1
|
James J, Fokin AI, Guschin DY, Wang H, Polesskaya A, Rubtsova SN, Le Clainche C, Silberzan P, Gautreau AM, Romero S. Vinculin-Arp2/3 interaction inhibits branched actin assembly to control migration and proliferation. Life Sci Alliance 2025; 8:e202402583. [PMID: 39547716 PMCID: PMC11568829 DOI: 10.26508/lsa.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Vinculin is a mechanotransducer that reinforces links between cell adhesions and linear arrays of actin filaments upon myosin-mediated contractility. Both adhesions to the substratum and neighboring cells, however, are initiated within membrane protrusions that originate from Arp2/3-nucleated branched actin networks. Vinculin has been reported to interact with the Arp2/3 complex, but the role of this interaction remains poorly understood. Here, we compared the phenotypes of vinculin knock-out (KO) cells with those of knock-in (KI-P878A) cells, where the point mutation P878A that impairs the Arp2/3 interaction is introduced in the two vinculin alleles of MCF10A mammary epithelial cells. The interaction of vinculin with Arp2/3 inhibits actin polymerization at membrane protrusions and decreases migration persistence of single cells. In cell monolayers, vinculin recruits Arp2/3 and the vinculin-Arp2/3 interaction participates in cell-cell junction plasticity. Through this interaction, vinculin controls the decision to enter a new cell cycle as a function of cell density.
Collapse
Affiliation(s)
- John James
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Artem I Fokin
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Dmitry Y Guschin
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hong Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Polesskaya
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Svetlana N Rubtsova
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Silberzan
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Alexis M Gautreau
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphane Romero
- https://ror.org/05hy3tk52 Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
2
|
Hernandez-Aristizabal D, Garzon-Alvarado DA, Duque-Daza CA, Madzvamuse A. A bulk-surface mechanobiochemical modelling approach for single cell migration in two-space dimensions. J Theor Biol 2024; 595:111966. [PMID: 39419349 DOI: 10.1016/j.jtbi.2024.111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In this work, we present a mechanobiochemical model for two-dimensional cell migration which couples mechanical properties of the cell cytosol with biochemical processes taking place near or on the cell plasma membrane. The modelling approach is based on a recently developed mathematical formalism of evolving bulk-surface partial differential equations of reaction-diffusion type. We solve these equations using finite element methods within a moving-mesh framework derived from the weak formulation of the evolving bulk-surface PDEs. In the present work, the cell cytosol interior (bulk) dynamics are coupled to the cell membrane (surface) dynamics through non-homogeneous Dirichlet boundary conditions. The modelling approach exhibits both directed cell migration in response to chemical cues as well as spontaneous migration in the absence of such cues. As a by-product, the approach shows fundamental characteristics associated with single cell migration such as: (i) cytosolic and membrane polarisation, (ii) actin dependent protrusions, and (iii) continuous shape deformation of the cell during migration. Cell migration is an ubiquitous process in life that is mainly triggered by the dynamics of the actin cytoskeleton and therefore is driven by both mechanical and biochemical processes. It is a multistep process essential for mammalian organisms and is closely linked to a vast diversity of processes; from embryonic development to cancer invasion. Experimental, theoretical and computational studies have been key to elucidate the mechanisms underlying cell migration. On one hand, rapid advances in experimental techniques allow for detailed experimental measurements of cell migration pathways, while, on the other, computational approaches allow for the modelling, analysis and understanding of such observations. The bulk-surface mechanobiochemical modelling approach presented in this work, set premises to study single cell migration through complex non-isotropic environments in two- and three-space dimensions.
Collapse
Affiliation(s)
- David Hernandez-Aristizabal
- Universidad Nacional de Colombia, Department of Mechanical and Mechatronics Engineering, Bogotá, Colombia; Aix-Marseille Univ, CNRS, ISM, Marseille, France.
| | | | - Carlos-Alberto Duque-Daza
- Universidad Nacional de Colombia, Department of Mechanical and Mechatronics Engineering, Bogotá, Colombia.
| | - Anotida Madzvamuse
- University of British Columbia, Department of Mathematics, 1984 Mathematics Road, Vancouver, V6T 1Z2, British Columbia, Canada; University of Pretoria, Department of Mathematics, Pretoria, South Africa; University of Johannesburg, Department of Mathematics, Johannesburg, South Africa; University of Zimbabwe, Department of Mathematics and Computational Science, Mt Pleasant, Harare, Zimbabwe.
| |
Collapse
|
3
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
4
|
Rötte M, Höhne MY, Klug D, Ramlow K, Zedler C, Lehne F, Schneider M, Bischoff MC, Bogdan S. CYRI controls epidermal wound closure and cohesion of invasive border cell cluster in Drosophila. J Cell Biol 2024; 223:e202310153. [PMID: 39453414 PMCID: PMC11519390 DOI: 10.1083/jcb.202310153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Cell motility is crucial for many biological processes including morphogenesis, wound healing, and cancer invasion. The WAVE regulatory complex (WRC) is a central Arp2/3 regulator driving cell motility downstream of activation by Rac GTPase. CYFIP-related Rac1 interactor (CYRI) proteins are thought to compete with WRC for interaction with Rac1 in a feedback loop regulating lamellipodia dynamics. However, the physiological role of CYRI proteins in vivo in healthy tissues is unclear. Here, we used Drosophila as a model system to study CYRI function at the cellular and organismal levels. We found that CYRI is not only a potent WRC regulator in single macrophages that controls lamellipodial spreading but also identified CYRI as a molecular brake on the Rac-WRC-Arp2/3 pathway to slow down epidermal wound healing. In addition, we found that CYRI limits invasive border cell migration by controlling cluster cohesion and migration. Thus, our data highlight CYRI as an important regulator of cellular and epithelial tissue dynamics conserved across species.
Collapse
Affiliation(s)
- Marvin Rötte
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mila Y. Höhne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Dennis Klug
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Kirsten Ramlow
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Caroline Zedler
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Franziska Lehne
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Meike Schneider
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Maik C. Bischoff
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Dey S, Kumar R, Mishra R, Bera S. Exploring cross-α amyloids: from functional roles to design innovations. Trends Biochem Sci 2024; 49:1097-1110. [PMID: 39510919 DOI: 10.1016/j.tibs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Amyloids are filamentous protein aggregates that have traditionally been associated with neurodegenerative diseases, although they are also known to play pivotal functional roles across diverse forms of life. Although the cross-β structure has represented the hallmark of amyloidal assemblies, a cross-α structure was recently characterized as a functional microbial amyloid, and further work has shown that de novo designed sequences also assemble into cross-α amyloids, emphasizing cross-α as an alternative paradigm for self-assembly into ordered aggregates. In this review, we summarize recent discoveries of cross-α amyloids both in nature and artificially designed systems, and we describe their fundamental structural organization, self-assembly mechanisms, and biological functions. Finally, we outline the future opportunities for research and development in this potential field.
Collapse
Affiliation(s)
- Sukantha Dey
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Rohit Kumar
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Rajkumar Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
6
|
Zhang JN, Zhang Z, Huang ZL, Guo Q, Wu ZQ, Ke C, Lu B, Wang ZT, Ji LL. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin 2024; 45:2672-2683. [PMID: 39009651 PMCID: PMC11579498 DOI: 10.1038/s41401-024-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Ze Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Ke
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Xiao H, Sylla K, Gong X, Wilkowski B, Rossello-Martinez A, Jordan SN, Mintah EY, Zheng A, Sun H, Herzog EL, Mak M. Proteolysis and Contractility Regulate Tissue Opening and Wound Healing by Lung Fibroblasts in 3D Microenvironments. Adv Healthc Mater 2024; 13:e2400941. [PMID: 38967294 PMCID: PMC11617280 DOI: 10.1002/adhm.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Damage and repair are recurring processes in tissues, with fibroblasts playing key roles by remodeling extracellular matrices (ECM) through protein synthesis, proteolysis, and cell contractility. Dysregulation of fibroblasts can lead to fibrosis and tissue damage, as seen in idiopathic pulmonary fibrosis (IPF). In advanced IPF, tissue damage manifests as honeycombing, or voids in the lungs. This study explores how transforming growth factor-beta (TGF-β), a crucial factor in IPF, induces lung fibroblast spheroids to create voids in reconstituted collagen through proteolysis and cell contractility, a process we termed as hole formation. These voids reduce when proteases are blocked. Spheroids mimic fibroblast foci observed in IPF. Results indicate that cell contractility mediates tissue opening by stretching fractures in the collagen meshwork. Matrix metalloproteinases (MMPs), including MMP1 and MT1-MMP, are essential for hole formation, with invadopodia playing a significant role. Blocking MMPs reduces hole size and promotes wound healing. This study shows how TGF-β induces excessive tissue destruction and how blocking proteolysis can reverse damage, offering insights into IPF pathology and potential therapeutic interventions.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Kadidia Sylla
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Brendan Wilkowski
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | | | - Seyma Nayir Jordan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Emmanuel Y Mintah
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Allen Zheng
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Huanxing Sun
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale School of Medicine, New Haven, CT, 06510, USA
| | - Erica L Herzog
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale School of Medicine, New Haven, CT, 06510, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Rennert E, Vaikuntanathan S. A thermodynamic framework for nonequilibrium self-assembly and force morphology tradeoffs in branched actin networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567734. [PMID: 39464062 PMCID: PMC11507704 DOI: 10.1101/2023.11.19.567734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Branched actin networks are involved in a variety of cellular processes, most notably the formation of lamellipodia in the leading edge of the cell. These systems adapt to varying loads through force dependent assembly rates that allow the network density and material properties to be modulated. Recent experimental work has described growth and force feedback mechanisms in these systems. Here, we consider the role played by energy dissipation in determining the kind of growth-force-morphology curves obtained in experiments. We construct a minimal model of the branched actin network self assembly process incorporating some of the established mechanisms. Our minimal analytically tractable model is able to reproduce experimental trends in density and growth rate. Further, we show how these trends depend crucially on entropy dissipation and change quantitatively if the entropy dissipation is parametrically set to values corresponding to a quasistatic state. Finally, we also identify the potential energy costs of adaptive behavior by branched actin networks, using insights from our minimal models. We suggest that the dissipative cost in the system beyond what is necessary to move the load may be necessary to maintain an adaptive steady state. Our results hence show how constraints from stochastic thermodynamics and non-equilibrium thermodynamics may bound or constrain the structures that result in such force generating processes.
Collapse
|
9
|
Johan MZ, Pyne NT, Kolesnikoff N, Poltavets V, Esmaeili Z, Woodcock JM, Lopez AF, Cowin AJ, Pitson SM, Samuel MS. Accelerated Closure of Diabetic Wounds by Efficient Recruitment of Fibroblasts upon Inhibiting a 14-3-3/ROCK Regulatory Axis. J Invest Dermatol 2024; 144:2562-2573.e4. [PMID: 38582367 DOI: 10.1016/j.jid.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Chronic non-healing wounds negatively impact quality of life and are a significant financial drain on health systems. The risk of infection that exacerbates comorbidities in patients necessitates regular application of wound care. Understanding the mechanisms underlying impaired wound healing are therefore a key priority to inform effective new-generation treatments. In this study, we demonstrate that 14-3-3-mediated suppression of signaling through ROCK is a critical mechanism that inhibits the healing of diabetic wounds. Accordingly, pharmacological inhibition of 14-3-3 by topical application of the sphingo-mimetic drug RB-11 to diabetic wounds on a mouse model of type II diabetes accelerated wound closure more than 2-fold than vehicle control, phenocopying our previous observations in 14-3-3ζ-knockout mice. We also demonstrate that accelerated closure of the wounded epidermis by 14-3-3 inhibition causes enhanced signaling through the Rho-ROCK pathway and that the underlying cellular mechanism involves the efficient recruitment of dermal fibroblasts into the wound and the rapid production of extracellular matrix proteins to re-establish the injured dermis. Our observations that the 14-3-3/ROCK inhibitory axis characterizes impaired wound healing and that its suppression facilitates fibroblast recruitment and accelerated re-epithelialization suggest new possibilities for treating diabetic wounds by pharmacologically targeting this axis.
Collapse
Affiliation(s)
- M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Natasha T Pyne
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Natasha Kolesnikoff
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Valentina Poltavets
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Zahra Esmaeili
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia
| | - Joanna M Woodcock
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Woodville, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
10
|
Wang C, Huangfu Y, Wang J, Lu X, Liu D, Zhang ZL. Microchip construction for migration assays: investigating the impact of physical confinement on cell morphology and motility during vaccinia virus infection. Anal Bioanal Chem 2024; 416:5605-5618. [PMID: 39158632 DOI: 10.1007/s00216-024-05485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Vaccinia virus (VACV)-induced cell migration is thought to be closely related to the rapid transmission of viral infection in the body. The limited studies are mainly based on scratch assay using traditional cell culture techniques, which inevitably ignores the influences of extracellular microenvironment. Physical confinement, inherently presenting in vivo, has proven to be a critical extern cue in modulating migration behaviors of multiple cells, while its impacts on VACV-induced cell motility remain unclear. Herein, we developed a migration assay microchip featuring confined microchannel array to investigate the effect of physical confinement on infected cell morphology and motility during VACV infection. Results showed that different from the random cell migration observed in traditional scratch assay on planar substrate, VACV-infected cells exhibited accelerated directionally persistent migration under confinement microenvironment. Moreover, single-directed elongated dominant lamella appeared to contrast distinctly with multiple protrusions stretched in random directions under unconfined condition. Additionally, the Golgi complex tended to relocate behind the nucleus confined within the microchannel axis compared to the classical reorientation pattern. These differences in characteristic subcellular architecture and organelle reorientation of migrating cells revealed cell biological mechanisms underlying altered migration behavior. Collectively, our study demonstrates that physical confinement acting as a guidance cue has profound impacts on VACV-induced migration behaviors, which provides new insight into cell migration behavior and viral rapid spread during VACV infection.
Collapse
Affiliation(s)
- Cheng Wang
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China.
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yueyue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ji Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Hong Kong, 999077, China
| | - Xiaofeng Lu
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Dong Liu
- School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Shimoyama M, Nakada-Tsukui K, Nozaki T. EhRacM differentially regulates macropinocytosis and motility in the enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2024; 20:e1012364. [PMID: 39536056 PMCID: PMC11560011 DOI: 10.1371/journal.ppat.1012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Macropinocytosis is an evolutionarily conserved endocytic process that plays a vital role in internalizing extracellular fluids and particles in cells. This non-selective endocytic pathway is crucial for various physiological functions such as nutrient uptake, sensing, signaling, antigen presentation, and cell migration. While macropinocytosis has been extensively studied in macrophages and cancer cells, the molecular mechanisms of macropinocytosis in pathogens are less understood. It has been known that Entamoeba histolytica, the causative agent of amebiasis, exploits macropinocytosis for survival and pathogenesis. Since macropinocytosis is initiated by actin polymerization, leading to the formation of membrane ruffles and the subsequent trapping of solutes in macropinosomes, actin cytoskeleton regulation is crucial. Thus, this study focuses on unraveling the role of well-conserved actin cytoskeleton regulators, Rho small GTPase family proteins, in macropinocytosis in E. histolytica. Through gene silencing of highly transcribed Ehrho/Ehrac genes and following flow cytometry analysis, we identified that silencing EhracM enhances dextran macropinocytosis and affects cellular migration persistence. Live imaging and interactome analysis unveiled the cytosolic and vesicular localization of EhRacM, along with its interaction with signaling and membrane traffic-related proteins, shedding light on EhRacM's multiple roles. Our findings provide insights into the specific regulatory mechanisms of macropinocytosis among endocytic pathways in E. histolytica, highlighting the significance of EhRacM in both macropinocytosis and cellular migration.
Collapse
Affiliation(s)
- Misato Shimoyama
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. WAVE1 and WAVE2 facilitate human papillomavirus-driven actin polymerization during cellular entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620484. [PMID: 39553927 PMCID: PMC11565777 DOI: 10.1101/2024.10.28.620484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human PapillomavirusType 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of the actin polymerization that facilitates HPV endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both, internalize HPV16 at a significantly reduced rate. Analysis of fluorescently labeled cells exposed to HPV16 and acquired by confocal fluorescence microscopy revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface. We also found that HPV16 stimulates WAVE1 and WAVE2-mediated cellular dorsal surface filopodia formation during the viral endocytic process. Taken together, this study provides evidence that the HPV endocytic process needed for infection is controlled by actin reorganization into filopodial protrusions and that this process is mediated by WAVE1 and WAVE2.
Collapse
Affiliation(s)
- D J Fernandez
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Stephanie Cheng
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Aïqui-Reboul-Paviet O, Bakhache W, Bernard E, Holsteyn L, Neyret A, Briant L. The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication. J Virol 2024; 98:e0061224. [PMID: 39297643 PMCID: PMC11495065 DOI: 10.1128/jvi.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 10/23/2024] Open
Abstract
Alphavirus infection induces dramatic remodeling of host cellular membranes, producing filopodia-like and intercellular extensions. The formation of filopodia-like extensions has been primarily assigned to the replication protein nsP1, which binds and reshapes the host plasma membrane when expressed alone. While reported decades ago, the molecular mechanisms behind nsP1 membrane deformation remain unknown. Using mammalian epithelial cells and Chikungunya virus (CHIKV) as models, we characterized nsP1-induced membrane deformations as highly dynamic actin-rich lamellipodia and filopodia-like extensions. Through pharmacological inhibition and genetic invalidation, we identified the critical contribution of the Rac1 GTPase and its downstream effectors PAK1 and the actin nucleator Arp2 in nsP1-induced membrane deformation. An intact Rac1-PAK1-Arp2 signaling axis was also required for optimal CHIKV genome replication. Therefore, our results designate the Rac1-PAK1-Arp2 pathway as an essential signaling node for CHIKV infection and establish a parallel requirement for host factors involved in nsP1-induced plasma membrane reshaping and assembly of a functional replication complex.IMPORTANCEThe alphavirus nsP1 protein dramatically remodels host cellular membranes, resulting in the formation of filopodia-like extensions. Although described decades ago, the molecular mechanisms controlling these membrane deformations and their functional importance remain elusive. Our study provides mechanistic insight, uncovering the critical role of the Rac1 GTPase, along with its downstream effectors PAK1 and the actin nucleator Arp2, in the nsP1-associated phenotype. Furthermore, we demonstrate that the Rac1-PAK1-Arp2 pathway is essential for optimal CHIKV genome replication. Our findings establish a parallel in the cellular mechanisms governing nsP1-induced plasma membrane reshaping and the production of a functional replication complex in infected cells.
Collapse
Affiliation(s)
| | - William Bakhache
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Eric Bernard
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Lise Holsteyn
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Aymeric Neyret
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Laurence Briant
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| |
Collapse
|
14
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
15
|
Simanov G, Rocques N, Romero S, de Koning L, Vacher S, Dubois T, Bièche I, Gautreau AM. The Arp2/3 inhibitory protein Arpin inhibits homology-directed DNA repair. Biol Cell 2024; 116:e2400073. [PMID: 39118570 DOI: 10.1111/boc.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND INFORMATION Arpin, an Arp2/3 inhibitory protein, inhibits lamellipodial protrusions and cell migration. Arpin expression is lost in tumor cells of several cancer types. RESULTS Here we analyzed expression levels of Arpin and various markers using Reverse Phase Protein Array (RPPA) in human mammary carcinomas. We found that Arpin protein levels were correlated with those of several DNA damage response markers. Arpin-null cells display enhanced clustering of double stand breaks (DSBs) when cells are treated with a DNA damaging agent, in line with a previously described role of the Arp2/3 complex in promoting DSB clustering for homologous DNA repair (HDR) in the nucleus. Using a specific HDR assay, we further showed that Arpin depletion increased HDR efficiency two-fold through its ability to inactivate the Arp2/3 complex. CONCLUSIONS Arpin regulates both cell migration in the cytosol and HDR in the nucleus. SIGNIFICANCE Loss of Arpin expression coordinates enhanced cell migration with up-regulated DNA repair, which is required when DNA damage is induced by active cell migration.
Collapse
Affiliation(s)
- Gleb Simanov
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Rocques
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Leanne de Koning
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Sophie Vacher
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Thierry Dubois
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Ivan Bièche
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
16
|
Jaberi A, Kedzierski A, Kheirabadi S, Tagay Y, Ataie Z, Zavari S, Naghashnejad M, Waldron O, Adhikari D, Lester G, Gallagher C, Borhan A, Ravnic D, Tabdanov E, Sheikhi A. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2402489. [PMID: 39152936 DOI: 10.1002/adhm.202402489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Saman Zavari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Naghashnejad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Olivia Waldron
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Daksh Adhikari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gerald Lester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Colin Gallagher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dino Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Erdem Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
17
|
García-Arcos JM, Jha A, Waterman CM, Piel M. Blebology: principles of bleb-based migration. Trends Cell Biol 2024; 34:838-853. [PMID: 38538441 PMCID: PMC11424778 DOI: 10.1016/j.tcb.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 09/27/2024]
Abstract
Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.
Collapse
Affiliation(s)
| | - Ankita Jha
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clare M Waterman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France; Institut Pierre Gilles de Gennes, PSL University, Paris, France.
| |
Collapse
|
18
|
Singh DK, Cong Z, Song YJ, Liu M, Chaudhary R, Liu D, Wang Y, Prasanth R, K C R, Lizarazo S, Akhnoukh M, Gholamalamdari O, Moitra A, Jenkins LM, Bhargava R, Nelson ER, Van Bortle K, Prasanth SG, Prasanth KV. MANCR lncRNA Modulates Cell-Cycle Progression and Metastasis by Cis-Regulation of Nuclear Rho-GEF. Mol Cell Biol 2024; 44:372-390. [PMID: 39133105 PMCID: PMC11376416 DOI: 10.1080/10985549.2024.2383773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
A significant number of the genetic alterations observed in cancer patients lie within nonprotein-coding segments of the genome, including regions coding for long noncoding RNAs (lncRNAs). LncRNAs display aberrant expression in breast cancer (BrCa), but the functional implications of this altered expression remain to be elucidated. By performing transcriptome screen in a triple negative BrCa (TNBC) isogenic 2D and 3D spheroid model, we observed aberrant expression of >1000 lncRNAs during BrCa progression. The chromatin-associated lncRNA MANCR shows elevated expression in metastatic TNBC. MANCR is upregulated in response to cellular stress and modulates DNA repair and cell proliferation. MANCR promotes metastasis as MANCR-depleted cells show reduced cell migration, invasion, and wound healing in vitro, and reduced metastatic lung colonization in xenograft experiments in vivo. Transcriptome analyses reveal that MANCR modulates expression and pre-mRNA splicing of genes, controlling DNA repair and checkpoint response. MANCR promotes the transcription of NET1A, a Rho-GEF that regulates DNA damage checkpoint and metastatic processes in cis, by differential promoter usage. Experiments suggest that MANCR regulates the expression of cancer-associated genes by modulating the association of various transcription factors and RNA-binding proteins. Our results identified the metastasis-promoting activities of MANCR in TNBC by cis-regulation of gene expression.
Collapse
Affiliation(s)
- Deepak K. Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhengmin Cong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Minxue Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam Akhnoukh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anurupa Moitra
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Rohit Bhargava
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology-Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kannanganattu V. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
19
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
20
|
Sui L, Dahmann C. A cellular tilting mechanism important for dynamic tissue shape changes and cell differentiation in Drosophila. Dev Cell 2024; 59:1794-1808.e5. [PMID: 38692272 DOI: 10.1016/j.devcel.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/15/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Dynamic changes in three-dimensional cell shape are important for tissue form and function. In the developing Drosophila eye, photoreceptor differentiation requires the progression across the tissue of an epithelial fold known as the morphogenetic furrow. Morphogenetic furrow progression involves apical cell constriction and movement of apical cell edges. Here, we show that cells progressing through the morphogenetic furrow move their basal edges in opposite direction to their apical edges, resulting in a cellular tilting movement. We further demonstrate that cells generate, at their basal side, oriented, force-generating protrusions. Knockdown of the protein kinase Src42A or photoactivation of a dominant-negative form of the small GTPase Rac1 reduces protrusion formation. Impaired protrusion formation stalls basal cell movement and slows down morphogenetic furrow progression and photoreceptor differentiation. This work identifies a cellular tilting mechanism important for the generation of dynamic tissue shape changes and cell differentiation.
Collapse
Affiliation(s)
- Liyuan Sui
- School of Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- School of Science, Technische Universität Dresden, 01062 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
21
|
Wu M, Marchando P, Meyer K, Tang Z, Woolfson DN, Weiner OD. The WAVE complex forms linear arrays at negative membrane curvature to instruct lamellipodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.600855. [PMID: 39026726 PMCID: PMC11257481 DOI: 10.1101/2024.07.08.600855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cells generate a wide range of actin-based membrane protrusions for various cell behaviors. These protrusions are organized by different actin nucleation promoting factors. For example, N-WASP controls finger-like filopodia, whereas the WAVE complex controls sheet-like lamellipodia. These different membrane morphologies likely reflect different patterns of nucleator self-organization. N-WASP phase separation has been successfully studied through biochemical reconstitutions, but how the WAVE complex self-organizes to instruct lamellipodia is unknown. Because WAVE complex self-organization has proven refractory to cell-free studies, we leverage in vivo biochemical approaches to investigate WAVE complex organization within its native cellular context. With single molecule tracking and molecular counting, we show that the WAVE complex forms highly regular multilayered linear arrays at the plasma membrane that are reminiscent of a microtubule-like organization. Similar to the organization of microtubule protofilaments in a curved array, membrane curvature is both necessary and sufficient for formation of these WAVE complex linear arrays, though actin polymerization is not. This dependency on negative membrane curvature could explain both the templating of lamellipodia and their emergent behaviors, including barrier avoidance. Our data uncover the key biophysical properties of mesoscale WAVE complex patterning and highlight an integral relationship between NPF self-organization and cell morphogenesis.
Collapse
Affiliation(s)
- Muziyue Wu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| | - Paul Marchando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Kirstin Meyer
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| | - Ziqi Tang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
- Bristol BioDesign Institute, University of Bristol, Bristol, UK
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Wu Y, Liu W, Li J, Shi H, Ma S, Wang D, Pan B, Xiao R, Jiang H, Liu X. Decreased Tiam1-mediated Rac1 activation is responsible for impaired directional persistence of chondrocyte migration in microtia. J Cell Mol Med 2024; 28:e18443. [PMID: 38837873 PMCID: PMC11149491 DOI: 10.1111/jcmm.18443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.
Collapse
Affiliation(s)
- Yi Wu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jia Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hang Shi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shize Ma
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Di Wang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyue Jiang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Huo Z, Yang W, Harati J, Nene A, Borghi F, Piazzoni C, Milani P, Guo S, Galluzzi M, Boraschi D. Biomechanics of Macrophages on Disordered Surface Nanotopography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27164-27176. [PMID: 38750662 DOI: 10.1021/acsami.4c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Macrophages are involved in every stage of the innate/inflammatory immune responses in the body tissues, including the resolution of the reaction, and they do so in close collaboration with the extracellular matrix (ECM). Simplified substrates with nanotopographical features attempt to mimic the structural properties of the ECM to clarify the functional features of the interaction of the ECM with macrophages. We still have a limited understanding of the macrophage behavior upon interaction with disordered nanotopography, especially with features smaller than 10 nm. Here, we combine atomic force microscopy (AFM), finite element modeling (FEM), and quantitative biochemical approaches in order to understand the mechanotransduction from the nanostructured surface into cellular responses. AFM experiments show a decrease of macrophage stiffness, measured with the Young's modulus, as a biomechanical response to a nanostructured (ns-) ZrOx surface. FEM experiments suggest that ZrOx surfaces with increasing roughness represent weaker mechanical boundary conditions. The mechanical cues from the substrate are transduced into the cell through the formation of integrin-regulated focal adhesions and cytoskeletal reorganization, which, in turn, modulate cell biomechanics by downregulating cell stiffness. Surface nanotopography and consequent biomechanical response impact the overall behavior of macrophages by increasing movement and phagocytic ability without significantly influencing their inflammatory behavior. Our study suggests a strong potential of surface nanotopography for the regulation of macrophage functions, which implies a prospective application relative to coating technology for biomedical devices.
Collapse
Affiliation(s)
- Zixin Huo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Yang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ajinkya Nene
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Francesca Borghi
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Claudio Piazzoni
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Paolo Milani
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pharmacology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy
| |
Collapse
|
24
|
Fox S, Gaudreau-LaPierre A, Reshke R, Podinic I, Gibbings DJ, Trinkle-Mulcahy L, Copeland JW. Identification of an FMNL2 Interactome by Quantitative Mass Spectrometry. Int J Mol Sci 2024; 25:5686. [PMID: 38891874 PMCID: PMC11171801 DOI: 10.3390/ijms25115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Formin Homology Proteins (Formins) are a highly conserved family of cytoskeletal regulatory proteins that participate in a diverse range of cellular processes. FMNL2 is a member of the Diaphanous-Related Formin sub-group, and previous reports suggest FMNL2's role in filopodia assembly, force generation at lamellipodia, subcellular trafficking, cell-cell junction assembly, and focal adhesion formation. How FMNL2 is recruited to these sites of action is not well understood. To shed light on how FMNL2 activity is partitioned between subcellular locations, we used biotin proximity labeling and proteomic analysis to identify an FMNL2 interactome. The interactome identified known and new FMNL2 interacting proteins with functions related to previously described FMNL2 activities. In addition, our interactome predicts a novel connection between FMNL2 and extracellular vesicle assembly. We show directly that FMNL2 protein is present in exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John W. Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.F.)
| |
Collapse
|
25
|
Szigeti K, Ihnatovych I, Notari E, Dorn RP, Maly I, He M, Birkaya B, Prasad S, Byrne RS, Indurthi DC, Nimmer E, Heo Y, Retfalvi K, Chaves L, Sule N, Hofmann WA, Auerbach A, Wilding G, Bae Y, Reynolds J. CHRFAM7A diversifies human immune adaption through Ca 2+ signalling and actin cytoskeleton reorganization. EBioMedicine 2024; 103:105093. [PMID: 38569318 PMCID: PMC10999709 DOI: 10.1016/j.ebiom.2024.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).
Collapse
Affiliation(s)
- Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| | - Ivanna Ihnatovych
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Emily Notari
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ryu P Dorn
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ivan Maly
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Muye He
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Barbara Birkaya
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Shreyas Prasad
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Robin Schwartz Byrne
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Dinesh C Indurthi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Erik Nimmer
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yuna Heo
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Kolos Retfalvi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Lee Chaves
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Wilma A Hofmann
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Anthony Auerbach
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Gregory Wilding
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Yongho Bae
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Jessica Reynolds
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| |
Collapse
|
26
|
Gadal S, Boyer JA, Roy SF, Outmezguine NA, Sharma M, Li H, Fan N, Chan E, Romin Y, Barlas A, Chang Q, Pancholi P, Timaul NM, Overholtzer M, Yaeger R, Manova-Todorova K, de Stanchina E, Bosenberg M, Rosen N. Tumorigenesis driven by the BRAF V600E oncoprotein requires secondary mutations that overcome its feedback inhibition of migration and invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568071. [PMID: 38659913 PMCID: PMC11042182 DOI: 10.1101/2023.11.21.568071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.
Collapse
Affiliation(s)
- Sunyana Gadal
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jacob A. Boyer
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Simon F. Roy
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Noah A. Outmezguine
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Malvika Sharma
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hongyan Li
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC, New York, NY 10065, USA
| | - Ning Fan
- Molecular Cytology Core, MSKCC, New York, NY 10065, USA
| | - Eric Chan
- Molecular Cytology Core, MSKCC, New York, NY 10065, USA
| | | | - Afsar Barlas
- Molecular Cytology Core, MSKCC, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC, New York, NY 10065, USA
| | - Priya Pancholi
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Neilawattie. Merna Timaul
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | | | - Rona Yaeger
- Department of Medicine, MSKCC, New York, NY 10065, USA
| | | | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC, New York, NY 10065, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
- Department of Medicine, MSKCC, New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
27
|
Liang LY, Geoghegan ND, Mlodzianoski M, Leis A, Whitehead LW, Surudoi MG, Young SN, Janes P, Shepherd D, Ghosal D, Rogers KL, Murphy JM, Lucet IS. Co-clustering of EphB6 and ephrinB1 in trans restrains cancer cell invasion. Commun Biol 2024; 7:461. [PMID: 38627519 PMCID: PMC11021433 DOI: 10.1038/s42003-024-06118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.
Collapse
Affiliation(s)
- Lung-Yu Liang
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael Mlodzianoski
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Minglyanna G Surudoi
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Peter Janes
- Olivia Newton-John Cancer Research Institute and La Trobe School of Cancer Medicine, Level 5, ONJ Centre, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Doulin Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
28
|
Liu B, Radiom M, Zhou J, Yan H, Zhang J, Wu D, Sun Q, Xuan Q, Li Y, Mezzenga R. Cation Triggered Self-Assembly of α-Lactalbumin Nanotubes. NANO LETTERS 2024. [PMID: 38598498 DOI: 10.1021/acs.nanolett.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Metal ions play a dual role in biological systems. Although they actively participate in vital life processes, they may contribute to protein aggregation and misfolding and thus contribute to development of diseases and other pathologies. In nanofabrication, metal ions mediate the formation of nanostructures with diverse properties. Here, we investigated the self-assembly of α-lactalbumin into nanotubes induced by coordination with metal ions, screened among the series Mn2+, Co2+, Ni2+, Zn2+, Cd2+, and Au3+. Our results revealed that the affinity of metal ions toward hydrolyzed α-lactalbumin peptides not only impacts the kinetics of nanotube formation but also influences their length and rigidity. These findings expand our understanding of supramolecular assembly processes in protein-based materials and pave the way for designing novel materials such as metallogels in biochip and biosensor applications.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, P. R. China
| | - Milad Radiom
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Huiling Yan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jipeng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Di Wu
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Qiyao Sun
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Qize Xuan
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
- Department of Materials, ETH Zurich, 8092 Zürich, Switzerland
| |
Collapse
|
29
|
Cheng Y, Pang SW. Biointerfaces with ultrathin patterns for directional control of cell migration. J Nanobiotechnology 2024; 22:158. [PMID: 38589901 PMCID: PMC11000378 DOI: 10.1186/s12951-024-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiOx in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiOx arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiOx arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiOx arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
Collapse
Grants
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Liu Y, Jiao Y, Li X, Li G, Wang W, Liu Z, Qin D, Zhong L, Liu L, Shuai J, Li Z. An entropy-based approach for assessing the directional persistence of cell migration. Biophys J 2024; 123:730-744. [PMID: 38366586 PMCID: PMC10995411 DOI: 10.1016/j.bpj.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Cell migration, which is primarily characterized by directional persistence, is essential for the development of normal tissues and organs, as well as for numerous pathological processes. However, there is a lack of simple and efficient tools to analyze the systematic properties of persistence based on cellular trajectory data. Here, we present a novel approach, the entropy of angular distribution , which combines cellular turning dynamics and Shannon entropy to explore the statistical and time-varying properties of persistence that strongly correlate with cellular migration modes. Our results reveal the changes in the persistence of multiple cell lines that are tightly regulated by both intra- and extracellular cues, including Arpin protein, collagen gel/substrate, and physical constraints. Significantly, some previously unreported distinctive details of persistence have also been captured, helping to elucidate how directional persistence is distributed and evolves in different cell populations. The analysis suggests that the entropy of angular distribution-based approach provides a powerful metric for evaluating directional persistence and enables us to better understand the relationships between cellular behaviors and multiscale cues, which also provides some insights into the migration dynamics of cell populations, such as collective cell invasion.
Collapse
Affiliation(s)
- Yanping Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona
| | - Xinwei Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Guoqiang Li
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wei Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhichao Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dui Qin
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lisha Zhong
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhangyong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China; Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
31
|
Kubota R, Hamachi I. Cell-Like Synthetic Supramolecular Soft Materials Realized in Multicomponent, Non-/Out-of-Equilibrium Dynamic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306830. [PMID: 38018341 PMCID: PMC10885657 DOI: 10.1002/advs.202306830] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Living cells are complex, nonequilibrium supramolecular systems capable of independently and/or cooperatively integrating multiple bio-supramolecules to execute intricate physiological functions that cannot be accomplished by individual biomolecules. These biological design strategies offer valuable insights for the development of synthetic supramolecular systems with spatially controlled hierarchical structures, which, importantly, exhibit cell-like responses and functions. The next grand challenge in supramolecular chemistry is to control the organization of multiple types of supramolecules in a single system, thus integrating the functions of these supramolecules in an orthogonal and/or cooperative manner. In this perspective, the recent progress in constructing multicomponent supramolecular soft materials through the hybridization of supramolecules, such as self-assembled nanofibers/gels and coacervates, with other functional molecules, including polymer gels and enzymes is highlighted. Moreover, results show that these materials exhibit bioinspired responses to stimuli, such as bidirectional rheological responses of supramolecular double-network hydrogels, temporal stimulus pattern-dependent responses of synthetic coacervates, and 3D hydrogel patterning in response to reaction-diffusion processes are presented. Autonomous active soft materials with cell-like responses and spatially controlled structures hold promise for diverse applications, including soft robotics with directional motion, point-of-care disease diagnosis, and tissue regeneration.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Katsura, 615-8530, Japan
| |
Collapse
|
32
|
Casanova AG, Roth GS, Hausmann S, Lu X, Bischoff LJM, Froeliger EM, Belmudes L, Bourova-Flin E, Flores NM, Benitez AM, Chasan T, Caporicci M, Vayr J, Blanchet S, Ielasi F, Rousseaux S, Hainaut P, Gozani O, Le Romancer M, Couté Y, Palencia A, Mazur PK, Reynoird N. Cytoskeleton remodeling induced by SMYD2 methyltransferase drives breast cancer metastasis. Cell Discov 2024; 10:12. [PMID: 38296970 PMCID: PMC10830559 DOI: 10.1038/s41421-023-00644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.
Collapse
Affiliation(s)
- Alexandre G Casanova
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Gael S Roth
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
- Clinique Universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble Alpes, Grenoble, France
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyin Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludivine J M Bischoff
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Emilie M Froeliger
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Lucid Belmudes
- Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS CEA, FR2048, Grenoble, France
| | - Ekaterina Bourova-Flin
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tourkian Chasan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcello Caporicci
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Vayr
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Sandrine Blanchet
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Francesco Ielasi
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Pierre Hainaut
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Muriel Le Romancer
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Lyon, France
| | - Yohann Couté
- Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS CEA, FR2048, Grenoble, France
| | - Andres Palencia
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nicolas Reynoird
- Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.
| |
Collapse
|
33
|
Wu W, Peng Y, Xu M, Yan T, Zhang D, Chen Y, Mei K, Chen Q, Wang X, Qiao Z, Wang C, Wu S, Zhang Q. Deep-Learning-Based Nanomechanical Vibration for Rapid and Label-Free Assay of Epithelial Mesenchymal Transition. ACS NANO 2024; 18:3480-3496. [PMID: 38169507 DOI: 10.1021/acsnano.3c10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer is a profound danger to our life and health. The classification and related studies of epithelial and mesenchymal phenotypes of cancer cells are key scientific questions in cancer research. Here, we investigated cancer cell colonies from a mechanical perspective and developed an assay for classifying epithelial/mesenchymal cancer cell colonies using the biomechanical fingerprint in the form of "nanovibration" in combination with deep learning. The classification method requires only 1 s of vibration data and has a classification accuracy of nearly 92.5%. The method has also been validated for the screening of anticancer drugs. Compared with traditional methods, the method has the advantages of being nondestructive, label-free, and highly sensitive. Furthermore, we proposed a perspective that subcellular structure influences the amplitude and spectrum of nanovibrations and demonstrated it using experiments and numerical simulation. These findings allow internal changes in the cell colony to be manifested by nanovibrations. This work provides a perspective and an ancillary method for cancer cell phenotype diagnosis and promotes the study of biomechanical mechanisms of cancer progression.
Collapse
Affiliation(s)
- Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Mengjun Xu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Tianhao Yan
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qiubo Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Xiapeng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
34
|
Su Z, Ho JWK, Yau RCH, Lam YL, Shek TWH, Yeung MCF, Chen H, Oreffo ROC, Cheah KSE, Cheung KSC. A single-cell atlas of conventional central chondrosarcoma reveals the role of endoplasmic reticulum stress in malignant transformation. Commun Biol 2024; 7:124. [PMID: 38267611 PMCID: PMC10808239 DOI: 10.1038/s42003-024-05790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
The transformation of benign lesions to malignant tumours is a crucial aspect of understanding chondrosarcomas, which are malignant cartilage tumours that could develop from benign chondroid lesions. However, the process of malignant transformation for chondroid lesions remains poorly understood, and no reliable markers are available to aid clinical decision-making. To address this issue, we conducted a study analysing 11 primary cartilage tumours and controls using single-cell RNA sequencing. By creating a single-cell atlas, we were able to identify the role of endoplasmic reticulum (ER) stress in the malignant transformation of conventional central chondrosarcomas (CCCS). Our research revealed that lower levels of ER stress promote chondrosarcoma growth in a patient-derived xenograft mouse model, while intensive ER stress reduces primary chondrosarcoma cell viability. Furthermore, we discovered that the NF-κB pathway alleviates ER stress-induced apoptosis during chondrosarcoma progression. Our single-cell signatures and large public data support the use of key ER stress regulators, such as DNA Damage Inducible Transcript 3 (DDIT3; also known as CHOP), as malignant markers for overall patient survival. Ultimately, our study highlights the significant role that ER stress plays in the malignant transformation of cartilaginous tumours and provides a valuable resource for future diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Zezhuo Su
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Raymond Ching Hing Yau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Lee Lam
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tony Wai Hung Shek
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maximus Chun Fai Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongtai Chen
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - Kathryn Song Eng Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kelvin Sin Chi Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
35
|
Graham K, Chandrasekaran A, Wang L, Yang N, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates mediate competition between actin branching and bundling. Proc Natl Acad Sci U S A 2024; 121:e2309152121. [PMID: 38207079 PMCID: PMC10801869 DOI: 10.1073/pnas.2309152121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Cellular remodeling of actin networks underlies cell motility during key morphological events, from embryogenesis to metastasis. In these transformations, there is an inherent competition between actin branching and bundling, because steric clashes among branches create a mechanical barrier to bundling. Recently, liquid-like condensates consisting purely of proteins involved in either branching or bundling of the cytoskeleton have been found to catalyze their respective functions. Yet in the cell, proteins that drive branching and bundling are present simultaneously. In this complex environment, which factors determine whether a condensate drives filaments to branch or become bundled? To answer this question, we added the branched actin nucleator, Arp2/3, to condensates composed of VASP, an actin bundling protein. At low actin to VASP ratios, branching activity, mediated by Arp2/3, robustly inhibited VASP-mediated bundling of filaments, in agreement with agent-based simulations. In contrast, as the actin to VASP ratio increased, addition of Arp2/3 led to formation of aster-shaped structures, in which bundled filaments emerged from a branched actin core, analogous to filopodia emerging from a branched lamellipodial network. These results demonstrate that multi-component, liquid-like condensates can modulate the inherent competition between bundled and branched actin morphologies, leading to organized, higher-order structures, similar to those found in motile cells.
Collapse
Affiliation(s)
- Kristin Graham
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Noel Yang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
36
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Fokin AI, Boutillon A, James J, Courtois L, Vacher S, Simanov G, Wang Y, Polesskaya A, Bièche I, David NB, Gautreau AM. Inactivating negative regulators of cortical branched actin enhances persistence of single cell migration. J Cell Sci 2024; 137:jcs261332. [PMID: 38059420 DOI: 10.1242/jcs.261332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knockdown (KD) or knockout (KO), we combine the inactivation of the Arp2/3 inhibitory protein arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit CYFIP2, all of which enhance the polymerization of cortical branched actin. Inactivation of the three negative regulators of cortical branched actin increases migration persistence of human breast MCF10A cells and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO cells, but not in triple KD cells, the 'super-migrator' phenotype was associated with a heterogenous downregulation of vimentin (VIM) expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells largely restored normal persistence of single cell migration, suggesting that vimentin downregulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.
Collapse
Affiliation(s)
- Artem I Fokin
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Arthur Boutillon
- INSERM U1182, CNRS UMR7645, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - John James
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Laura Courtois
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Gleb Simanov
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yanan Wang
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Anna Polesskaya
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | - Nicolas B David
- INSERM U1182, CNRS UMR7645, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
38
|
Ambhore NS, Balraj P, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially modifies lamellipodial and focal adhesion dynamics in airway smooth muscle cell migration. Mol Cell Endocrinol 2024; 579:112087. [PMID: 37827228 PMCID: PMC10842142 DOI: 10.1016/j.mce.2023.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17β-estradiol (E2) towards estrogen receptors (ERs: α and β) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERβ affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERβ or shRNA mediated knockdown of ERα and specific activation of ERβ blunted PDGF-induced cell migration. Furthermore, specific ERβ activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERβ-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERβ activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERβ activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.
Collapse
Affiliation(s)
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
39
|
Gui J, Zhou H, Wan H, Yang D, Liu Q, Zhu L, Mi Y. The Role of Vasodilator-stimulated Phosphoproteins in the Development of Malignant Tumors. Curr Cancer Drug Targets 2024; 24:477-489. [PMID: 37962042 PMCID: PMC11092557 DOI: 10.2174/0115680096262439231023110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 11/15/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is an actin-binding protein that includes three structural domains: Enabled/VASP homolog1 (EVH1), EVH2, and proline-rich (PRR). VASP plays an important role in various cellular behaviors related to cytoskeletal regulation. More importantly, VASP plays a key role in the progression of several malignant tumors and is associated with malignant cell proliferation, invasion, and metastasis. Here, we have summarized current studies on the impact of VASP on the development of several malignant tumors and their mechanisms. This study provides a new theoretical basis for clinical molecular diagnosis and molecular targeted therapy.
Collapse
Affiliation(s)
- Jiandong Gui
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hongyuan Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Dongjie Yang
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Qing Liu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Huadong Sanatorium, 67 Dajishan, Wuxi 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
40
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
41
|
Guan LY, Lin SZ, Chen PC, Lv JQ, Li B, Feng XQ. Interfacial Organization and Forces Arising from Epithelial-Cancerous Monolayer Interactions. ACS NANO 2023; 17:24668-24684. [PMID: 38091551 DOI: 10.1021/acsnano.3c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The interfacial interactions between epithelia and cancer cells have profound relevance for tumor development and metastasis. Through monolayer confrontation of MCF10A (nontumorigenic human breast epithelial cells) and MDA-MB-231 (human epithelial breast cancer cells) cells, we investigate the epithelial-cancerous interfacial interactions at the tissue level. We show that the monolayer interaction leads to competitive interfacial morphodynamics and drives an intricate spatial organization of MCF10A cells into multicellular finger-like structures, which further branch into multiple subfinger-like structures. These hierarchical interfacial structures penetrate the cancer monolayer and can spontaneously segregate or even envelop cancer cell clusters, consistent with our theoretical prediction. By tracking the substrate displacements via embedded fluorescent nanobeads and implementing nanomechanical modeling that combines atomic force microscopy and finite element simulations, we computed mechanical force patterns, including traction forces and monolayer stresses, caused by the monolayer interaction. It is found that the heterogeneous mechanical forces accumulated in the monolayers are able to squeeze cancer cells, leading to three-dimensional interfacial bulges or cell extrusion, initiating the p53 apoptosis signaling pathways of cancer cells. We reveal that intercellular E-cadherin and P-cadherin of epithelial cells differentially regulate the interfacial organization including migration speed, directionality, spatial correlation, F-actin alignment, and subcellular protrusions of MCF10A cells; whereas E-cadherin governs interfacial geometry that is relevant to force localization and cancer cell extrusion, P-cadherin maintains interfacial integrity that enables long-range force transmission. Our findings suggest that the collaborative molecular and mechanical behaviors are crucial for preventing epithelial tissues from undergoing tumor invasion.
Collapse
Affiliation(s)
- Liu-Yuan Guan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jian-Qing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Bhanja A, Seeley-Fallen MK, Lazzaro M, Upadhyaya A, Song W. N-WASP-dependent branched actin polymerization attenuates B-cell receptor signaling by increasing the molecular density of receptor clusters. eLife 2023; 12:RP87833. [PMID: 38085658 PMCID: PMC10715734 DOI: 10.7554/elife.87833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Antigen-induced B-cell receptor (BCR) signaling is critical for initiating and regulating B-cell activation. The actin cytoskeleton plays essential roles in BCR signaling. Upon encountering cell-surface antigens, actin-driven B-cell spreading amplifies signaling, while B-cell contraction following spreading leads to signal attenuation. However, the mechanism by which actin dynamics switch BCR signaling from amplification to attenuation is unknown. Here, we show that Arp2/3-mediated branched actin polymerization is required for mouse splenic B-cell contraction. Contracting B-cells generate centripetally moving actin foci from lamellipodial F-actin networks in the plasma membrane region contacting antigen-presenting surfaces. Actin polymerization driven by N-WASP, but not WASP, initiates these actin foci and facilitates non-muscle myosin II recruitment to the contact zone, creating actomyosin ring-like structures. B-cell contraction increases BCR molecular density in individual clusters, leading to decreased BCR phosphorylation. Increased BCR molecular density reduced levels of the stimulatory kinase Syk, the inhibitory phosphatase SHIP-1, and their phosphorylated forms in individual BCR clusters. These results suggest that N-WASP-activated Arp2/3, coordinating with myosin, generates centripetally moving foci and contractile actomyosin ring-like structures from lamellipodial networks, enabling contraction. B-cell contraction attenuates BCR signaling by pushing out both stimulatory kinases and inhibitory phosphatases from BCR clusters, providing novel insights into actin-facilitated signal attenuation.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Margaret K Seeley-Fallen
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Michelle Lazzaro
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Arpita Upadhyaya
- Biophysics Program, University of MarylandCollege ParkUnited States
- Department of Physics, University of MarylandCollege ParkUnited States
- Institute for Physical Science and Technology, University of MarylandCollege ParkUnited States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| |
Collapse
|
43
|
Yang RM, Song SY, Wu FY, Yang RF, Shen YT, Tu PH, Wang Z, Zhang JX, Cheng F, Gao GQ, Liang J, Guo MM, Yang L, Zhou Y, Zhao SX, Zhan M, Song HD. Myeloid cells interact with a subset of thyrocytes to promote their migration and follicle formation through NF-κB. Nat Commun 2023; 14:8082. [PMID: 38057310 PMCID: PMC10700497 DOI: 10.1038/s41467-023-43895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.
Collapse
Affiliation(s)
- Rui-Meng Yang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yang Song
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Feng Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Ting Shen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Hui Tu
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xiu Zhang
- Department of Endocrinology, Maternal and Child Health Institute of Bozhou, Bozhou, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Guan-Qi Gao
- Department of Endocrinology, The Linyi People's Hospital, Linyi, Shandong Province, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Miao-Miao Guo
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Yang Y, Jiang S, Yang J, Feng X, Wang C, Wang K, Gao W, Du X, Lei L, Wang Z, Liu G, Song Y, Li X. β-hydroxybutyrate impairs the directionality of migrating neutrophils through inhibiting the autophagy-dependent degradation of Cdc42 and Rac1 in ketotic cows. J Dairy Sci 2023; 106:8005-8016. [PMID: 37641273 DOI: 10.3168/jds.2023-23293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/05/2023] [Indexed: 08/31/2023]
Abstract
Dairy cows have high incidence of ketosis during perinatal. According to our previous studies, elevated ketone bodies (mainly β-hydroxybutyrate, BHB) in the peripheral blood are believed to contribute to the impairment of neutrophils mobility and directionality thereby contributing to the immunosuppression and further infectious disease secondary to ketosis. However, the specific effect of BHB on the directionality of bovine neutrophils needs further study and the underlying molecular mechanisms are still unclear. According to the concentration of serum BHB, 40 multiparous cows (within 3 wk postpartum) were selected and divided into the control (n = 20, BHB <0.6 mM) or clinical ketosis (n = 20, BHB >3.0 mM) group. Blood samples were collected for baseline serum characteristics analysis and neutrophil mobility and directionality detection. Platelet activation factor was used as a chemoattractant in cell migration experiments. Our ex-vivo data showed ketotic cows, compared with control cows, were in a negative energy balance state, and their neutrophils had shorter migration distance, lower migration speed, and impaired migration directionality. Neutrophils from control cows were incubated with 3.0 mM BHB for 6 h in vitro. Similarly, BHB stimulation resulted in impaired mobility and directionality of bovine neutrophils. We further specifically studied the underlying molecular mechanism of BHB regulating neutrophil migration directionality in the present study. Cell division control protein 42 homolog (Cdc42) and Ras-related C3 botulinum toxin substrate 1 (Rac1), 2 key markers in the regulation of migration directionality, were found increased after BHB treatment in their total and activated protein levels while decreasing in their transcription level, suggesting that an imbalance of the protein degradation system may be involved. Interestingly, transmission electron microscopy data revealed a decrease in autophagosome number in neutrophils from ketotic cows. Western blotting data showed the accumulation of sequestosome-1 (p62) protein and a decrease in microtubule-associated protein 1 light chain 3-II (LC3-II) protein abundance after BHB treatment, further confirming that the autophagy flux was inhibited in neutrophils from ketotic cows. Additionally, rapamycin (RAPA), a specific autophagy activator, was used with or without BHB treatment in vitro. Accordingly, the BHB-induced impairment of migration directionality but not mobility was relieved by RAPA. Furthermore, as verified by in vivo experiments, compared with the control cows, the protein abundance of total and activated Cdc42 and Rac1 increased and their mRNA abundance decreased in neutrophils from ketotic cows. Overall, the present study revealed that pathological concentration of BHB impairs neutrophil migration directionality through inhibiting the autophagy-mediated degradation of Cdc42 and Rac1. These findings help explain the immunosuppression caused by ketosis.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiancheng Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chao Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kexin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
45
|
Gong X, Nguyen R, Chen Z, Wen Z, Zhang X, Mak M. Volumetric Compression Shifts Rho GTPase Balance and Induces Mechanobiological Cell State Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561452. [PMID: 37873466 PMCID: PMC10592676 DOI: 10.1101/2023.10.08.561452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During development and disease progression, cells are subject to osmotic and mechanical stresses that modulate cell volume, which fundamentally influences cell homeostasis and has been linked to a variety of cellular functions. It is not well understood how the mechanobiological state of cells is programmed by the interplay of intracellular organization and complex extracellular mechanics when stimulated by cell volume modulation. Here, by controlling cell volume via osmotic pressure, we evaluate physical phenotypes (including cell shape, morphodynamics, traction force, and extracellular matrix (ECM) remodeling) and molecular signaling (YAP), and we uncover fundamental transitions in active biophysical states. We demonstrate that volumetric compression shifts the ratiometric balance of Rho GTPase activities, thereby altering mechanosensing and cytoskeletal organization in a reversible manner. Specifically, volumetric compression controls cell spreading, adhesion formation, and YAP nuclear translocation, while maintaining cell contractile activity. Furthermore, we show that on physiologically relevant fibrillar collagen I matrices, which are highly non-elastic, cells exhibit additional modes of cell volume-dependent mechanosensing that are not observable on elastic substrates. Notably, volumetric compression regulates the dynamics of cell-ECM interactions and irreversible ECM remodeling via Rac-directed protrusion dynamics, at both the single-cell level and the multicellular level. Our findings support that cell volume is a master biophysical regulator and reveal its roles in cell mechanical state transition, cell-ECM interactions, and biophysical tissue programming.
Collapse
|
46
|
Pan W, Tian Y, Zheng Q, Yang Z, Qiang Y, Zhang Z, Zhang N, Xiong J, Zhu X, Wei L, Li F. Oncogenic BRAF noncanonically promotes tumor metastasis by mediating VASP phosphorylation and filopodia formation. Oncogene 2023; 42:3194-3205. [PMID: 37689827 DOI: 10.1038/s41388-023-02829-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BRAF is frequently mutated in various cancer types and contributes to tumorigenesis and metastasis. As an important switch in RAS signaling pathway, BRAF typically enables the activation of MEK and ERK, and its mutation significantly promotes metastasis. However, whether BRAF could stimulate metastasis via a distinct manner is still unknown. Herein, we found that a portion of the BRAF protein localized at the plasma membrane and that the BRAFV600E mutation led to abundant formation of filopodia, which is a hallmark of invasive cancer cells. Mechanistically, BRAF physically interacts with the pseudopod formation-related protein Vasodilator-stimulated phosphoprotein (VASP), and BRAF specifically catalyzes VASP phosphorylation at Ser157. VASP depletion or disruption of Ser157 phosphorylation preferentially reduced the motility, invasion and metastasis of tumor cells harboring oncogenic BRAF or KRAS. Moreover, in clinical cancer tissues, BRAFV600E was positively correlated with the extent of invasion, and tissues with BRAFV600E expression exhibited elevated levels of VASP Ser157 phosphorylation. Our study therefor reveals a noncanonical mechanism by which oncogenic BRAF or KRAS promotes metastasis, suggests that VASP Ser157 phosphorylation might serve as a valuable therapeutic target in BRAF or KRAS mutant cancers.
Collapse
Affiliation(s)
- Wenting Pan
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yihao Tian
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qian Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zelin Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yulong Qiang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zun Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, China.
| |
Collapse
|
47
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
48
|
Dobson L, Barrell WB, Seraj Z, Lynham S, Wu SY, Krause M, Liu KJ. GSK3 and lamellipodin balance lamellipodial protrusions and focal adhesion maturation in mouse neural crest migration. Cell Rep 2023; 42:113030. [PMID: 37632751 DOI: 10.1016/j.celrep.2023.113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Neural crest cells are multipotent cells that delaminate from the neuroepithelium, migrating throughout the embryo. Aberrant migration causes developmental defects. Animal models are improving our understanding of neural crest anomalies, but in vivo migration behaviors are poorly understood. Here, we demonstrate that murine neural crest cells display actin-based lamellipodia and filopodia in vivo. Using neural crest-specific knockouts or inhibitors, we show that the serine-threonine kinase glycogen synthase kinase-3 (GSK3) and the cytoskeletal regulator lamellipodin (Lpd) are required for lamellipodia formation while preventing focal adhesion maturation. Lpd is a substrate of GSK3, and phosphorylation of Lpd favors interactions with the Scar/WAVE complex (lamellipodia formation) at the expense of VASP and Mena interactions (adhesion maturation and filopodia formation). This improved understanding of cytoskeletal regulation in mammalian neural crest migration has general implications for neural crest anomalies and cancer.
Collapse
Affiliation(s)
- Lisa Dobson
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Zahra Seraj
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Steven Lynham
- Centre for Excellence for Mass Spectrometry, King's College London, London SE5 9NU, UK
| | - Sheng-Yuan Wu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
49
|
Liu Z, Wang J, Luo Y, Zhao S, Li W, Li SZ. Efficient prediction of peptide self-assembly through sequential and graphical encoding. Brief Bioinform 2023; 24:bbad409. [PMID: 37974507 DOI: 10.1093/bib/bbad409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
In recent years, there has been an explosion of research on the application of deep learning to the prediction of various peptide properties, due to the significant development and market potential of peptides. Molecular dynamics has enabled the efficient collection of large peptide datasets, providing reliable training data for deep learning. However, the lack of systematic analysis of the peptide encoding, which is essential for artificial intelligence-assisted peptide-related tasks, makes it an urgent problem to be solved for the improvement of prediction accuracy. To address this issue, we first collect a high-quality, colossal simulation dataset of peptide self-assembly containing over 62 000 samples generated by coarse-grained molecular dynamics. Then, we systematically investigate the effect of peptide encoding of amino acids into sequences and molecular graphs using state-of-the-art sequential (i.e. recurrent neural network, long short-term memory and Transformer) and structural deep learning models (i.e. graph convolutional network, graph attention network and GraphSAGE), on the accuracy of peptide self-assembly prediction, an essential physiochemical process prior to any peptide-related applications. Extensive benchmarking studies have proven Transformer to be the most powerful sequence-encoding-based deep learning model, pushing the limit of peptide self-assembly prediction to decapeptides. In summary, this work provides a comprehensive benchmark analysis of peptide encoding with advanced deep learning models, serving as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
Collapse
Affiliation(s)
- Zihan Liu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Jiaqi Wang
- Research Center for the Industries of the Future, Westlake University, Hangzhou 310030, China
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Yun Luo
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Shuang Zhao
- Research Center for the Industries of the Future, Westlake University, Hangzhou 310030, China
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Wenbin Li
- Research Center for the Industries of the Future, Westlake University, Hangzhou 310030, China
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Stan Z Li
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
50
|
Appalabhotla R, Butler MT, Bear JE, Haugh JM. G-actin diffusion is insufficient to achieve F-actin assembly in fast-treadmilling protrusions. Biophys J 2023; 122:3816-3829. [PMID: 37644720 PMCID: PMC10541494 DOI: 10.1016/j.bpj.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
To generate forces that drive migration of a eukaryotic cell, arrays of actin filaments (F-actin) are assembled at the cell's leading membrane edge. To maintain cell propulsion and respond to dynamic external cues, actin filaments must be disassembled to regenerate the actin monomers (G-actin), and transport of G-actin from sites of disassembly back to the leading edge completes the treadmilling cycle and limits the flux of F-actin assembly. Whether or not molecular diffusion is sufficient for G-actin transport has been a long-standing topic of debate, in part because the dynamic nature of cell motility and migration hinders the estimation of transport parameters. In this work, we applied an experimental system in which cells adopt an approximately constant and symmetrical shape; they cannot migrate but exhibit fast, steady treadmilling in the thin region protruding from the cell. Using fluorescence recovery after photobleaching, we quantified the relative concentrations and corresponding fluxes of F- and G-actin in this system. In conjunction with mathematical modeling, constrained by measured features of each region of interest, this approach revealed that diffusion alone cannot account for the transport of G-actin to the leading edge. Although G-actin diffusion and vectorial transport might vary with position in the protruding region, good agreement with the fluorescence recovery after photobleaching measurements was achieved by a model with constant G-actin diffusivity ∼2 μm2/s and anterograde G-actin velocity less than 1 μm/s.
Collapse
Affiliation(s)
- Ravikanth Appalabhotla
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|