1
|
Cui LH, Noh JM, Kim DH, Seo HR, Joo HJ, Choi SC, Song MH, Kim KS, Huang LH, Na JE, Rhyu IJ, Qu XK, Lee KB, Lim DS. Nanotopography promotes cardiogenesis of pluripotent stem cell-derived embryoid bodies through focal adhesion kinase signaling. Biochem Biophys Res Commun 2024; 735:150796. [PMID: 39427377 DOI: 10.1016/j.bbrc.2024.150796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Controlling the microenvironment surrounding the pluripotent stem cells (PSCs) is a pivotal strategy for regulating cellular differentiation. Surface nanotopography is one of the key factors influencing the lineage-specific differentiation of PSCs. However, much of the underlying mechanism remains unknown. In this study, we focused on the effects of gradient nanotopography on the differentiation of embryoid bodies (EBs). EBs were cultured on three differently sized nanopillar surfaces (Large, 280-360; Medium, 200-280; Small, 120-200 nm) for spontaneous cardiomyocyte differentiation without chemical stimuli. The large nanotopography significantly promoted cardiogenesis, with increased expression of cardiac markers such as α-MHC, cTnT, and cTnI, and redistributed vinculin expression to the contact area. In addition, the small and medium nanotopographies also influenced EB differentiation, affecting both cardiogenesis and hematopoiesis to varying degrees. The phosphorylation of focal adhesion kinase (FAK) decreased in the EBs on the large nanotopography compared to that in the EBs cultured on the flat surface. The gradient nanotopography with 280-360 nm nanopillars is beneficial for the cardiogenesis of EBs in a FAK-dependent manner. This study provides valuable insights into controlling stem cell differentiation through nanotopographical cues, thereby advancing our understanding of the microenvironmental regulation in stem cell-based cardiac tissue engineering.
Collapse
Affiliation(s)
- Long-Hui Cui
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dae Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; BK21 Four R&E Center for Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ha-Rim Seo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Division of Drug Efficacy Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheonju-si, 28160, South Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; R&D Center for Companion Diagnosis, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul, 04780, South Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kyung-Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Li-Hua Huang
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Xin-Kai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Kinreich S, Bialer-Tsypin A, Viner-Breuer R, Keshet G, Suhler R, Lim PSL, Golan-Lev T, Yanuka O, Turjeman A, Ram O, Meshorer E, Egli D, Yilmaz A, Benvenisty N. Genome-wide screening reveals essential roles for HOX genes and imprinted genes during caudal neurogenesis of human embryonic stem cells. Stem Cell Reports 2024:S2213-6711(24)00288-1. [PMID: 39486407 DOI: 10.1016/j.stemcr.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
Mapping the essential pathways for neuronal differentiation can uncover new therapeutics and models for neurodevelopmental disorders. We thus utilized a genome-wide loss-of-function library in haploid human embryonic stem cells, differentiated into caudal neuronal cells. We show that essential genes for caudal neurogenesis are enriched for secreted and membrane proteins and that a large group of neurological conditions, including neurodegenerative disorders, manifest early neuronal phenotypes. Furthermore, essential transcription factors are enriched with homeobox (HOX) genes demonstrating synergistic regulation and surprising non-redundant functions between HOXA6 and HOXB6 paralogs. Moreover, we establish the essentialome of imprinted genes during neurogenesis, demonstrating that maternally expressed genes are non-essential in pluripotent cells and their differentiated germ layers, yet several are essential for neuronal development. These include Beckwith-Wiedemann syndrome- and Angelman syndrome-related genes, for which we suggest a novel regulatory pathway. Overall, our work identifies essential pathways for caudal neuronal differentiation and stage-specific phenotypes of neurological disorders.
Collapse
Affiliation(s)
- Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Anna Bialer-Tsypin
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Ruth Viner-Breuer
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Roni Suhler
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Turjeman
- The Center for Genomic Technologies, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Oren Ram
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; The Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem 91904, Israel
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Atilgan Yilmaz
- Leuven Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
3
|
Li Z, Abram L, Peall KJ. Deciphering the Pathophysiological Mechanisms Underpinning Myoclonus Dystonia Using Pluripotent Stem Cell-Derived Cellular Models. Cells 2024; 13:1520. [PMID: 39329704 PMCID: PMC11430605 DOI: 10.3390/cells13181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Dystonia is a movement disorder with an estimated prevalence of 1.2% and is characterised by involuntary muscle contractions leading to abnormal postures and pain. Only symptomatic treatments are available with no disease-modifying or curative therapy, in large part due to the limited understanding of the underlying pathophysiology. However, the inherited monogenic forms of dystonia provide an opportunity for the development of disease models to examine these mechanisms. Myoclonus Dystonia, caused by SGCE mutations encoding the ε-sarcoglycan protein, represents one of now >50 monogenic forms. Previous research has implicated the involvement of the basal ganglia-cerebello-thalamo-cortical circuit in dystonia pathogenesis, but further work is needed to understand the specific molecular and cellular mechanisms. Pluripotent stem cell technology enables a patient-derived disease modelling platform harbouring disease-causing mutations. In this review, we discuss the current understanding of the aetiology of Myoclonus Dystonia, recent advances in producing distinct neuronal types from pluripotent stem cells, and their application in modelling Myoclonus Dystonia in vitro. Future research employing pluripotent stem cell-derived cellular models is crucial to elucidate how distinct neuronal types may contribute to dystonia and how disruption to neuronal function can give rise to dystonic disorders.
Collapse
Affiliation(s)
- Zongze Li
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Laura Abram
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
4
|
Wu HF, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2024. [PMID: 39235952 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Charlotte Hamilton
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Harrison Porritt
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Gopallawa I, Gupta C, Jawa R, Cyril A, Jawa V, Chirmule N, Gujar V. Applications of Organoids in Advancing Drug Discovery and Development. J Pharm Sci 2024; 113:2659-2667. [PMID: 39002723 DOI: 10.1016/j.xphs.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
Organoids are small, self-organizing three-dimensional cell cultures that are derived from stem cells or primary organs. These cultures replicate the complexity of an organ, which cannot be achieved by single-cell culture systems. Organoids can be used in testing of new drugs instead of animals. Development and validation of organoids is thus important to reduce the reliance on animals for drug testing. In this review, we have discussed the developmental and regulatory aspects of organoids and highlighted their importance in drug development. We have first summarized different types of culture-based organoid systems such as submerged Matrigel, micro-fluidic 3D cultures, inducible pluripotent stem cells, and air-liquid interface cultures. These systems help us understand the intricate interplay between cells and their surrounding milieu for identifying functions of target receptors, soluble factors, and spatial interactions. Further, we have discussed the advances in humanized severe-combined immunodeficiency mouse models and their applications in the pharmacology of immune-oncology. Since regulatory aspects are important in using organoids for drug development, we have summarized FDA and EMA regulations on organoid research to support pre-clinical studies. Finally, we have included some unique studies highlighting the use of organoids in studying infectious diseases, cancer, and fundamental biology. These studies also exemplify the latest technological advances in organoid development resulting in improved efficiency. Overall, this review comprehensively summarizes the applications of organoids in early drug development during discovery and pre-clinical studies.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | | | - Rayan Jawa
- University of Pennsylvania, Philadelphia, PA, USA
| | - Arya Cyril
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NY, USA.
| | | | - Vikramsingh Gujar
- Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
6
|
Llewellyn J, Charrier A, Cuciniello R, Helfer E, Dono R. Substrate stiffness alters layer architecture and biophysics of human induced pluripotent stem cells to modulate their differentiation potential. iScience 2024; 27:110557. [PMID: 39175774 PMCID: PMC11340605 DOI: 10.1016/j.isci.2024.110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs) relies on complex interactions between biochemical and physical cues. Here we investigated the ability of hiPSCs to undergo lineage commitment in response to inductive signals and assessed how this competence is modulated by substrate stiffness. We showed that Activin A-induced hiPSC differentiation into mesendoderm and its derivative, definitive endoderm, is enhanced on gel-based substrates softer than glass. This correlated with changes in tight junction formation and extensive cytoskeletal remodeling. Further, live imaging and biophysical studies suggested changes in cell motility and interfacial contacts underlie hiPSC layer reshaping on soft substrates. Finally, we repurposed an ultra-soft silicone gel, which may provide a suitable substrate for culturing hiPSCs at physiological stiffnesses. Our results provide mechanistic insight into how epithelial mechanics dictate the hiPSC response to chemical signals and provide a tool for their efficient differentiation in emerging stem cell therapies.
Collapse
Affiliation(s)
- Jack Llewellyn
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Anne Charrier
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Rossana Cuciniello
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Rosanna Dono
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| |
Collapse
|
7
|
Tereshchenko Y, Petkov SG, Behr R. The Efficiency of In Vitro Differentiation of Primate iPSCs into Cardiomyocytes Depending on Their Cell Seeding Density and Cell Line Specificity. Int J Mol Sci 2024; 25:8449. [PMID: 39126016 PMCID: PMC11312487 DOI: 10.3390/ijms25158449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
A thorough characterization of induced pluripotent stem cells (iPSCs) used with in vitro models or therapeutics is essential. Even iPSCs derived from a single donor can exhibit variability within and between cell lines, which can lead to heterogeneity in results and hinder the promising future of cell replacement therapies. In this study, the cell seeding density of human and rhesus monkey iPSCs was tested to maximize the cell line-specific yield of the generated cardiomyocytes. We found that, despite using the same iPSC generation and differentiation protocols, the cell seeding density for the cell line-specific best differentiation efficiency could differ by a factor of four for the four cell lines used here. In addition, the cell lines showed differences in the range of cell seeding densities that they could tolerate without the severe loss of differentiation efficiency. Overall, our data show that the cell seeding density is a critical parameter for the differentiation inefficiency of primate iPSCs to cardiomyocytes and that iPSCs generated with the same episomal approach still exhibit considerable heterogeneity. Therefore, individual characterization of iPSC lines is required, and functional comparability with in vivo processes must be ensured to warrant the translatability of in vitro research with iPSCs.
Collapse
Affiliation(s)
- Yuliia Tereshchenko
- Research Platform Stem Cell Biology and Regeneration, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; (Y.T.); (S.G.P.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| | - Stoyan G. Petkov
- Research Platform Stem Cell Biology and Regeneration, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; (Y.T.); (S.G.P.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Stem Cell Biology and Regeneration, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; (Y.T.); (S.G.P.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Mozin E, Massouridès E, Mournetas V, Lièvre C, Bourdon A, Jackson DL, Packer JS, Seong J, Trapnell C, Le Guiner C, Adjali O, Pinset C, Mack DL, Dupont JB. Dystrophin deficiency impairs cell junction formation during embryonic myogenesis from pluripotent stem cells. iScience 2024; 27:110242. [PMID: 39040067 PMCID: PMC11261405 DOI: 10.1016/j.isci.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Mutations in the DMD gene lead to Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys as they acquire motor functions. DMD is typically diagnosed at 2-4 years of age, but the absence of dystrophin has negative impacts on skeletal muscles before overt symptoms appear in patients, which poses a serious challenge in current standards of care. Here, we investigated the consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Dystrophin deficiency was linked to marked dysregulations of cell junction proteins involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.
Collapse
Affiliation(s)
- Elise Mozin
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | | | | | - Clémence Lièvre
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Audrey Bourdon
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Dana L. Jackson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jonathan S. Packer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Juyoung Seong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Institute for Stem Cell and Regenerative Medicine, Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | | | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Christian Pinset
- Centre d’Etude des Cellules Souches, I-Stem, AFM, F-91100 Corbeil-Essonnes, France
| | - David L. Mack
- Institute for Stem Cell and Regenerative Medicine, Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
10
|
Jin M, Ma Z, Zhang H, Papetti AV, Dang R, Stillitano AC, Goldman SA, Jiang P. Co-Transplantation-Based Human-Mouse Chimeric Brain Models to Study Human Glial-Glial and Glial-Neuronal Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601990. [PMID: 39005270 PMCID: PMC11244967 DOI: 10.1101/2024.07.03.601990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Human-mouse chimeric brain models, generated by transplanting human induced pluripotent stem cell (hiPSC)-derived neural cells, are valuable for studying the development and function of human neural cells in vivo. Understanding glial-glial and glial-neuronal interactions is essential for unraveling the complexities of brain function and developing treatments for neurological disorders. To explore these interactions between human neural cells within an intact brain environment, we employe a co-transplantation strategy involving the engraftment of hiPSC-derived neural progenitor cells along with primitive macrophage progenitors into the neonatal mouse brain. This approach creates human-mouse chimeric brains containing human microglia, macroglia (astroglia and oligodendroglia), and neurons. Using super-resolution imaging and 3D reconstruction techniques, we examine the dynamics between human neurons and glia, unveiling human microglia engulfing immature human neurons, microglia pruning synapses of human neurons, and significant interactions between human oligodendrocytes and neurons. Single-cell RNA sequencing analysis of the chimeric brain uncovers a close recapitulation of the human glial progenitor cell population, along with a dynamic stage in astroglial development that mirrors the processes found in the human brain. Furthermore, cell-cell communication analysis highlights significant neuronal-glial and glial-glial interactions, especially the interaction between adhesion molecules neurexins and neuroligins. This innovative co-transplantation model opens up new avenues for exploring the complex pathophysiological mechanisms underlying human neurological diseases. It holds particular promise for studying disorders where glial-neuronal interactions and non-cell-autonomous effects play crucial roles.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- These authors contributed equally
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- These authors contributed equally
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- These authors contributed equally
| | - Ava V. Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
11
|
Kesavan J, Watters O, de Diego-Garcia L, Méndez AM, Alves M, Dinkel K, Hamacher M, Prehn JHM, Henshall DC, Engel T. Functional expression of the ATP-gated P2X7 receptor in human iPSC-derived astrocytes. Purinergic Signal 2024; 20:303-309. [PMID: 37453017 PMCID: PMC11189378 DOI: 10.1007/s11302-023-09957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Activation of the ATP-gated P2X7 receptor (P2X7R), implicated in numerous diseases of the brain, can trigger diverse responses such as the release of pro-inflammatory cytokines, modulation of neurotransmission, cell proliferation or cell death. However, despite the known species-specific differences in its pharmacological properties, to date, most functional studies on P2X7R responses have been analyzed in cells from rodents or immortalised cell lines. To assess the endogenous and functional expression of P2X7Rs in human astrocytes, we differentiated human-induced pluripotent stem cells (hiPSCs) into GFAP and S100 β-expressing astrocytes. Immunostaining revealed prominent punctate P2X7R staining. P2X7R protein expression was also confirmed by Western blot. Importantly, stimulation with the potent non-selective P2X7R agonist 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'- triphosphate (BzATP) or endogenous agonist ATP induced robust calcium rises in hiPSC-derived astrocytes which were blocked by the selective P2X7R antagonists AFC-5128 or JNJ-47965567. Our findings provide evidence for the functional expression of P2X7Rs in hiPSC-derived astrocytes and support their in vitro utility in investigating the role of the P2X7R and drug screening in disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Jaideep Kesavan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Orla Watters
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Science & Computing, SETU Waterford, Cork Rd., Co., Waterford, X91 K0EK, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- Department of Optic and Optometry, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28037, Spain
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
| | - Klaus Dinkel
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Michael Hamacher
- Affectis Pharmaceuticals AG, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
12
|
Nakamura Y, Niho S, Shimizu Y. Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells 2024; 13:893. [PMID: 38891026 PMCID: PMC11172081 DOI: 10.3390/cells13110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosing interstitial lung diseases (FILDs), e.g., due to idiopathic pulmonary fibrosis (IPF), are chronic progressive diseases with a poor prognosis. The management of these diseases is challenging and focuses mainly on the suppression of progression with anti-fibrotic drugs. Therefore, novel FILD treatments are needed. In recent years, cell-based therapy with various stem cells has been investigated for FILD, and the use of mesenchymal stem cells (MSCs) has been widely reported and clinical studies are also ongoing. Induced pluripotent stem cells (iPSCs) have also been reported to have an anti-fibrotic effect in FILD; however, these have not been as well studied as MSCs in terms of the mechanisms and side effects. While MSCs show a potent anti-fibrotic effect, the possibility of quality differences between donors and a stable supply in the case of donor shortage or reduced proliferative capacity after cell passaging needs to be considered. The application of iPSC-derived cells has the potential to overcome these problems and may lead to consistent quality of the cell product and stable product supply. This review provides an overview of iPSCs and FILD, followed by the current status of cell-based therapy for FILD, and then discusses the possibilities and perspectives of FILD therapy with iPSC-derived cells.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
- Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| |
Collapse
|
13
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
14
|
Mozin E, Massouridès E, Mournetas V, Lièvre C, Bourdon A, Jackson DL, Packer JS, Seong J, Trapnell C, Le Guiner C, Adjali O, Pinset C, Mack DL, Dupont JB. Dystrophin deficiency impairs cell junction formation during embryonic myogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.569919. [PMID: 38106055 PMCID: PMC10723310 DOI: 10.1101/2023.12.05.569919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mutations in the DMD gene lead to Duchenne muscular dystrophy, a severe X-linked neuromuscular disorder that manifests itself as young boys acquire motor functions. DMD is typically diagnosed at 2 to 4 years of age, but the absence of dystrophin negatively impacts muscle structure and function before overt symptoms appear in patients, which poses a serious challenge in the optimization of standards of care. In this report, we investigated the early consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Here, dystrophin deficiency was linked to marked dysregulations of cell junction protein families involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.
Collapse
Affiliation(s)
- Elise Mozin
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | | | | | - Clémence Lièvre
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Audrey Bourdon
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jonathan S Packer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Juyoung Seong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Institute for Stem Cell and Regenerative Medicine, Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | | | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Christian Pinset
- Centre d’Etude des Cellules Souches, I-Stem, AFM, F-91100 Corbeil-Essonnes, France
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
15
|
Xu J, Chen H, Wang C, Ma Y, Song Y. Raman Flow Cytometry and Its Biomedical Applications. BIOSENSORS 2024; 14:171. [PMID: 38667164 PMCID: PMC11048678 DOI: 10.3390/bios14040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Raman flow cytometry (RFC) uniquely integrates the "label-free" capability of Raman spectroscopy with the "high-throughput" attribute of traditional flow cytometry (FCM), offering exceptional performance in cell characterization and sorting. Unlike conventional FCM, RFC stands out for its elimination of the dependency on fluorescent labels, thereby reducing interference with the natural state of cells. Furthermore, it significantly enhances the detection information, providing a more comprehensive chemical fingerprint of cells. This review thoroughly discusses the fundamental principles and technological advantages of RFC and elaborates on its various applications in the biomedical field, from identifying and characterizing cancer cells for in vivo cancer detection and surveillance to sorting stem cells, paving the way for cell therapy, and identifying metabolic products of microbial cells, enabling the differentiation of microbial subgroups. Moreover, we delve into the current challenges and future directions regarding the improvement in sensitivity and throughput. This holds significant implications for the field of cell analysis, especially for the advancement of metabolomics.
Collapse
Affiliation(s)
- Jiayang Xu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310058, China;
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Hongyi Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| | - Ce Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuting Ma
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| |
Collapse
|
16
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
17
|
Hassanpour P, Sadeghsoltani F, Haiaty S, Zakeri Z, Saghebasl S, Izadpanah M, Boroumand S, Mota A, Rahmati M, Rahbarghazi R, Talebi M, Rabbani S, Tafti SHA. Mitochondria-loaded alginate-based hydrogel accelerated angiogenesis in a rat model of acute myocardial infarction. Int J Biol Macromol 2024; 260:129633. [PMID: 38253146 DOI: 10.1016/j.ijbiomac.2024.129633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Here, mitochondria were isolated from mesenchymal stem cells (MSCs) after being treated with mitochondria-stimulating substrates, 50 μM metformin (Met), and 40 μM dichloroacetic acid (DCA). The isolated mitochondria (2 × 107 particles) were characterized and encapsulated inside 100 μl hydrogel composed of alginate (3 % w/v; Alg)/gelatin (Gel; 1 % w/v) enriched with 1 μM pyrrole (Pyr) solidified in the presence of 0.2 M FeCl3. The physicochemical properties and cytocompatibility of prepared hydrogels were assessed using FTIR, swelling, biodegradation, porosity assays, and scanning electron microscopy (SEM). The mitochondria-bearing hydrogel was injected into the ischemic area of rat hearts. FTIR absorption bands represented that the addition of FeCl3 led to polypyrrole (PPy) formation, polysaccharide oxidation, and interaction between Alg and Gel. SEM images exhibited porous structure and the size of pores was reduced in Alg/Gel + PPy group compared to Alg + PPy hydrogel. Based on the data, both Alg + PPy and Alg/Gel + PPy hydrogels can preserve the integrity and morphology of loaded mitochondria. It was noted that Alg/Gel + PPy hydrogel possessed a higher swelling ratio, degradation, and porosity compared to Alg + PPy group. Data confirmed that Alg/Gel + PPy hydrogel containing 1 μM Pyr yielded the highest survival rate compared to groups with 2 and 4 μM Pyr (p < 0.05). Injection of mitochondria-loaded Alg/Gel + PPy hydrogel yielded significant restoration of left ventricle thickness compared to the infarction, mitochondria, and Alg/Gel + PPy hydrogel groups 14 days post-injection (p < 0.05). Histological analyses revealed a significant increase of vWF+ capillaries and α-SMA+ arterioles in the mitochondria-loaded Alg/Gel + PPy hydrogel group (p < 0.05). Immunofluorescence imaging revealed the ability of rat cardiomyocytes to uptake mitochondria alone or after being loaded into Alg/Gel + PPy hydrogel. These effects were evident in the Alg/Gel + PPy group. Taken together, electroconductive Alg-based hydrogels are suitable platforms for the transplantation of cells and organelles and the regeneration of ischemic heart changes.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ziba Zakeri
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Melika Izadpanah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Talebi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
19
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
20
|
Dai S, Qiu L, Veeraraghavan VP, Sheu CL, Mony U. Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy. Curr Stem Cell Res Ther 2024; 19:809-819. [PMID: 37291782 DOI: 10.2174/1574888x18666230608105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Sihan Dai
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Linhui Qiu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
21
|
O’Brien MP, Pryzhkova MV, Lake EMR, Mandino F, Shen X, Karnik R, Atkins A, Xu MJ, Ji W, Konstantino M, Brueckner M, Ment LR, Khokha MK, Jordan PW. SMC5 Plays Independent Roles in Congenital Heart Disease and Neurodevelopmental Disability. Int J Mol Sci 2023; 25:430. [PMID: 38203602 PMCID: PMC10779392 DOI: 10.3390/ijms25010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.
Collapse
Affiliation(s)
- Matthew P. O’Brien
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Marina V. Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services, University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Ruchika Karnik
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Michelle J. Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Weizhen Ji
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Monica Konstantino
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Laura R. Ment
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Mustafa K. Khokha
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Philip W. Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services, University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
22
|
Lin HC, Makhlouf A, Vazquez Echegaray C, Zawada D, Simões F. Programming human cell fate: overcoming challenges and unlocking potential through technological breakthroughs. Development 2023; 150:dev202300. [PMID: 38078653 PMCID: PMC10753584 DOI: 10.1242/dev.202300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In recent years, there have been notable advancements in the ability to programme human cell identity, enabling us to design and manipulate cell function in a Petri dish. However, current protocols for generating target cell types often lack efficiency and precision, resulting in engineered cells that do not fully replicate the desired identity or functional output. This applies to different methods of cell programming, which face similar challenges that hinder progress and delay the achievement of a more favourable outcome. However, recent technological and analytical breakthroughs have provided us with unprecedented opportunities to advance the way we programme cell fate. The Company of Biologists' 2023 workshop on 'Novel Technologies for Programming Human Cell Fate' brought together experts in human cell fate engineering and experts in single-cell genomics, manipulation and characterisation of cells on a single (sub)cellular level. Here, we summarise the main points that emerged during the workshop's themed discussions. Furthermore, we provide specific examples highlighting the current state of the field as well as its trajectory, offering insights into the potential outcomes resulting from the application of these breakthrough technologies in precisely engineering the identity and function of clinically valuable human cells.
Collapse
Affiliation(s)
- Hsiu-Chuan Lin
- Department of Biosystems Science and Engineering, ETH Zürich, 4057 Basel, Switzerland
| | - Aly Makhlouf
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Camila Vazquez Echegaray
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, 80636 Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, 81675 Munich, Germany
| | - Filipa Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7TY, UK
| |
Collapse
|
23
|
Sarel-Gallily R, Keshet G, Kinreich S, Haim-Abadi G, Benvenisty N. EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq. Nat Protoc 2023; 18:3881-3917. [PMID: 37914783 DOI: 10.1038/s41596-023-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2023] [Indexed: 11/03/2023]
Abstract
Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1-4 d.
Collapse
Affiliation(s)
- Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Haim-Abadi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
24
|
Vanova T, Sedmik J, Raska J, Amruz Cerna K, Taus P, Pospisilova V, Nezvedova M, Fedorova V, Kadakova S, Klimova H, Capandova M, Orviska P, Fojtik P, Bartova S, Plevova K, Spacil Z, Hribkova H, Bohaciakova D. Cerebral organoids derived from patients with Alzheimer's disease with PSEN1/2 mutations have defective tissue patterning and altered development. Cell Rep 2023; 42:113310. [PMID: 37864790 DOI: 10.1016/j.celrep.2023.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study human neural development and disease. Especially in the field of Alzheimer's disease (AD), remarkable effort has been put into investigating molecular mechanisms behind this disease. Then, with the advent of 3D neuronal cultures and cerebral organoids (COs), several studies have demonstrated that this model can adequately mimic familial and sporadic AD. Therefore, we created an AD-CO model using iPSCs derived from patients with familial AD forms and explored early events and the progression of AD pathogenesis. Our study demonstrated that COs derived from three AD-iPSC lines with PSEN1(A246E) or PSEN2(N141I) mutations developed the AD-specific markers in vitro, yet they also uncover tissue patterning defects and altered development. These findings are complemented by single-cell sequencing data confirming this observation and uncovering that neurons in AD-COs likely differentiate prematurely.
Collapse
Affiliation(s)
- Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petr Taus
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Sona Kadakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Michaela Capandova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Orviska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petr Fojtik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Karla Plevova
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, 61300 Brno, Czech Republic
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center (ICRC), St. Anne's University Hospital, 60200 Brno, Czech Republic.
| |
Collapse
|
25
|
Endo Y, Yoshida T, Washijima I, Ueki M, Kikuchi N, Takenaka A, Kawata Y. A Strategic Translational Research System for Drug Discovery in Tottori University. Yonago Acta Med 2023; 66:394-403. [PMID: 38028269 PMCID: PMC10674056 DOI: 10.33160/yam.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023]
Abstract
The probability of successful drug discovery is declining, and research and development costs are increasing. To solve these problems, pharmaceutical companies tend to in-license seeds from venture companies and academia. Therefore, academia's role in drug discovery is extremely important. Tottori University started a "Next-Generation Research Support Project (Strategic Research Support Project)" in 2020, developing a translational research system to promote drug discovery. In this project, we established a research and development infrastructure, such as seed registration, construction of drug research and development support, and research fund allocation. The registered seed were converted into project, and the project implemented this research and development system, and evaluated and verified its results. Twenty-two seeds were converted into projects and portfolios were constructed. Research funds were allocated to eight prioritized projects. Each project raised the research and development stages. From the overall portfolio, one project with the Japan Agency for Medical Research and Development (AMED) Drug Discovery Booster Project, and three projects with Seeds A of the AMED Translational Research Strategic Promotion Program were adopted. Additionally, a new low-molecular weight chaperone drug against GM1-gangliosidosis was out-licensed to an overseas pharmaceutical company. The strength of this system was the strategic allocation of research funds and the accompanying support that leveraged internal and external resources with the PM and researchers at its core. This system achieved certain results in promoting drug discovery; however, resource optimization of specialized personnel needs to be strengthened in the future. In this report, we summarized the efforts of translational research in Japan and around the world. In addition, the translational research efforts of Japanese academia and Tottori University were compared and the current status was summarized.
Collapse
Affiliation(s)
- Yusuke Endo
- Organization for Research Institute and Promotion, Tottori University, Yonago 683-8503, Japan and
| | - Tsutomu Yoshida
- Organization for Research Institute and Promotion, Tottori University, Yonago 683-8503, Japan and
| | - Ichiro Washijima
- Organization for Research Institute and Promotion, Tottori University, Yonago 683-8503, Japan and
| | - Masaru Ueki
- Organization for Research Institute and Promotion, Tottori University, Yonago 683-8503, Japan and
| | - Noriyoshi Kikuchi
- Organization for Research Institute and Promotion, Tottori University, Tottori 680-8550, Japan
| | - Atsushi Takenaka
- Organization for Research Institute and Promotion, Tottori University, Yonago 683-8503, Japan and
| | - Yasushi Kawata
- Organization for Research Institute and Promotion, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
26
|
Lv S, He E, Luo J, Liu Y, Liang W, Xu S, Zhang K, Yang Y, Wang M, Song Y, Wu Y, Cai X. Using Human-Induced Pluripotent Stem Cell Derived Neurons on Microelectrode Arrays to Model Neurological Disease: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301828. [PMID: 37863819 PMCID: PMC10667858 DOI: 10.1002/advs.202301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/04/2023] [Indexed: 10/22/2023]
Abstract
In situ physiological signals of in vitro neural disease models are essential for studying pathogenesis and drug screening. Currently, an increasing number of in vitro neural disease models are established using human-induced pluripotent stem cell (hiPSC) derived neurons (hiPSC-DNs) to overcome interspecific gene expression differences. Microelectrode arrays (MEAs) can be readily interfaced with two-dimensional (2D), and more recently, three-dimensional (3D) neural stem cell-derived in vitro models of the human brain to monitor their physiological activity in real time. Therefore, MEAs are emerging and useful tools to model neurological disorders and disease in vitro using human iPSCs. This is enabling a real-time window into neuronal signaling at the network scale from patient derived. This paper provides a comprehensive review of MEA's role in analyzing neural disease models established by hiPSC-DNs. It covers the significance of MEA fabrication, surface structure and modification schemes for hiPSC-DNs culturing and signal detection. Additionally, this review discusses advances in the development and use of MEA technology to study in vitro neural disease models, including epilepsy, autism spectrum developmental disorder (ASD), and others established using hiPSC-DNs. The paper also highlights the application of MEAs combined with hiPSC-DNs in detecting in vitro neurotoxic substances. Finally, the future development and outlook of multifunctional and integrated devices for in vitro medical diagnostics and treatment are discussed.
Collapse
Affiliation(s)
- Shiya Lv
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Enhui He
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- The State Key Lab of Brain‐Machine IntelligenceZhejiang UniversityHangzhou321100China
| | - Jinping Luo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaoyao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Liang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shihong Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kui Zhang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yan Yang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mixia Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yilin Song
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yirong Wu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinxia Cai
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
27
|
Ohno T, Nakane T, Akase T, Kurasawa H, Aizawa Y. Development of an isogenic human cell trio that models polyglutamine disease. Genes Genet Syst 2023; 98:179-189. [PMID: 37821389 DOI: 10.1266/ggs.22-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Polyglutamine (polyQ) diseases are rare autosomal-dominant neurodegenerative diseases associated with the expansion of glutamine-encoding triplet repeats in certain genes. To investigate the functional influence of repeat expansion on disease mechanisms, we applied a biallelic genome-engineering platform that we recently established, called Universal Knock-in System or UKiS, to develop a human cell trio, a set of three isogenic cell lines that are homozygous for two different numbers of repeats (first and second lines) or heterozygous for the two repeat numbers (third line). As an example of a polyQ disease, we chose spinocerebellar ataxia type 2 (SCA2). In a pseudodiploid human cell line, both alleles of the glutamine-encoding triplet repeat in the SCA2-causing gene, ataxin 2 or ATXN2, were first knocked in with a donor sequence encoding both thymidine kinase and either puromycin or blasticidin resistance proteins under dual drug selection. The knocked-in donor alleles were then substituted with a payload having either 22 or 76 triplet repeats in ATXN2 by ganciclovir negative selection. The two-step substitution and subsequent SNP typing and genomic sequencing confirmed that the SCA2-modeling isogenic cell trio was obtained: three clones of 22-repeat homozygotes, two clones of 22/76-repeat heterozygotes and two clones of 76-repeat homozygotes. Finally, RT-PCR and immunoblotting using the obtained clones showed that, consistent with previous observations, glutamine tract expansion reduced transcriptional and translational expression of ATXN2. The cell clones with homozygous long-repeat alleles, which are rarely obtained from patients with SCA2, showed more drastic reduction of ATXN2 expression than the heterozygous clones. This study thus demonstrates the potential of UKiS, which is a beneficial platform for the efficient development of cell models not only for polyQ diseases but also for any other genetic diseases, which may accelerate our deeper understanding of disease mechanisms and cell-based screening for therapeutic drugs.
Collapse
Affiliation(s)
- Tomoyuki Ohno
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Takeshi Nakane
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Taichi Akase
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Hikaru Kurasawa
- School of Life Science and Technology, Tokyo Institute of Technology
- Kanagawa Institute of Industrial Science and Technology
| | - Yasunori Aizawa
- School of Life Science and Technology, Tokyo Institute of Technology
- Kanagawa Institute of Industrial Science and Technology
| |
Collapse
|
28
|
Palumbo L, Carinci M, Guarino A, Asth L, Zucchini S, Missiroli S, Rimessi A, Pinton P, Giorgi C. The NLRP3 Inflammasome in Neurodegenerative Disorders: Insights from Epileptic Models. Biomedicines 2023; 11:2825. [PMID: 37893198 PMCID: PMC10604217 DOI: 10.3390/biomedicines11102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation represents a dynamic process of defense and protection against the harmful action of infectious agents or other detrimental stimuli in the central nervous system (CNS). However, the uncontrolled regulation of this physiological process is strongly associated with serious dysfunctional neuronal issues linked to the progression of CNS disorders. Moreover, it has been widely demonstrated that neuroinflammation is linked to epilepsy, one of the most prevalent and serious brain disorders worldwide. Indeed, NLRP3, one of the most well-studied inflammasomes, is involved in the generation of epileptic seizures, events that characterize this pathological condition. In this context, several pieces of evidence have shown that the NLRP3 inflammasome plays a central role in the pathophysiology of mesial temporal lobe epilepsy (mTLE). Based on an extensive review of the literature on the role of NLRP3-dependent inflammation in epilepsy, in this review we discuss our current understanding of the connection between NLRP3 inflammasome activation and progressive neurodegeneration in epilepsy. The goal of the review is to cover as many of the various known epilepsy models as possible, providing a broad overview of the current literature. Lastly, we also propose some of the present therapeutic strategies targeting NLRP3, aiming to provide potential insights for future studies.
Collapse
Affiliation(s)
- Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
29
|
Niemis W, Peterson SR, Javier C, Nguyen A, Subiah S, Palmer RHC. On the utilization of the induced pluripotent stem cell (iPSC) model to study substance use disorders: A scoping review protocol. PLoS One 2023; 18:e0292238. [PMID: 37824561 PMCID: PMC10569547 DOI: 10.1371/journal.pone.0292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Induced pluripotent stem cells (iPSCs) are cells derived from somatic cells via reprogramming techniques. The iPSC approach has been increasingly used in neuropsychiatric research in the last decade. Though substance use disorders (SUDs) are a commonly occurring psychiatric disorder, the application of iPSC model in addiction research has been limited. No comprehensive review has been reported. We conducted a scoping review to collate existing evidence on the iPSC technologies applied to SUD research. We aim to identify current knowledge gaps and limitations in order to advance the use of iPSCs in the SUD field. METHODS AND ANALYSIS We employed a scoping review using the methodological framework first created by Arksey and O'Malley and further updated by Levac et al. and the Joanna Briggs Institute (JBI). We adopted the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Protocols (PRISMA-P) to report items for the protocol. We searched evidence from four electronic databases: PubMed®, Embase®, Web of Science™, and Scopus®. Primary research, systematic reviews, and meta-analyses were included and limited to studies published in English, at the time from 2007 to March 2022. This is an "ongoing" scoping review. Searched studies will be independently screened, selected, and extracted by two reviewers. Disagreement will be solved by the third reviewer and discussion. Extracted data will be analyzed in descriptive and quantitative approaches, then summarized and presented in appropriate formats. Results will be reported following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline and disseminated through a peer-reviewed publication and conference presentations. CONCLUSION To our best knowledge, this is the first comprehensive scoping review of iPSC methods specifically applied to a broad range of addictive drugs/substances that lead to SUDs or misuse behavior. REGISTRATION This protocol is registered on Zenodo repository (https://zenodo.org/) with doi:10.5281/zenodo.7915252.
Collapse
Affiliation(s)
- Wasiri Niemis
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Shenita R. Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, United States of America
| | - Chrisabella Javier
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Amy Nguyen
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Sanchi Subiah
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
30
|
Parodi G, Brofiga M, Pastore VP, Chiappalone M, Martinoia S. Deepening the role of excitation/inhibition balance in human iPSCs-derived neuronal networks coupled to MEAs during long-term development. J Neural Eng 2023; 20:056011. [PMID: 37678214 DOI: 10.1088/1741-2552/acf78b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Objective.The purpose of this study is to investigate whether and how the balance between excitation and inhibition ('E/I balance') influences the spontaneous development of human-derived neuronal networksin vitro. To achieve that goal, we performed a long-term (98 d) characterization of both homogeneous (only excitatory or inhibitory neurons) and heterogeneous (mixed neuronal types) cultures with controlled E/I ratios (i.e. E:I 0:100, 25:75, 50:50, 75:25, 100:0) by recording their electrophysiological activity using micro-electrode arrays.Approach.Excitatory and inhibitory neurons were derived from human induced pluripotent stem cells (hiPSCs). We realized five different configurations by systematically varying the glutamatergic and GABAergic percentages.Main results.We successfully built both homogeneous and heterogeneous neuronal cultures from hiPSCs finely controlling the E/I ratios; we were able to maintain them for up to 3 months. Homogeneity differentially impacted purely inhibitory (no bursts) and purely excitatory (few bursts) networks, deviating from the typical traits of heterogeneous cultures (burst dominated). Increased inhibition in heterogeneous cultures strongly affected the duration and organization of bursting and network bursting activity. Spike-based functional connectivity and image-based deep learning analysis further confirmed all the above.Significance.Healthy neuronal activity is controlled by a well-defined E/I balance whose alteration could lead to the onset of neurodevelopmental disorders like schizophrenia or epilepsy. Most of the commonly usedin vitromodels are animal-derived or too simplified and thus far from thein vivohuman condition. In this work, by performing a long-term study of hiPSCs-derived neuronal networks obtained from healthy human subjects, we demonstrated the feasibility of a robustin vitromodel which can be further exploited for investigating pathological conditions where the E/I balance is impaired.
Collapse
Affiliation(s)
- Giulia Parodi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- ScreenNeuroPharm s.r.l, Sanremo, Italy
- Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- Machine Learning Genoa Center (MaLGa), Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genova, Genova, Italy
| | - Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| |
Collapse
|
31
|
Dong S, Sun Y, Liu C, Li Y, Yu S, Zhang Q, Xu Y. Stage-specific requirement for m 6A RNA methylation during cardiac differentiation of pluripotent stem cells. Differentiation 2023; 133:77-87. [PMID: 37506593 DOI: 10.1016/j.diff.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Precise spatiotemporal control of gene expression patterns is critical for normal development. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with the ability of unlimited self-renewal and differentiation into any cell type, provide a unique tool for understanding the underlying mechanism of development and disease in a dish. N6-methyl-adenosine (m6A) modification is the most extensive internal mRNA modification, which regulates almost all aspects of mRNA metabolism and thus extensively participates in gene expression regulation. However, the role of m6A during cardiogenesis still needs to be fully elucidated. Here, we found that core components of m6A methyltransferase decreased during cardiomyocyte differentiation. Impeding m6A deposition, by either deleting the m6A methyltransferase Mettl3 or overexpressing m6A demethylase alkB homolog 5 (Alkbh5), at early stages of cardiac differentiation of mouse pluripotent stem cells, led to inhibition of cardiac gene activation and retardation of the outgrowth of embryoid bodies, whereas interfering m6A modification at later stages of differentiation had minimal effects. Consistently, stage-specific inhibition of METTL3 with METTL3 inhibitor STM2457 during human ESCs (hESCs) cardiac differentiation demonstrated a similarly pivotal role of METTL3 for the induction of mesodermal cells while dispensable function for later stages. In summary, our study reveals a stage-specific requirement of m6A on the cardiac differentiation of pluripotent stem cells and demonstrates that precise tuning of m6A level is critical for cardiac differentiation.
Collapse
Affiliation(s)
- Shuai Dong
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuetong Sun
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
33
|
Soto J, Linsley C, Song Y, Chen B, Fang J, Neyyan J, Davila R, Lee B, Wu B, Li S. Engineering Materials and Devices for the Prevention, Diagnosis, and Treatment of COVID-19 and Infectious Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2455. [PMID: 37686965 PMCID: PMC10490511 DOI: 10.3390/nano13172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Following the global spread of COVID-19, scientists and engineers have adapted technologies and developed new tools to aid in the fight against COVID-19. This review discusses various approaches to engineering biomaterials, devices, and therapeutics, especially at micro and nano levels, for the prevention, diagnosis, and treatment of infectious diseases, such as COVID-19, serving as a resource for scientists to identify specific tools that can be applicable for infectious-disease-related research, technology development, and treatment. From the design and production of equipment critical to first responders and patients using three-dimensional (3D) printing technology to point-of-care devices for rapid diagnosis, these technologies and tools have been essential to address current global needs for the prevention and detection of diseases. Moreover, advancements in organ-on-a-chip platforms provide a valuable platform to not only study infections and disease development in humans but also allow for the screening of more effective therapeutics. In addition, vaccines, the repurposing of approved drugs, biomaterials, drug delivery, and cell therapy are promising approaches for the prevention and treatment of infectious diseases. Following a comprehensive review of all these topics, we discuss unsolved problems and future directions.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chase Linsley
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Binru Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Josephine Neyyan
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Raul Davila
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Atwell S, Waibel DJE, Boushehri SS, Wiedenmann S, Marr C, Meier M. Label-free imaging of 3D pluripotent stem cell differentiation dynamics on chip. CELL REPORTS METHODS 2023; 3:100523. [PMID: 37533640 PMCID: PMC10391578 DOI: 10.1016/j.crmeth.2023.100523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
Massive, parallelized 3D stem cell cultures for engineering in vitro human cell types require imaging methods with high time and spatial resolution to fully exploit technological advances in cell culture technologies. Here, we introduce a large-scale integrated microfluidic chip platform for automated 3D stem cell differentiation. To fully enable dynamic high-content imaging on the chip platform, we developed a label-free deep learning method called Bright2Nuc to predict in silico nuclear staining in 3D from confocal microscopy bright-field images. Bright2Nuc was trained and applied to hundreds of 3D human induced pluripotent stem cell cultures differentiating toward definitive endoderm on a microfluidic platform. Combined with existing image analysis tools, Bright2Nuc segmented individual nuclei from bright-field images, quantified their morphological properties, predicted stem cell differentiation state, and tracked the cells over time. Our methods are available in an open-source pipeline, enabling researchers to upscale image acquisition and phenotyping of 3D cell culture.
Collapse
Affiliation(s)
- Scott Atwell
- Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Dominik Jens Elias Waibel
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Life Sciences, Technical University of Munich, Weihenstephan, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Data & Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich (RICM), Penzberg, Germany
| | - Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
Kidwai FK, Canalis E, Robey PG. Induced pluripotent stem cell technology in bone biology. Bone 2023; 172:116760. [PMID: 37028583 PMCID: PMC10228209 DOI: 10.1016/j.bone.2023.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Technologies on the development and differentiation of human induced pluripotent stem cells (hiPSCs) are rapidly improving, and have been applied to create cell types relevant to the bone field. Differentiation protocols to form bona fide bone-forming cells from iPSCs are available, and can be used to probe details of differentiation and function in depth. When applied to iPSCs bearing disease-causing mutations, the pathogenetic mechanisms of diseases of the skeleton can be elucidated, along with the development of novel therapeutics. These cells can also be used for development of cell therapies for cell and tissue replacement.
Collapse
Affiliation(s)
- Fahad K Kidwai
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America
| | - Ernesto Canalis
- Center for Skeletal Research, Orthopedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-4037, United States of America
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America.
| |
Collapse
|
36
|
Neil E, Kouskoff V. Current Model Systems for Investigating Epithelioid Haemangioendothelioma. Cancers (Basel) 2023; 15:3005. [PMID: 37296967 PMCID: PMC10251951 DOI: 10.3390/cancers15113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients.
Collapse
Affiliation(s)
- Emily Neil
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Valerie Kouskoff
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
37
|
Sun C, Seranova E, Cohen MA, Chipara M, Roberts J, Astuti D, Palhegyi AM, Acharjee A, Sedlackova L, Kataura T, Otten EG, Panda PK, Lara-Reyna S, Korsgen ME, Kauffman KJ, Huerta-Uribe A, Zatyka M, Silva LFSE, Torresi J, Zhang S, Hughes GW, Ward C, Kuechler ER, Cartwright D, Trushin S, Trushina E, Sahay G, Buganim Y, Lavery GG, Gsponer J, Anderson DG, Frickel EM, Rosenstock TR, Barrett T, Maddocks ODK, Tennant DA, Wang H, Jaenisch R, Korolchuk VI, Sarkar S. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell Rep 2023; 42:112372. [PMID: 37086404 PMCID: PMC10556436 DOI: 10.1016/j.celrep.2023.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 01/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.
Collapse
Affiliation(s)
- Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adina M Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Lucia Sedlackova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Elsje G Otten
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Prashanta K Panda
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kevin J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alejandro Huerta-Uribe
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Luiz F S E Silva
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jorge Torresi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Georgina W Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erich R Kuechler
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Cartwright
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
| | | | - Gaurav Sahay
- Department of Pharmaceutical Sciences and Department of Biomedical Engineering, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Gareth G Lavery
- Department for Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Joerg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelehouse Lane, Birmingham B4 6NH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Haoyi Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
38
|
Kim MJ, Kim S, Kim H, Gil D, Han HJ, Thimmulappa RK, Choi JH, Kim JH. Reciprocal enhancement of SARS-CoV-2 and influenza virus replication in human pluripotent stem cell-derived lung organoids. Emerg Microbes Infect 2023; 12:2211685. [PMID: 37161660 DOI: 10.1080/22221751.2023.2211685] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FLUAV) coinfections were associated with severe respiratory failure and more deaths. Because of the lack of a relevant lung model system, the pathobiology of co-infections between SARS-CoV-2 and FLUAV remains less understood. Here, we developed a model for studying SARS-CoV-2 and FLUAV coinfection using human pluripotent stem cell-induced alveolar type II organoids (hiAT2). hiAT2 organoids were susceptible to infection by both viruses and had features of severe lung damage. We found that infection with a single virus markedly enhanced the susceptibility to other virus infections and was linked with the upregulation of respective cell entry receptors. SARS-CoV-2 delta variants upregulated α-2-3-linked sialic acid, while FLUAV upregulated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Upregulation of ACE2 and TMPRSS2 was mediated by the FLUAV infection rather than individual viral proteins. RNA sequencing revealed that coinfection by SARS-CoV-2 and FLUAV caused hyperactivation of proinflammatory and immune-related signaling pathways and cellular damage compared to a respective single virus in hiAT2 organoids. Together, these studies established a relevant lung model system of hiAT2 organoids for understanding the biology of SARS-CoV-2 and FLUAV coinfection. This study also provides insight into molecular mechanisms underlying enhanced infectivity and severity in patients with co-infection of SARS-CoV-2 and FLUAV, which may aid in the development of newer therapeutics for the prevention and management of such co-infection cases.
Collapse
Affiliation(s)
- Min Jung Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, Korea
- Korea National Stem Cell Bank, Cheongju, South Korea
| | - Sumi Kim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Heeyeon Kim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Dayeon Gil
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, Korea
- Korea National Stem Cell Bank, Cheongju, South Korea
| | - Hyeong-Jun Han
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, Korea
- Korea National Stem Cell Bank, Cheongju, South Korea
| | - Rajesh K Thimmulappa
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Jang-Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Korea
| | - Jung-Hyun Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, Korea
- Korea National Stem Cell Bank, Cheongju, South Korea
| |
Collapse
|
39
|
Zatyka M, Rosenstock TR, Sun C, Palhegyi AM, Hughes GW, Lara-Reyna S, Astuti D, di Maio A, Sciauvaud A, Korsgen ME, Stanulovic V, Kocak G, Rak M, Pourtoy-Brasselet S, Winter K, Varga T, Jarrige M, Polvèche H, Correia J, Frickel EM, Hoogenkamp M, Ward DG, Aubry L, Barrett T, Sarkar S. Depletion of WFS1 compromises mitochondrial function in hiPSC-derived neuronal models of Wolfram syndrome. Stem Cell Reports 2023; 18:1090-1106. [PMID: 37163979 PMCID: PMC10202695 DOI: 10.1016/j.stemcr.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023] Open
Abstract
Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.
Collapse
Affiliation(s)
- Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adina M Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina W Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro di Maio
- Tech Hub Microscopy Facility, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Axel Sciauvaud
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vesna Stanulovic
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gamze Kocak
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malgorzata Rak
- Université Paris Cité, INSERM, NeuroDiderot, 75019 Paris, France
| | | | - Katherine Winter
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Thiago Varga
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Margot Jarrige
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France; CECS/AFM, I-STEM, 91100 Corbeil-Essonnes, France
| | | | - Joao Correia
- COMPARE Advanced Imaging Facility, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
40
|
Karema-Jokinen V, Koskela A, Hytti M, Hongisto H, Viheriälä T, Liukkonen M, Torsti T, Skottman H, Kauppinen A, Nymark S, Kaarniranta K. Crosstalk of protein clearance, inflammasome, and Ca 2+ channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem 2023:104770. [PMID: 37137441 DOI: 10.1016/j.jbc.2023.104770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Degeneration and/or dysfunction of retinal pigment epithelium (RPE) is generally detected as the formation of intra- and extracellular protein aggregates, called lipofuscin and drusen, respectively, in patients with age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. These clinical hallmarks are linked to dysfunctional protein homeostasis and inflammation, and furthermore, are both regulated by changes in intracellular Ca2+ concentration. While many other cellular mechanisms have been considered in the investigations of AMD-RPE, there has been relatively little work on understanding the interactions of protein clearance, inflammation, and Ca2+ dynamics in disease pathogenesis. Here we established induced pluripotent stem cell-derived RPE from two patients with advanced AMD and from an age- and gender-matched control subject. We studied autophagy and inflammasome activation under disturbed proteostasis in these cell lines and investigated changes in their intracellular Ca2+ concentration and L-type voltage-gated Ca2+ channels. Our work demonstrated dysregulated autophagy and inflammasome activation in AMD-RPE accompanied by reduced intracellular free Ca2+ levels. Interestingly, we found currents through L-type voltage-gated Ca2+ channels to be diminished and showed these channels to be significantly localized to intracellular compartments in AMD-RPE. Taken together, the alterations in Ca2+ dynamics in AMD-RPE together with dysregulated autophagy and inflammasome activation indicate an important role for Ca2+ signaling in AMD pathogenesis, providing new avenues for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland, Immuno-Ophthalmology, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| |
Collapse
|
41
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
42
|
Al Sammarraie SHA, Aprile D, Meloni I, Alessio N, Mari F, Manata M, Lo Rizzo C, Di Bernardo G, Peluso G, Renieri A, Galderisi U. An Example of Neuro-Glial Commitment and Differentiation of Muse Stem Cells Obtained from Patients with IQSEC2-Related Neural Disorder: A Possible New Cell-Based Disease Model. Cells 2023; 12:cells12070977. [PMID: 37048050 PMCID: PMC10093355 DOI: 10.3390/cells12070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Although adult stem cells may be useful for studying tissue-specific diseases, they cannot be used as a general model for investigating human illnesses given their limited differentiation potential. Multilineage-differentiating stress-enduring (Muse) stem cells, a SSEA3(+) cell population isolated from mesenchymal stromal cells, fat, and skin fibroblasts, may be able to overcome that restriction. The Muse cells present in fibroblast cultures obtained from biopsies of patients' skin may be differentiated into cells of interest for analyzing diseases. We isolated Muse stem cells from patients with an intellectual disability (ID) and mutations in the IQSEC2 gene (i.e., BRAG1 gene) and induced in vitro neuroglial differentiation to study cell commitment and the differentiation of neural lineages. The neuroglial differentiation of Muse cells revealed that IQSEC2 mutations may alter the self-renewal and lineage specification of stem cells. We observed a decrease in the percentage of SOX2 (+) neural stem cells and neural progenitors (i.e., SOX2+ and NESTIN+) in cultures obtained from Muse cells with the mutated IQSEC2 gene. The alteration in the number of stem cells and progenitors produced a bias toward the astrocytes' differentiation. Our research demonstrates that Muse stem cells may represent a new cell-based disease model.
Collapse
Affiliation(s)
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
| | - Ilaria Meloni
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
| | - Francesca Mari
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Marianna Manata
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Caterina Lo Rizzo
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | | - Alessandra Renieri
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
- Genome and Stem Cell Center (GENKÖK), Erciyes University, 38280 Kayseri, Turkey
| |
Collapse
|
43
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Bentwich I. Pharma's Bio-AI revolution. Drug Discov Today 2023; 28:103515. [PMID: 36736581 DOI: 10.1016/j.drudis.2023.103515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Drug development has become unbearably slow and expensive. A key underlying problem is the clinical prediction challenge: the inability to predict which drug candidates will be safe in the human body and for whom. Recently, a dramatic regulatory change has removed FDA's mandated reliance on antiquated, ineffective animal studies. A new frontier is an integration of several disruptive technologies [machine learning (ML), patient-on-chip, real-time sensing, and stem cells], which when integrated, have the potential to address this challenge, drastically cutting the time and cost of developing drugs, and tailoring them to individual patients.
Collapse
Affiliation(s)
- Isaac Bentwich
- Quris-AI, 6 HaNatsiv Street, Tel Aviv-Yafo 6701033, Israel.
| |
Collapse
|
45
|
Extracellular vesicles throughout development: A potential roadmap for emerging glioblastoma therapies. Semin Cell Dev Biol 2023; 133:32-41. [PMID: 35697594 DOI: 10.1016/j.semcdb.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.
Collapse
|
46
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
47
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
48
|
Mohamad Zamani NS, Wan Zaki WMD, Abd Hamid Z, Baseri Huddin A. Future stem cell analysis: progress and challenges towards state-of-the art approaches in automated cells analysis. PeerJ 2022; 10:e14513. [PMID: 36573241 PMCID: PMC9789697 DOI: 10.7717/peerj.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Aims A microscopic image has been used in cell analysis for cell type identification and classification, cell counting and cell size measurement. Most previous research works are tedious, including detailed understanding and time-consuming. The scientists and researchers are seeking modern and automatic cell analysis approaches in line with the current in-demand technology. Objectives This article provides a brief overview of a general cell and specific stem cell analysis approaches from the history of cell discovery up to the state-of-the-art approaches. Methodology A content description of the literature study has been surveyed from specific manuscript databases using three review methods: manuscript identification, screening, and inclusion. This review methodology is based on Prism guidelines in searching for originality and novelty in studies concerning cell analysis. Results By analysing generic cell and specific stem cell analysis approaches, current technology offers tremendous potential in assisting medical experts in performing cell analysis using a method that is less laborious, cost-effective, and reduces error rates. Conclusion This review uncovers potential research gaps concerning generic cell and specific stem cell analysis. Thus, it could be a reference for developing automated cells analysis approaches using current technology such as artificial intelligence and deep learning.
Collapse
Affiliation(s)
- Nurul Syahira Mohamad Zamani
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Department of Electrical, Electronic and Systems Engineering, UKM Bangi, Selangor, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Department of Electrical, Electronic and Systems Engineering, UKM Bangi, Selangor, Malaysia
| | - Zariyantey Abd Hamid
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Kuala Lumpur, W. P. Kuala Lumpur, Malaysia
| | - Aqilah Baseri Huddin
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Department of Electrical, Electronic and Systems Engineering, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
49
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
50
|
Microhomology-mediated endjoining repair mechanism enables rapid and effective indel generations in stem cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|