1
|
Zhang T, Jiang S, Zhang L, Liu Y, Zheng H, Zhao H, Du S, Xu Y, Lu X. A bibliometric analysis of oncolytic virotherapy combined with immunotherapy. Hum Vaccin Immunother 2024; 20:2406621. [PMID: 39400287 PMCID: PMC11485904 DOI: 10.1080/21645515.2024.2406621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic virotherapy in combination with immunotherapy has demonstrated significant survival benefits in some types of cancer. Here, we summarized the development, research hotpots and potential trends of the combination therapy using visual bibliometric analysis. A total of 712 articles were retrieved on June 21, 2023. The USA was the top contributors of any country (325, 45.65%), and the Rluk Research Libraries UK ranked first (43, 6.03%) of any institutions. The Journal for ImmunoTherapy of Cancer was with the largest publications (60, 8.43%). 'Tumor microenvironment' and 'delivery' were citation keywords with the strongest ongoing bursts. Research fronts in the future may focus on the methods of virus delivery and tumor microenvironment modulation. Futhermore, the most extensively studied cancer were melanoma, glioma and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shitao Jiang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoge Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
3
|
Pizzioli E, Minutolo A, Balestrieri E, Matteucci C, Magiorkinis G, Horvat B. Crosstalk between human endogenous retroviruses and exogenous viruses. Microbes Infect 2024:105427. [PMID: 39349096 DOI: 10.1016/j.micinf.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections of human germ-line cells, which are mostly silenced during evolution, but could be de-repressed and play a pathological role. Infection with some exogenous viruses, including herpesviruses, HIV-1 and SARS-CoV-2, was demonstrated to induce the expression of HERV RNAs and proteins.
Collapse
Affiliation(s)
- Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
4
|
Serrero MC, Paludan SR. Restriction factors regulating human herpesvirus infections. Trends Immunol 2024; 45:662-677. [PMID: 39198098 DOI: 10.1016/j.it.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis. By integrating findings from human genetics, murine models, and cellular studies, this review provides a current view of RF control of herpesvirus infections. We also explore the regulation of RF expression, discuss the roles of RFs in diseases, and point towards their growing potential as candidate therapeutic targets.
Collapse
Affiliation(s)
- Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark.
| |
Collapse
|
5
|
Pyle JD, Lund SR, O'Toole KH, Saleh L. Virus-encoded glycosyltransferases hypermodify DNA with diverse glycans. Cell Rep 2024; 43:114631. [PMID: 39154342 DOI: 10.1016/j.celrep.2024.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Collapse
Affiliation(s)
- Jesse D Pyle
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Sean R Lund
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Katherine H O'Toole
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
6
|
Kmiec D, Kirchhoff F. Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered. J Mol Cell Biol 2024; 16:mjae005. [PMID: 38318650 PMCID: PMC11334937 DOI: 10.1093/jmcb/mjae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Legrand A, Dahoui C, De La Myre Mory C, Noy K, Guiguettaz L, Versapuech M, Loyer C, Pillon M, Wcislo M, Guéguen L, Berlioz-Torrent C, Cimarelli A, Mateo M, Fiorini F, Ricci EP, Etienne L. SAMD9L acts as an antiviral factor against HIV-1 and primate lentiviruses by restricting viral and cellular translation. PLoS Biol 2024; 22:e3002696. [PMID: 38959200 PMCID: PMC11221667 DOI: 10.1371/journal.pbio.3002696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.
Collapse
Affiliation(s)
- Alexandre Legrand
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Dahoui
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Clément De La Myre Mory
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Kodie Noy
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
| | - Margaux Versapuech
- Université Paris Cité, CNRS, Inserm, Institut Cochin, INSERM, CNRS, Paris, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Margaux Pillon
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Mégane Wcislo
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Évolutive (LBBE), CNRS UMR 5558, UCBL1, Villeurbanne, France
| | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Mathieu Mateo
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | - Francesca Fiorini
- Retroviruses and structural biochemistry, Molecular Microbiology and Structural Biochemistry (MMSB), IBCP, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Emiliano P. Ricci
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
9
|
Wei R, Zhang X, Wang X, Li L, Fu Y, Chen Y, Liu X, Guo C. PDCD4 restricts PRRSV replication in an eIF4A-dependent manner and is antagonized by the viral nonstructural protein 9. J Virol 2024; 98:e0006024. [PMID: 38557170 PMCID: PMC11092367 DOI: 10.1128/jvi.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.
Collapse
Affiliation(s)
- Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajie Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
11
|
He K, Liang C, Ma S, Liu H, Zhu Y. Copy number and selection of MHC genes in ruminants are related to habitat, average life span and diet. Gene 2024; 904:148179. [PMID: 38242373 DOI: 10.1016/j.gene.2024.148179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The ruminants, as the main group of livestock, have been extensively studied in terms of their physiology, endocrinology, biochemistry, genetics, and nutrition. Despite the wide geographic distribution and habitat diversity of animals in this group, their ecology and evolution remain poorly understood. In this study, we analyzed the gene copy number, selection, and ecological and evolutionary processes that have affected the evolution of major histocompatibility complex (MHC) genes across ruminant lineages based on available genomic data. The 51 species analyzed represented all six families of ruminants. Our finding indicated that the architecture of the MHC region is conserved in ruminants, but with variable copy numbers of MHC-I, MHC-IIA, and MHC-IIB genes. No lineage-specific gene duplication was observed in the MHC genes. The phylogenetic generalized least squares regression (PGLS) model revealed association between ecological and biological factors (habitat and lifespan) and gene duplication in DQA and DQB, but not in DRB. The selection pressure of DQA and DQB were related with lifespan, diet, and the ratio of genetic repeat elements. These results suggest that the MHC evolution in ruminants, including copy number and selection, has been influenced by genetic repeat elements, pathogen exposure risk, and intrinsic cost of possessing multiple MHC genes.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Chunhong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Shujuan Ma
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
12
|
Zhang S, Li YD, Cai YR, Kang XP, Feng Y, Li YC, Chen YH, Li J, Bao LL, Jiang T. Compositional features analysis by machine learning in genome represents linear adaptation of monkeypox virus. Front Genet 2024; 15:1361952. [PMID: 38495668 PMCID: PMC10940399 DOI: 10.3389/fgene.2024.1361952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: The global headlines have been dominated by the sudden and widespread outbreak of monkeypox, a rare and endemic zoonotic disease caused by the monkeypox virus (MPXV). Genomic composition based machine learning (ML) methods have recently shown promise in identifying host adaptability and evolutionary patterns of virus. Our study aimed to analyze the genomic characteristics and evolutionary patterns of MPXV using ML methods. Methods: The open reading frame (ORF) regions of full-length MPXV genomes were filtered and 165 ORFs were selected as clusters with the highest homology. Unsupervised machine learning methods of t-distributed stochastic neighbor embedding (t-SNE), Principal Component Analysis (PCA), and hierarchical clustering were performed to observe the DCR characteristics of the selected ORF clusters. Results: The results showed that MPXV sequences post-2022 showed an obvious linear adaptive evolution, indicating that it has become more adapted to the human host after accumulating mutations. For further accurate analysis, the ORF regions with larger variations were filtered out based on the ranking of homology difference to narrow down the key ORF clusters, which drew the same conclusion of linear adaptability. Then key differential protein structures were predicted by AlphaFold 2, which meant that difference in main domains might be one of the internal reasons for linear adaptive evolution. Discussion: Understanding the process of linear adaptation is critical in the constant evolutionary struggle between viruses and their hosts, playing a significant role in crafting effective measures to tackle viral diseases. Therefore, the present study provides valuable insights into the evolutionary patterns of the MPXV in 2022 from the perspective of genomic composition characteristics analysis through ML methods.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ya-Dan Li
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- College of the First Clinical Medical, Inner Mongolia Medical University, Hohhot, China
| | - Xiao-Ping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Chang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yue-Hong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li-Li Bao
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Tao Jiang
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Ratnasiri K, Zheng H, Toh J, Yao Z, Duran V, Donato M, Roederer M, Kamath M, Todd JPM, Gagne M, Foulds KE, Francica JR, Corbett KS, Douek DC, Seder RA, Einav S, Blish CA, Khatri P. Systems immunology of transcriptional responses to viral infection identifies conserved antiviral pathways across macaques and humans. Cell Rep 2024; 43:113706. [PMID: 38294906 PMCID: PMC10915397 DOI: 10.1016/j.celrep.2024.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiaying Toh
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhiyuan Yao
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Veronica Duran
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA
| | - Michele Donato
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirit Einav
- Department of Microbiology and Immunology, Stanford University, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Ren P, Niu D, Chang S, Yu L, Ren J, Ma Y, Lan K. RUNX3 inhibits KSHV lytic replication by binding to the viral genome and repressing transcription. J Virol 2024; 98:e0156723. [PMID: 38197631 PMCID: PMC10878072 DOI: 10.1128/jvi.01567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Collapse
Affiliation(s)
- Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junrui Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Sugiokto FG, Saiada F, Zhang K, Li R. SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication. mBio 2024; 15:e0316823. [PMID: 38236021 PMCID: PMC10865817 DOI: 10.1128/mbio.03168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 small ubiquitin-like modifier (SUMO) ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 synergizes with wild-type YTHDF2, but not a SUMOylation-deficient mutant, to limit EBV lytic replication. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3, to restrict EBV replication. These results collectively uncover a unique mechanism whereby YTHDF family proteins control EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.IMPORTANCEm6A RNA modification pathway plays important roles in diverse cellular processes and viral life cycle. Here, we investigated the relationship between PIAS1 and the m6A reader protein YTHDF2, which is involved in regulating RNA stability by binding to m6A-modified RNA. We found that both the N-terminal and C-terminal regions of YTHDF2 interact with PIAS1. We showed that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues. We also demonstrated that PIAS1 enhances the anti-EBV activity of YTHDF2. We further revealed that PIAS1 mediates the SUMOylation of other YTHDF family members, namely, YTHDF1 and YTHDF3, to limit EBV replication. These findings together illuminate an important regulatory mechanism of YTHDF proteins in controlling viral RNA decay and EBV replication through PIAS1-mediated SUMOylation.
Collapse
Affiliation(s)
- Febri Gunawan Sugiokto
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Farjana Saiada
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Piracha ZZ, Saeed U, Piracha IE, Noor S, Noor E. Decoding the multifaceted interventions between human sirtuin 2 and dynamic hepatitis B viral proteins to confirm their roles in HBV replication. Front Cell Infect Microbiol 2024; 13:1234903. [PMID: 38239506 PMCID: PMC10794644 DOI: 10.3389/fcimb.2023.1234903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
The human sirtuin 2 gene (SIRT2) encodes a full-length Sirt2 protein (i.e., the Sirt2 isoform 1), which primarily functions as a cytoplasmic α-tubulin deacetylase, and which promotes the growth of hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) replication itself, or HBV X (HBx) protein-mediated transcriptional transactivation, enhances Sirt2.1 expression; therefore, Sirt2.1 itself is capable of positively increasing HBV transcription and replication. Sirt2.1 is linked to liver fibrosis and epithelial-to-mesenchymal transition and, consequently, augments the risk of HCC. The Sirt2.1 protein enhances the HBV replication cycle by activating the AKT/glycogen synthase kinase 3 beta (GSK3β)/β-catenin pathway. It also activates the transcription of the viral enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The Sirt2 isoform 2 (Sirt2.2) is mainly localized in the cytoplasm, and the N-terminus is shorter by 37 amino acids than that of Sirt2.1. Despite the truncation of the N-terminal region, Sirt2.2 is still capable of enhancing HBV replication and activating the AKT/GSK3β/β-catenin signaling pathway. The Sirt2 isoform 5 (Sirt2.5) is primarily localized to the nucleus, it lacks a nuclear export signal (NES), and the catalytic domain (CD) is truncated. Upon HBV replication, expression of the Sirt2 isoforms is also enhanced, which further upregulates the HBV replication, and, therefore, supports the vicious cycle of viral replication and progression of the disease. Sirt2 diversely affects HBV replication such that its isoform 1 intensely augments HBV replication and isoform 2 (despite of the truncated N-terminal region) moderately enhances HBV replication. Isoform 5, on the other hand, tends to protect the cell (for smooth long-term continued viral replication) from HBV-induced extreme damage or death via a discrete set of regulatory mechanisms impeding viral mRNAs, the hepatitis B core/capsid protein (HBc), core particles, replicative intermediate (RI) DNAs, and covalently closed circular DNA (cccDNA) levels, and, consequently, limiting HBV replication. In contrast to Sirt2.1 and Sirt 2.2, the Sirt2.5-mediated HBV replication is independent of the AKT/GSK3β/β-catenin signaling cascade. Sirt2.5 is recruited more at cccDNA than the recruitment of Sirt2.1 onto the cccDNA. This recruitment causes the deposition of more histone lysine methyltransferases (HKMTs), including SETDB1, SUV39H1, EZH2, and PR-Set7, along with the respective corresponding transcriptional repressive markers such as H3K9me3, H3K27me3, and H4K20me1 onto the HBV cccDNA. In HBV-replicating cells, Sirt2.5 can also make complexes with PR-Set7 and SETDB1. In addition, Sirt2.5 has the ability to turn off transcription from cccDNA through epigenetic modification via either direct or indirect interaction with HKMTs.
Collapse
Affiliation(s)
- Zahra Zahid Piracha
- Department of Medical Research, International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Umar Saeed
- Clinical and Biomedical Research Centre (CBRC) and Multidisciplinary Lab (MDL), Foundation University School of Health Sciences (FUSH), Foundation University, Islamabad, Pakistan
| | - Irfan Ellahi Piracha
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Seneen Noor
- Department of Medical Research, International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Elyeen Noor
- Department of Medical Research, International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| |
Collapse
|
17
|
Fernandes AP, OhAinle M, Esteves PJ. Patterns of Evolution of TRIM Genes Highlight the Evolutionary Plasticity of Antiviral Effectors in Mammals. Genome Biol Evol 2023; 15:evad209. [PMID: 37988574 PMCID: PMC10709114 DOI: 10.1093/gbe/evad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
The innate immune system of mammals is formed by a complex web of interacting proteins, which together constitute the first barrier of entry for infectious pathogens. Genes from the E3-ubiquitin ligase tripartite motif (TRIM) family have been shown to play an important role in the innate immune system by restricting the activity of different retrovirus species. For example, TRIM5 and TRIM22 have both been associated with HIV restriction and are regarded as crucial parts of the antiretroviral machinery of mammals. Our analyses of positive selection corroborate the great significance of these genes for some groups of mammals. However, we also show that many species lack TRIM5 and TRIM22 altogether. By analyzing a large number of mammalian genomes, here we provide the first comprehensive view of the evolution of these genes in eutherians, showcasing that the pattern of accumulation of TRIM genes has been dissimilar across mammalian orders. Our data suggest that these differences are caused by the evolutionary plasticity of the immune system of eutherians, which have adapted to use different strategies to combat retrovirus infections. Altogether, our results provide insights into the dissimilar evolution of a representative family of restriction factors, highlighting an example of adaptive and idiosyncratic evolution in the innate immune system.
Collapse
Affiliation(s)
- Alexandre P Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Molly OhAinle
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
18
|
Sugiokto FG, Saiada F, Zhang K, Li R. SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552509. [PMID: 37609256 PMCID: PMC10441406 DOI: 10.1101/2023.08.08.552509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
YTHDF2 is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 SUMO ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 enhances the antiviral activity of YTHDF2, and SUMOylation-deficient YTHDF2 shows reduced anti-EBV activity. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3. These results collectively uncover a unique mechanism whereby YTHDF2 controls EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.
Collapse
Affiliation(s)
- Febri Gunawan Sugiokto
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Farjana Saiada
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
19
|
Geretz A, Ehrenberg PK, Clifford RJ, Laliberté A, Bozzo CP, Eiser D, Kundu G, Yum LK, Apps R, Creegan M, Gunady M, Shangguan S, Sanders-Buell E, Sacdalan C, Phanuphak N, Tovanabutra S, Russell RM, Bibollet-Ruche F, Robb ML, Michael NL, Ake JA, Vasan S, Hsu DC, Hahn BH, Kirchhoff F, Thomas R. Single-cell transcriptomics identifies prothymosin α restriction of HIV-1 in vivo. Sci Transl Med 2023; 15:eadg0873. [PMID: 37531416 PMCID: PMC11651363 DOI: 10.1126/scitranslmed.adg0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/21/2023] [Indexed: 08/04/2023]
Abstract
Host restriction factors play key roles in innate antiviral defense, but it remains poorly understood which of them restricts HIV-1 in vivo. Here, we used single-cell transcriptomic analysis to identify host factors associated with HIV-1 control during acute infection by correlating host gene expression with viral RNA abundance within individual cells. Wide sequencing of cells from one participant with the highest plasma viral load revealed that intracellular viral RNA transcription correlates inversely with expression of the gene PTMA, which encodes prothymosin α. This association was genome-wide significant (Padjusted < 0.05) and was validated in 28 additional participants from Thailand and the Americas with HIV-1 CRF01_AE and subtype B infections, respectively. Overexpression of prothymosin α in vitro confirmed that this cellular factor inhibits HIV-1 transcription and infectious virus production. Our results identify prothymosin α as a host factor that restricts HIV-1 infection in vivo, which has implications for viral transmission and cure strategies.
Collapse
Affiliation(s)
- Aviva Geretz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Philip K. Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Robert J. Clifford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Alexandre Laliberté
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Daina Eiser
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Gautam Kundu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Lauren K. Yum
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Richard Apps
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Mohamed Gunady
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Shida Shangguan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carlo Sacdalan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Nittaya Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Ronnie M. Russell
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Nelson L. Michael
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Denise C. Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
20
|
Xavier J, Alcantara LCJ, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte Dos Santos CN, Santos CS, Dos Santos CA, Gonçalves CCM, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Franz HCF, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Hans Santos R, Kashima S, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AMB, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of chikungunya virus in Brazil. Nat Commun 2023; 14:4413. [PMID: 37479700 PMCID: PMC10362057 DOI: 10.1038/s41467-023-40099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Mauricio Lima
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Emerson Castro
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Hegger Fritsch
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Stephane Tosta
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Piauí, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | | | - Anderson Leite
- Laboratório Central de Saúde Pública de Alagoas, Maceió, Brazil
| | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | | | - Cleiton S Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Dalane Teixeira
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Daniel F L Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Ethel L Noia Maciel
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | - Gabriela Bezerra
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | - Glauco Carvalho Pereira
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Haline Barroso
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | | | - Hivylla Ferreira
- Laboratório Central de Saúde Pública do Maranhão, São Luís, Brazil
| | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Jaqueline Lima
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | - Judith N Wasserheit
- Department of Global Health and Medicine, University of Washington, Washington, USA
| | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Jurandy J F de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
- Universidade de Pernambuco, Serra Talhada, Brazil
| | | | | | - Livia C V Frutuoso
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Campo Grande, Brazil
| | - Magaly C B Câmara
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | - Maricelia Lima
- Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | | | - Melissa B Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Nelson Marques
- Laboratório Central de Saúde Pública do Paraná, Paraná, Brazil
| | - Noely F O de Moura
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, USA
| | - Rivaldo V da Cunha
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | - Karen S Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | - Simone Kashima
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Svetoslav N Slavov
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, São Paulo, Brazil
| | - Tamires Andrade
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | - Thiago Carneiro
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | | | | | | | | | | | - Marta Giovanetti
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
21
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. Cell Rep 2023; 42:112556. [PMID: 37227817 PMCID: PMC10592456 DOI: 10.1016/j.celrep.2023.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4+ T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4+ T cells by performing CRISPR-knockout screens with a custom library that specifically targets ISGs expressed in CD4+ T cells. Our investigation identifies previously undescribed HIV-restricting ISGs (HM13, IGFBP2, LAP3) and finds that two factors characterized in other HIV infection models (IFI16 and UBE2L6) mediate IFN restriction in T cells. Inactivation of these five ISGs in combination further diminishes IFN's protective effect against diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Garcia BCB, Mukai Y, Tomonaga K, Horie M. The hidden diversity of ancient bornaviral sequences from X and P genes in vertebrate genomes. Virus Evol 2023; 9:vead038. [PMID: 37360682 PMCID: PMC10288550 DOI: 10.1093/ve/vead038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Endogenous bornavirus-like elements (EBLs) are heritable sequences derived from bornaviruses in vertebrate genomes that originate from transcripts of ancient bornaviruses. EBLs have been detected using sequence similarity searches such as tBLASTn, whose technical limitations may hinder the detection of EBLs derived from small and/or rapidly evolving viral X and P genes. Indeed, no EBLs derived from the X and P genes of orthobornaviruses have been detected to date in vertebrate genomes. Here, we aimed to develop a novel strategy to detect such 'hidden' EBLs. To this aim, we focused on the 1.9-kb read-through transcript of orthobornaviruses, which encodes a well-conserved N gene and small and rapidly evolving X and P genes. We show a series of evidence supporting the existence of EBLs derived from orthobornaviral X and P genes (EBLX/Ps) in mammalian genomes. Furthermore, we found that an EBLX/P is expressed as a fusion transcript with the cellular gene, ZNF451, which potentially encodes the ZNF451/EBLP fusion protein in miniopterid bat cells. This study contributes to a deeper understanding of ancient bornaviruses and co-evolution between bornaviruses and their hosts. Furthermore, our data suggest that endogenous viral elements are more abundant than those previously appreciated using BLAST searches alone, and further studies are required to understand ancient viruses more accurately.
Collapse
Affiliation(s)
- Bea Clarise B Garcia
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Yahiro Mukai
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| | | |
Collapse
|
23
|
Chen X, Pan J, Huang L, Zhao M. Research progress on the E protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1139628. [PMID: 37256059 PMCID: PMC10226392 DOI: 10.3389/fmicb.2023.1139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease impacting the global pig industry, and it is characterized by reproductive disorder in sows and respiratory disorder in pigs of all ages. The PRRSV E protein is a nonglycosylated structural protein encoded by the ORF2b gene. The E protein is not necessary for the assembly of virus particles, but deletion of the E protein leads to transmissible virus particles not being produced. To better understand the structure and function of the E protein, we reviewed its genetic and evolutionary analysis, characteristics, subcellular localization and topology, ion channel activity, cellular immune response, additional biological functions, interactions with host proteins, interactions with PRRSV proteins, roles in infection, pathogenicity, and drugs. Therefore, this review can provide a theoretical basis for gaining an in-depth understanding of the E protein of PRRSV-2.
Collapse
Affiliation(s)
- Xiuqiao Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - JingHua Pan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| |
Collapse
|
24
|
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE, Argilaguet J, Esteve-Codina A, Geiger K, Genescà M, Grau-Expósito J, Duran-Castells C, Rogenmoser S, Böttcher R, Jungfleisch J, Oliva B, Martinez JP, Li M, David M, Yamagishi M, Ruiz-Riol M, Brander C, Tsunetsugu-Yokota Y, Buzon MJ, Díez J, Meyerhans A. Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol 2023; 6:487. [PMID: 37165099 PMCID: PMC10172343 DOI: 10.1038/s42003-023-04841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Katarína Frazão Smutná
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Florencia E Alonso
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kerstin Geiger
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Selina Rogenmoser
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - René Böttcher
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jennifer Jungfleisch
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael David
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andreas Meyerhans
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
25
|
Delgado-Rodriguez SE, Ryan AP, Daugherty MD. Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins. Pathogens 2023; 12:674. [PMID: 37242344 PMCID: PMC10221186 DOI: 10.3390/pathogens12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host-virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.
Collapse
Affiliation(s)
| | | | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California—San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Xavier J, Alcantara L, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte dos Santos CN, Santos CS, dos Santos CA, Maymone Gonçalves CC, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Ferreira Franz HC, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Santos RH, Haddad SK, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AM, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of the chikungunya virus ECSA lineage in Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287733. [PMID: 37034611 PMCID: PMC10081416 DOI: 10.1101/2023.03.28.23287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as Yellow Fever, Zika, Chikungunya, and Dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus (CHIKV) across the country since its first detection in 2014 in Northeast Brazil. Faced with this scenario, on-site training activities in genomic surveillance carried out in partnership with the National Network of Public Health Laboratories have led to the generation of 422 CHIKV genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These new genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersion dynamics of the CHIKV East-Central-South-African (ECSA) lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C>T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving CHIKV ECSA lineage genetic diversity in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Luiz Alcantara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
- Correspondence: , &
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | - Mauricio Lima
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Emerson Castro
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Hegger Fritsch
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Bahia, Brazil
| | - Stephane Tosta
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | | | | | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Paraná, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | | | | | | | | | | | | | - Daniel F. L. Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | | | | | | | | | | | | | | | | | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | | | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | - Jurandy J. F. de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
- Universidade de Pernambuco Campus Serra Talhada
| | | | | | | | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Brazil
| | | | | | | | | | | | | | - Melissa B. Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, USA
| | | | - Karen S. Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | | | | | - Svetoslav N. Slavov
- Fundação Hemocentro de Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, Brazil
| | | | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Brazil
| | | | | | | | | | - Ana M.B. de Filippis
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Correspondence: , &
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Italy
- Correspondence: , &
| |
Collapse
|
27
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527545. [PMID: 36798236 PMCID: PMC9934674 DOI: 10.1101/2023.02.07.527545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4 + T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4 + T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4 + T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
28
|
Elste J, Chan A, Patil C, Tripathi V, Shadrack DM, Jaishankar D, Hawkey A, Mungerson MS, Shukla D, Tiwari V. Archaic connectivity between the sulfated heparan sulfate and the herpesviruses - An evolutionary potential for cross-species interactions. Comput Struct Biotechnol J 2023; 21:1030-1040. [PMID: 36733705 PMCID: PMC9880898 DOI: 10.1016/j.csbj.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The structural diversity of metazoic heparan sulfate (HS) composed of unique sulfated domains is remarkably preserved among various vertebrates and invertebrate species. Interestingly the sulfated moieties of HS have been known as the key determinants generating extraordinary ligand binding sites in the HS chain to regulate multiple biological functions and homeostasis. One such ligand for 3-O sulfation in the HS chain is a glycoprotein D (gD) from an ancient herpesvirus, herpes simplex virus (HSV). This interaction between gD and 3-O sulfated HS leads to virus-cell fusion to promote HSV entry. It is quite astonishing that HSV-1, which infects two-thirds of the world population, is also capable of causing severe diseases in primates and non-primates including primitive zebrafish. Supporting evidence that HSV may cross the species barrier comes from the fact that an enzymatic modification in HS encoded by 3-O sulfotransferase-3 (3-OST-3) from a vertebrate zoonotic species enhances HSV-1 infectivity. The latter phenomenon suggests the possible role of sulfated-HS as an entry receptor during reverse zoonosis, especially during an event when humans encounter domesticated animals in proximity. In this mini-review, we explore the possibility that structural diversity in HS may have played a substantial role in species-specific adaptability for herpesviruses in general including their potential role in promoting cross-species transmission.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Angelica Chan
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Chandrashekhar Patil
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Vinisha Tripathi
- Mountain Vista High School, 10585 Mountain Vista Ridge, Highlands Ranch, CO 80126, USA
| | - Daniel M. Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St John's University of Tanzania, Dodoma, Tanzania
| | - Dinesh Jaishankar
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | - Michelle Swanson Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA,Corresponding author.
| |
Collapse
|
29
|
Moraes SN, Becker JT, Moghadasi SA, Shaban NM, Auerbach AA, Cheng AZ, Harris RS. Evidence linking APOBEC3B genesis and evolution of innate immune antagonism by gamma-herpesvirus ribonucleotide reductases. eLife 2022; 11:83893. [PMID: 36458685 DOI: 10.7554/elife.83893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.
Collapse
Affiliation(s)
- Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Ashley A Auerbach
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States
| | - Adam Z Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States.,Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, United States
| |
Collapse
|
30
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
31
|
The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 2022; 68:1-12. [PMID: 36244878 PMCID: PMC9547435 DOI: 10.1016/j.cytogfr.2022.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.
Collapse
|
32
|
Jacquet S, Culbertson M, Zhang C, El Filali A, De La Myre Mory C, Pons JB, Filippi-Codaccioni O, Lauterbur ME, Ngoubangoye B, Duhayer J, Verez C, Park C, Dahoui C, Carey CM, Brennan G, Enard D, Cimarelli A, Rothenburg S, Elde NC, Pontier D, Etienne L. Adaptive duplication and genetic diversification of protein kinase R contribute to the specificity of bat-virus interactions. SCIENCE ADVANCES 2022; 8:eadd7540. [PMID: 36417524 PMCID: PMC9683710 DOI: 10.1126/sciadv.add7540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 05/29/2023]
Abstract
Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of the Myotis species have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity.
Collapse
Affiliation(s)
- Stéphanie Jacquet
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, UCBL1, CNRS, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Michelle Culbertson
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chi Zhang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Adil El Filali
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, UCBL1, CNRS, Lyon, France
| | - Clément De La Myre Mory
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Jean-Baptiste Pons
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, UCBL1, CNRS, Lyon, France
| | | | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Barthélémy Ngoubangoye
- International Centre of Medical Research of Franceville, Primatology Centre, Franceville, Gabon
| | - Jeanne Duhayer
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, UCBL1, CNRS, Lyon, France
| | - Clément Verez
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Clara Dahoui
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Clayton M. Carey
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, UCBL1, CNRS, Lyon, France
| | - Lucie Etienne
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
33
|
Barela Hudgell MA, Smith LC. The complex set of internal repeats in SpTransformer protein sequences result in multiple but limited alternative alignments. Front Immunol 2022; 13:1000177. [PMID: 36330505 PMCID: PMC9623053 DOI: 10.3389/fimmu.2022.1000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
The SpTransformer (SpTrf) gene family encodes a set of proteins that function in the sea urchin immune system. The gene sequences have a series of internal repeats in a mosaic pattern that is characteristic of this family. This mosaic pattern necessitates the insertion of large gaps, which has made alignments of the deduced protein sequences computationally difficult such that only manual alignments have been reported previously. Because manual alignments are time consuming for evaluating newly available SpTrf sequences, computational approaches were evaluated for the sequences reported previously. Furthermore, because two different manual alignments of the SpTrf sequences are feasible because of the multiple internal repeats, it is not known whether additional alternative alignments can be identified using different approaches. The bioinformatic program, PRANK, was used because it was designed to align sequences with large gaps and indels. The results from PRANK show that the alignments of the internal repeats are similar to those done manually, suggesting multiple feasible alignments for some regions. GUIDANCE based analysis of the alignments identified regions that were excellent and other regions that failed to align. This suggests that computational approaches have limits for aligning the SpTrf sequences that include multiple repeats and that require inserted gaps. Furthermore, it is unlikely that alternative alignments for the full-length SpTrf sequences will be identified.
Collapse
|
34
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
35
|
Stevens DA, Beierschmitt C, Mahesula S, Corley MR, Salogiannis J, Tsu BV, Cao B, Ryan AP, Hakozawki H, Reck-Peterson SL, Daugherty MD. Antiviral function and viral antagonism of the rapidly evolving dynein activating adaptor NINL. eLife 2022; 11:e81606. [PMID: 36222652 PMCID: PMC9651953 DOI: 10.7554/elife.81606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses interact with the intracellular transport machinery to promote viral replication. Such host-virus interactions can drive host gene adaptation, leaving signatures of pathogen-driven evolution in host genomes. Here, we leverage these genetic signatures to identify the dynein activating adaptor, ninein-like (NINL), as a critical component in the antiviral innate immune response and as a target of viral antagonism. Unique among genes encoding components of active dynein complexes, NINL has evolved under recurrent positive (diversifying) selection, particularly in its carboxy-terminal cargo-binding region. Consistent with a role for NINL in host immunity, we demonstrate that NINL knockout cells exhibit an impaired response to interferon, resulting in increased permissiveness to viral replication. Moreover, we show that proteases encoded by diverse picornaviruses and coronaviruses cleave and disrupt NINL function in a host- and virus-specific manner. Our work reveals the importance of NINL in the antiviral response and the utility of using signatures of host-virus genetic conflicts to uncover new components of antiviral immunity and targets of viral antagonism.
Collapse
Affiliation(s)
- Donté Alexander Stevens
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
| | | | - Swetha Mahesula
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Miles R Corley
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - John Salogiannis
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
| | - Brian V Tsu
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Bryant Cao
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Andrew P Ryan
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| | - Hiroyuki Hakozawki
- Nikon Imaging Center at UC San Diego, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cell and Developmental Biology, University of California, San DiegoLa JollaUnited States
| | - Matthew D Daugherty
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
36
|
Enterovirus 3C Protease Cleaves TRIM7 To Dampen Its Antiviral Activity. J Virol 2022; 96:e0133222. [PMID: 36106874 PMCID: PMC9555159 DOI: 10.1128/jvi.01332-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian TRIM7 is an antiviral protein that inhibits multiple human enteroviruses by degrading the viral 2BC protein. Whether TRIM7 is reciprocally targeted by enteroviruses is not known. Here, we report that the 3C protease (3Cpro) from two enteroviruses, coxsackievirus B3 (CVB3) and poliovirus, targets TRIM7 for cleavage. CVB3 3Cpro cleaves TRIM7 at glutamine 24 (Q24), resulting in a truncated TRIM7 that fails to inhibit CVB3 due to dampened E3 ubiquitin ligase activity. TRIM7 Q24 is highly conserved across mammals, except in marsupials, which instead have a naturally occurring histidine (H24) that is not subject to 3Cpro cleavage. Marsupials also express two isoforms of TRIM7, and the two proteins from koalas have distinct antiviral activities. The longer isoform contains an additional exon due to alternate splice site usage. This additional exon contains a unique 3Cpro cleavage site, suggesting that certain enteroviruses may have evolved to target marsupial TRIM7 even if the canonical Q24 is missing. Combined with computational analyses indicating that TRIM7 is rapidly evolving, our data raise the possibility that TRIM7 may be targeted by enterovirus evasion strategies and that evolution of TRIM7 across mammals may have conferred unique antiviral properties. IMPORTANCE Enteroviruses are significant human pathogens that cause viral myocarditis, pancreatitis, and meningitis. Knowing how the host controls these viruses and how the viruses may evade host restriction is important for understanding fundamental concepts in antiviral immunity and for informing potential therapeutic interventions. In this study, we demonstrate that coxsackievirus B3 uses its virally encoded protease to target the host antiviral protein TRIM7 for cleavage, suggesting a potential mechanism of viral immune evasion. We additionally show that TRIM7 has evolved in certain mammalian lineages to express protein variants with distinct antiviral activities and susceptibilities to viral protease-mediated cleavage.
Collapse
|
37
|
King CR, Mehle A. Retasking of canonical antiviral factors into proviral effectors. Curr Opin Virol 2022; 56:101271. [PMID: 36242894 PMCID: PMC10090225 DOI: 10.1016/j.coviro.2022.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Opriessnig T, Huang YW. SARS-CoV-2 does not infect pigs, but this has to be verified regularly. Xenotransplantation 2022; 29:e12772. [PMID: 36039616 PMCID: PMC9538518 DOI: 10.1111/xen.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
For successful xenotransplantation, freedom of the xenocraft donor from certain viral infections that may harm the organ recipient is important. A novel human coronavirus (CoV) with a respiratory tropism, designated as SARS-CoV-2, was first identified in January 2020 in China, but likely has been circulating unnoticed for some time before. Since then, this virus has reached most inhabited areas, resulting in a major global pandemic which is still ongoing. Due to a high number of subclinical infections, re-infections, geographic differences in diagnostic tests used, and differences in result reporting programs, the percentage of the population infected with SARS-CoV-2 at least once has been challenging to estimate. With continuous ongoing infections in people and an overall high viral load, it makes sense to look into possible viral spillover events in pets and farm animals, who are often in close contact with humans. The pig is currently the main species considered for xenotransplantation and hence there is interest to know if pigs can become infected with SARS-CoV-2 and if so what the infection dynamics may look like. This review article summarizes the latest research findings on this topic. It would appear that pigs can currently be considered a low risk species, and hence do not pose an immediate risk to the human population or xenotransplantation recipients per se. Monitoring the ever-changing SARS-CoV-2 variants appears important to recognize immediately should this change in the future.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Distinct evolutionary trajectories of SARS-CoV-2-interacting proteins in bats and primates identify important host determinants of COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2206610119. [PMID: 35947637 PMCID: PMC9436378 DOI: 10.1073/pnas.2206610119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. However, the host genetic determinants that drive SARS-CoV-2 susceptibility and COVID-19 severity are largely unknown. Understanding how cellular proteins interacting with SARS-CoV-2 have evolved in primates and bats is of primary importance to decipher differences in the infection outcome between humans and the viral reservoir in bats. Here, we performed comparative functional genetic analyses of hundreds of SARS-CoV-2-interacting proteins to study virus–host interface adaptation over millions of years, pointing to genes similarly—or differentially—engaged in evolutionary arms races and that may be at the basis of in vivo pathogenic differences. The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus–host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus–host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus–host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.
Collapse
|
40
|
Shuler G, Hagai T. Rapidly evolving viral motifs mostly target biophysically constrained binding pockets of host proteins. Cell Rep 2022; 40:111212. [PMID: 35977510 DOI: 10.1016/j.celrep.2022.111212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Evolutionary changes in host-virus interactions can alter the course of infection, but the biophysical and regulatory constraints that shape interface evolution remain largely unexplored. Here, we focus on viral mimicry of host-like motifs that allow binding to host domains and modulation of cellular pathways. We observe that motifs from unrelated viruses preferentially target conserved, widely expressed, and highly connected host proteins, enriched with regulatory and essential functions. The interface residues within these host domains are more conserved and bind a larger number of cellular proteins than similar motif-binding domains that are not known to interact with viruses. In contrast, rapidly evolving viral-binding human proteins form few interactions with other cellular proteins and display high tissue specificity, and their interfaces have few inter-residue contacts. Our results distinguish between conserved and rapidly evolving host-virus interfaces and show how various factors limit host capacity to evolve, allowing for efficient viral subversion of host machineries.
Collapse
Affiliation(s)
- Gal Shuler
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
41
|
KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-proteasome system. PLoS Pathog 2022; 18:e1010744. [PMID: 35914008 PMCID: PMC9371351 DOI: 10.1371/journal.ppat.1010744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus with the capacity to establish life-long latent infection. During latent infection, the viral genome persists as a circular episome that associates with cellular histones and exists as a nonintegrated minichromosome in the nucleus of infected cells. Chromatin structure and epigenetic programming are required for the proper control of viral gene expression and stable maintenance of viral DNA. However, there is still limited knowledge regarding how the host regulates the chromatin structure and maintenance of episomal DNA. Here, we found that the cellular protein structural maintenance of chromosome (SMC) complex SMC5/6 recognizes and associates with the KSHV genome to inhibit its replication. The SMC5/6 complex can bind to the KSHV genome and suppress KSHV gene transcription by condensing the viral chromatin and creating a repressive chromatin structure. Correspondingly, KSHV employs an antagonistic strategy by utilizing the viral protein RTA to degrade the SMC5/6 complex and antagonize the inhibitory effect of this complex on viral gene transcription. Interestingly, this antagonistic mechanism of RTA is evolutionarily conserved among γ-herpesviruses. Our work suggests that the SMC5/6 complex is a new host factor that restricts KSHV replication. KSHV can establish life-long latent infection. During latency, the viral genome is maintained as an extrachromosomal episome in the infected cells. We demonstrated that the host protein SMC5/6 complex associates with the KSHV genome and results in direct transcriptional inhibition by creating a transcriptionally repressive chromatin structure of the viral genome. RTA, the master switch protein of KSHV, can hijack the ubiquitin-proteasome system to degrade the SMC5/6 complex to antagonize its inhibitory effect on viral gene transcription. Interestingly, this function of RTA is evolutionarily conserved among γ-herpesviruses.
Collapse
|
42
|
Greiner D, Scott TM, Olson GS, Aderem A, Roh-Johnson M, Johnson JS. Genetic Modification of Primary Human Myeloid Cells to Study Cell Migration, Activation, and Organelle Dynamics. Curr Protoc 2022; 2:e514. [PMID: 36018279 PMCID: PMC9476234 DOI: 10.1002/cpz1.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myeloid dendritic cells (DCs) and macrophages are mononuclear phagocytes with key roles in the immune system. As antigen-presenting cells, they link innate detection of microbes with programming adaptive immune responses. Myeloid DCs and macrophages also play critical roles in development, promote tissue homeostasis, and direct repair in response to injury and inflammation. As cellular migration and organelle dynamics are intimately connected with these processes, it is necessary to develop tools to track myeloid cell behavior and function. Here, we build on previously established protocols to isolate primary human myeloid cells from peripheral blood and report an optimized method for their genetic modification with lentiviral vectors to study processes related to cell migration, activation, and organelle dynamics. Specifically, we provide a protocol for delivering genetically encoded fluorescent markers into primary monocyte-derived DCs (MDDCs) and monocyte-derived macrophages (MDMs) to label mitochondria, peroxisomes, and whole cells. We describe the isolation of primary CD14+ monocytes from peripheral blood using positive selection with magnetic beads and, alternatively, isolation based on plastic adherence. Isolated CD14+ cells can be transduced with lentiviral vectors and subsequently cultured in the presence of cytokines to derive MDDCs or MDMs. This protocol is highly adaptable for cotransduction with vectors to knock down or overexpress genes of interest. These tools enable mechanistic studies of genetically modified myeloid cells through flow cytometry, fluorescence microscopy, and other downstream assays. © 2022 Wiley Periodicals LLC. Basic Protocol: Transduction of MDDCs and MDMs with lentiviral vectors encoding fluorescent markers Alternate Protocol 1: Isolation of monocytes by plastic adhesion Alternate Protocol 2: Transduction of MDDCs and MDMs with lentiviral vectors to knock down or overexpress genes of interest Support Protocol 1: Production and purification of lentiviral vectors for transduction into primary human myeloid cells Support Protocol 2: Flow cytometry of MDDCs and MDMs Support Protocol 3: Fixed and live-cell imaging of fluorescent markers in MDMs and MDDCs.
Collapse
Affiliation(s)
- Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Tiana M. Scott
- Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Gregory S. Olson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Jarrod S. Johnson
- Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| |
Collapse
|
43
|
Chen P, Zhu J, Yu J, Liu R, Lao M, Yu L, Gao F, Jiang Y, Liu C, Tong W, Liu H, Tong G, Zhou Y. Porcine epidemic diarrhea virus strain FJzz1 infection induces type I/III IFNs production through RLRs and TLRs-mediated signaling. Front Immunol 2022; 13:984448. [PMID: 35958569 PMCID: PMC9357978 DOI: 10.3389/fimmu.2022.984448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host’s innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Junrui Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiarong Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ruilin Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mengqin Lao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| |
Collapse
|
44
|
Selvaraj C, Shri GR, Vijayakumar R, Alothaim AS, Ramya S, Singh SK. Viral hijacking mechanism in humans through protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:261-276. [PMID: 35871893 DOI: 10.1016/bs.apcsb.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous viruses have evolved mechanisms to inhibit or alter the host cell's apoptotic response as part of their coevolution with their hosts. The analysis of virus-host protein interactions require an in-depth understanding of both the viral and host protein structures and repertoires, as well as evolutionary mechanisms and pertinent biological facts. Throughout the course of a viral infection, there is constant battle for binding between virus and cellular proteins. Exogenous interfaces facilitating viral-host interactions are well known for constantly targeting and suppressing endogenous interfaces mediating intraspecific interactions, such as viral-viral and host-host connections. In these interactions, the protein-protein interactions (PPIs), are mostly shown as networks (protein interaction networks, PINs), with proteins represented as nodes and their interactions represented as edges. Host proteins with a higher degree of connectivity are more likely to interact with viral proteins. Due to technical advancements, three-dimensional interactions may now be visualized computationally utilizing molecular modeling and cryo-EM approaches. The uniqueness of viral domain repertoires, their evolution, and their activities during viral infection make viruses fascinating models for research. This chapter aims to provide readers a complete picture of the viral hijacking mechanism in protein-protein interactions.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Gurunathan Rubha Shri
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Saravanan Ramya
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
45
|
Filipenko ML, Boyarskikh UA, Leskov LS, Subbotina KV, Khrapov EA, Sokolov AV, Stilidi IS, Kushlinskii NE. The Level of LINE-1 mRNA Is Increased in Extracellular Circulating Plasma RNA in Patients with Colorectal Cancer. Bull Exp Biol Med 2022; 173:261-264. [DOI: 10.1007/s10517-022-05530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 10/17/2022]
|
46
|
Wu DQ, Ding QY, Tao NN, Tan M, Zhang Y, Li F, Zhou YJ, Dong ML, Cheng ST, Ren F, Chen J, Ren JH. SIRT2 Promotes HBV Transcription and Replication by Targeting Transcription Factor p53 to Increase the Activities of HBV Enhancers and Promoters. Front Microbiol 2022; 13:836446. [PMID: 35663860 PMCID: PMC9161175 DOI: 10.3389/fmicb.2022.836446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic hepatitis B (CHB) virus infection is one of the leading causes of cirrhosis and liver cancer. Although the major drugs against CHB including nucleos(t)ide analogs and PEG-interferon can effectively control human hepatitis B virus (HBV) infection, complete cure of HBV infection is quite rare. Targeting host factors involved in the viral life cycle contributes to developing innovative therapeutic strategies to improve HBV clearance. In this study, we found that the mRNA and protein levels of SIRT2, a class III histone deacetylase, were significantly upregulated in CHB patients, and that SIRT2 protein level was positively correlated with HBV viral load, HBsAg/HBeAg levels, HBcrAg, and ALT/AST levels. Functional analysis confirmed that ectopic SIRT2 overexpression markedly increased total HBV RNAs, 3.5-kb RNA and HBV core DNA in HBV-infected HepG2-Na+/taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, SIRT2 silencing inhibited HBV transcription and replication. In addition, we found a positive correlation between SIRT2 expression and HBV RNAs synthesis as well as HBV covalently closed circular DNA transcriptional activity. A mechanistic study suggested that SIRT2 enhances the activities of HBV enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The levels of HBV EnI/Xp and EnII/Cp-bound p53 were modulated by SIRT2. Both the mutation of p53 binding sites in EnI/Xp and EnII/Cp as well as overexpression of p53 abolished the effect of SIRT2 on HBV transcription and replication. In conclusion, our study reveals that, in terms of host factors, a SIRT2-targeted program might be a more effective therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Dai-Qing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Qiu-Ying Ding
- Key Laboratory of Molecular Biology for Infectious Diseases, Centre for Lipid Research, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Na-Na Tao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Mei-Ling Dong
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fang Ren
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
- *Correspondence: Ji-Hua Ren,
| |
Collapse
|
47
|
Substitutions in Nef That Uncouple Tetherin and SERINC5 Antagonism Impair Simian Immunodeficiency Virus Replication in Primary Rhesus Macaque Lymphocytes. J Virol 2022; 96:e0017622. [PMID: 35536019 DOI: 10.1128/jvi.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most simian immunodeficiency viruses (SIVs) use Nef to counteract restriction by the tetherin proteins of their nonhuman primate hosts. In addition to counteracting tetherin, SIV Nef has a number of other functions, including the downmodulation of CD3, CD4, and major histocompatibility complex class I (MHC I) molecules from the surface of SIV-infected cells and the enhancement of viral infectivity by preventing the incorporation of SERINC5 into virions. Although these activities require different surfaces of Nef, they can be difficult to separate because of their dependence on similar interactions with AP-1 or AP-2 for clathrin-mediated endocytosis. We previously observed extensive overlap of the SIV Nef residues required for counteracting tetherin and SERINC5. Here, we define substitutions in Nef that separate anti-tetherin activity from SERINC5 antagonism and other activities of Nef. This information was used to engineer an infectious molecular clone of SIV (SIVmac239nefSA) that is sensitive to tetherin but retains CD3, CD4, MHC I, and SERINC5 downmodulation. In primary rhesus macaque CD4+ T cells, SIVmac239nefSA exhibits impaired replication compared to wild-type SIVmac239 under conditions of interferon-induced upregulation of tetherin. These results demonstrate that tetherin antagonism can be separated from other Nef functions and that resistance to tetherin is essential for optimal replication in primary CD4+ T cells. IMPORTANCE Tetherin is an interferon-inducible transmembrane protein that prevents the detachment of enveloped viruses from infected cells by physically tethering nascent virions to cellular membranes. SIV Nef downmodulates simian tetherin to overcome this restriction in nonhuman primate hosts. Nef also enhances virus infectivity by preventing the incorporation of SERINC5 into virions and contributes to immune evasion by downmodulating other proteins from the cell surface. To assess the contribution of tetherin antagonism to virus replication, we engineered an infectious molecular clone of SIV with substitutions in Nef that uncouple tetherin antagonism from other Nef functions. These substitutions impaired virus replication in interferon-treated macaque CD4+ T cells, revealing the impact of tetherin on SIV replication under physiological conditions in primary CD4+ lymphocytes.
Collapse
|
48
|
Habimana JDD, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, Li Z. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron 2022; 203:114033. [DOI: 10.1016/j.bios.2022.114033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
49
|
Abstract
Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , ,
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
50
|
Rheinemann L, Downhour DM, Davenport KA, McKeown AN, Sundquist WI, Elde NC. Recurrent evolution of an inhibitor of ESCRT-dependent virus budding and LINE-1 retrotransposition in primates. Curr Biol 2022; 32:1511-1522.e6. [PMID: 35245459 PMCID: PMC9007875 DOI: 10.1016/j.cub.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Most antiviral proteins recognize specific features of viruses. In contrast, the recently described antiviral factor retroCHMP3 interferes with the "host endosomal complexes required for transport" (ESCRT) pathway to inhibit the budding of enveloped viruses. RetroCHMP3 arose independently on multiple occasions via duplication and truncation of the gene encoding the ESCRT-III factor CHMP3. However, since the ESCRT pathway is essential for cellular membrane fission reactions, ESCRT inhibition is potentially cytotoxic. This raises fundamental questions about how hosts can repurpose core cellular functions into antiviral functions without incurring a fitness cost due to excess cellular toxicity. We reveal the evolutionary process of detoxification for retroCHMP3 in New World monkeys using a combination of ancestral reconstructions, cytotoxicity, and virus release assays. A duplicated, full-length copy of retroCHMP3 in the ancestors of New World monkeys provides modest inhibition of virus budding while exhibiting subtle cytotoxicity. Ancient retroCHMP3 then accumulated mutations that reduced cytotoxicity but preserved virus inhibition before a truncating stop codon arose in the more recent ancestors of squirrel monkeys, resulting in potent inhibition. In species where full-length copies of retroCHMP3 still exist, their artificial truncation generated potent virus-budding inhibitors with little cytotoxicity, revealing the potential for future antiviral defenses in modern species. In addition, we discovered that retroCHMP3 restricts LINE-1 retrotransposition, revealing how different challenges to genome integrity might explain multiple independent origins of retroCHMP3 in different species to converge on new immune functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Alesia N McKeown
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA.
| |
Collapse
|