1
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
2
|
Lau HX, Chen Z, Van Bever H, Tham EH, Chan YH, Yap QV, Goh AEN, Teoh OH, Tan KH, Yap FKP, Godfrey KM, Eriksson JG, Chong YS, Lee BW, Shek LPC, Loo EXL. Clinical predictors of wheeze trajectories and associations with allergy in Asian children. Ann Allergy Asthma Immunol 2023; 131:466-473.e6. [PMID: 37419414 PMCID: PMC10561605 DOI: 10.1016/j.anai.2023.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Childhood wheezing is a highly heterogeneous condition with an incomplete understanding of the characteristics of wheeze trajectories, particularly for persistent wheeze. OBJECTIVE To characterize predictors and allergic comorbidities of distinct wheeze trajectories in a multiethnic Asian cohort. METHODS A total of 974 mother-child pairs from the prospective Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort were included in this study. Wheeze and allergic comorbidities in the first 8 years of life were assessed using the modified International Study of Asthma and Allergies in Childhood questionnaires and skin prick tests. Group-based trajectory modeling was used to derive wheeze trajectories and regression was used to assess associations with predictive risk factors and allergic comorbidities. RESULTS There were 4 wheeze trajectories derived, including the following: (1) early-onset with rapid remission from age 3 years (4.5%); (2) late-onset peaking at age 3 years and rapidly remitting from 4 years (8.1%); (3) persistent with a steady increase to age 5 years and high wheeze occurrence until 8 years (4.0%); and (4) no or low wheeze (83.4%). Early-onset wheezing was associated with respiratory infections during infancy and linked to subsequent nonallergic rhinitis throughout childhood. Late-onset and persistent wheeze shared similar origins characterized by parent-reported viral infections in later childhood. However, persistent wheezing was generally more strongly associated with a family history of allergy, parent-reported viral infections in later childhood, and allergic comorbidities as compared with late-onset wheezing. CONCLUSION The timing of viral infection occurrence may determine the type of wheeze trajectory development in children. Children with a family history of allergy and viral infections in early life may be predisposed to persistent wheeze development and the associated comorbidities of early allergic sensitization and eczema.
Collapse
Affiliation(s)
- Hui Xing Lau
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhaojin Chen
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Hugo Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Yiong Huak Chan
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Qai Ven Yap
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Anne Eng Neo Goh
- Department of Paediatrics, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Oon Hoe Teoh
- Department of Paediatrics, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KKH, Singapore, Singapore
| | - Fabian Kok Peng Yap
- Department of Paediatrics, KK Women's and Children's Hospital (KKH), Singapore, Singapore; Duke- National University of Singapore (NUS) Medical School, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Keith M Godfrey
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, United Kingdom; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom; Medical Research Council (MRC) Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore; Folkhälsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, Finland; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore (NUS) and National University Health System, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore (NUS) and National University Health System, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
| |
Collapse
|
3
|
Petalas K, Goudakos J, Konstantinou GN. Targeting Epithelium Dysfunction and Impaired Nasal Biofilms to Treat Immunological, Functional, and Structural Abnormalities of Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:12379. [PMID: 37569753 PMCID: PMC10419026 DOI: 10.3390/ijms241512379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic rhinosinusitis (CRS) with (CRSwNP) or without (CRSsNP) nasal polyps is a prevalent and heterogeneous disorder existing as a spectrum of clinical conditions with complex underlying pathomechanisms. CRS comprises a broad syndrome characterized by multiple immunological features involving complex interactions between the genes, the microbiome, host- and microbiota-derived exosomes, the epithelial barrier, and environmental and micromilieu exposures. The main pathophysiological feature is an epithelial barrier disruption, accompanied by microbiome alterations and unpredictable and multifactorial immunologic overreactions. Extrinsic pathogens and irritants interact with multiple epithelial receptors, which show distinct expression patterns, activate numerous signaling pathways, and lead to diverse antipathogen responses. CRSsNP is mainly characterized by fibrosis and mild inflammation and is often associated with Th1 or Th17 immunological profiles. CRSwNP appears to be associated with moderate or severe type 2 (T2) or Th2 eosinophilic inflammation. The diagnosis is based on clinical, endoscopic, and imaging findings. Possible CRS biomarkers from the peripheral blood, nasal secretions, tissue biopsies, and nasally exhaled air are studied to subgroup different CRS endotypes. The primary goal of CRS management is to maintain clinical control by nasal douching with isotonic or hypertonic saline solutions, administration of nasal and systemic steroids, antibiotics, biologic agents, or, in persistent and more severe cases, appropriate surgical procedures.
Collapse
Affiliation(s)
| | - John Goudakos
- Department of Otorhinolaryngology-Head and Neck Surgery, 424 General Military Training Hospital, 56429 Thessaloniki, Greece;
| | - George N. Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Dorilaiou 10, Kalamaria, 55133 Thessaloniki, Greece
| |
Collapse
|
4
|
Keith YH, Egawa G, Honda T, Kabashima K. Mast cells in type 2 skin inflammation: Maintenance and function. Eur J Immunol 2023; 53:e2250359. [PMID: 36933268 DOI: 10.1002/eji.202250359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Mast cells (MCs) are immune cells residing in tissues and playing indispensable roles in maintaining homeostasis and inflammatory states. Skin lesions associated with atopic dermatitis (AD) and type 2 skin inflammation display an increment in MCs, which have both pro- and anti-inflammatory effects. The direct and indirect activations of skin MCs by environmental factors such as Staphylococcus aureus can instigate type 2 skin inflammation in AD with poorly understood mechanisms. Furthermore, both IgE-dependent and -independent degranulation of MCs contribute to pruritus in AD. Conversely, MCs suppress type 2 skin inflammation by promoting Treg expansion through IL-2 secretion in the spleen. Moreover, skin MCs can upregulate gene expression involved in skin barrier function, thus mitigating AD-like inflammation. These functional variances of MCs in AD could stem from differences in experimental systems, their localization, and origins. In this review, we will focus on how MCs are maintained in the skin under homeostatic and inflammatory conditions, and how they are involved in the pathogenesis of type 2 skin inflammation.
Collapse
Affiliation(s)
- Yuki Honda Keith
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Intravital Microscopy Laboratory and Gene Expression (IMAGE) Lab, Precision Immunology Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
- A*Star Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
5
|
Lin H, Li H. How does cigarette smoking affect airway remodeling in asthmatics? Tob Induc Dis 2023; 21:13. [PMID: 36741543 PMCID: PMC9881586 DOI: 10.18332/tid/156047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 01/30/2023] Open
Abstract
Asthma is a prevalent chronic airway inflammatory disease involving multiple cells, and the prolonged course of the disease can cause airway remodeling, resulting in irreversible or partial irreversible airflow limitation and persistent airway hyperresponsiveness (AHR) in asthmatics. Therefore, we must ascertain the factors that affect the occurrence and development of airway remodeling in asthmatics. Smokers are not uncommon in asthmatics. However, there is no systematic description of how smoking promotes airway remodeling in asthmatics. This narrative review summarizes the effects of smoking on airway remodeling in asthmatics, and the progress of the methods for evaluating airway remodeling.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
6
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
7
|
Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 2022; 149:1491-1503. [PMID: 35245537 PMCID: PMC9081253 DOI: 10.1016/j.jaci.2022.02.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by local inflammation of the upper airways and is historically divided into 2 main phenotypes: CRS with nasal polyps and CRS without nasal polyps. Inflammation in CRS is mainly characterized by 3 endotypes based on elevation of canonical lymphocyte cytokines: type (T) 1 (T1) by TH1 cytokine IFN-γ, T2 by TH2 cutokines IL-4, IL-5, and IL-13, and T3 by TH17 cytokines including IL-17. Inflammation in both CRS without nasal polyps and CRS with nasal polyps is highly heterogeneous, and the frequency of various endotypes varies geographically around the world. This finding complicates establishment of a unified understanding of the mechanisms of pathogenesis in CRS. Sinonasal epithelium acts as a passive barrier, and epithelial barrier dysfunction is a common feature in CRS induced by endotype-specific cytokines directly and indirectly. The sinonasal epithelium also participates in both innate immunity via recognition by innate pattern-recognition receptors and promotes and regulates adaptive immunity via release of chemokines and innate cytokines including thymic stromal lymphopoietin. The purpose of this review was to discuss the contribution of the epithelium to CRS pathogenesis and to update the field regarding endotypic heterogeneity and various mechanisms for understanding pathogenesis in CRS.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago.
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago
| | - Benjamin S Bleier
- Department of Otolaryngology-Head & Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
8
|
Lee CH, Yang H, Yoon Park JH, Kim JE, Lee KW. Orobol from enzyme biotransformation attenuates Dermatophagoides farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Food Funct 2022; 13:4592-4599. [PMID: 35355022 DOI: 10.1039/d1fo04362e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orobol, a metabolite of genistein, is rare in natural soybean. Several studies have revealed the immune-controlling effects of orobol on inflammatory diseases. Furthermore, a few studies have demonstrated that orobol decreases pro-inflammatory compounds resulting in the alleviation of allergic reactions. However, the relationship between orobol and atopic dermatitis (AD) in animal models has not been revealed. Therefore, we sought to investigate the effects of orobol on AD-like symptoms. AD-like symptoms and skin lesions were induced by repeated topical application of Dermatophagoides farinae extract (DFE) on the skin of NC/Nga mice. Topical application of orobol attenuated DFE-induced AD-like symptoms and transepidermal water loss and increased skin hydration. Histopathological analysis revealed that orobol alleviated DFE-induced eosinophil and mast cell infiltration into the skin. These observations occurred concomitantly with the downregulation of inflammatory markers including serum TARC, MDC, and IgE. In addition, orobol alleviated dorsal Th2 cytokines such as IL-4 and IL-13. Pre-treatment of orobol decreased the activity of the MAPKs and NF-κB signalling cascade in the TNFα/IFNγ-induced HaCaT cell line. These results suggest that orobol, a natural dietary isoflavone, has therapeutic efficacy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chang Hyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Yang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institute of Convergence Technology, Seoul National University, 8 Gyeonggi-do, 16229, Suwon, Republic of Korea
| |
Collapse
|
9
|
Shim JA, Jo Y, Hwang H, Lee SE, Ha D, Lee JH, Kim J, Song P, Lee D, Hong C. Defects in aminoacyl-tRNA synthetase cause partial B and T cell immunodeficiency. Cell Mol Life Sci 2022; 79:87. [PMID: 35067747 PMCID: PMC11071942 DOI: 10.1007/s00018-021-04122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are emerging as important regulators in various immune diseases; however, their roles in immune cells remain unclear. In this study, using alanyl-tRNA synthetase (AARS) mutant (sti) mice with neurodegenerative disorder, we investigated the effect of translational fidelity in immune cells. Dysfunctional AARS caused disorders in immune cell responses and cellularity. The impairment was caused by dampened TCR signaling than cytokine signaling. Therefore, sti mutant inhibits TCR signaling, impeding T cell survival and responses. B cell numbers were decreased in sti mice. Despite low B cell cellularity, serum IgM, IgA, and IgE levels were higher in sti mice than in wild-type mice. Misacylation of ARS and the consequent translational infidelity induce disturbances in signaling pathways critical for immune cell survival and responses. Our findings provide a novel mechanism by which translational fidelity might play a critical role in cellular and humoral immune responses.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyunju Hwang
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - So Eun Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Dahyeon Ha
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jun Hwa Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
10
|
Kim EY, Hong S, Kim JH, Kim M, Lee Y, Sohn Y, Jung HS. Effects of chloroform fraction of Fritillariae Thunbergii Bulbus on atopic symptoms in a DNCB-induced atopic dermatitis-like skin lesion model and in vitro models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114453. [PMID: 34314806 DOI: 10.1016/j.jep.2021.114453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fritillariae thunbergii Bulbus (FT), knowns as "Jeolpaemo ()" in Korean traditional medicine, is a perennial plant belonging to the Liliaceae family and has been used to treat symptoms such as cough, sputum formation, and purulent pneumonia. Owing to its effects of lowering heat, removing sputum, and reducing swelling, the plant has also been used as an external prescription medicine to treat inflammation. AIM OF THE STUDY To analyze the anti-inflammatory effects of FT-ethanol extract (FT-Et) and FT-chloroform fraction extract (FT-Cl) on 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) in vivo and in vitro. MATERIALS AND METHODS The effect of FT-Et and FT-Cl on AD was observed using an AD-like skin lesion model induced by DNCB in vivo. HaCaT and RBL2H3 cells were used to determine the effects of FT-Et and FT-Cl in vitro. After inducing AD-like skin lesions in vivo, FT was topically applied to the skin lesion for 35 days. Epidermal thickness, dermal thickness, scratching behavior, infiltration of inflammatory cells, and expression of skin barrier proteins were measured. TARC, MDC, and IL-4 levels were analyzed using ELISA in HaCaT cells. Beta-hexosaminidase and IL-4 levels were measured in RBL2H3 cells. The expression of filaggrin (FLG), loricrin (LOR), involucrin (INV), and aquaporin-3(AQP-3) was measured by PCR. Phosphorylation of MAPKs was analyzed using Western blot technique. RESULTS FT-Cl significantly reduced ear swelling, scratching behavior, SCORAD index, epidermal thickness, infiltration of inflammatory cells, and loss of skin barrier proteins. FT-Et inhibited the infiltration of mast cells and CD8+ cells and decreased the loss of skin barrier proteins. In TNF-α/IFN-γ-stimulated HaCaT cells, FT-Cl inhibited TRAC, MDC, and IL-4 expression and upregulated the expression of FLG, INV, and AQP-3, whereas FT-Et inhibited the expression of TRAC and MDC and increased the expression of FLG, INV, and AQP-3 at high concentrations. In RBL2H3, FT-Cl downregulated β-hexosaminidase and IL-4 expression. In addition, FT-Cl inhibited the phosphorylation of ERK and p-38 in HaCaT and RBL2H3 cells. CONCLUSIONS Collectively, FT-Cl showed better effect than FT-Et in vivo and in vitro. These results suggest that a specific component present in FT-Cl acted against AD. Future research should focus on the analysis of components contained in FT-Cl and the anti-inflammatory effects of the active ingredient.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Yujin Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
11
|
Tabri F, Bayasari PS, Nurdin RSC, Anwar AI, Adriani A, Ilyas F. The Effectiveness of Lumbricus rubellus Extract Toward Interleukin-10 and Immunoglobulin E and Atopic Dermatitis Scoring Index (SCORAD). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by severe pruritic symptoms and chronic AD related to clinical features in form of lichenification associated with a history of atopic disease both for himself and family.
AIM: This study aims to determine the effectiveness of using earthworm extract (Lumbricus rubellus) to increase interleukin (IL)-10 and decrease immunoglobulin E (IgE), and to describe the AD (SCORAD) scoring index of patients with AD.
METHODS: This research used quantitative with quasi experiment method. The data were analyzed using SPSS v19 program. To determine the basic characteristics of numerical variables, the mean standard deviation is functioned if the data distribution amount is even, if it is not, it used the median. Meanwhile, to observe the relationship between L. rubellus extract and IgE, Mann-Whitney test analysis (U-Test) was used.
RESULTS: The results of this study indicate that the administration of L. rubellus extract showed a changes and differences before and after being involved with the extract. IgE levels between ERL and no ERL groups had differences (p < 0.05), however on day 15 both groups did not show any differences. Meanwhile, the SCORAD index indicated that the influence of lumbricus rebellus extract has an effect on low number of AD patients.
CONCLUSION: It can be concluded that the administration of L. rubellus extract in patients with AD is quite effective.
Collapse
|
12
|
Min GY, Kim EY, Hong S, Kim JH, Kim M, Kim EJ, Park JH, Sohn Y, Jung HS. Lycopus lucidus Turcz ameliorates DNCB‑induced atopic dermatitis in BALB/c mice. Mol Med Rep 2021; 24:827. [PMID: 34581418 PMCID: PMC8503738 DOI: 10.3892/mmr.2021.12467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory allergic skin disease, characterized by pruritic and eczematous skin lesions. Lycopus lucidus Turcz (LLT) is a perennial herb that has been reported to have various biological properties, including effects on blood circulation, as well as anti-inflammatory, antioxidant, anti-vascular inflammation and wound-healing effects. However, whether LLT improves dermatitis and the underlying mechanisms has yet to be determined. The aim of the present study was to determine whether LLT can improve 2,4-dinitrochlorobenzene (DNCB)-induced dermatitis and to verify the inhibitory effect of LLT on the expression of chemokines and pro-inflammatory cytokines in the HaCaT immortalized keratinocyte cell line. In addition, the anti-inflammatory function of LLT in RAW264.7 mouse macrophages was investigated. In the DNCB-induced AD mouse model, LLT inhibited infiltration by mast cells, eosinophils and CD8+ cells in the dorsal skin tissue of AD mice, and suppressed the expression of IgE and IL-6 in serum. In addition, LLT inhibited the phosphorylation of ERK and JNK, as well as NF-κB in skin tissue. In the HaCaT cell model induced by TNF-α/IFN-γ, LLT inhibited the expression of thymus and activation-regulated chemokine, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, TNF-α and IL-1β, whilst inhibiting the phosphorylation of NF-κB. In addition, in the lipopolysaccharide-induced RAW 264.7 cell inflammation model, LLT inhibited the expression of TNF-α and IFN-γ, the nuclear translocation of NF-κB and the phosphorylation of ERK and JNK. These results suggested that LLT may be a promising candidate for the treatment of inflammatory dermatitis.
Collapse
Affiliation(s)
- Ga-Yul Min
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Ho Park
- Department of Pharmaceutical Science, Jungwon University, Goesan, Chungbuk 28024, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Effects of Air Pollutants on Airway Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189905. [PMID: 34574829 PMCID: PMC8465980 DOI: 10.3390/ijerph18189905] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.
Collapse
|
14
|
Huang C, Yu Y, Du W, Liu Y, Dai R, Wang P, Zhang C, Shi G. Insights into gut microbiome and its functional pathways in asthma patients through high-throughput sequencing. Future Microbiol 2021; 16:421-438. [PMID: 33847137 DOI: 10.2217/fmb-2020-0101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: To describe gut microbiome and functional genes of asthma. Patients & methods: Fecal microbiome in controls, asthma patients with and without inhaled corticosteroid (ICS) treatment was determined. Results: Patients with ICS had lower abundance of Alloprevotella, unclassified_f_Lachnospiraceae and Lachnospiraceae_NC2004_group, higher abundance of Sutterella and Sphingomonas than patients without ICS. In all the asthma patients, there are microbial differences in aging distribution, different gender and different asthmatic phenotypes. Asthma patients without ICS treatment had more microbial genes related to geraniol degradation, ethylbenzene degradation and bladder cancer than controls; 15 pathways showed significant difference between asthma patients with and without ICS treatment. Conclusion: We found gut dysbiosis in asthma and different functional pathways associated with both asthma and ICS.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Youchao Yu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Wei Du
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yahui Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Ranran Dai
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Ping Wang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism & Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Guochao Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| |
Collapse
|
15
|
Ubiquitous Overexpression of Chromatin Remodeling Factor SRG3 Exacerbates Atopic Dermatitis in NC/Nga Mice by Enhancing Th2 Immune Responses. Int J Mol Sci 2021; 22:ijms22041553. [PMID: 33557054 PMCID: PMC7913833 DOI: 10.3390/ijms22041553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The SWItch (SWI)3-related gene (SRG3) product, a SWI/Sucrose Non-Fermenting (SNF) chromatin remodeling subunit, plays a critical role in regulating immune responses. We have previously shown that ubiquitous SRG3 overexpression attenuates the progression of Th1/Th17-mediated experimental autoimmune encephalomyelitis. However, it is unclear whether SRG3 overexpression can affect the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD), a Th2-type immune disorder. Thus, to elucidate the effects of SRG3 overexpression in AD development, we bred NC/Nga (NC) mice with transgenic mice where SRG3 expression is driven by the β-actin promoter (SRG3β-actin mice). We found that SRG3β-actin NC mice exhibit increased AD development (e.g., a higher clinical score, immunoglobulin E (IgE) hyperproduction, and an increased number of infiltrated mast cells and basophils in skin lesions) compared with wild-type NC mice. Moreover, the severity of AD pathogenesis in SRG3β-actin NC mice correlated with expansion of interleukin 4 (IL4)-producing basophils and mast cells, and M2 macrophages. Furthermore, this accelerated AD development is strongly associated with Treg cell suppression. Collectively, our results have identified that modulation of SRG3 function can be applied as one of the options to control AD pathogenesis.
Collapse
|
16
|
Lee YG, Lee SH, Hong J, Lee PH, Jang AS. Titanium dioxide particles modulate epithelial barrier protein, Claudin 7 in asthma. Mol Immunol 2021; 132:209-216. [PMID: 33483086 DOI: 10.1016/j.molimm.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Epithelial barrier dysfunction is involved in allergic inflammation and asthma, due to increased exposure of sub-epithelial tissues to inhaled allergens and air pollutants. The tight junction proteins claudins (CLDNs) are important regulators of paracellular permeability. CLDN7 is expressed in the alveolar epithelium; however, its contribution to airway barrier function remains unclear. The aim of this study was to assess the effects of TiO2 on epithelial barrier function in asthma. Mice were sensitized and challenged with OVA or exposed to TiO2 on days 21-23. The effect of TiO2 on CLDN7 was assessed by ELISA, immunoblotting, and immunohistochemical analysis. The levels of CLDN7 in the plasma of patients with asthma and healthy individuals were also examined. CLDN7 levels were lower in plasma from patients with asthma compared with healthy individuals. CLDN7 levels were associated with FEV1/FVC and the blood eosinophils (%) in patients with asthma. Although CLDN7 expression was elevated in the lungs of mice with asthma and in NHBE cells treated with HDM extracts, its expression was suppressed by exposure to TiO2. p-AKT and p-ERK was increased in asthmatic mice and decreased in mice with TiO2 treatment. p-AKT and p-ERK was decreased in NHBE cells treated with TiO2 and HDM extracts. Trans-epithelial electrical resistance (TEER) was higher in NHBE cells treated with TiO2 or HDM extracts; however, this was decreased by concurrent TiO2 and HDM extracts treatment. Our data suggest that particulate matter contributes to airway epithelial barrier dysfunction and results in airway inflammation and responsiveness.
Collapse
Affiliation(s)
- Yun-Gi Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - Sun-Hye Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - Jisu Hong
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon, 14584, Republic of Korea.
| |
Collapse
|
17
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
18
|
Chiu C, Chou H, Chang L, Fan W, Dinh MCV, Kuo Y, Chung W, Lai H, Hsieh W, Su S. Integration of metagenomics-metabolomics reveals specific signatures and functions of airway microbiota in mite-sensitized childhood asthma. Allergy 2020; 75:2846-2857. [PMID: 32506557 DOI: 10.1111/all.14438] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Childhood asthma is a multifactorial inflammatory condition of the airways, associated with specific changes in respiratory microbiome and circulating metabolome. METHODS To explore the functional capacity of asthmatic microbiome and its intricate connection with the host, we performed shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in a cohort of children with mite-sensitized asthma and non-asthmatic controls. RESULTS We observed higher gene counts and sample-to-sample dissimilarities in asthmatic microbiomes, indicating a more heterogeneous community structure and functionality among the cases than in controls. Moreover, we identified airway microbial species linked to changes in circulating metabolites and IgE responses of the host, including a positive correlation between Prevotella sp oral taxon 306 and dimethylglycine that were both decreased in patients. Several control-enriched species (Eubacterium sulci, Prevotella pallens, and Prevotella sp oral taxon 306) were inversely correlated with total and allergen-specific IgE levels. Genes related to microbial carbohydrate, amino acid, and lipid metabolism were differentially enriched, suggesting that changes in microbial metabolism may contribute to respiratory health in asthmatics. Pathway modules relevant to allergic responses were differentially abundant in asthmatic microbiome, such as enrichments for biofilm formation by Pseudomonas aeruginosa, membrane trafficking, histidine metabolism, and glycosaminoglycan degradation, and depletions for polycyclic aromatic hydrocarbon degradation. Further, we identified metagenomic and metabolomic markers (eg, Eubacterium sulci) to discriminate cases from the non-asthmatic controls. CONCLUSIONS Our dual-omics data reveal the connections between respiratory microbes and circulating metabolites perturbed in mite-sensitized pediatric asthma, which may be of etiological and diagnostic implications.
Collapse
Affiliation(s)
- Chih‐Yung Chiu
- Division of Pediatric Pulmonology Chang Gung Memorial Hospital at LinkouCollege of MedicineChang Gung University Taoyuan Taiwan
- Clinical Metabolomics Core Laboratory Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| | - Hsin‐Cheng Chou
- Institute of Statistics National Tsing‐Hua University Hsinchu Taiwan
| | - Lun‐Ching Chang
- Department of Mathematical Sciences Florida Atlantic University Florida USA
| | - Wen‐Lang Fan
- Genomic Medicine Core Laboratory Chang Gung Memorial Hospital Linkou Taiwan
| | | | - Yu‐Lun Kuo
- Biotools, Co. Ltd New Taipei City Taiwan
| | - Wen‐Hung Chung
- Whole‐Genome Research Core Laboratory of Human Diseases Chang Gung Memorial Hospital Keelung Taiwan
| | - Hsin‐Chih Lai
- Department of Medical Biotechnology and Laboratory Science Microbiota Research CenterCollege of MedicineChang Gung University Taoyuan Taiwan
- Central Research Laboratory XiaMen Chang Gung Hospital XiaMen China
| | - Wen‐Ping Hsieh
- Institute of Statistics National Tsing‐Hua University Hsinchu Taiwan
| | - Shih‐Chi Su
- Whole‐Genome Research Core Laboratory of Human Diseases Chang Gung Memorial Hospital Keelung Taiwan
- Central Research Laboratory XiaMen Chang Gung Hospital XiaMen China
| |
Collapse
|
19
|
Huang C, Yu Y, Du W, Liu Y, Dai R, Tang W, Wang P, Zhang C, Shi G. Fungal and bacterial microbiome dysbiosis and imbalance of trans-kingdom network in asthma. Clin Transl Allergy 2020; 10:42. [PMID: 33110490 PMCID: PMC7583303 DOI: 10.1186/s13601-020-00345-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Fungal and bacterial microbiota play an important role in development of asthma. We aim to characterize airway microbiome (mycobiome, bacteriome) and functional genes in asthmatics and controls. Methods Sputum microbiome of controls, untreated asthma patients and inhaled corticosteroid (ICS) receiving patients was detected using high throughput sequencing. Metagenomic sequencing was used to examine the functional genes of microbiome. Results 1. Mycobiome: α diversity was lower in untreated asthma group than that in controls. Mycobiome compositions differed among the three groups. Compared with controls, untreated asthma group has higher abundance of Wallemia, Mortierella and Fusarium. Compared with untreated asthma patients, ICS receiving patients has higher abundance of Fusarium and Mortierella, lower frequency of Wallemia, Alternaria and Aspergillus. 2. Bacteriome: α diversity was lower in untreated asthma group than that in controls. There are some overlaps of bacteriome compositions between controls and untreated asthma patients which were distinct from ICS receiving patients. Untreated asthma group has higher Streptococcus than controls. 3. Potential fungal and bacterial biomarkers of asthma: Trametes, Aspergillus, Streptococcus, Gemella, Neisseria, etc. 4. Correlation network: There are dense and homogenous correlations in controls but a dramatically unbalanced network in untreated asthma and ICS receiving patients, which suggested the existence of disease-specific inter-kingdom and intra-kingdom alterations. 5. Metagenomic analysis: functional pathways were associated with the status of asthma, microbiome and functional genes showed different correlations in different environment. Conclusion We showed mycobiome and bacteriome dysbiosis in asthma featured by alterations in biodiversity, community composition, inter-kingdom and intra-kingdom network. We also observed several functional genes associated with asthma.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Yahui Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Ping Wang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai, 200240 People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| |
Collapse
|
20
|
Talapko J, Matijević T, Juzbašić M, Antolović-Požgain A, Škrlec I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020; 8:E1400. [PMID: 32932967 PMCID: PMC7565656 DOI: 10.3390/microorganisms8091400] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The problem of antimicrobial resistance is increasingly present and requires the discovery of new antimicrobial agents. Although the healing features of silver have been recognized since ancient times, silver has not been used due to newly discovered antibiotics. Thanks to technology development, a significant step forward has been made in silver nanoparticles research. Nowadays, silver nanoparticles are a frequent target of researchers to find new and better drugs. Namely, there is a need for silver nanoparticles as alternative antibacterial nanobiotics. Silver nanoparticles (AgNPs), depending on their size and shape, also have different antimicrobial activity. In addition to their apparent antibacterial activity, AgNPs can serve as drug delivery systems and have anti-thrombogenic, anti-platelet, and anti-hypertensive properties. Today they are increasingly used in clinical medicine and dental medicine. This paper presents silver antimicrobial activity and its use in dentistry, cardiology, and dermatology, where it has an extensive range of effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Arlen Antolović-Požgain
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
- Department of Microbiology, Institute of Public Health Osijek, HR-31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
21
|
Abstract
The novel coronavirus COVID-19 appears to strike some people more intensely than others. Some people only experience mild symptoms while others require hospitalization and ventilation. With the virus becoming more prevalent day by day, it is not just the elderly, but even young people are falling seriously ill. Various researchers across the world state that specific cells in the nasal passages, intestines, and lungs may be more susceptible to the infection. Shifting the focus and research towards epithelium might provide new insight towards understanding COVID-19. This article is an overview of how epithelium permeability in COVID-19 may associate with comorbidities and other factors.
Collapse
Affiliation(s)
- T K Sivabakya
- Department of Epidemiology, The Tamilnadu Dr MGR Medical University, No.69, Annasalai, Guindy, Chennai, 600032 India
| | - G Srinivas
- Department of Epidemiology, The Tamilnadu Dr MGR Medical University, No.69, Annasalai, Guindy, Chennai, 600032 India
| |
Collapse
|
22
|
Chen MH, Huang MT, Yu WK, Lee SS, Wang JH, Cheng TJR, Bowman MR, Hsieh SL. Antibody blockade of Dectin-2 suppresses house dust mite-induced Th2 cytokine production in dendritic cell- and monocyte-depleted peripheral blood mononuclear cell co-cultures from asthma patients. J Biomed Sci 2019; 26:97. [PMID: 31861989 PMCID: PMC6925444 DOI: 10.1186/s12929-019-0598-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Dectin-2, which is a C-type lectin, interacts with the house dust mite (HDM) Dermatophagoides pteronyssinus allergen. This study aimed to investigate whether Dectin-2 blockade by antagonistic monoclonal antibodies (MoAbs) attenuates HDM-induced allergic responses. Methods Two anti-Dectin-2 MoAbs were generated and validated for specific binding to Dectin-2 Fc fusion protein (Dectin-2.Fc) and inhibition of Dectin-2.Fc/HDM interaction. Patients with asthma exhibiting high titers of anti-D. pteronyssinus IgE were enrolled. Peripheral blood mononuclear cells with depleted CD14+ monocytes were obtained from these patients and co-cultured with autologous monocyte-derived conventional dendritic cells in the presence of D. pteronyssinus or its group 2 allergens (Der p 2). Interleukin (IL)-5 and IL-13 levels in the culture supernatants were determined using ELISA in the presence or absence of anti-Dectin-2 MoAbs. Results Two MoAbs, 6A4G7 and 17A1D10, showed specific binding to recombinant Dectin-2.Fc and inhibited HDM binding to Dectin-2.Fc. Both anti-Dectin-2 MoAbs inhibited IL-5 and IL-13 production in co-cultures with Der p 2 stimulation in a dose-dependent manner. 6A4G7 and 17A1D10 (3 μg/mL) significantly inhibited Der p 2-induced (3 μg/mL) IL-5 production by 69.7 and 86.4% and IL-13 production by 84.0 and 81.4%, respectively. Moreover, this inhibitory effect of the two MoAbs remained significant in the presence of D. pteronyssinus. Conclusions Anti-Dectin-2 MoAbs significantly inhibited HDM-induced allergic responses in vitro and therefore have the potential to become therapeutic agents in mite-induced allergic diseases.
Collapse
Affiliation(s)
- Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Wen-Kuang Yu
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shinn-Shing Lee
- Section of Allergy, Immunology, and Rheumatology, Department of Medicine, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan
| | - Jia-Horng Wang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Critical Care, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | - Michael R Bowman
- Inflammation and Immunology Research Unit, Pfizer Inc, Cambridge, MA, USA.,Present address: Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
23
|
Park J, Youn DH, Kang J, Ahn KS, Kwak HJ, Um JY. Taeumjowi-tang, a Traditional Korean Sasang Remedy, Improves Obesity-Atopic Dermatitis Comorbidity by Regulating Hypoxia-Inducible Factor 1 Alpha. Front Pharmacol 2019; 10:1458. [PMID: 31920651 PMCID: PMC6933016 DOI: 10.3389/fphar.2019.01458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory disease of the skin, resulting from an immune dysfunction, that often occurs as a comorbidity of obesity. This investigation evaluated the capacity of Taeumjowi-tang (TJT), a Korean herbal formulation from the Sasang medical tradition to influence prognostic features of AD and obesity in a mouse model. Here, obesity and AD were induced by a high-fat diet (HFD) and 1-fluoro-2,4-dinitrobenzene (DNFB). Following an 8-week HFD regimen and 4 weeks of DNFB administration, the comorbid (CO) group manifested increased body weight and AD-like lesions, as compared to normal control (NC) mice, while TJT administration diminished these symptoms of obesity and AD. Specifically, TJT treatment reduced epidermal thickness and eosinophil/mast cell infiltration, along with reduction in immunoglobulin E, interleukin (IL)-4, IL-6, and tumor necrosis factor-alpha (TNF-α). It was additionally demonstrated that TJT suppresses HFD/DNFB-associated increase of the inflammation-related nuclear factor-kappa beta (NF-κB) and mitogen activated protein kinase. Moreover, significantly increased levels of hypoxia inducible factor-1 alpha (HIF-1α) protein was observed in CO group versus controls, an increase significantly down-regulated by TJT-treatment. These outcomes suggest that TJT may prove useful in clinical management of obesity-AD comorbidity treatment, an effect that may be due to regulation of HIF-1α expression.
Collapse
Affiliation(s)
- Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, South Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
24
|
Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, Bonnart C, Reber LL, Marichal T, Starkl P, Cenac N, Dong X, Tsai M, Galli SJ, Gaudenzio N. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol 2019; 20:1435-1443. [PMID: 31591569 PMCID: PMC6858877 DOI: 10.1038/s41590-019-0493-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/09/2019] [Indexed: 01/06/2023]
Abstract
Allergic skin diseases, such as atopic dermatitis (AD), are clinically
characterized by severe itching and type 2 immunity-associated hypersensitivity
to widely-distributed allergens, including those derived from house dust mites
(HDMs). Here we found that HDMs with cysteine-protease activity directly
activated peptidergic nociceptors, which are neuropeptide-producing nociceptive
sensory neurons, that expressed the ion channel TRPV1 and Tac1,
the gene encoding the precursor for the neuropeptide substance P. Intravital
imaging and genetic approaches indicated that HDMs-activated nociceptors drove
the development of allergic skin inflammation by inducing the degranulation of
mast cells contiguous to such nociceptors through the release of substance P and
the activation of the cationic molecules receptor MRGPRB2 on mast cells. This
data indicates that, after exposure to HDM allergens, activation of
TRPV1+Tac1+
nociceptor-MRGPRB2+ sensory clusters represents a key early event
in the development of allergic skin reaction.
Collapse
Affiliation(s)
- Nadine Serhan
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Lilian Basso
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Camille Petitfils
- IRSD, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - James Meixiong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chrystelle Bonnart
- IRSD, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Laurent L Reber
- Unit for Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France.,Center for Pathophysiology Toulouse Purpan, INSERM U1043, CNRS UMR 5282, Toulouse III University, Toulouse, France
| | - Thomas Marichal
- GIGA Institute and Faculty of Veterinary Medicine, Liege University, Liege, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nicolas Cenac
- IRSD, INSERM, INRA, INP-ENVT, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde, UMR 1056, INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
25
|
Mousavinasab F, Babaie D, Nilipour Y, Mansouri M, Imanzadeh F, Dara N, Rohani P, Khatami K, Sayyari A, Khoddami M, Kazemiaghdam M, Mesdaghi M. Increased number of regulatory T cells in esophageal tissue of patients with eosinophilic esophagitis in comparison to gastro esophageal reflux disease and control groups. Allergol Immunopathol (Madr) 2019; 47:431-436. [PMID: 31178311 DOI: 10.1016/j.aller.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a primarily polygenic allergic disorder. Although most patients have IgE sensitization, it seems that non-IgE mediated responses mainly contribute to the pathogenesis of EoE. Regulatory T cells (Tregs) may have an important role in allergies. There are limited data on the association of Tregs and EoE. In this study, we enumerated and compared T lymphocytes and Tregs in esophageal tissue of patients with EoE, gastroesophageal reflux disease (GERD) and normal controls. METHODS Ten patients with EoE, ten patients with GERD and eight normal controls were included. Immunohistochemistry staining was used to enumerate T lymphocytes and Tregs. CD3+ cells were considered as T cells and FOXP3+, CD3+ cells were considered as Tregs. T cells and Tregs were counted in 10 high power fields (HPF) (×400) for each patient and the average of 10 HPFs was recorded. RESULTS The mean±SEM of Tregs in esophageal tissue of patients with EoE (10.90±2.14cells/HPF) was significantly higher than the GERD (2.77±0.66cells/HPF) and control groups (0.37±0.08cells/HPF) (P<0.001). Additionally, the mean±SEM of T lymphocytes in esophageal tissue of patients with EoE (24.39±3.86cells/HPF) were increased in comparison to the GERD (10.07±2.65cells/HPF) and control groups (3.17±0.93cells/HPF) (P<0.001). CONCLUSION There is an increase in the number of esophageal T lymphocytes and regulatory T cells in patients with EoE compared to the GERD and control groups.
Collapse
|
26
|
Chatterjee S, Hui PCL, Kan CW, Wang W. Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 2019; 9:11658. [PMID: 31406233 PMCID: PMC6690975 DOI: 10.1038/s41598-019-48254-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023] Open
Abstract
A dual-responsive hydrogel (pH/temperature) was developed from a thermos-responsive polymer, pluronic F-127 (PF127), and pH-responsive polymers, N,N,N-trimethyl chitosan (TMC) and polyethylene glycolated hyaluronic acid (PEG-HA). Gallic acid, the principal component of the traditional Chinese drug Cortex Moutan was loaded into the hydrogel (PF127/TMC/PEG-HA) for possible application in textile-based transdermal therapy as Cortex Moutan has been proven to be an effective drug for the treatment of atopic dermatitis (AD). TMC and PEG-HA were synthesized, characterized (1H-NMR and FTIR), and added to the formulations to enhance drug release from the hydrogels, and increase the drug targeting of the carriers. The thermo-responsive properties of the hydrogel were assessed by dynamic viscosity analysis and the tube inversion method, and the pH-responsiveness of the formulation was determined by changing the pH of the external media. Rheology study of the hydrogels showed that complex viscosity and storage/loss moduli for PF127/TMC/PEG-HA hydrogel formulation are higher than PF127 hydrogel. The microstructure analysis by reflection SAXS indicated similar type of frozen inhomogeneity of hydrogel formulations. Various characterizations such as FTIR, SEM, TEM, zeta potential, and degradation of the hydrogel formulation indicated that the PF127/TMC/PEG-HA hydrogel showed better physico-chemical properties and morphology than did the PF127 hydrogel, and drug release was also higher for the PF127/TMC/PEG-HA hydrogel than for PF127. The drug release from hydrogels followed more closely first-order rate model than other rate models.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
27
|
Ara J, Bajgai J, Sajo MEJ, Fadriquela A, Kim CS, Kim SK, Lee KJ. The immunological and oxidative stress regulation of non-thermal plasma-aided water on atopic dermatitis-like lesion in dinitrochlorobenzene-induced SKH-1 hairless mice. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0023-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Yamazaki T, Inui M, Hiemori K, Tomono S, Itoh M, Ichimonji I, Nakashima A, Takagi H, Biswas M, Izawa K, Kitaura J, Imai T, Sugiura N, Tateno H, Akashi-Takamura S. Receptor-destroying enzyme (RDE) from Vibrio cholerae modulates IgE activity and reduces the initiation of anaphylaxis. J Biol Chem 2019; 294:6659-6669. [PMID: 30833330 DOI: 10.1074/jbc.ra118.006375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
IgE plays a key role in allergies by binding to allergens and then sensitizing mast cells through the Fc receptor, resulting in the secretion of proinflammatory mediators. Therefore, IgE is a major target for managing allergies. Previous studies have reported that oligomannose on IgE can be a potential target to inhibit allergic responses. However, enzymes that can modulate IgE activity are not yet known. Here, we found that the commercial receptor-destroying enzyme (RDE) (II) from Vibrio cholerae culture fluid specifically modulates IgE, but not IgG, and prevents the initiation of anaphylaxis. RDE (II)-treated IgE cannot access its binding site on bone marrow-derived mast cells, resulting in reduced release of histamine and cytokines. We also noted that RDE (II)-treated IgE could not induce passive cutaneous anaphylaxis in mouse ears. Taken together, we concluded that RDE (II) modulates the IgE structure and renders it unable to mediate allergic responses. To reveal the mechanism by which RDE (II) interferes with IgE activity, we performed lectin microarray analysis to unravel the relationship between IgE modulation and glycosylation. We observed that RDE (II) treatment significantly reduced the binding of IgE to Lycopersicon esculentum lectin, which recognizes poly-N-acetylglucosamine and poly-N-acetyllactosamine. These results suggest that RDE (II) specifically modulates branched glycans on IgE, thereby interfering with its ability to induce allergic responses. Our findings may provide a basis for the development of drugs to inhibit IgE activity in allergies.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Masanori Inui
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Keiko Hiemori
- the Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568
| | - Susumu Tomono
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Makoto Itoh
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Isao Ichimonji
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Akina Nakashima
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Hidekazu Takagi
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Mrityunjoy Biswas
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Kumi Izawa
- the Atopy Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421.,the Division of Cellular Therapy/Division of Stem Cell Signaling, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Jiro Kitaura
- the Atopy Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421.,the Division of Cellular Therapy/Division of Stem Cell Signaling, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Teruko Imai
- the Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, and
| | - Nobuo Sugiura
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195
| | - Hiroaki Tateno
- the Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568
| | - Sachiko Akashi-Takamura
- From the Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195,
| |
Collapse
|
29
|
Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Invest 2019; 129:1463-1474. [PMID: 30776025 DOI: 10.1172/jci124608] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic diseases have in common a dysfunctional epithelial barrier, which allows the penetration of allergens and microbes, leading to the release of type 2 cytokines that drive allergic inflammation. The accessibility of skin, compared with lung or gastrointestinal tissue, has facilitated detailed investigations into mechanisms underlying epithelial barrier dysfunction in atopic dermatitis (AD). This Review describes the formation of the skin barrier and analyzes the link between altered skin barrier formation and the pathogenesis of AD. The keratinocyte differentiation process is under tight regulation. During epidermal differentiation, keratinocytes sequentially switch gene expression programs, resulting in terminal differentiation and the formation of a mature stratum corneum, which is essential for the skin to prevent allergen or microbial invasion. Abnormalities in keratinocyte differentiation in AD skin result in hyperproliferation of the basal layer of epidermis, inhibition of markers of terminal differentiation, and barrier lipid abnormalities, compromising skin barrier and antimicrobial function. There is also compelling evidence for epithelial dysregulation in asthma, food allergy, eosinophilic esophagitis, and allergic rhinosinusitis. This Review examines current epithelial barrier repair strategies as an approach for allergy prevention or intervention.
Collapse
Affiliation(s)
- Elena Goleva
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and
| | - Evgeny Berdyshev
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Donald Ym Leung
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
30
|
New Cosmetic Formulation for the Treatment of Mild to Moderate Infantile Atopic Dermatitis. CHILDREN-BASEL 2019; 6:children6020017. [PMID: 30700045 PMCID: PMC6406490 DOI: 10.3390/children6020017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a chronic cutaneous inflammatory disorder, characterized by skin barrier disruption. Dermacare is a new cosmetic formulation, which enhances moisturization, reinforces and repairs the skin barrier, and prevents cutaneous microbiota imbalance. To demonstrate its safety and efficacy, a prospective, open-label, and multicenter study was carried out on patients diagnosed with mild to moderate AD. Transepidermal water loss (TEWL), clinical severity, Desquamation Index, Patient/Investigator Global Assessments, quality of life index, and tolerance were assessed. Adverse events were recorded. Daily application of the new treatment was well tolerated, and adverse events were absent. After 14 days, TEWL showed a 36.7% significant decrease (p = 0.035). At the end of the 28-day treatment, the Desquamation Index showed a reduction in 70% of patients; Eczema Area and Severity Index were reduced by 70.4% (p = 0.002); and skin irritation showed a significant reduction (p = 0.024). Likewise, Patient and Investigator Global Assessments reported a significant improvement in conditions and an overall global worsening when patients restarted their normal treatment. Parent's Index of Quality of Life Index significantly increased by 36.4% (p < 0.05) with Dermacare. In conclusion, a regular use of this new formulation can reduce the risk of relapse and extend the steroid-free treatment periods.
Collapse
|
31
|
Jo S, Kim TJ, Lee H, Min YW, Min BH, Lee JH, Son HJ, Rhee PL, Baek SY, Kim SW, Kim JJ. Associations between Atopic Dermatitis and Risk of Gastric Cancer: A Nationwide Population-based Study. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2018; 71:38-44. [PMID: 29361812 DOI: 10.4166/kjg.2018.71.1.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background/Aims Epidemiologic and clinical data indicate that allergies may be associated with reduced risks for several cancers; however, to date, only a few studies have examined the associations between allergies and gastric cancer. This study aimed to examine the associations between allergies and gastric cancer using a large population-based dataset. Methods This cross-sectional study obtained data from the Korea National Health and Nutrition Examination Survey between 2010 and 2014, involving a total of 24,089 participants. The associations between allergies and gastric cancer were analyzed using univariable and multivariable logistic regression analyses with complex sampling, while adjusting for confounding factors that included age, sex, body mass index, smoking status, alcohol intake, and level of education. Results Multivariable logistic regression analyses that were adjusted for the potential confounders determined that a history of allergic diseases tended to be associated with reduced risk of gastric cancer; however, this relationship was not statistically significant (any allergy: odds ratio [OR], 0.62; 95% confidence interval [CI], 0.34-1.12; atopic dermatitis: OR, 0.34; 95% CI, 0.50-1.72; allergic rhinitis: OR, 0.71; 95% CI, 0.34-1.46; asthma: OR, 0.44; 95% CI, 0.15-1.29). Multivariable analysis showed that a history of atopic dermatitis was associated with reduced risk of gastric cancer in men (OR, 0.16; 95% CI, 0.03-0.75). Conclusions This findings of this study suggest that individuals with allergies tend to have a reduced risk of gastric cancer, without a statistically significant association. Furthermore, atopic dermatitis was associated with reduced risk of gastric cancer, particularly in men.
Collapse
Affiliation(s)
- Sehee Jo
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Won Min
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Hoon Min
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Haeng Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jung Son
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Poong Lyul Rhee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Baek
- Department of Internal Medicine, Biostatistics and Clinical Epidemiology Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Woo Kim
- Department of Internal Medicine, Biostatistics and Clinical Epidemiology Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae J Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Wong L, Van Bever HP. Primary Prevention of Asthma: Will It Be Possible in the Future? CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Chiu CY, Lin G, Cheng ML, Chiang MH, Tsai MH, Su KW, Hua MC, Liao SL, Lai SH, Yao TC, Yeh KW, Huang JL. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood. Pediatr Allergy Immunol 2018; 29:496-503. [PMID: 29679407 DOI: 10.1111/pai.12909] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several metabolites and altered metabolic pathways have been reported to be associated with asthma. However, longitudinal analysis of the dynamics of metabolites contributing to the development of asthma has not yet been fully clarified. METHODS We sought to identify the metabolic mechanisms underlying asthma development in early childhood. Thirty children with asthma and paired healthy controls from a prospective birth cohort were enrolled. Time series analysis of urinary metabolites collected at ages 1, 2, 3, and 4 years was assessed using 1 H nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA). Metabolites identified were studied in relation to changes over time in a linear mixed model for repeated measures. RESULTS A total of 172 urine samples collected from the enrolled children were analyzed. Urinary metabolomics identified four metabolites significantly associated with childhood asthma development, with longitudinal analysis. Among them, dimethylamine, a metabolite produced by intestinal bacteria, appeared to shift from higher to lower level during asthma development. A persistent lower level of 1-methylnicotinamide and allantoin was found in children with asthma, with a peak difference at age 3 years (P = .032 and P = .021, respectively). Furthermore, a significant inverse correlation was found between allantoin and house dust mite sensitization (Spearman's r = -.297 P = .035). CONCLUSIONS Longitudinal urinary metabolomic profiling provides a link of microbe-environment interactions in the development of childhood asthma. 1-Methylnicotinamide and allantoin may participate in allergic reactions in response to allergen exposure, potentially serving as specific biomarkers for asthma.
Collapse
Affiliation(s)
- Chih-Yung Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Han Chiang
- Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ming-Han Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuan-Wen Su
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Man-Chin Hua
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Sui-Ling Liao
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shen-Hao Lai
- Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Chieh Yao
- Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Long Huang
- Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
34
|
Zhu Z, Lee PH, Chaffin MD, Chung W, Loh PR, Lu Q, Christiani DC, Liang L. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet 2018; 50:857-864. [PMID: 29785011 PMCID: PMC5980765 DOI: 10.1038/s41588-018-0121-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023]
Abstract
Clinical and epidemiological data suggest that asthma and allergic
diseases are associated and may share a common genetic etiology. We analyzed
genome-wide single-nucleotide polymorphism (SNP) data for asthma and allergic
diseases in 33,593 cases and 76,768 controls of European ancestry from the UK
Biobank. Two publicly available independent genome wide association studies
(GWAS) were used for replication. We have found a strong genome-wide genetic
correlation between asthma and allergic diseases (rg
= 0.75, P =
6.84×10−62). Cross trait analysis identified 38
genome-wide significant loci, including 7 novel shared loci. Computational
analysis showed that shared genetic loci are enriched in immune/inflammatory
systems and tissues with epithelium cells. Our work identifies common genetic
architectures shared between asthma and allergy and will help to advance our
understanding of the molecular mechanisms underlying co-morbid asthma and
allergic diseases.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Phil H Lee
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mark D Chaffin
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Po-Ru Loh
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| |
Collapse
|
35
|
Conley DB, Tripathi A, Seiberling KA, Schleimer RP, Suh LA, Harris K, Paniagua MC, Grammer LC, Kern RC. Superantigens and Chronic Rhinosinusitis: Skewing of T-Cell Receptor Vβ-Distributions in Polyp-Derived CD4+ and CD8+ T Cells. ACTA ACUST UNITED AC 2018; 20:534-9. [PMID: 17063750 PMCID: PMC2802273 DOI: 10.2500/ajr.2006.20.2941] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Recent studies have suggested that Staphylococcus aureus secrete superantigenic toxins that play a role in the etiology of chronic rhinosinusitis with nasal polyposis (CRSwNP). Twenty S. aureus superantigens (SAg's) have been identified, each of which bind the Vβ-region of the T-cell receptor (TCR) outside the peptide-binding site. Approximately 50 distinct Vβ-domains exist in the human repertoire, and distinct SAg's will bind only particular domains generating a pattern of Vβ-enrichment in lymphocytes dependent on the binding characteristics of a given toxin. The aim of this study was to analyze the pattern of Vβ-expression in polyp-derived lymphocytes from CRSwNP patients. Methods Polyps were harvested from 20 patients with CRSwNP and 3 patients with antrochoanal polyps. Flow cytometry was used to analyze the Vβ-repertoire of polyp-derived CD4+ and CD8+ lymphocytes. Data were analyzed in light of the known skewing associated with SAg exposure in vivo and in vitro. Skewing was defined as a percentage of Vβ-expression >2 SD of that seen in normal blood. Results Seven of 20 subjects exhibited skewing in Vβ-domains with strong associations with S. aureus SAg's. The three antrochoanal polyps failed to show any significant Vβ-skewing. Conclusion This study establishes evidence of S. aureus SAg–T-cell interactions in polyp lymphocytes of 35% of CRSwNP patients. Although these results are consistent with intranasal exposure of polyp lymphocytes to SAg's, additional study is necessary to establish the role of these toxins in disease pathogenesis.
Collapse
Affiliation(s)
- David B Conley
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev 2018; 278:173-184. [PMID: 28658560 DOI: 10.1111/imr.12552] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases.
Collapse
Affiliation(s)
- Li Yin Drake
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hirohito Kita
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Wu D, Wei Y, Bleier BS. Emerging Role of Proteases in the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps. Front Cell Infect Microbiol 2018; 7:538. [PMID: 29376037 PMCID: PMC5770401 DOI: 10.3389/fcimb.2017.00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous upper airway disease with multiple etiologies. Clinically, CRSwNP can be classified into either eosinophilic or non-eosinophilic subtypes. The eosinophilic phenotype of CRSwNP is widely thought to be highly associated with recurrence of nasal polyps or surgical failure. Epithelial cells have a crucial role in the development of Th2-biased airway diseases. Recent studies have shown that a wide range of external stimuli such as allergens and microorganisms can elicit the release of epithelial-derived Th2-driving cytokines and chemokines. Protease activity is a feature common to these multiple environmental insults and there is growing evidence for the concept that an imbalance of proteases and protease inhibitors in the epithelial barrier leads to both the initiation and maintenance of chronic eosinophilic airway inflammation. In this review, we analyze recent work on the role of proteases in the development of the sinonasal mucosal type 2 immune response with an emphasis on the molecular pathways promoting adaptive Th2 cell immunity.
Collapse
Affiliation(s)
- Dawei Wu
- The Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.,The Department of Otorhinolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- The Department of Otorhinolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Benjamin S Bleier
- The Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Lee PH, Kim BG, Lee SH, Lee JH, Park SW, Kim DJ, Park CS, Leikauf GD, Jang AS. Alteration in Claudin-4 Contributes to Airway Inflammation and Responsiveness in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:25-33. [PMID: 29178675 PMCID: PMC5705480 DOI: 10.4168/aair.2018.10.1.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Claudin-4 has been reported to function as a paracellular sodium barrier and is one of the 3 major claudins expressed in lung alveolar epithelial cells. However, the possible role of claudin-4 in bronchial asthma has not yet been fully studied. In this study, we aimed to elucidate the role of claudin-4 in the pathogenesis of bronchial asthma. METHODS We determined claudin-4 levels in blood from asthmatic patients. Moreover, using mice sensitized and challenged with OVA, as well as sensitized and challenged with saline, we investigated whether claudin-4 is involved in the pathogenesis of bronchial asthma. Der p1 induced the inflammatory cytokines in NHBE cells. RESULTS We found that claudin-4 in blood from asthmatic patients was increased compared with that from healthy control subjects. Plasma claudin-4 levels were significantly higher in exacerbated patients than in control patients with bronchial asthma. The plasma claudin-4 level was correlated with eosinophils, total IgE, FEV1% pred, and FEV1/FVC. Moreover, lung tissues from the OVA-OVA mice showed significant increases in transcripts and proteins of claudin-4 as well as in TJ breaks and the densities of claudin-4 staining. When claudin-4 was knocked down by transfecting its siRNA, inflammatory cytokine expressions, which were induced by Der p1 treatment, were significantly increased. CONCLUSIONS These findings thus raise the possibility that regulation of lung epithelial barrier proteins may constitute a therapeutic approach for asthma.
Collapse
Affiliation(s)
- Pureun Haneul Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Byeong Gon Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sun Hye Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - June Hyuck Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - An Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
39
|
Case Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1069:135-209. [DOI: 10.1007/978-3-319-89354-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Cookson WOCM, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 2017; 16:111-120. [PMID: 29062070 DOI: 10.1038/nrmicro.2017.122] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung diseases caused by microbial infections affect hundreds of millions of children and adults throughout the world. In Western populations, the treatment of lung infections is a primary driver of antibiotic resistance. Traditional therapeutic strategies have been based on the premise that the healthy lung is sterile and that infections grow in a pristine environment. As a consequence, rapid advances in our understanding of the composition of the microbiota of the skin and bowel have not yet been matched by studies of the respiratory tree. The recognition that the lungs are as populated with microorganisms as other mucosal surfaces provides the opportunity to reconsider the mechanisms and management of lung infections. Molecular analyses of the lung microbiota are revealing profound adverse responses to widespread antibiotic use, urbanization and globalization. This Opinion article proposes how technologies and concepts flowing from the Human Microbiome Project can transform the diagnosis and treatment of common lung diseases.
Collapse
Affiliation(s)
- William O C M Cookson
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Michael J Cox
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Miriam F Moffatt
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
41
|
Abstract
Over the past decades eosinophilic esophagitis (EoE) has been increasingly diagnosed, and significant progress has been made in our understanding of its pathophysiology. As EoE cannot be cured yet, treatment goals are suppression of disease activity and symptoms as well as the prevention of progression to a more severe disease phenotype. Disease-modifying treatment options can be divided into dietary therapy and immunosuppressive medications, of which topical steroids have been most investigated, yet are still prescribed off-label. In this review, we will summarize recent advances in our understanding of EoE and discuss the mechanisms of action of current treatment options, with emphasis on the role of the esophageal epithelial barrier and the effects of proton-pump inhibitors in the management of patients with EoE.
Collapse
|
42
|
Khurana T, Bridgewater JL, Rabin RL. Allergenic extracts to diagnose and treat sensitivity to insect venoms and inhaled allergens. Ann Allergy Asthma Immunol 2017; 118:531-536. [PMID: 28477785 DOI: 10.1016/j.anai.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To review allergenic extracts used to diagnose or treat insect allergies, including how the extracts are manufactured and their measurements of potency or concentration. DATA SOURCES Peer-reviewed articles derived from searching PubMed (National Center for Biotechnology Information) about insect allergies and extract preparation. Encyclopedia of Life (http://www.eol.org/) and http://allergome.org/ were also referenced for background information on insects and associated allergens. STUDY SELECTIONS Search terms used for the PubMed searches included insect allergens and allergies, Apidae, Vespidae, fire ants, cockroach allergies, insect allergen extract preparation, and standardization. RESULTS Humans may be sensitized to insect allergens by inhalation or through stings. Cockroaches and moths are predominantly responsible for inhalation insect allergy and are a major indoor allergen in urban settings. Bees, fire ants, and wasps are responsible for sting allergy. In the United States, there are multiple insect allergen products commercially available that are regulated by the US Food and Drug Administration. Of those extracts, honeybee venom and insect venom proteins are standardized with measurements of potency. The remaining insect allergen extracts are nonstandardized products that do not have potency measurements. CONCLUSION Sensitization to inhalational and stinging insect allergens is reported worldwide. Crude insect allergen extracts are used for diagnosis and specific immunotherapy. A variety of source materials are used by different manufacturers to prepare these extracts, which may result in qualitative differences that are not reflected in measurements of potency or protein concentration.
Collapse
Affiliation(s)
- Taruna Khurana
- Division of Vaccines and Related Products Applications, US Food and Drug Administration, Silver Spring, Maryland
| | - Jennifer L Bridgewater
- Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, Maryland
| | - Ronald L Rabin
- Division of Bacterial, Parasitic and Allergenic Products, US Food and Drug Administration, Silver Spring, Maryland.
| |
Collapse
|
43
|
Lopes Dos Santos Santiago G, Brusselle G, Dauwe K, Deschaght P, Verhofstede C, Vaneechoutte D, Deschepper E, Jordens P, Joos G, Vaneechoutte M. Influence of chronic azithromycin treatment on the composition of the oropharyngeal microbial community in patients with severe asthma. BMC Microbiol 2017; 17:109. [PMID: 28486933 PMCID: PMC5424369 DOI: 10.1186/s12866-017-1022-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/03/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study of the oropharyngeal microbiome complements the previously published AZIthromycin in Severe ASThma (AZISAST) clinical trial, where the use of azithromycin was assessed in subjects with exacerbation-prone severe asthma. Here, we determined the composition of the oropharyngeal microbial community by means of deep sequencing of the amplified 16S rRNA gene in oropharyngeal swabs from patients with exacerbation-prone severe asthma, at baseline and during and after 6 months treatment with azithromycin or placebo. RESULTS A total of 1429 OTUs were observed, of which only 59 were represented by more than 0.02% of the reads. Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria were the most abundant phyla and Streptococcus and Prevotella were the most abundant genera in all the samples. Thirteen species only accounted for two thirds of the reads and two species only, i.e. Prevotella melaninogenica and Streptococcus mitis/pneumoniae, accounted for one fourth of the reads. We found that the overall composition of the oropharyngeal microbiome in patients with severe asthma is comparable to that of the healthy population, confirming the results of previous studies. Long term treatment (6 months) with azithromycin increased the species Streptococcus salivarius approximately 5-fold and decreased the species Leptotrichia wadei approximately 5-fold. This was confirmed by Boruta feature selection, which also indicated a significant decrease of L. buccalis/L. hofstadtii and of Fusobacterium nucleatum. Four of the 8 treated patients regained their initial microbial composition within one month after cessation of treatment. CONCLUSIONS Despite large diversity of the oropharyngeal microbiome, only a few species predominate. We confirm the absence of significant differences between the oropharyngeal microbiomes of people with and without severe asthma. Possibly, long term azithromycin treatment may have long term effects on the composition of the oropharygeal microbiome in half of the patients.
Collapse
Affiliation(s)
- Guido Lopes Dos Santos Santiago
- Laboratory Bacteriology Research, Department Clinical Chemistry, Microbiology & Immunology, Faculty of Medicine & Health Sciences, University of Ghent, Ghent, Belgium
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kenny Dauwe
- AIDS Reference Laboratory, Ghent University, Ghent, Belgium
| | - Pieter Deschaght
- Laboratory Bacteriology Research, Department Clinical Chemistry, Microbiology & Immunology, Faculty of Medicine & Health Sciences, University of Ghent, Ghent, Belgium
| | | | - Dries Vaneechoutte
- Department of Plant Systems Biology (VIB), Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ellen Deschepper
- Biostatistics Unit, Department of Public Health, Ghent University Hospital, Ghent, Belgium
| | - Paul Jordens
- Department of Respiratory Medicine, OLV Ziekenhuis Aalst, Aalst, Belgium
| | - Guy Joos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department Clinical Chemistry, Microbiology & Immunology, Faculty of Medicine & Health Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
44
|
Bucchieri F, Pitruzzella A, Fucarino A, Gammazza AM, Bavisotto CC, Marcianò V, Cajozzo M, Lo Iacono G, Marchese R, Zummo G, Holgate ST, Davies DE. Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit. Exp Lung Res 2017; 43:82-92. [PMID: 28368678 DOI: 10.1080/01902148.2017.1303098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIM Epithelial-mesenchymal communication plays a key role in tissue homeostasis and abnormal signaling contributes to chronic airways disease such as COPD. Most in vitro models are limited in complexity and poorly represent this epithelial-mesenchymal trophic unit. We postulated that cellular outgrowth from bronchial tissue would enable development of a mucosal structure that recapitulates better in vivo tissue architecture. MATERIALS AND METHODS Bronchial tissue was embedded in Matrigel and outgrowth cultures monitored using time-lapse microscopy, electrical resistance, light and electron microscopy. Cultures were challenged repetitively with cigarette smoke extract (CSE). RESULTS The outgrowths formed as a multicellular sheet with motile cilia becoming evident as the Matrigel was remodeled to provide an air interface; cultures were viable for more than one year. Immunofluorescence and electron microscopy (EM) identified an upper layer of mucociliary epithelium and a lower layer of highly organized extracellular matrix (ECM) interspersed with fibroblastic cells separated by a basement membrane. EM analysis of the mucosal construct after repetitive exposure to CSE revealed epithelial damage, loss of cilia, and ECM remodeling, as occurs in vivo. CONCLUSIONS We have developed a robust bronchial mucosal model. The structural changes observed following CSE exposure suggest the model should have utility for drug discovery and preclinical testing, especially those targeting airway remodeling.
Collapse
Affiliation(s)
- Fabio Bucchieri
- a Academic Unit of Clinical and Experimental Sciences , University of Southampton Faculty of Medicine, University Hospital Southampton , Southampton , United Kingdom.,b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy.,d Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR) , Palermo , Italy
| | - Alessandro Pitruzzella
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Alberto Fucarino
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Antonella Marino Gammazza
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Celeste Caruso Bavisotto
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy.,c Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST) , Palermo , Italy
| | - Vito Marcianò
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy
| | - Massimo Cajozzo
- e Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche , University of Palermo , Palermo , Italy
| | - Giorgio Lo Iacono
- e Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche , University of Palermo , Palermo , Italy
| | - Roberto Marchese
- f Interventional Pulmonology Unit , La Maddalena Cancer Center , Palermo , Italy
| | - Giovanni Zummo
- b Dipartimento BIONEC , University of Palermo , Palermo , Italy
| | - Stephen T Holgate
- a Academic Unit of Clinical and Experimental Sciences , University of Southampton Faculty of Medicine, University Hospital Southampton , Southampton , United Kingdom.,g Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories , University of Southampton School of Medicine, University Hospital Southampton , Southampton , United Kingdom
| | - Donna E Davies
- a Academic Unit of Clinical and Experimental Sciences , University of Southampton Faculty of Medicine, University Hospital Southampton , Southampton , United Kingdom.,g Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories , University of Southampton School of Medicine, University Hospital Southampton , Southampton , United Kingdom
| |
Collapse
|
45
|
Abstract
Atopic dermatitis is a common skin disorder with a complex, evolving pathogenesis. Research on the pathogenesis has shifted from focusing primarily on generalized immune system abnormalities in T helper 1/T helper 2 (Th1/Th2) activity to more targeted immune and skin barrier abnormalities contributing to the overall phenotype. Specific signaling pathways recently implicated in atopic dermatitis include production of interleukin (IL) 4 and IL-13, which promote immunoglobulin E production, Th17 and Th22 cells, and production of cytokines. Barrier defect abnormalities, such as a shared filaggrin mutation noted in ichthyosis vulgaris and atopic dermatitis, as well as reduced structural proteins and lipids (eg, ceramides), have been discovered as well. These alterations contribute to increased transepidermal water loss in addition to increased allergen exposure, resulting in debate over the "inside out" versus "outside in" theories-that is, the concept that immunity triggers barrier breakdown versus barrier abnormalities triggering immunologic alteration toward atopy. In fact, it is likely that all of these contribute to pathogenesis, with some individuals initially experiencing immunologic abnormalities more strongly than barrier defects and vice versa. Genetic analyses have continued to advance, leading to the discovery of potential candidate genes relating both to the impaired skin barrier and the altered immune system pathways. This review outlines the evolution of the field of current pathogenesis of atopic dermatitis, highlighting the most pertinent recent findings.
Collapse
|
46
|
Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, Reber LL, Pirottin D, Kim J, Chambon P, Roers A, Antoine N, Kawakami Y, Kawakami T, Bureau F, Tam SY, Tsai M, Galli SJ. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest 2016; 126:4497-4515. [PMID: 27820702 DOI: 10.1172/jci86359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023] Open
Abstract
Epidermal keratinocytes form a structural and immune barrier that is essential for skin homeostasis. However, the mechanisms that regulate epidermal barrier function are incompletely understood. Here we have found that keratinocyte-specific deletion of the gene encoding RAB guanine nucleotide exchange factor 1 (RABGEF1, also known as RABEX-5) severely impairs epidermal barrier function in mice and induces an allergic cutaneous and systemic phenotype. RABGEF1-deficient keratinocytes exhibited aberrant activation of the intrinsic IL-1R/MYD88/NF-κB signaling pathway and MYD88-dependent abnormalities in expression of structural proteins that contribute to skin barrier function. Moreover, ablation of MYD88 signaling in RABGEF1-deficient keratinocytes or deletion of Il1r1 restored skin homeostasis and prevented development of skin inflammation. We further demonstrated that epidermal RABGEF1 expression is reduced in skin lesions of humans diagnosed with either atopic dermatitis or allergic contact dermatitis as well as in an inducible mouse model of allergic dermatitis. Our findings reveal a key role for RABGEF1 in dampening keratinocyte-intrinsic MYD88 signaling and sustaining epidermal barrier function in mice, and suggest that dysregulation of RABGEF1 expression may contribute to epidermal barrier dysfunction in allergic skin disorders in mice and humans. Thus, RABGEF1-mediated regulation of IL-1R/MYD88 signaling might represent a potential therapeutic target.
Collapse
|
47
|
Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult BALB/c Mice. PLoS One 2016; 11:e0160568. [PMID: 27518814 PMCID: PMC4982623 DOI: 10.1371/journal.pone.0160568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate the impact of microbes within the living environment on the gut microbiota of adults, we raised three groups of BALB/c mice from 3–4 weeks age in the same specific-pathogen-free animal room for 8 weeks. The control group lived in cages with sterilized bedding (pelletized cardboard), the probiotics group had three probiotics added to the sterilized bedding, and the intestinal microbes (IM) group had the intestinal microbes of a healthy goat added to the bedding. All other variables such as diet, age, genetic background, physiological status, original gut microbiota, and living room were controlled. Using high-throughput sequencing of the 16S rRNA gene, we observed that the control and probiotics groups had similar diversity and richness of gut microbiota. The two groups had significantly lower diversity than the IM group. We also observed that the IM group had a specific structure of gut microbial community compared with the control and probiotics groups. However, the dominate bacteria changed slightly upon exposure to intestinal microbes, and the abundance of the non-dominate species changed significantly. In addition, exposure to intestinal microbes inhibited DNFB-induced elevation of serum IgE levels. Our results provide new evidence in support of the microflora and hygiene hypotheses.
Collapse
|
48
|
Wang W, Wat E, Hui PCL, Chan B, Ng FSF, Kan CW, Wang X, Hu H, Wong ECW, Lau CBS, Leung PC. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment. Sci Rep 2016; 6:24112. [PMID: 27090158 PMCID: PMC4835724 DOI: 10.1038/srep24112] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 01/19/2023] Open
Abstract
The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Patrick C. L. Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ben Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Frency S. F. Ng
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaowen Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Huawen Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Eric C. W. Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Clara B. S. Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
49
|
Zhang Y. Potential therapeutic targets from genetic and epigenetic approaches for asthma. World J Transl Med 2016; 5:14-25. [DOI: 10.5528/wjtm.v5.i1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Asthma is a complex disorder characterised by inflammation of airway and symptoms of wheeze and shortness of breath. Allergic asthma, atopic dermatitis and allergic rhinitis are immunoglobulin E (IgE) related diseases. Current therapies targeting asthma rely on non-specific medication to control airway inflammation and prevent symptoms. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulating roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.
Collapse
|
50
|
Breitenbach JS, Rinnerthaler M, Trost A, Weber M, Klausegger A, Gruber C, Bruckner D, Reitsamer HA, Bauer JW, Breitenbach M. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging. Aging (Albany NY) 2016; 7:389-411. [PMID: 26143532 PMCID: PMC4505166 DOI: 10.18632/aging.100755] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.
Collapse
Affiliation(s)
- Jenny S Breitenbach
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Mark Rinnerthaler
- Fachbereich Zellbiologie der Universität Salzburg, Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Manuela Weber
- Fachbereich Zellbiologie der Universität Salzburg, Salzburg, Austria
| | - Alfred Klausegger
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Christina Gruber
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | | |
Collapse
|