpressed genes in ibrutinib-resistant MCL cells, while expression of CARD11, which is upstream of MALT1, is decreased. MALT1 genetic knockout or inhibition produced dramatic defects in MCL cell growth regardless of ibrutinib sensitivity. Conversely, CARD11-knockout cells showed antitumor effects only in ibrutinib-sensitive cells, suggesting that MALT1 overexpression could drive ibrutinib resistance via bypassing BTK/CARD11 signaling. Additionally, BTK knockdown and MALT1 knockout markedly impaired MCL tumor migration and dissemination, and MALT1 pharmacological inhibition decreased MCL cell viability, adhesion, and migration by suppressing NF-κB, PI3K/AKT/mTOR, and integrin signaling. Importantly, cotargeting MALT1 with safimaltib and BTK with pirtobrutinib induced potent anti-MCL activity in ibrutinib-resistant MCL cell lines and patient-derived xenografts. Therefore, we conclude that MALT1 overexpression associates with resistance to BTK inhibitors in MCL, targeting abnormal MALT1 activity could be a promising therapeutic strategy to overcome BTK inhibitor resistance, and cotargeting of MALT1 and BTK should improve MCL treatment efficacy and durability as well as patient outcomes.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Lymphoma and Myeloma and
| | | | | | | | | | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Yijing Li
- Department of Lymphoma and Myeloma and
| | | | | | | | | | | | | | - Wei Wang
- Department of Lymphoma and Myeloma and
| | - Yixin Yao
- Department of Lymphoma and Myeloma and
| | - Lei Nie
- Department of Lymphoma and Myeloma and
| | | | - Michael Wang
- Department of Lymphoma and Myeloma and.,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Quotti Tubi L, Mandato E, Canovas Nunes S, Arjomand A, Zaffino F, Manni S, Casellato A, Macaccaro P, Vitulo N, Zumerle S, Filhol O, Boldyreff B, Siebel CW, Viola A, Valle G, Mainoldi F, Casola S, Cancila V, Gulino A, Tripodo C, Pizzi M, Dei Tos AP, Trentin L, Semenzato G, Piazza F. CK2β-regulated signaling controls B cell differentiation and function. Front Immunol 2023; 13:959138. [PMID: 36713383 PMCID: PMC9874936 DOI: 10.3389/fimmu.2022.959138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the β regulatory subunit of CK2. CK2βKO mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways. Biochemical analyses demonstrate an increased activation of the NOTCH2 pathway in CK2βKO animals, which sustains MZ B-cell development. Transcriptomic analyses indicate alterations in biological processes involved in immune response and B-cell activation. Upon sheep red blood cells (SRBC) immunization CK2βKO mice exhibit enlarged germinal centers (GCs) but display a limited capacity to generate class-switched GC B cells and immunoglobulins. In vitro assays highlight that B cells lacking CK2β have an impaired signaling downstream of BCR, Toll-like receptor, CD40, and IL-4R all crucial for B-cell activation and antigen presenting efficiency. Somatic hypermutations analysis upon 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Chicken Gamma Globulin (NP-CGG) evidences a reduced NP-specific W33L mutation frequency in CK2βKO mice suggesting the importance of the β subunit in sustaining antibody affinity maturation. Lastly, since diffuse large B cell lymphoma (DLBCL) cells derive from GC or post-GC B cells and rely on CK2 for their survival, we sought to investigate the consequences of CK2 inhibition on B cell signaling in DLBCL cells. In line with the observations in our murine model, CK2 inactivation leads to signaling defects in pathways that are essential for malignant B-lymphocyte activation.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Arash Arjomand
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Fortunato Zaffino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Casellato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Paolo Macaccaro
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Nicola Vitulo
- Department of Biology, Interdepartmental Research Center for Biotechnologies (CRIBI) Biotechnology Center, University of Padova, Padova, Italy
| | - Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Recherches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Christian W. Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, Interdepartmental Research Center for Biotechnologies (CRIBI) Biotechnology Center, University of Padova, Padova, Italy
| | | | - Stefano Casola
- IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | | | - Claudio Tripodo
- IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy,Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,*Correspondence: Francesco Piazza,
| |
Collapse
|
11
|
Abstract
Traditional models of lymphopoiesis present B and T cell development as a linear process that initiates in the fetus and continues after birth in the bone marrow and thymus, respectively. However, this view of lymphocyte development is not in accord with reports, dating back several decades, indicating that the types of lymphocytes generated before and after birth differ. In this regard, selected γδ T cells, and those that utilize the Vγ3 receptor in particular, and innate-like B-1 B cells preferentially arise during fetal blood cell development. This review synthesizes data from multiple laboratories, with an emphasis on our own work using mouse models, demonstrating that innate and conventional B and T cells emerge in hematopoietic stem cell independent and dependent waves of development that are differentially regulated. This layering of lymphocyte development has implications for understanding the composition of the adult immune system and may provide insights into the origin of various lymphocytic leukemias.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
13
|
Al-Tamemi S, Alhinai Z, Al-Rahbi N, Al-Abdawani R, Al-Yazidi L, Al-Shekaili J, Al-Kindi M, Al-Maawali A. BCL10 loss-of-function novel mutation leading to atypical severe combined immunodeficiency. Clin Immunol 2022; 241:109067. [PMID: 35750252 DOI: 10.1016/j.clim.2022.109067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is characterized by severe, early-onset infection in infants. B-cell lymphoma/leukemia (BCL) 10 defects causing SCID have been reported previously in two patients. MATERIAL & METHODS A seven-month-old female infant was admitted with bilateral pneumonia requiring ventilatory support. She had a history of recurrent infections starting from four months of age. The patient was investigated for primary immunodeficiency. RESULTS Immunological investigations revealed hypogammaglobulinemia with normal CD4 and CD8 lymphocyte counts, while a lymphocyte proliferation assay showed absent response to phytohemagglutinin stimulation, thereby establishing the diagnosis of an atypical form of SCID. Genetic testing revealed a homozygous mutation in the BCL10 gene, with both parents demonstrating a heterozygous state (NM_003921.5:c.271A>C:p.[Thr91Pro]). The patient died before bone marrow transplantation due to severe disseminated adenovirus disease. Conclusion We report the first patient from the Middle East with a novel homozygous mutation in the BCL10 gene causing SCID.
Collapse
Affiliation(s)
- Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Zaid Alhinai
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Najwa Al-Rahbi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Raghad Al-Abdawani
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Laila Al-Yazidi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Jalila Al-Shekaili
- Department of Microbiology & Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al-Kindi
- Department of Microbiology & Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman; Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
14
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
15
|
Sefer AP, Abolhassani H, Ober F, Kayaoglu B, Bilgic Eltan S, Kara A, Erman B, Surucu Yilmaz N, Aydogmus C, Aydemir S, Charbonnier LM, Kolukisa B, Azizi G, Delavari S, Momen T, Aliyeva S, Kendir Demirkol Y, Tekin S, Kiykim A, Baser OF, Cokugras H, Gursel M, Karakoc-Aydiner E, Ozen A, Krappmann D, Chatila TA, Rezaei N, Baris S. Expanding the Clinical and Immunological Phenotypes and Natural History of MALT1 Deficiency. J Clin Immunol 2022; 42:634-652. [DOI: 10.1007/s10875-021-01191-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
|
16
|
Recent Advances in the Genetic of MALT Lymphomas. Cancers (Basel) 2021; 14:cancers14010176. [PMID: 35008340 PMCID: PMC8750177 DOI: 10.3390/cancers14010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Mucosa-associated lymphoid tissue (MALT) lymphoma is the most common subtype of marginal zone lymphomas. These B-cell neoplasms may arise from many organs and usually have an indolent behavior. Recurrent chromosomal translocations and cytogenetic alterations are well characterized, some of them being associated to specific sites. Through next-generation sequencing technologies, the mutational landscape of MALT lymphomas has been explored and available data to date show that there are considerable variations in the incidence and spectrum of mutations among MALT lymphoma of different sites. Interestingly, most of these mutations affect several common pathways and some of them are potentially targetable. Gene expression profile and epigenetic studies have also added new information, potentially useful for diagnosis and treatment. This article provides a comprehensive review of the genetic landscape in MALT lymphomas. Abstract Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.
Collapse
|
17
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
18
|
Huffaker MF, Sanda S, Chandran S, Chung SA, St Clair EW, Nepom GT, Smilek DE. Approaches to Establishing Tolerance in Immune Mediated Diseases. Front Immunol 2021; 12:744804. [PMID: 34616405 PMCID: PMC8488342 DOI: 10.3389/fimmu.2021.744804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
The development of rational approaches to restore immune tolerance requires an iterative approach that builds on past success and utilizes new mechanistic insights into immune-mediated pathologies. This article will review concepts that have evolved from the clinical trial experience of the Immune Tolerance Network, with an emphasis on lessons learned from the innovative mechanistic studies conducted for these trials and new strategies under development for induction of tolerance.
Collapse
Affiliation(s)
- Michelle F Huffaker
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Srinath Sanda
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Sindhu Chandran
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Sharon A Chung
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | | | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA, United States
| | - Dawn E Smilek
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
20
|
Kong G, Dou Y, Xiao X, Wang Y, Ming Y, Li XC. Transgenic Expression of a Mutant Ribonuclease Regnase-1 in T Cells Disturbs T Cell Development and Functions. Front Immunol 2021; 12:682220. [PMID: 34305914 PMCID: PMC8297167 DOI: 10.3389/fimmu.2021.682220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
Regnase-1 is an RNA-binding protein with ribonuclease activities, and once induced it controls diverse immune responses by degrading mRNAs that encode inflammatory cytokines and costimulatory molecules, thus exerting potent anti-inflammatory functions. However, Regnase-1 is extremely sensitive to degradation by proteases and therefore short-lived. Here, we constructed a mutant Regnase-1 that is resistant to degradation and expressed this mutant in vivo as a transgene specifically in T cells. We found that the mutant Regnase-1 transgenic mice exhibited profound lymphopenia in the periphery despite grossly normal spleen and lymph nodes, and spontaneously accepted skin allografts without any treatment. Mechanistic studies showed that in the transgenic mice thymic T cell development was disrupted, such that most of the developing thymocytes were arrested at the double positive stage, with few mature CD4+ and CD8+ T cells in the thymus and periphery. Our findings suggest that interfering with the dynamic Regnase-1 expression in T cells disrupts T cell development and functions and further studies are warranted to uncover the mechanisms involved.
Collapse
Affiliation(s)
- Gangcheng Kong
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States.,Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Dou
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Yixuan Wang
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xian C Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States.,Department of Surgery, Weill Cornell College of Cornell University, New York, NY, United States
| |
Collapse
|
21
|
Cardona Gloria Y, Bernhart SH, Fillinger S, Wolz OO, Dickhöfer S, Admard J, Ossowski S, Nahnsen S, Siebert R, Weber ANR. Absence of Non-Canonical, Inhibitory MYD88 Splice Variants in B Cell Lymphomas Correlates With Sustained NF-κB Signaling. Front Immunol 2021; 12:616451. [PMID: 34163463 PMCID: PMC8215704 DOI: 10.3389/fimmu.2021.616451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Gain-of-function mutations of the TLR adaptor and oncoprotein MyD88 drive B cell lymphomagenesis via sustained NF-κB activation. In myeloid cells, both short and sustained TLR activation and NF-κB activation lead to the induction of inhibitory MYD88 splice variants that restrain prolonged NF-κB activation. We therefore sought to investigate whether such a negative feedback loop exists in B cells. Analyzing MYD88 splice variants in normal B cells and different primary B cell malignancies, we observed that MYD88 splice variants in transformed B cells are dominated by the canonical, strongly NF-κB-activating isoform of MYD88 and contain at least three novel, so far uncharacterized signaling-competent splice isoforms. Sustained TLR stimulation in B cells unexpectedly reinforces splicing of NF-κB-promoting, canonical isoforms rather than the 'MyD88s', a negative regulatory isoform reported to be typically induced by TLRs in myeloid cells. This suggests that an essential negative feedback loop restricting TLR signaling in myeloid cells at the level of alternative splicing, is missing in B cells when they undergo proliferation, rendering B cells vulnerable to sustained NF-κB activation and eventual lymphomagenesis. Our results uncover MYD88 alternative splicing as an unappreciated promoter of B cell lymphomagenesis and provide a rationale why oncogenic MYD88 mutations are exclusively found in B cells.
Collapse
Affiliation(s)
- Yamel Cardona Gloria
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Stephan H. Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
- Transcriptome Bioinformatics, Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Sven Fillinger
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Olaf-Oliver Wolz
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sabine Dickhöfer
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Alexander N. R. Weber
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK; German Cancer Consortium), Partner Site Tübingen, Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 2021; 9:microorganisms9030665. [PMID: 33806942 PMCID: PMC8005181 DOI: 10.3390/microorganisms9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.
Collapse
|
24
|
Roberts HE, Lopopolo M, Pagnamenta AT, Sharma E, Parkes D, Lonie L, Freeman C, Knight SJL, Lunter G, Dreau H, Lockstone H, Taylor JC, Schuh A, Bowden R, Buck D. Short and long-read genome sequencing methodologies for somatic variant detection; genomic analysis of a patient with diffuse large B-cell lymphoma. Sci Rep 2021; 11:6408. [PMID: 33742045 PMCID: PMC7979876 DOI: 10.1038/s41598-021-85354-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in throughput and accuracy mean that the Oxford Nanopore Technologies PromethION platform is a now a viable solution for genome sequencing. Much of the validation of bioinformatic tools for this long-read data has focussed on calling germline variants (including structural variants). Somatic variants are outnumbered many-fold by germline variants and their detection is further complicated by the effects of tumour purity/subclonality. Here, we evaluate the extent to which Nanopore sequencing enables detection and analysis of somatic variation. We do this through sequencing tumour and germline genomes for a patient with diffuse B-cell lymphoma and comparing results with 150 bp short-read sequencing of the same samples. Calling germline single nucleotide variants (SNVs) from specific chromosomes of the long-read data achieved good specificity and sensitivity. However, results of somatic SNV calling highlight the need for the development of specialised joint calling algorithms. We find the comparative genome-wide performance of different tools varies significantly between structural variant types, and suggest long reads are especially advantageous for calling large somatic deletions and duplications. Finally, we highlight the utility of long reads for phasing clinically relevant variants, confirming that a somatic 1.6 Mb deletion and a p.(Arg249Met) mutation involving TP53 are oriented in trans.
Collapse
Affiliation(s)
- Hannah E Roberts
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maria Lopopolo
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Duncan Parkes
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lorne Lonie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Colin Freeman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Samantha J L Knight
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Epidemiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Helene Dreau
- Oxford University Hospitals NHS Trust, Oxford, UK
- Department of Haematology, University of Oxford, Oxford, UK
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
| | - Anna Schuh
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
- Oxford University Hospitals NHS Trust, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Buck
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Hou CP, Yang PS, Chen CL, Feng TH, Juang HH. Mucosa-Associated Lymphoid Tissue 1 Is an Oncogene Inducing Cell Proliferation, Invasion, and Tumor Growth via the Upregulation of NF-κB Activity in Human Prostate Carcinoma Cells. Biomedicines 2021; 9:biomedicines9030250. [PMID: 33802402 PMCID: PMC8000469 DOI: 10.3390/biomedicines9030250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common seen malignancies and the leading cause of cancer-related death among men. Given the importance of early diagnosis and treatment, it is worth to identify a potential novel therapeutic target for prostate cancer. Mucosa-associated lymphoid tissue 1 (MALT1) is a novel gene involved in nuclear factor κB (NF-κB) signal transduction by acting as an adaptor protein and paracaspase, with an essential role in inflammation and tumorigenesis in many cancers. This study investigated the functions and the potential regulatory mechanisms of MALT1 in the human prostate cancer cells. We found that MALT1 is abundant in prostate cancer tissues. MALT1 facilitated NF-κB subunits (p50 and p65) nuclear translocation to induce gene expression of interleukin 6 (IL-6) and C-X-C motif chemokine 5 (CXCL5) in prostate carcinoma cells. MALT1 promoted cell proliferation, invasion, and tumor growth in vitro and in vivo. MALT1 enhanced NF-κB activity in prostate carcinoma cells; moreover, NF-κB induced MALT1 expression determined by reporter and immunoblot assays, implying there is a positive feedback loop between MALT1 and NF-κB. In conclusion, MALT1 is a NF-κB-induced oncogene in the human prostate carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
26
|
Current insights into the genetics of food allergy. J Allergy Clin Immunol 2021; 147:15-28. [PMID: 33436162 DOI: 10.1016/j.jaci.2020.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Food allergy (FA), a growing public health burden in the United States, and familial aggregation studies support strong roles for both genes and environment in FA risk. Deepening our understanding of the molecular and cellular mechanisms driving FAs is paramount to improving its prevention, diagnosis, and clinical management. In this review, we document lessons learned from the genetics of FA that have aided our understanding of these mechanisms. Although current genetic association studies suffer from low power, heterogeneity in definition of FA, and difficulty in our ability to truly disentangle FA from food sensitization (FS) and general atopy genetics, they reveal a set of genetic loci, genes, and variants that continue to implicate the importance of barrier and immune function genes across the atopic march, and FA in particular. The largest reported effects on FA are from MALT1 (odds ratio, 10.99), FLG (average odds ratio, ∼2.9), and HLA (average odds ratio, ∼2.03). The biggest challenge in the field of FA genetics is to elucidate the specific mechanism of action on FA risk and pathogenesis for these loci, and integrative approaches including genetics/genomics with transcriptomics, proteomics, and metabolomics will be critical next steps to translating these genetic insights into practice.
Collapse
|
27
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 854] [Impact Index Per Article: 213.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
28
|
Bao W, Sun C, Sun X, He M, Yu H, Yan W, Wen F, Zhang L, Yang C. Targeting BCL10 by small peptides for the treatment of B cell lymphoma. Am J Cancer Res 2020; 10:11622-11636. [PMID: 33052237 PMCID: PMC7546004 DOI: 10.7150/thno.47533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous structure and functions as a supramolecular organizing centre (CB-SMOC) that is required for constitutive NF-κB activation, making it an attractive drug target for ABC-DLBCL treatment. However, a pharmaceutical approach targeting CB-SMOC has been lacking. Here, we developed Bcl10 peptide inhibitors (BPIs) that specifically target the BCL10 filamentation process. Methods: Electron microscopy and immunofluorescence imaging were used to visualize the effect of the BPIs on the BCL10 filamentation process. The cytotoxicity of the tested BPIs was evaluated in DLBCL cell lines according to cell proliferation assays. Different in vitro experiments (pharmacokinetics, immunoprecipitation, western blotting, annexin V and PI staining) were conducted to determine the functional mechanisms of the BPIs. The in vivo therapeutic effect of the BPIs was examined in different xenograft DLBCL mouse models. Finally, Ki67 and TUNEL staining and histopathology analysis were used to evaluate the antineoplastic mechanisms and systemic toxicity of the BPIs. Results: We showed that these BPIs can effectively disrupt the BCL10 filamentation process, destabilize BCL10 and suppress NF-κB signalling in ABC-DLBCL cells. By examining a panel of DLBCL cell lines, we found that these BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL cells by inducing apoptosis and cell cycle arrest. Moreover, by converting the BPIs to acquire a D-retro inverso (DRI) configuration, we developed DRI-BPIs with significantly improved intracellular stability and unimpaired BPI activity. These DRI-BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL tumors in mouse xenograft models without eliciting discernible adverse effects. Conclusion: We developed novel BPIs to target the BCL10 filamentation process and demonstrated that targeting BCL10 by BPIs is a potentially safe and effective pharmaceutical approach for the treatment of ABC-DLBCL and other CB-SMOC-dependent malignancies.
Collapse
|
29
|
Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. ANNALS OF LYMPHOMA 2020; 4:7. [PMID: 34667996 PMCID: PMC7611845 DOI: 10.21037/aol-20-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marginal zone lymphoma (MZL) represents a group of three distinct though overlapping lymphoid malignancies that includes extranodal, nodal and splenic marginal lymphoma. MZL patients usually present an indolent clinical course, although the disease remains largely incurable, save early stage disease that might be irradiated. Therapeutic advances have been limited due to the small patient population, and have largely been adapted from other indolent lymphomas. Here, we discuss the numerous targets and pathways which may offer the prospect of directly inhibiting the mechanisms identified promoting and sustaining marginal zone lymphomagenesis. In particular, we focus on the agents that may have at least a theoretical application in the disease. Various dysregulated pathways converge to produce an overarching stimulation of nuclear factor κB (NF-κB) and the MYD88-IRAK4 axis, which can be thus leveraged or targeting B-cell receptor signaling through BTK inhibitors (such as ibrutinib, zanubrutinib, acalabrutinib) and PI3K inhibitors (such as idelalisib, copanlisib, duvelisib umbralisib) or via more novel agents in development such as MALT1 inhibitors, SMAC mimetics, NIK inhibitors, IRAK4 or MYD88 inhibitors. NOTCH signaling is also crucial for marginal zone cells, but no clinical data are available with NOTCH inhibitors such as the γ-secretase inhibitor PF-03084014 or the NICD inhibitor CB-103. The hypermethylation phenotype, the overexpression of the PRC2-complex or the presence of TET2 mutations reported in MZL subsets make epigenetic agents (demethylating agents, EZH2 inhibitors, HDAC inhibitors) also potential therapeutic tools for MZL patients.
Collapse
Affiliation(s)
- Jennifer K. Lue
- Division of Hematology-Oncology, Department of Medicine, Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Owen A. O’Connor
- Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Francesco Bertoni
- institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
30
|
|
31
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
32
|
Van Den Rym A, Taur P, Martinez-Barricarte R, Lorenzo L, Puel A, Gonzalez-Navarro P, Pandrowala A, Gowri V, Safa A, Toledano V, Cubillos-Zapata C, López-Collazo E, Vela M, Pérez-Martínez A, Sánchez-Ramón S, Recio MJ, Casanova JL, Desai MM, Perez de Diego R. Human BCL10 Deficiency due to Homozygosity for a Rare Allele. J Clin Immunol 2020; 40:388-398. [PMID: 32008135 DOI: 10.1007/s10875-020-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
In 2014, a child with broad combined immunodeficiency (CID) who was homozygous for a private BCL10 allele was reported to have complete inherited human BCL10 deficiency. In the present study, we report a new BCL10 mutation in another child with CID who was homozygous for a BCL10 variant (R88X), previously reported as a rare allele in heterozygosis (minor allele frequency, 0.000003986). The mutant allele was a loss-of-expression and loss-of-function allele. As with the previously reported patient, this patient had complete BCL10 deficiency. The clinical phenotype shared features, such as respiratory infections, but differed from that of the previous patient that he did not develop significant gastroenteritis episodes or chronic colitis. Cellular and immunological phenotypes were similar to those of the previous patient. TLR4, TLR2/6, and Dectin-1 responses were found to depend on BCL10 in fibroblasts, and final maturation of T cell and B cell maturation into memory cells was affected. Autosomal-recessive BCL10 deficiency should therefore be considered in children with CID.
Collapse
Affiliation(s)
- Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Prasad Taur
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
| | - Pablo Gonzalez-Navarro
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ambreen Pandrowala
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Vijaya Gowri
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Amin Safa
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Victor Toledano
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
- Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Maria Vela
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, INGEMM-IdiPAZ, La Paz University Hospital, Madrid, Spain
- Department of Paediatric Haemato-oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department, San Carlos Clinical Hospital, 28040, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040, Madrid, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015, Paris, France
- Imagine Institute, University Paris Descartes, 75015, Paris, France
- Paediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Mukesh M Desai
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Parel, Mumbai, 400012, India
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
33
|
Pasqualucci L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol Rev 2019; 288:240-261. [PMID: 30874347 DOI: 10.1111/imr.12745] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
B cell lymphomas comprise a heterogeneous group of genetically, biologically, and clinically distinct neoplasms that, in most cases, originate from the clonal expansion of B cells in the germinal center (GC). In recent years, the advent of novel genomics technologies has revolutionized our understanding of the molecular pathogenesis of lymphoid malignancies as a multistep process that requires the progressive accumulation of multiple genetic and epigenetic alterations. A common theme that emerged from these studies is the ability of lymphoma cells to co-opt the same biological programs and signal transduction networks that operate during the normal GC reaction, and misuse them for their own survival advantage. This review summarizes recent progress in the understanding of the genetic and epigenetic mechanisms that drive the malignant transformation of GC B cells. These insights provide a conceptual framework for the identification of cellular pathways that may be explored for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York City, New York
| |
Collapse
|
34
|
MicroRNA-181a Inhibits Activated B-Cell-Like Diffuse Large B-Cell Lymphoma Progression by Repressing CARD11. JOURNAL OF ONCOLOGY 2019; 2019:9832956. [PMID: 31662757 PMCID: PMC6778910 DOI: 10.1155/2019/9832956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3'UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3'UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.
Collapse
|
35
|
Structures of autoinhibited and polymerized forms of CARD9 reveal mechanisms of CARD9 and CARD11 activation. Nat Commun 2019; 10:3070. [PMID: 31296852 PMCID: PMC6624267 DOI: 10.1038/s41467-019-10953-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022] Open
Abstract
CARD9 and CARD11 drive immune cell activation by nucleating Bcl10 polymerization, but are held in an autoinhibited state prior to stimulation. Here, we elucidate the structural basis for this autoinhibition by determining the structure of a region of CARD9 that includes an extensive interface between its caspase recruitment domain (CARD) and coiled-coil domain. We demonstrate, for both CARD9 and CARD11, that disruption of this interface leads to hyperactivation in cells and to the formation of Bcl10-templating filaments in vitro, illuminating the mechanism of action of numerous oncogenic mutations of CARD11. These structural insights enable us to characterize two similar, yet distinct, mechanisms by which autoinhibition is relieved in the course of canonical CARD9 or CARD11 activation. We also dissect the molecular determinants of helical template assembly by solving the structure of the CARD9 filament. Taken together, these findings delineate the structural mechanisms of inhibition and activation within this protein family.
Collapse
|
36
|
Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z. GWAS Analysis Indicated Importance of NF-κB Signaling Pathway in Host Resistance Against Motile Aeromonas Septicemia Disease in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:335-347. [PMID: 30895402 DOI: 10.1007/s10126-019-09883-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Motile Aeromonas septicemia (MAS) disease caused by a bacterial pathogen, Aeromonas hydrophila, is an emerging but severe disease of catfish. Genetic enhancement of disease resistance is considered to be effective to control the disease. To provide an insight into the genomic basis of MAS disease resistance, in this study, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL). A total of 1820 interspecific backcross catfish of 7 families were challenged with A. hydrophila, and 382 phenotypic extremes were selected for genotyping with the catfish 690 K SNP arrays. Three QTL on linkage group (LG) 2, 26 and 29 were identified to be significantly associated with MAS resistance. Within these regions, a total of 24 genes had known functions in immunity, 10 of which were involved in NF-κB signaling pathway, suggesting the importance of NF-κB signaling pathway in MAS resistance. In addition, three suggestively significant QTL were identified on LG 11, 17, and 20. The limited numbers of QTL involved in MAS resistance suggests that marker-assisted selection may be a viable approach for catfish breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jian Luo
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
37
|
Demyanenko S, Dzreyan V, Uzdensky A. Axotomy-Induced Changes of the Protein Profile in the Crayfish Ventral Cord Ganglia. J Mol Neurosci 2019; 68:667-678. [PMID: 31066008 DOI: 10.1007/s12031-019-01329-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
We suggest novel experimental model of nerve injury-bilaterally axotomized ganglia of the crayfish ventral nerve cord (VNC). Using proteomic antibody microarrays, we showed upregulation of apoptosis execution proteins (Bcl-10, caspases 3, 6, and 7, SMAC/DIABLO, AIF), proapoptotic signaling proteins and transcription factors (c-Myc, p38, E2F1, p53, GADD153), and multifunctional proteins capable of initiating apoptosis in specific situations (p75, NMDAR2a) in the axotomized VNC ganglia. Simultaneously, anti-apoptotic proteins (p21WAF-1, MDM2, Bcl-x, Mcl-1, MKP1, MAKAPK2, ERK5, APP, calmodulin, estrogen receptor) were overexpressed. Some proteins associated with actin cytoskeleton (α-catenin, catenin p120CTN, cofilin, p35, myosin Vα) were upregulated, whereas other actin-associated proteins (ezrin, distrophin, tropomyosin, spectrin (α + β), phosphorylated Pyk2) were downregulated. Various cytokeratins and βIV-tubulin, components of intermediate filament and microtubule cytoskeletons, were also downregulated that could be the result of tissue destruction. Downregulation of proteins involved in clathrin vesicle formation (AP2α and AP2γ, adaptin (β1 + β2), and syntaxin) indicated impairment of vesicular transport and synaptic processes. The levels of L-DOPA decarboxylase, tyrosine, and tryptophan hydroxylases that mediate synthesis of serotonin, dopamine, norepinephrine, and epinephrine decreased. Overexpression of histone deacetylases HDAC1, HDAC2, and HDAC4 contributed to suppression of transcription and protein synthesis. So, the balance of multidirectional processes aimed either at cell death, or to repair and recovery, determines the cell fate. Present data provide integral, albeit incomplete, view on the nervous tissue response to axotomy. Some of these proteins can be probably potential markers of nerve injury and targets for neuroprotective therapy.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
38
|
Frizinsky S, Rechavi E, Barel O, Najeeb RH, Greenberger S, Lee YN, Simon AJ, Lev A, Ma CA, Sun G, Blackstone SA, Milner JD, Somech R, Stauber T. Novel MALT1 Mutation Linked to Immunodeficiency, Immune Dysregulation, and an Abnormal T Cell Receptor Repertoire. J Clin Immunol 2019; 39:401-413. [DOI: 10.1007/s10875-019-00629-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
|
39
|
Del Pino-Molina L, Rodríguez-Ubreva J, Torres Canizales J, Coronel-Díaz M, Kulis M, Martín-Subero JI, van der Burg M, Ballestar E, López-Granados E. Impaired CpG Demethylation in Common Variable Immunodeficiency Associates With B Cell Phenotype and Proliferation Rate. Front Immunol 2019; 10:878. [PMID: 31105700 PMCID: PMC6492528 DOI: 10.3389/fimmu.2019.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Common Variable Immunodeficiency (CVID) is characterized by impaired antibody production and poor terminal differentiation of the B cell compartment, yet its pathogenesis is still poorly understood. We first reported the occurrence of epigenetic alterations in CVID by high-throughput methylation analysis in CVID-discordant monozygotic twins. Data from a recent whole DNA methylome analysis throughout different stages of normal B cell differentiation allowed us to design a new experimental approach. We selected CpG sites for analysis based on two criteria: one, CpGs with potential association with the transcriptional status of relevant genes for B cell activation and differentiation; and two, CpGs that undergo significant demethylation from naïve to memory B cells in healthy individuals. DNA methylation was analyzed by bisulfite pyrosequencing of specific CpG sites in sorted naïve and memory B cell subsets from CVID patients and healthy donors. We observed impaired demethylation in two thirds of the selected CpGs in CVID memory B cells, in genes that govern B cell-specific processes or participate in B cell signaling. The degree of demethylation impairment associated with the extent of the memory B cell reduction. The impaired demethylation in such functionally relevant genes as AICDA in switched memory B cells correlated with a lower proliferative rate. Our new results reinforce the hypothesis of altered demethylation during B cell differentiation as a contributing pathogenic mechanism to the impairment of B cell function and maturation in CVID. In particular, deregulated epigenetic control of AICDA could play a role in the defective establishment of a post-germinal center B cell compartment in CVID.
Collapse
Affiliation(s)
- Lucía Del Pino-Molina
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Juan Torres Canizales
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - María Coronel-Díaz
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - José I Martín-Subero
- Departamento de Fundamentos Clínicos, Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eduardo López-Granados
- Lymphocyte Pathophysiology in Immunodeficiencies Group, Department of Clinical Immunology, IdiPAZ Institute for Health Research, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
40
|
Feng YY, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, Liu J, Grasberger H, Ohkita M, Matsumura Y, Wang JY, Tsubata T. Essential Role of NADPH Oxidase–Dependent Production of Reactive Oxygen Species in Maintenance of Sustained B Cell Receptor Signaling and B Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2019; 202:2546-2557. [DOI: 10.4049/jimmunol.1800443] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
|
41
|
The MALT1 locus and peanut avoidance in the risk for peanut allergy. J Allergy Clin Immunol 2019; 143:2326-2329. [PMID: 30825465 DOI: 10.1016/j.jaci.2019.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/19/2019] [Indexed: 11/20/2022]
|
42
|
Park HH. Caspase recruitment domains for protein interactions in cellular signaling (Review). Int J Mol Med 2019; 43:1119-1127. [PMID: 30664151 PMCID: PMC6365033 DOI: 10.3892/ijmm.2019.4060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The caspase recruitment domain (CARD), a well-known protein interaction module, belongs to the death domain (DD) superfamily, which includes DDs, death effector domains, and pyrin domains. The DD superfamily mediates the protein interactions necessary for apoptosis and immune cell signaling pathways. Among these domains, the CARD has been studied extensively as it mediates important cellular signaling events that are associated with various human diseases including cancer, neuro-degenerative diseases and immune disorders. Homo-type and hetero-type CARD-CARD interactions mediate the formation of large signaling complexes, including caspase-activating complexes and downstream signaling complexes. The present review summarizes and discusses the results of structural studies of various CARDs and their complexes. These studies shed light on the mechanisms that control the assembly and disassembly of signaling complexes and provide an improved understanding of cellular signaling processes.
Collapse
Affiliation(s)
- Hyun Ho Park
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
43
|
Molecular Dynamics of Co-signal Molecules in T-Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:135-152. [DOI: 10.1007/978-981-32-9717-3_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Marcelis L, Tousseyn T, Sagaert X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr Top Microbiol Immunol 2019; 421:77-106. [PMID: 31123886 DOI: 10.1007/978-3-030-15138-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma, or extranodal marginal zone lymphoma of MALT, is an indolent B-cell non-Hodgkin lymphoma linked with preexisting chronic inflammation. The stomach is the most commonly affected organ and the MALT lymphoma pathogenesis is clearly associated with Helicobacter pylori gastroduodenitis. Inflammation induces the lymphoid infiltrates in extranodal sites, where the lymphoma then subsequently develops. Genetic aberrations arise through the release of reactive oxygen species (ROS), H. pylori-induced endonucleases, and other effects. The involvement of nuclear factor kappa B (NF-κB) pathway activation, a critical regulator of pro-inflammatory responses, further highlights the role of inflammation in gastric MALT lymphoma. The NF-κB pathway regulates key elements of normal lymphocyte function, including the transcription of proliferation-promoting and anti-apoptotic genes. Aberrant constitutive activation of NF-κB signaling can lead to autoimmunity and malignancy. NF-κB pathway activation can happen through both the canonical and non-canonical pathways and can be caused by multiple genetic aberrations such as t(11;18)(q12;q21), t(1;14)(p22;q32), and t(14;18)(q32;q21) translocations, chronic inflammation and even directly by H. pylori-associated mechanisms. Gastric MALT lymphoma is considered one of the best models of how inflammation initiates genetic events that lead to oncogenesis, determines tumor biology, dictates clinical behavior and leads to viable therapeutic targets. The purpose of this review is to present gastric MALT lymphoma as an outstanding example of the close pathogenetic link between chronic inflammation and tumor development and to describe how this information can be integrated into daily clinical practice.
Collapse
Affiliation(s)
- Lukas Marcelis
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Xavier Sagaert
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium.
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium.
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium.
| |
Collapse
|
45
|
Lork M, Staal J, Beyaert R. Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cell Immunol 2018; 340:103877. [PMID: 30514565 DOI: 10.1016/j.cellimm.2018.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Antigen receptor-induced signaling plays an important role in inflammation and immunity. Formation of a CARD11-BCL10-MALT1 (CBM) signaling complex is a key event in T- and B cell receptor-induced gene expression by regulating NF-κB activation and mRNA stability. Deregulated CARD11, BCL10 or MALT1 expression or CBM signaling have been associated with immunodeficiency, autoimmunity and cancer, indicating that CBM formation and function have to be tightly regulated. Over the past years great progress has been made in deciphering the molecular mechanisms of assembly and disassembly of the CBM complex. In this context, several posttranslational modifications play an indispensable role in regulating CBM function and downstream signal transduction. In this review we summarize how the different CBM components as well as their interplay are regulated by protein ubiquitination and phosphorylation in the context of T cell receptor signaling.
Collapse
Affiliation(s)
- Marie Lork
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.
| |
Collapse
|
46
|
Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, Marynen P, de Bock CE, Bornschein S. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol 2018; 48:1728-1738. [PMID: 30025160 PMCID: PMC6220888 DOI: 10.1002/eji.201847597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/04/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Mucosa-associated lymphoid tissue 1 (Malt1) regulates immune cell function by mediating the activation of nuclear factor κB (NF-κB) signaling through both its adaptor and proteolytic function. Malt1 is also a target of its own protease activity and this self-cleavage further contributes to NF-κB activity. Until now, the functional distinction between Malt1 self-cleavage and its general protease function in regulating NF-κB signaling and immune activation remained unclear. Here we demonstrate, using a new mouse model, the importance of Malt1 self-cleavage in regulating expression of NF-κB target genes and subsequent T cell activation. Significantly, we further establish that Treg homeostasis is critically linked to Malt1 function via a Treg intrinsic and extrinsic mechanism. TCR-mediated Malt1 proteolytic activity and self-cleavage was found to drive Il2 expression in conventional CD4+ T cells, thereby regulating Il2 availability for Treg homeostasis. Remarkably, the loss of Malt1-mediated self-cleavage alone was sufficient to cause a significant Treg deficit resulting in increased anti-tumor immune reactivity without associated autoimmunity complications. These results establish for the first time that inhibition of MALT1 proteolytic activity could be a viable therapeutic strategy to augment anti-tumor immunity.
Collapse
Affiliation(s)
- Mathijs Baens
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Cistim Leuven vzwLeuvenBelgium
| | - Rocco Stirparo
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| | - Youlia Lampi
- Switch LaboratoryVIBLeuvenBelgium
- KU Leuven Department for Cellular and MolecularLeuvenBelgium
| | - Delphine Verbeke
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| | - Roel Vandepoel
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| | - Jan Cools
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| | | | - Charles E. de Bock
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| | - Simon Bornschein
- KU Leuven Department of Human GeneticsLeuvenBelgium
- VIB Center for Cancer BiologyLeuvenBelgium
| |
Collapse
|
47
|
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF, Wang H. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 2018; 11:97. [PMID: 30064449 PMCID: PMC6069866 DOI: 10.1186/s13045-018-0637-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Immune cells were traditionally considered as major pro-inflammatory contributors. Recent advances in molecular immunology prove that immune cell lineages are composed of different subsets capable of a vast array of specialized functions. These immune cell subsets share distinct duties in regulating innate and adaptive immune functions and contribute to both immune activation and immune suppression responses in peripheral tissue. Here, we summarized current understanding of the different subsets of major immune cells, including T cells, B cells, dendritic cells, monocytes, and macrophages. We highlighted molecular characterization, frequency, and tissue distribution of these immune cell subsets in human and mice. In addition, we described specific cytokine production, molecular signaling, biological functions, and tissue population changes of these immune cell subsets in both cardiovascular diseases and cancers. Finally, we presented a working model of the differentiation of inflammatory mononuclear cells, their interaction with endothelial cells, and their contribution to tissue inflammation. In summary, this review offers an updated and comprehensive guideline for immune cell development and subset differentiation, including subset characterization, signaling, modulation, and disease associations. We propose that immune cell subset differentiation and its complex interaction within the internal biological milieu compose a “pathophysiological network,” an interactive cross-talking complex, which plays a critical role in the development of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Dai
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Lauren Cole
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Javier Andres Camacho
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingfeng Wang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Wu G, Wang H, Zhou W, Zeng B, Mo W, Zhu K, Liu R, Zhou J, Chen C, Chen H. Synthesis and structure–activity relationship studies of MI-2 analogues as MALT1 inhibitors. Bioorg Med Chem 2018; 26:3321-3344. [DOI: 10.1016/j.bmc.2018.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
|
49
|
Li Y, Huang S, Huang X, Li X, Falcon A, Soutar A, Bornancin F, Jiang Z, Xin HB, Fu M. Pharmacological inhibition of MALT1 protease activity suppresses endothelial activation via enhancing MCPIP1 expression. Cell Signal 2018; 50:1-8. [PMID: 29913212 DOI: 10.1016/j.cellsig.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Mucosa associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is not only an intracellular signaling scaffold protein but also a paracaspase that plays a key role in the signal transduction and cellular activation of lymphocytes and macrophages. However, its role in endothelial cells remains unknown. Here we report that pharmacological inhibition of MALT1 protease activity strongly suppresses endothelial activation via enhancing MCPIP1 expression. Treatment with MALT1 protease inhibitors selectively inhibited TNFα-induced VCAM-1 expression in HUVECs and LPS-induced VCAM-1 expression in mice. In addition, Inhibition of MALT1 protease activity also significantly inhibited TNFα-induced adhesion of THP-1 monocytic cells to HUVECs. To explore the mechanisms, MALT1 inhibitors does not affect the activation of NF-κB signaling pathway in HUVEC. However, they can stabilize MCPIP1 protein and significantly enhance MCPIP1 protein level in endothelial cells. These results suggest that MALT1 paracaspase also targets MCPIP1 and degrade MCPIP1 protein in endothelial cells similar as it does in immune cells. Taken together, the study suggest inhibition of MALT1 protease activity may represent a new strategy for prevention/therapy of vascular inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Yong Li
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, PR China
| | - Shengping Huang
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Xuan Huang
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, PR China
| | - Xiuzhen Li
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Adrian Falcon
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Adele Soutar
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Frederic Bornancin
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Zhisheng Jiang
- Institute of Cardiovascular Diseases, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, PR China
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA.
| |
Collapse
|
50
|
Monajemi M, Pang YCF, Bjornson S, Menzies SC, van Rooijen N, Sly LM. Malt1 blocks IL-1β production by macrophages in vitro and limits dextran sodium sulfate-induced intestinal inflammation in vivo. J Leukoc Biol 2018; 104:557-572. [PMID: 29901822 DOI: 10.1002/jlb.3vma0118-019r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
This study tested the hypothesis that Malt1 deficiency in macrophages contributes to dextran sodium sulfate (DSS)-induced intestinal inflammation in Malt1-deficient mice. In people, combined immunodeficiency caused by a homozygous mutation in the MALT1 gene is associated with increased susceptibility to bacterial infections and chronic inflammation, including severe inflammation along the gastrointestinal tract. The consequences of Malt1 deficiency have largely been attributed to its role in lymphocytes, but Malt1 is also expressed in macrophages, where it is activated downstream of TLR4 and dectin-1. The effect of Malt1 deficiency in murine macrophages and its contribution to DSS-induced colitis have not been investigated. Our objectives were to compare the susceptibility of Malt1+/+ and Malt1-/- mice to DSS-induced colitis, to determine the contribution of macrophages to DSS-induced colitis in Malt1-/- mice, and to assess the effect of innate immune stimuli on Malt1-/- macrophage inflammatory responses. We found that Malt1 deficiency exacerbates DSS-induced colitis in mice, accompanied by higher levels of IL-1β, and that macrophages and IL-1 signaling contribute to pathology in Malt1-/- mice. Malt1-/- macrophages produce more IL-1β in response to either TLR4 or dectin-1 ligation, whereas inhibition of Malt1 proteolytic (paracaspase) activity blocked IL-1β production. TLR4 or dectin-1 stimulation induced Malt1 protein levels but decreased its paracaspase activity. Taken together, these data support the hypothesis that Malt1-/- macrophages contribute to increased susceptibility of Malt1-/- mice to DSS-induced colitis, which is dependent on IL-1 signaling. Increased IL-1β production by MALT1-deficient macrophages may also contribute to chronic inflammation in people deficient in MALT1.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvonne C F Pang
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Saelin Bjornson
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura M Sly
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|