1
|
Tan BEK, Tham SK, Poh CL. Development of New Live-Attenuated Vaccine Candidates Lacking Antibody-Dependent Enhancement (ADE) Against Dengue. Vaccines (Basel) 2025; 13:532. [PMID: 40432141 PMCID: PMC12115996 DOI: 10.3390/vaccines13050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Dengue virus (DENV) threatens public health, especially in regions with tropical and subtropical climates. In 2024, the World Health Organisation reported 3.4 million confirmed dengue cases, with 16,000 severe cases and 3000 dengue-associated fatalities. The first licensed dengue vaccine, CYD-TDV (Dengvaxia®,Sanofi-Pasteur, Paris, France), is recommended by the WHO only for individuals aged 9-45 years with a prior history of dengue infection. However, being vaccinated with Dengvaxia® increases the risk of developing severe dengue infections in seronegative individuals. Recently, a second licensed dengue vaccine, Qdenga®,Takeda, Singen, Germany), was approved and recommended by the WHO to be administered only in highly dengue-endemic countries, as it was not shown to elicit a robust immune response against DENV-3 and DENV-4 serotypes in dengue seronegative individuals. Due to an imbalance in immune response against all four DENV serotypes, there is a higher risk of developing the antibody-dependent enhancement (ADE) effect, which could lead to severe dengue. This review has identified mutations throughout the DENV genome that were demonstrated to attenuate the virulence of DENV in either in vitro or in vivo studies. Several amino acid residues within the DENV prM and E proteins were identified to play important roles in ADE and modifying these ADE-linked residues is important in the rational design of novel live-attenuated dengue vaccine candidates. This review provides current insights to guide the development of a novel live-attenuated tetravalent dengue vaccine candidate that is effective against all DENV serotypes and safe from ADE. The efficacy and safety of the live-attenuated vaccine candidate should be further validated in in vivo studies.
Collapse
Affiliation(s)
- Brandon E. K. Tan
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
| | - Seng Kong Tham
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The Icon, East Wing Tower Level 18-01 & Level 18-02, No. 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia; (B.E.K.T.); (S.K.T.)
- Nilai University, No.1, Persiaran Universiti, Putra Nilai, Bandar Baru Nilai, Nilai 71800, Malaysia
| |
Collapse
|
2
|
Bamidele OS, Bakoji A, Yaga SJ, Ijaya K, Mohammed B, Yuguda IY, Baba MM. Zika virus infections and associated risk factors among pregnant women in Gombe, Nigeria. Virol Sin 2025; 40:61-70. [PMID: 39743210 PMCID: PMC11962995 DOI: 10.1016/j.virs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
In-utero exposure to Zika virus (ZIKV) could lead to miscarriage, preterm birth and congenital Zika syndrome. This study aimed at estimating the burden of ZIKV and Dengue virus (DENV) infections among pregnant women in Bojude, Nigeria. A total of 200 blood samples were collected from pregnant women between February and April 2022. Using the updated CDC guidelines for the diagnosis of ZIKV infections, including ELISA and microneutralization test (MNT), we found that 16.5% of participants were positive for ZIKV IgM, 10% were positive for IgG, and 23% had nAb in their serum. Among the 46 ZIKV nAb-positive women, 52.2% and 10.9% were recent and previous ZIKV infections, respectively, while 6.5% had previous DENV infections. Although no recent DENV infection was detected, recent and previous ZIKV/DENV co-infections were 13.0% and 17.4%, respectively. Two participants had recent secondary ZIKV infections, while 39.1% had prolonged lifelong immunity. Recent ZIKV infection rates were significantly higher among sexually active females aged 20-29 years than other age groups, with the highest risk observed in the first trimester of pregnancy. In addition, the grand-multiparous women are at higher risk of ZIKV infections than other categories. Monotypic recent, secondary and past ZIKV infections, as well as DENV and ZIKV co-infections, were detected in both the asymptomatic and symptomatic pregnant women. These findings highlight that ZIKV infection is prevalent among pregnant women in Nigeria and underscore the associated risk factors, providing evidence-based information on the burden of ZIKV infections in DENV-endemic region.
Collapse
Affiliation(s)
- Oderinde Soji Bamidele
- Department of Medical Laboratory Science, University of Maiduguri, College of Medical Sciences, P.M.B. 1069, Maiduguri, Nigeria
| | - Abdulbasi Bakoji
- Department of Medical Laboratory Science, University of Maiduguri, College of Medical Sciences, P.M.B. 1069, Maiduguri, Nigeria
| | - Samaila Jackson Yaga
- Department of Mathematical Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Nigeria
| | - Kunle Ijaya
- Health Organization, 4th Floor, United Nations House, Plot 617/618, Central, Area District, P.M.B. 2861, Abuja, Nigeria
| | - Bukar Mohammed
- Department of Obstetrics and Gynecology, University of Maiduguri, College of Medical Sciences, P.M.B. 1069, Maiduguri, Nigeria
| | | | - Marycelin M Baba
- Department of Medical Laboratory Science, University of Maiduguri, College of Medical Sciences, P.M.B. 1069, Maiduguri, Nigeria.
| |
Collapse
|
3
|
Selvaraj AD, Ramaian Santhaseela A, Tamilmani E. Overview of dengue diagnostic limitations and potential strategies for improvement. Diagnosis (Berl) 2025:dx-2024-0173. [PMID: 39871600 DOI: 10.1515/dx-2024-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
INTRODUCTION Dengue is a viral infection caused by any one of the four related dengue virus (DENV) serotypes, 1-4. DENV is a single-stranded RNA virus belonging to the genus Flavivirus. Dengue can cause a range of symptoms, from mild to severe life-threatening illness. Currently, treatment for DENV is limited to supportive care, with better outcomes achieved through early diagnosis. The WHO has suggested that dengue mortality can be reduced to nearly zero by implementing appropriate clinical management strategies, such as early laboratory diagnosis. This calls for diagnostic approaches that combine high sensitivity and specificity, while also being suitable for point-of-care testing (POCT) in remote locations with minimal staff training and low testing costs. CONTENT In this paper, we outline the limitations of existing confirmatory dengue diagnostic methods, such as ELISA and RT-PCR, which are time-consuming, expensive, and require skilled personnel. We also highlight alternative strategies to overcome these challenges. Additionally, the paper emphasizes the growing clinical demand for diagnosing severe dengue to reduce the risk of death, which must be addressed by next-generation dengue diagnostic approaches. SUMMARY We propose the adoption of alternative strategies, such as fluorescence immunoassay (FIA) and chemiluminescence immunoassay (CLIA), which have the potential to overcome the limitations of existing dengue diagnostic methods. OUTLOOK Improvements in dengue diagnosis, with a specific focus on identifying severe dengue in POCT setting, can help achieve the goal of zero deaths from dengue.
Collapse
|
4
|
Jung J, Kim TH, Park JY, Kwon S, Sung JS, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. SARS-CoV-2 vaccine based on ferritin complexes with screened immunogenic sequences from the Fv-antibody library. J Mater Chem B 2025; 13:1383-1394. [PMID: 39668674 DOI: 10.1039/d4tb01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this study, the vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed using ferritin complexes with the immunogenic sequences screened against the SARS-CoV-2 spike protein (SP) from the Fv-antibody library. The Fv-antibody library was prepared on the outer membrane of E. coli by the expression of the VH region of immunoglobulin G (IgG) with a randomized complementarity-determining region 3 (CDR3). Four Fv-antibodies to the receptor-binding domain (RBD) were screened from the Fv-antibody library, which had a comparable binding constant (KD) between SARS-CoV-2 SP and the angiotensin-converting enzyme 2 (ACE2) receptor. The binding sites of screened Fv-antibodies on the RBD were analyzed using a docking analysis, and these binding sites were used as immunogenic sequences for the vaccine. The four immunogenic sequences were modified and co-expressed as a part of ferritin which was assembled into a ferritin complex. After the vaccination of ferritin complexes to mice, the anti-sera were analyzed to have a high enough titer. Additionally, the immune responses were found to be activated by vaccination, such as the expression of IgG subclasses and the increased level of cytokines. The neutralizing activity of the anti-sera was estimated using a cell-based infection assay based on pseudo-virus expressing the SP of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Munster, Münster (48149), Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
5
|
Lee MF, Long CM, Poh CL. Current status of the development of dengue vaccines. Vaccine X 2025; 22:100604. [PMID: 39830640 PMCID: PMC11741033 DOI: 10.1016/j.jvacx.2024.100604] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
Dengue fever is caused by the mosquito-borne dengue virus (DENV), which is endemic in more than 100 countries. Annually, there are approximately 390 million dengue cases, with a small subset manifesting into severe illnesses, such as dengue haemorrhagic fever or dengue shock syndrome. Current treatment options for dengue infections remain supportive management due to the lack of an effective vaccine and clinically approved antiviral. Although the CYD-TDV (Dengvaxia®) vaccine with an overall vaccine efficacy of 60 % has been licensed for clinical use since 2015, it poses an elevated risk of severe dengue infections especially in dengue-naïve children below 9 years of age. The newly approved Qdenga vaccine was able to achieve an overall vaccine efficacy of 80 % after 12 months, but it was not able to provide a protective effect against DENV-3 in dengue naïve individuals. The Butantan-DV vaccine candidate is still undergoing phase 3 clinical trials for safety and efficacy evaluations in humans. Apart from live-attenuated vaccines, various other vaccine types are also currently being studied in preclinical and clinical studies. This review discusses the current status of dengue vaccine development.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chiau Ming Long
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The ICON, East Wing Tower, No. 1, Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia
| |
Collapse
|
6
|
Hay JA, Routledge I, Takahashi S. Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data. Epidemics 2024; 49:100806. [PMID: 39647462 DOI: 10.1016/j.epidem.2024.100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.
Collapse
Affiliation(s)
- James A Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Isobel Routledge
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
7
|
Yu N, Chen S, Liu Y, Wang P, Wang L, Hu N, Zhang H, Li X, Lu H, Jin N. Pathogenicity and transcriptomic resolution in dengue virus serotype 1 infected AGB6 mouse model. J Med Virol 2024; 96:e29895. [PMID: 39228306 DOI: 10.1002/jmv.29895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Dengue viruses are the causative agents of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, which are mainly transmitted by Aedes aegypti and Aedes albopictus mosquitoes, and cost billions of dollars annually in patient treatment and mosquito control. Progress in understanding DENV pathogenesis and developing effective treatments has been hampered by the lack of a suitable small pathological animal model. Until now, the candidate vaccine, antibody, and drug for DENV have not been effectively evaluated. Here, we analyzed the pathogenicity of DENV-1 in type Ⅰ and type Ⅱ interferon receptor-deficient mice (AGB6) by intraperitoneal inoculation. Infected mice showed such neurological symptoms as opisthotonus, hunching, ataxia, and paralysis of one or both hind limbs. Viremia can be detected 3 days after infection. It was found that 6.98 × 103 PFU or higher dose induce 100% mortality. To determine the cause of lethality in mice, heart, liver, spleen, lung, kidney, intestinal, and brain tissues were collected from AGB6 mice (at an attack dose of 6.98 × 103 PFU) for RNA quantification, and it was found that the viral load in brain tissues peaked at moribund states (14 dpi) and that the viral loads in the other tissues and organs decreased over time. Significant histopathologic changes were observed in brain tissue (hippocampal region and cerebral cortex). Hematological analysis showed hemorrhage and hemoconcentration in infected mice. DENV-1 can be isolated from the brain tissue of infected mice. Subsequently, brain tissue transcriptome sequencing was performed to assess host response characteristics in infected AGB6 mice. Transcriptional patterns in brain tissue suggest that aberrant expression of pro-inflammatory cytokines induces antiviral responses and tissue damage. Screening of hub genes and their characterization by qPCR and ELISA, it was hypothesized that IL-6 and IFN-γ might be the key factors in dengue virus-induced inflammatory response. Therefore, this study provides an opportunity to decipher certain aspects of dengue pathogenesis further and provides a new platform for drug, antibody, and vaccine testing.
Collapse
Affiliation(s)
- Ning Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shigang Chen
- College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yumeng Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Guangxi University, Guangxi, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Longlong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningning Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Guangxi University, Guangxi, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| |
Collapse
|
8
|
Rahman NAA, Fuaad AAHA, Azami NAM, Amin MCIM, Azmi F. Next-generation Dengue Vaccines: Leveraging Peptide-Based Immunogens and Advanced Nanoparticles as Delivery Platforms. J Pharm Sci 2024; 113:2044-2054. [PMID: 38761864 DOI: 10.1016/j.xphs.2024.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Dengue, caused by the dengue virus (DENV), is a prevalent arthropod-borne disease in humans and poses a significant burden on public health. Severe cases of dengue can be life-threatening. Although a licensed dengue vaccine is available, its efficacy varies across different virus serotypes and may exacerbate the disease in some seronegative recipients. Developing a safe and effective vaccine against all DENV serotypes remains challenging and requires continued research. Conventional approaches in dengue vaccine development, using live or attenuated microorganisms or parts of them often contain unnecessary epitopes, risking allergenic or autoimmune reactions. To address these challenges, innovative strategies such as peptide vaccines have been explored. Peptide vaccines offer a safer alternative by inducing specific immune responses with minimal immunogenic fragments. Chemical modification strategies of peptides have revolutionized their design, allowing for the incorporation of multi-epitope presentation, self-adjuvanting features, and self-assembling properties. These modifications enhance the antigenicity of the peptides, leading to improved vaccine efficacy. This review outlines advancements in peptide-based dengue vaccine development, leveraging nanoparticles as antigen-displaying platforms. Additionally, key immunological considerations for enhancing efficacy and safety against DENV infection have been addressed, providing insight into the next-generation of dengue vaccine development leveraging on peptide-nanoparticle technology.
Collapse
Affiliation(s)
- Nur Adilah Abdul Rahman
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Abdullah Al-Hadi Ahmad Fuaad
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Federal Territory of Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Salim KU, Álvarez FS, Chan-Golston AM, Naughton CC, Cisneros R, Joyce A. Socioeconomic and environmental factors associated with dengue fever incidence in Guatemala: Rising temperatures increase dengue risk. PLoS One 2024; 19:e0308271. [PMID: 39088578 PMCID: PMC11293734 DOI: 10.1371/journal.pone.0308271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Dengue fever is a mosquito-borne illness that infects 390 million people annually. Dengue outbreaks in Guatemala have been occurring more often and at increased rates since the first dengue outbreak in Guatemala in the 1970s. This study will examine environmental and socioeconomic factors associated with dengue in Guatemala at the municipality (county) level. Socioeconomic factors included population density, Mayan population, economic activity, and attending school. Environmental factors included average minimum annual temperature and annual precipitation. The relationship between environmental and socioeconomic variables and dengue fever incidence was initially evaluated through univariate zero-inflated negative binomial models, and then again through three zero-inflated multivariate negative binomial regression models. For all three models, elevation was considered a predictor of zero-inflation. In the combined model, there was a positive relationship between minimum temperature, economic activity and dengue fever incidence, and a negative relationship between population density, Mayan population and dengue fever. Predicted rates of dengue fever incidence and adjusted confidence intervals were calculated after increasing minimum yearly temperature by 1°C and 2°C. The three municipalities with the highest minimum yearly temperature (El Estor, Iztapa, and Panzós) and the municipality of Guatemala, all had an increase in the magnitude of the risk of dengue fever incidence following 1°C and 2°C increase in temperature. This research suggests that these socioeconomic and environmental factors are associated with risk of dengue in Guatemala. The predicted rates of dengue fever also highlight the potential effect that climate change in the form of increasing temperature can have on dengue in Guatemala.
Collapse
Affiliation(s)
- Kasem U. Salim
- Public Health, University of California Merced, Merced, CA, United States of America
| | | | - Alec M. Chan-Golston
- Public Health, University of California Merced, Merced, CA, United States of America
| | - Colleen C. Naughton
- Civil and Environmental Engineering, University of California Merced, Merced, CA, United States of America
| | - Ricardo Cisneros
- Public Health, University of California Merced, Merced, CA, United States of America
| | - Andrea Joyce
- Public Health, University of California Merced, Merced, CA, United States of America
| |
Collapse
|
10
|
Lingemann M, Amaro-Carambot E, Lamirande EW, Pierson TC, Whitehead SS. Simultaneous quantitation of neutralizing antibodies against all four dengue virus serotypes using optimized reporter virus particles. J Virol 2024; 98:e0068124. [PMID: 38953379 PMCID: PMC11265411 DOI: 10.1128/jvi.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Serum-neutralizing antibody titers are a critical measure of vaccine immunogenicity and are used to determine flavivirus seroprevalence in study populations. An effective dengue virus (DENV) vaccine must confer simultaneous protection against viruses grouped within four antigenic serotypes. Existing flavivirus neutralization assays, including the commonly used plaque/focus reduction neutralization titer (PRNT/FRNT) assay, require an individual assay for each virus, serotype, and strain and easily become a labor-intensive and time-consuming effort for large epidemiological studies or vaccine trials. Here, we describe a multiplex reporter virus particle neutralization titer (TetraPlex RVPNT) assay for DENV that allows simultaneous quantitative measures of antibody-mediated neutralization of infection against all four DENV serotypes in a single low-volume clinical sample and analyzed by flow cytometry. Comparative studies confirm that the neutralization titers of antibodies measured by the TetraPlex RVPNT assay are similar to FRNT/PRNT assay approaches performed separately for each viral strain. The use of this high-throughput approach enables the careful serological study in DENV endemic populations and vaccine recipients required to support the development of a safe and effective tetravalent DENV vaccine. IMPORTANCE As a mediator of protection against dengue disease and a serological indicator of prior infection, the detection and quantification of neutralizing antibodies against DENV is an important "gold standard" tool. However, execution of traditional neutralizing antibody assays is often cumbersome and requires repeated application for each virus or serotype. The optimized RVPNT assay described here is high-throughput, easily multiplexed across multiple serotypes, and targets reporter viral particles that can be robustly produced for all four DENV serotypes. The use of this transformative RVPNT assay will support the expansion of neutralizing antibody datasets to answer research and public health questions often limited by the more cumbersome neutralizing antibody assays and the need for greater quantities of test serum.
Collapse
Affiliation(s)
- Matthias Lingemann
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emérito Amaro-Carambot
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine W. Lamirande
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Arbovirus Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen S. Whitehead
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
da Rocha SMC, Pires RC, Monteiro DCS, Cronemberges TCR, de Souza NV, Colares JKB, Lima DM. Is there an overestimation of dengue compared with that of other acute febrile syndromes in childhood? PLoS Negl Trop Dis 2024; 18:e0012137. [PMID: 38848319 PMCID: PMC11161014 DOI: 10.1371/journal.pntd.0012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
A group of children with clinical suspicion of dengue were assessed to determine if there was an overestimation of dengue compared with that of leptospirosis and leishmaniasis. This descriptive and analytical cross-sectional study, based on the active search of participants with acute febrile illness, was conducted at two pediatric hospitals. The collection of clinical and epidemiological data was performed using questionnaires, and laboratory tests specific for dengue were performed using immunochromatographic, serological, and molecular methods. Dengue-negative samples were assessed for Leptospira and Leishmania spp. using molecular tests. Data were assessed using analysis of variance (ANOVA), the chi-square test, and Fisher's exact test. In total, 86 participants were evaluated, of whom 39 (45%) were positive for dengue fever, 4 (5%) for leptospirosis, and 1 (1%) for leishmaniasis. Forty-two participants (49%) presented dengue-like symptoms. The predominant age range for the virus was 3-10 years. Most clinical manifestations were nonspecific, with frequent concomitant gastrointestinal and respiratory symptoms. Furthermore, we found that the acute febrile syndrome in childhood persists as a challenge for health professionals, especially in the early days of the disease, due to a plurality of diagnostic hypotheses, associated with the difficulty of establishing well-defined symptoms in children, especially in infants. Dengue fever continues to be a frequent pathology with acute febrile infections in childhood; however, there is an overestimation of the disease, especially in endemic regions, when one considers only the clinical epidemiological diagnosis.
Collapse
Affiliation(s)
- Sônia Maria Cavalcante da Rocha
- University of Fortaleza (UNIFOR), Graduate Program in Medical Sciences, Fortaleza, Ceará, Brazil
- Hospital Infantil Albert Sabin, Fortaleza, Ceará, Brazil
| | | | - Daniela Cristina Sensato Monteiro
- University of Fortaleza (UNIFOR), Graduate Program in Medical Sciences, Fortaleza, Ceará, Brazil
- University of Fortaleza (UNIFOR/RENORBIO), Postgraduate Program in Biotechnology, Ceará State University, Fortaleza, Ceará, Brazil
| | | | - Natália Vasconcelos de Souza
- University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
- University of Fortaleza (UNIFOR/RENORBIO), Postgraduate Program in Biotechnology, Ceará State University, Fortaleza, Ceará, Brazil
| | - Jeová Keny Baima Colares
- University of Fortaleza (UNIFOR), Graduate Program in Medical Sciences, Fortaleza, Ceará, Brazil
- University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Danielle Malta Lima
- University of Fortaleza (UNIFOR), Graduate Program in Medical Sciences, Fortaleza, Ceará, Brazil
- University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
- University of Fortaleza (UNIFOR/RENORBIO), Postgraduate Program in Biotechnology, Ceará State University, Fortaleza, Ceará, Brazil
| |
Collapse
|
12
|
Granger T, Michelitsch TM, Bestehorn M, Riascos AP, Collet BA. Stochastic Compartment Model with Mortality and Its Application to Epidemic Spreading in Complex Networks. ENTROPY (BASEL, SWITZERLAND) 2024; 26:362. [PMID: 38785610 PMCID: PMC11120256 DOI: 10.3390/e26050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
We study epidemic spreading in complex networks by a multiple random walker approach. Each walker performs an independent simple Markovian random walk on a complex undirected (ergodic) random graph where we focus on the Barabási-Albert (BA), Erdös-Rényi (ER), and Watts-Strogatz (WS) types. Both walkers and nodes can be either susceptible (S) or infected and infectious (I), representing their state of health. Susceptible nodes may be infected by visits of infected walkers, and susceptible walkers may be infected by visiting infected nodes. No direct transmission of the disease among walkers (or among nodes) is possible. This model mimics a large class of diseases such as Dengue and Malaria with the transmission of the disease via vectors (mosquitoes). Infected walkers may die during the time span of their infection, introducing an additional compartment D of dead walkers. Contrary to the walkers, there is no mortality of infected nodes. Infected nodes always recover from their infection after a random finite time span. This assumption is based on the observation that infectious vectors (mosquitoes) are not ill and do not die from the infection. The infectious time spans of nodes and walkers, and the survival times of infected walkers, are represented by independent random variables. We derive stochastic evolution equations for the mean-field compartmental populations with the mortality of walkers and delayed transitions among the compartments. From linear stability analysis, we derive the basic reproduction numbers RM,R0 with and without mortality, respectively, and prove that RM1, the healthy state is unstable, whereas for zero mortality, a stable endemic equilibrium exists (independent of the initial conditions), which we obtained explicitly. We observed that the solutions of the random walk simulations in the considered networks agree well with the mean-field solutions for strongly connected graph topologies, whereas less well for weakly connected structures and for diseases with high mortality. Our model has applications beyond epidemic dynamics, for instance in the kinetics of chemical reactions, the propagation of contaminants, wood fires, and others.
Collapse
Affiliation(s)
- Téo Granger
- Sorbonne Université, Institut Jean le Rond d’Alembert, CNRS UMR 7190, 4 Place Jussieu, 75252 Paris, Cedex 05, France (B.A.C.)
| | - Thomas M. Michelitsch
- Sorbonne Université, Institut Jean le Rond d’Alembert, CNRS UMR 7190, 4 Place Jussieu, 75252 Paris, Cedex 05, France (B.A.C.)
| | - Michael Bestehorn
- Institut für Physik, Brandenburgische Technische Universität Cottbus-Senftenberg, Erich-Weinert-Straße 1, 03046 Cottbus, Germany;
| | | | - Bernard A. Collet
- Sorbonne Université, Institut Jean le Rond d’Alembert, CNRS UMR 7190, 4 Place Jussieu, 75252 Paris, Cedex 05, France (B.A.C.)
| |
Collapse
|
13
|
Singh T, Miller IG, Venkatayogi S, Webster H, Heimsath HJ, Eudailey JA, Dudley DM, Kumar A, Mangan RJ, Thein A, Aliota MT, Newman CM, Mohns MS, Breitbach ME, Berry M, Friedrich TC, Wiehe K, O'Connor DH, Permar SR. Prior dengue virus serotype 3 infection modulates subsequent plasmablast responses to Zika virus infection in rhesus macaques. mBio 2024; 15:e0316023. [PMID: 38349142 PMCID: PMC10936420 DOI: 10.1128/mbio.03160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.
Collapse
Affiliation(s)
- Tulika Singh
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | | | - Sravani Venkatayogi
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Holly J. Heimsath
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Josh A. Eudailey
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amit Kumar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Riley J. Mangan
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Amelia Thein
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madison Berry
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Wiehe
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sallie R. Permar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| |
Collapse
|
14
|
Song T, Cooper L, Galván Achi J, Wang X, Dwivedy A, Rong L, Wang X. Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. J Am Chem Soc 2024; 146:5894-5900. [PMID: 38408177 PMCID: PMC10965196 DOI: 10.1021/jacs.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.
Collapse
Affiliation(s)
- Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xiaojing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
16
|
Sami CA, Tasnim R, Hassan SS, Khan AH, Yasmin R, Monir-uz-Zaman M, Sarker MAS, Arafat SM. Clinical profile and early severity predictors of dengue fever: Current trends for the deadliest dengue infection in Bangladesh in 2022. IJID REGIONS 2023; 9:42-48. [PMID: 37859805 PMCID: PMC10582778 DOI: 10.1016/j.ijregi.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
Objectives In 2022, Bangladesh had the highest dengue-related fatality (281). This study evaluated clinical profiles to detect early changes to predict dengue fever severity. Methods This prospective observational study was performed in four government hospitals from June to November 2022 in Dhaka. Febrile patients admitted within 4th day of illness were recruited if they had a confirmed dengue viral infection either by by positive dengue nonstructural protein antigen or anti-dengue immunoglobulin (Ig)M antibody. Results We divided 308 patients with confirmed dengue into two groups: 232 (74.3%) in nonsevere dengue and 76 (24.7%) in severe dengue. Men were 205 (66.6%), and the most affected age group was 21-30 years (47.7%). Patients with severe dengue reported a higher number of nausea 80.3%, coughs 57.9%, abdominal pain 56.6%, persistent vomitting 53.9%, dyspnea 35.5%, diarrhea 28.9%, and skin rash at 27.6%. In addition, the disease's febrile phase (≤4 days) showed thrombocytopenia (odds ratio [OR] 6.409, 95% CI 2.855-14.386, p <0.001), hemoconcentration (OR 3.428, 95% CI 1.030-11.405, p 0.045), and hypotension (OR 5.896, 95% CI 1.203-28.897, p 0.029) were associated severe disease. Conclusions Hypotension, thrombocytopenia, and hemoconcentration during the febrile phase might indicate progression towards severe disease.
Collapse
Affiliation(s)
- Chowdhury Adnan Sami
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Refaya Tasnim
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shadman Shabab Hassan
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Abed Hussain Khan
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Rubina Yasmin
- Department of Medicine, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh
| | | | | | - Shohael Mahmud Arafat
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
17
|
Tabata K, Itakura Y, Ariizumi T, Igarashi M, Kobayashi H, Intaruck K, Kishimoto M, Kobayashi S, Hall WW, Sasaki M, Sawa H, Orba Y. Development of flavivirus subviral particles with low cross-reactivity by mutations of a distinct antigenic domain. Appl Microbiol Biotechnol 2023; 107:7515-7529. [PMID: 37831184 PMCID: PMC10656323 DOI: 10.1007/s00253-023-12817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.
Collapse
Affiliation(s)
- Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Laboratory of Veterinary Microbiology, Osaka Metropolitan University, Izumisano, 598-8531, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060‑0818, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan.
| |
Collapse
|
18
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
19
|
Kibria MG, Shiwaku Y, Brindha S, Kuroda Y. Biophysical and biochemical nature of amorphous protein oligomers determines the strength of immune response and the generation of T-cell memory. FEBS J 2023; 290:4712-4725. [PMID: 37287403 DOI: 10.1111/febs.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Here, we used domain 3 of dengue virus serotype 3 envelope protein (D3ED3), a natively folded globular low-immunogenicity protein, to ask whether the biophysical nature of amorphous oligomers can affect immunogenicity. We prepared nearly identical 30 ~ 50 nm-sized amorphous oligomers in five distinct ways and looked at any correlation between their biophysical properties and immunogenicity. One oligomer type was produced using our SCP tag (solubility controlling peptide) made of 5 isoleucines (C5I). The others were prepared by miss-shuffling the SS bonds (Ms), heating (Ht), stirring (St) and freeze-thaw (FT). Dynamic light scattering showed that all five formulations contained oligomers of approximately identical sizes with hydrodynamic radii (Rh) between 30 and 55 nm. Circular dichroism (cd) indicated that the secondary structure content of oligomers formed by stirring and freeze-thaw was essentially identical to that of the native monomeric D3ED3. The secondary structure content of the Ms showed moderate changes, whereas the C5I and heat-induced (Ht) oligomers exhibited a significant change. The Ms contained D3ED3 with intermolecular SS bonds as assessed by nonreducing size exclusion chromatography (SEC). Immunization in JcL:ICR mice showed that both C5I and Ms significantly increased the anti-D3ED3 IgG titre. Ht, St and FT were only mildly immunogenic, similar to the monomeric D3ED3. Cell surface CD marker analysis by flow cytometry confirmed that immunization with Ms generated a strong central and effector T-cell memory. Our observations indeed suggest that controlled oligomerization can provide a new, adjuvant-free method for increasing a protein's immunogenicity, yielding a potentially powerful platform for protein-based (subunit) vaccines.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Yukari Shiwaku
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Shi, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| |
Collapse
|
20
|
Khan MB, Yang ZS, Lin CY, Hsu MC, Urbina AN, Assavalapsakul W, Wang WH, Chen YH, Wang SF. Dengue overview: An updated systemic review. J Infect Public Health 2023; 16:1625-1642. [PMID: 37595484 DOI: 10.1016/j.jiph.2023.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Dengue is caused by the dengue virus (DENVs) infection and clinical manifestations include dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Due to a lack of antiviral drugs and effective vaccines, several therapeutic and control strategies have been proposed. A systemic literature review was conducted according to PRISMA guidelines to select proper references to give an overview of DENV infection. Results indicate that understanding the virus characteristics and epidemiology are essential to gain the basic and clinical knowledge as well as dengue disseminated pattern and status. Different factors and mechanisms are thought to be involved in the presentation of DHF and DSS, including antibody-dependent enhancement, immune dysregulation, viral virulence, host genetic susceptibility, and preexisting dengue antibodies. This study suggests that dissecting pathogenesis and risk factors as well as developing different types of therapeutic and control strategies against DENV infection are urgently needed.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
21
|
Park H, Lee H, Lee M, Baek C, Park JA, Jang M, Kwon Y, Min J, Lee T. Synthesis of Isolated DNA Aptamer and Its Application of AC-Electrothermal Flow-Based Rapid Biosensor for the Detection of Dengue Virus in a Spiked Sample. Bioconjug Chem 2023; 34:1486-1497. [PMID: 37527337 DOI: 10.1021/acs.bioconjchem.3c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Dengue fever is an infectious disease caused by the dengue virus (DENV) and is transmitted by mosquitoes in tropical and subtropical regions. The early detection method at a low cost is essential. To address this, we synthesized the isolated DENV aptamer for fabricating a rapid electrochemical biosensor on a Au interdigitated microgap electrode (AuIMGE). The DENV aptamers were generated using the SELEX (systemic evolution of ligands by exponential enrichment) method for binding to DENV surface envelope proteins. To reduce the manufacturing cost, unnecessary nucleotide sequences were excluded from the isolation process of the DENV aptamer. To reduce the detection time, the alternating current electrothermal flow (ACEF) technique was applied to the fabricated biosensor, which can shorten the detection time to 10 min. The performance of the biosensor was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the diluted DENV protein solution, the linear range of the concentrations was from 1 pM to 1 μM and the LOD was 76.7 fM. Moreover, the proposed biosensor detected DENV in a diluted spiked sample at a linear range of 10-6 to 106 TCID50/mL, while the detection performance was proven with an LOD of 1.74 × 10-7 TCID50/mL along with high selectivity.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hoseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08727, Republic of Korea
| | - Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
22
|
Pannala VR, Nguyen HD, Wallqvist A. A stochastic B cell affinity maturation model to characterize mechanisms of protection for tetravalent dengue vaccine constructs. Front Mol Biosci 2023; 10:1100434. [PMID: 37520320 PMCID: PMC10375700 DOI: 10.3389/fmolb.2023.1100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Dengue annually infects millions of people from a regionally and seasonally varying dengue virus population circulating as four distinct serotypes. Effective protection against dengue infection and disease requires tetravalent vaccine formulations to stimulate a balanced protective immune response to all four serotypes. However, this has been a challenge to achieve, and several clinical trials with different leading vaccine candidates have demonstrated unbalanced replication and interference of interindividual serotype components, leading to low efficacy and enhanced disease severity for dengue-naïve populations. Production of serotype-specific neutralizing antibodies is largely viewed as a correlate of protection against severe dengue disease. However, the underlying mechanisms that lead to these protective immune responses are not clearly elucidated. In this work, using a stochastic model of B cell affinity maturation, we tested different live-attenuated vaccine constructs with varied viral replication rates and contrasted the initiation and progress of adaptive immune responses during tetravalent vaccination and after dengue virus challenge. Comparison of our model simulations across different disease-severity levels suggested that individual production of high levels of serotype-specific antibodies together with a lower cross-reactive antibody are better correlates for protection. Furthermore, evolution of these serotype-specific antibodies was dependent on the percent of viral attenuation in the vaccine, and production of initial B cell and T cell populations pre- and post-secondary dengue infection was crucial in providing protective immunity for dengue-naïve populations. Furthermore, contrasting disease severity with respect to different dengue serotypes, our model simulations showed that tetravalent vaccines fare better against DENV-4 serotype when compared to other serotypes.
Collapse
Affiliation(s)
- Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Frederick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Hung D. Nguyen
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Frederick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Frederick, MD, United States
| |
Collapse
|
23
|
Yen LC, Chen HW, Ho CL, Lin CC, Lin YL, Yang QW, Chiu KC, Lien SP, Lin RJ, Liao CL. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J Biomed Sci 2023; 30:41. [PMID: 37316861 DOI: 10.1186/s12929-023-00938-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.
Collapse
Affiliation(s)
- Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Lo Ho
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Qiao-Wen Yang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Chou Chiu
- Department of Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Pei Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
24
|
Hale GL. Flaviviruses and the Traveler: Around the World and to Your Stage. A Review of West Nile, Yellow Fever, Dengue, and Zika Viruses for the Practicing Pathologist. Mod Pathol 2023; 36:100188. [PMID: 37059228 DOI: 10.1016/j.modpat.2023.100188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Flaviviruses are a genus of single-stranded RNA viruses that impose an important and growing burden to human health. There are over 3 billion individuals living in areas where flaviviruses are endemic. Flaviviruses and their arthropod vectors (which include mosquitoes and ticks) take advantage of global travel to expand their distribution and cause severe disease in humans, and they can be grouped according to their vector and pathogenicity. The mosquito-borne flaviviruses cause a spectrum of diseases from encephalitis to hepatitis and vascular shock syndrome, congenital abnormalities, and fetal death. Neurotropic infections such as Zika virus and West Nile virus cross the blood-brain barrier and infect neurons and other cells, leading to meningoencephalitis. In the hemorrhagic fever clade, there are yellow fever virus, the prototypical hemorrhagic fever virus that infects hepatocytes, and dengue virus, which infects cells of the reticuloendothelial system and can lead to a dramatic plasma cell leakage and shock syndrome. Zika virus also causes congenital infections and fetal death and is the first and only example of a teratogenic arbovirus in humans. Diagnostic testing for flaviviruses broadly includes the detection of viral RNA in serum (particularly within the first 10 days of symptoms), viral isolation by cell culture (rarely performed due to complexity and biosafety concerns), and histopathologic evaluation with immunohistochemistry and molecular testing on formalin-fixed paraffin-embedded tissue blocks. This review focuses on 4 mosquito-borne flaviviruses-West Nile, yellow fever, dengue, and Zika virus-and discusses the mechanisms of transmission, the role of travel in geographic distribution and epidemic emergence, and the clinical and histopathologic features of each. Finally, prevention strategies such as vector control and vaccination are discussed.
Collapse
Affiliation(s)
- Gillian L Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
25
|
Fang E, Li M, Liu X, Hu K, Liu L, Zhang Z, Li X, Peng Q, Li Y. NS1 Protein N-Linked Glycosylation Site Affects the Virulence and Pathogenesis of Dengue Virus. Vaccines (Basel) 2023; 11:vaccines11050959. [PMID: 37243063 DOI: 10.3390/vaccines11050959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Live attenuated vaccine is one of the most effective vaccines against flavivirus. Recently, site-directed mutation of the flavivirus genome using reverse genetics techniques has been used for the rapid development of attenuated vaccines. However, this technique relies on basic research of critical virulence loci of the virus. To screen the attenuated sites in dengue virus, a total of eleven dengue virus type four mutant strains with deletion of N-glycosylation sites in the NS1 protein were designed and constructed. Ten of them (except for the N207-del mutant strain) were successfully rescued. Out of the ten strains, one mutant strain (N130del+207-209QQA) was found to have significantly reduced virulence through neurovirulence assay in suckling mice, but was genetically unstable. Further purification using the plaque purification assay yielded a genetically stable attenuated strain #11-puri9 with mutations of K129T, N130K, N207Q, and T209A in the NS1 protein and E99D in the NS2A protein. Identifying the virulence loci by constructing revertant mutant and chimeric viruses revealed that five amino acid adaptive mutations in the dengue virus type four non-structural proteins NS1 and NS2A dramatically affected its neurovirulence and could be used in constructing attenuated dengue chimeric viruses. Our study is the first to obtain an attenuated dengue virus strain through the deletion of amino acid residues at the N-glycosylation site, providing a theoretical basis for understanding the pathogenesis of the dengue virus and developing its live attenuated vaccines.
Collapse
Affiliation(s)
- Enyue Fang
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Miao Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Kongxin Hu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lijuan Liu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zelun Zhang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xingxing Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Qinhua Peng
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yuhua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
26
|
Wu B, Qi Z, Qian X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023; 15:813. [PMID: 37112794 PMCID: PMC10143207 DOI: 10.3390/v15040813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lately, the global incidence of flavivirus infection has been increasing dramatically and presents formidable challenges for public health systems around the world. Most clinically significant flaviviruses are mosquito-borne, such as the four serotypes of dengue virus, Zika virus, West Nile virus, Japanese encephalitis virus and yellow fever virus. Until now, no effective antiflaviviral drugs are available to fight flaviviral infection; thus, a highly immunogenic vaccine would be the most effective weapon to control the diseases. In recent years, flavivirus vaccine research has made major breakthroughs with several vaccine candidates showing encouraging results in preclinical and clinical trials. This review summarizes the current advancement, safety, efficacy, advantages and disadvantages of vaccines against mosquito-borne flaviviruses posing significant threats to human health.
Collapse
Affiliation(s)
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
27
|
Lunardelli VAS, Almeida BDS, Apostolico JDS, Rezende T, Yamamoto MM, Pereira SS, Bueno MFC, Pereira LR, Carvalho KI, Slhessarenko RD, de Souza Ferreira LC, Boscardin SB, Rosa DS. Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells. Front Immunol 2023; 14:1071041. [PMID: 37006270 PMCID: PMC10060818 DOI: 10.3389/fimmu.2023.1071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes.MethodsIn this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV.ResultsTesting of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses.ConclusionIn conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.
Collapse
Affiliation(s)
- Victória Alves Santos Lunardelli
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Bianca da Silva Almeida
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Juliana de Souza Apostolico
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Thais Rezende
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Samuel Santos Pereira
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Maria Fernanda Campagnari Bueno
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Lennon Ramos Pereira
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Karina Inacio Carvalho
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - Luis Carlos de Souza Ferreira
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
- Plataforma Científica Pasteur- Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Investigação em Imunologia (iii), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Investigação em Imunologia (iii), São Paulo, Brazil
- *Correspondence: Daniela Santoro Rosa,
| |
Collapse
|
28
|
Khandelwal V, Sharma T, Gupta S, Singh S, Sharma MK, Parashar D, Kashyap VK. Stem cell therapy: a novel approach against emerging and re-emerging viral infections with special reference to SARS-CoV-2. Mol Biol Rep 2023; 50:2663-2683. [PMID: 36536185 PMCID: PMC9762873 DOI: 10.1007/s11033-022-07957-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/17/2022] [Indexed: 12/23/2022]
Abstract
The past several decades have witnessed the emergence and re-emergence of many infectious viral agents, flaviviruses, influenza, filoviruses, alphaviruses, and coronaviruses since the advent of human deficiency virus (HIV). Some of them even become serious threats to public health and have raised major global health concerns. Several different medicinal compounds such as anti-viral, anti-malarial, and anti-inflammatory agents, are under investigation for the treatment of these viral diseases. These therapies are effective improving recovery rates and overall survival of patients but are unable to heal lung damage caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, there is a critical need to identify effective treatments to combat this unmet clinical need. Due to its antioxidant and immunomodulatory properties, stem cell therapy is considered a novel approach to regenerate damaged lungs and reduce inflammation. Stem cell therapy uses a heterogeneous subset of regenerative cells that can be harvested from various adult tissue types and is gaining popularity due to its prodigious regenerative potential as well as immunomodulatory and anti-inflammatory properties. These cells retain expression of cluster of differentiation markers (CD markers), interferon-stimulated gene (ISG), reduce expression of pro-inflammatory cytokines and, show a rapid proliferation rate, which makes them an attractive tool for cellular therapies and to treat various inflammatory and viral-induced injuries. By examining various clinical studies, this review demonstrates positive considerations for the implications of stem cell therapy and presents a necessary approach for treating virally induced infections in patients.
Collapse
Affiliation(s)
- Vishal Khandelwal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Tarubala Sharma
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Shoorvir Singh
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Manish Kumar Sharma
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, 224001, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA. .,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
29
|
Pintado Silva J, Fernandez-Sesma A. Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol 2023; 104:001831. [PMID: 36857199 PMCID: PMC10228381 DOI: 10.1099/jgv.0.001831] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Dengue virus (DENV) is the mosquito-borne virus of greatest human health concern. There are four serotypes of DENV (1-4) that co-circulate in endemic areas. Each serotype of DENV is individually capable of causing the full spectrum of disease, ranging from self-resolving dengue fever to the more severe dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS). Based on data published by the CDC, one in four people who become infected with dengue will become ill. Of those that do develop symptomology, the symptoms can range from mild to severe. Symptoms can vary from rash, ocular aches and pains to more intense symptoms in the manifestation of severe dengue. Roughly, 1 in 20 people who become ill will develop severe dengue, which can result in shock, internal bleeding and death. There is currently no specific treatment for dengue and only one licensed vaccine (Dengvaxia) for children 9 through 16 years of age in just a few countries. Despite its licensure for clinical use, Dengvaxia has performed with low efficacy in children and dengue naïve individuals and critically has resulted in increased risk of developing severe dengue in young, vaccinated recipients. Currently, there are various novel strategies for the development of a dengue vaccine. In this review we have conducted a detailed overview of the DENV vaccine landscape, focusing on nine vaccines in the pipeline to provide a comprehensive overview of the most state-of-the-art developments in strategies for vaccines against DENV.
Collapse
Affiliation(s)
- Jessica Pintado Silva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| |
Collapse
|
30
|
Dieng I, Fall C, Barry MA, Gaye A, Dia N, Ndione MHD, Fall A, Diop M, Sarr FD, Ndiaye O, Dieng M, Diop B, Diagne CT, Ndiaye M, Fall G, Sylla M, Faye O, Loucoubar C, Faye O, Sall AA. Re-Emergence of Dengue Serotype 3 in the Context of a Large Religious Gathering Event in Touba, Senegal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16912. [PMID: 36554793 PMCID: PMC9779395 DOI: 10.3390/ijerph192416912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, we focused on a dengue outbreak which occurred in Senegal in 2018 in the context of a large religious gathering with 263 confirmed DENV cases out of 832 collected samples, including 25 life-threatening cases and 2 deaths. It was characterized by a co-circulation of dengue serotypes 1 and 3. Phylogenetic analysis based on the E gene revealed that the main detected serotype in Touba was DENV-3 and belonged to Genotype III. Bayesian phylogeographic analysis was performed and suggested one viral introduction around 2017.07 (95% HPD = 2016.61-2017.57) followed by cryptic circulation before the identification of the first case on 1 October 2018. DENV-3 strains are phylogenetically related, with strong phylogenetic links between strains retrieved from Burkina Faso and other West African countries. These phylogenetic data substantiate epidemiological data of the origin of DENV-3 and its spread between African countries and subsequent diffusion after religious mass events. The study also highlighted the usefulness of a mobile laboratory during the outbreak response, allowing rapid diagnosis and resulting in improved patient management.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Ndongo Dia
- Respiratory Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Marie Henriette Dior Ndione
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amary Fall
- Respiratory Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Diop
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Fatoumata Diene Sarr
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Boly Diop
- Ministry of Health, Dakar 16504, Senegal
| | - Cheikh Tidiane Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| |
Collapse
|
31
|
Engineering Modified mRNA-Based Vaccine against Dengue Virus Using Computational and Reverse Vaccinology Approaches. Int J Mol Sci 2022; 23:ijms232213911. [PMID: 36430387 PMCID: PMC9698390 DOI: 10.3390/ijms232213911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus belonging to the family Flaviviridae and its four serotypes are responsible for dengue infections, which extend over 60 countries in tropical and subtropical areas of the world including Pakistan. During the ongoing dengue outbreak in Pakistan (2022), over 30,000 cases have been reported, and over 70 lives have been lost. The only commercialized vaccine against DENV, Dengvaxia, cannot be administered as a prophylactic measure to cure this infection due to various complications. Using machine learning and reverse vaccinology approaches, this study was designed to develop a tetravalent modified nucleotide mRNA vaccine using NS1, prM, and EIII sequences of dengue virus from Pakistani isolates. Based on high antigenicity, non-allergenicity, and toxicity profiling, B-cell epitope, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) putative vaccine targets were predicted. Molecular docking confirmed favorable interactions between T-cell epitopes and their respective HLA alleles, while normal mode analysis validated high-affinity interactions of vaccine proteins with immune receptors. In silico immune simulations confirmed adequate immune responses to eliminate the antigen and generate memory. Codon optimization, physicochemical features, nucleotide modifications, and suitable vector availability further ensured better antigen expression and adaptive immune responses. We predict that this vaccine construct may prove to be a good vaccinal candidate against dengue virus in vitro as well.
Collapse
|
32
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
33
|
ZIKV-envelope proteins induce specific humoral and cellular immunity in distinct mice strains. Sci Rep 2022; 12:15733. [PMID: 36131132 PMCID: PMC9492693 DOI: 10.1038/s41598-022-20183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Recent outbreaks of Zika virus (ZIKV) infection have highlighted the need for a better understanding of ZIKV-specific immune responses. The ZIKV envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface and it is the main target of the protective immune response. EZIKV protein contains the central domain (EDI), a dimerization domain containing the fusion peptide (EDII), and a domain that binds to the cell surface receptor (EDIII). In this study, we performed a systematic comparison of the specific immune response induced by different EZIKV recombinant proteins (EZIKV, EDI/IIZIKV or EDIIIZIKV) in two mice strains. Immunization induced high titers of E-specific antibodies which recognized ZIKV-infected cells and neutralized the virus. Furthermore, immunization with EZIKV, EDI/IIZIKV and EDIIIZIKV proteins induced specific IFNγ-producing cells and polyfunctional CD4+ and CD8+ T cells. Finally, we identified 4 peptides present in the envelope protein (E1-20, E51-70, E351-370 and E361-380), capable of inducing a cellular immune response to the H-2Kd and H-2Kb haplotypes. In summary, our work provides a detailed assessment of the immune responses induced after immunization with different regions of the ZIKV envelope protein.
Collapse
|
34
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
35
|
de Albuquerque BHDR, de Oliveira MTFC, Aderaldo JF, de Medeiros Garcia Torres M, Lanza DCF. Human seminal virome: a panel based on recent literature. Basic Clin Androl 2022; 32:16. [PMID: 36064315 PMCID: PMC9444275 DOI: 10.1186/s12610-022-00165-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Background The seminal virome and its implications for fertility remain poorly understood. To date, there are no defined panels for the detection of viruses of clinical interest in seminal samples. Results In this study, we characterized the human seminal virome based on more than 1,000 studies published over the last five years. Conclusions The number of studies investigating viruses that occur in human semen has increased, and to date, these studies have been mostly prospective or related to specific clinical findings. Through the joint analysis of all these studies, we have listed the viruses related to the worsening of seminal parameters and propose a new panel with the main viruses already described that possibly affect male fertility and health. This panel can assist in evaluating semen quality and serve as a tool for investigation in cases of infertility.
Collapse
|
36
|
In Silico Comparative Analysis of Predicted B Cell Epitopes against Dengue Virus (Serotypes 1–4) Isolated from the Philippines. Vaccines (Basel) 2022; 10:vaccines10081259. [PMID: 36016147 PMCID: PMC9415047 DOI: 10.3390/vaccines10081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Dengue is a viral mosquito-borne disease that rapidly spreads in tropical and subtropical countries, including the Philippines. One of its most distinguishing characteristics is the ability of the Dengue Virus (DENV) to easily surpass the innate responses of the body, thus activating B cells of the adaptive immunity to produce virus-specific antibodies. Moreover, Dengvaxia® is the only licensed vaccine for DENV, but recent studies showed that seronegative individuals become prone to increased disease severity and hospitalization. Owing to this limitation of the dengue vaccine, this study determined and compared consensus and unique B cell epitopes among each DENV (1–4) Philippine isolate to identify potential areas of interest for future vaccine studies and therapeutic developments. An in silico-based epitope prediction of forty (40) DENV 1–4 strains, each serotype represented by ten (10) sequences from The National Center for Biotechnology Information (NCBI), was conducted using Kolaskar and Tongaonkar antigenicity, Emini surface accessibility, and Parker hydrophilicity prediction in Immune Epitope Database (IEDB). Results showed that five (5) epitopes were consensus for DENV-1 with no detected unique epitope, one (1) consensus epitope for DENV-2 with two (2) unique epitopes, one (1) consensus epitope for DENV-3 plus two (2) unique epitopes, and two (2) consensus epitopes and one (1) unique epitope for DENV-4. The findings of this study would contribute to determining potential vaccine and diagnostic marker candidates for further research studies and immunological applications against DENV (1–4) Philippine isolates.
Collapse
|
37
|
Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, Sánchez-González LM, Volkman HR, Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022; 149:187012. [PMID: 35543085 DOI: 10.1542/peds.2021-055522] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dengue is the disease caused by 1 of 4 distinct, but closely related dengue viruses (DENV-1-4) that are transmitted by Aedes spp. mosquito vectors. It is the most common arboviral disease worldwide, with the greatest burden in tropical and sub-tropical regions. In the absence of effective prevention and control measures, dengue is projected to increase in both disease burden and geographic range. Given its increasing importance as an etiology of fever in the returning traveler or the possibility of local transmission in regions in the United States with competent vectors, as well as the risk for large outbreaks in endemic US territories and associated states, clinicians should understand its clinical presentation and be familiar with appropriate testing, triage, and management of patients with dengue. Control and prevention efforts reached a milestone in June 2021 when the Advisory Committee on Immunization Practices (ACIP) recommended Dengvaxia for routine use in children aged 9 to 16 years living in endemic areas with laboratory confirmation of previous dengue virus infection. Dengvaxia is the first vaccine against dengue to be recommended for use in the United States and one of the first to require laboratory testing of potential recipients to be eligible for vaccination. In this review, we outline dengue pathogenesis, epidemiology, and key clinical features for front-line clinicians evaluating patients presenting with dengue. We also provide a summary of Dengvaxia efficacy, safety, and considerations for use as well as an overview of other potential new tools to control and prevent the growing threat of dengue .
Collapse
Affiliation(s)
- Joshua M Wong
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E Adams
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jorge L Muñoz-Jordán
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Liliana M Sánchez-González
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Hannah R Volkman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
38
|
Hou J, Ye W, Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol 2022; 13:840104. [PMID: 35281026 PMCID: PMC8907379 DOI: 10.3389/fimmu.2022.840104] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Dengue is the most common arboviral disease caused by one of four distinct but closely related dengue viruses (DENV) and places significant economic and public health burdens in the endemic areas. A dengue vaccine will be important in advancing disease control. However, the effort has been challenged by the requirement to induce effective protection against all four DENV serotypes and the potential adverse effect due to the phenomenon that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic infection. Currently, the most advanced dengue vaccines are all tetravalent and based on recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been approved but is limited for use in individuals with prior dengue infection. Two other tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by National Institute of Allergy and Infectious Diseases, have completed phase 3 and phase 2 clinical trials, respectively. This review focuses on the designs and evaluation of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-TDV vaccine. We highlight specific lessons from existing studies and challenges that must be overcome in order to develop a dengue vaccine that confers effective and balanced protection against all four DENV serotypes but with minimal adverse effects.
Collapse
Affiliation(s)
- Jue Hou
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Weijian Ye
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Jianzhu Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
39
|
Naresh P, Rajesh Kumar R, Vishwas HN, Rajagopal G, Prabha T, Jubie S. Larvicidal and histopathological efficacy of cinnamic acid analogues: a novel strategy to reduce the dengue vector competence. RSC Adv 2022; 12:9793-9814. [PMID: 35424920 PMCID: PMC8961603 DOI: 10.1039/d1ra09466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background: A novel strategy such as conjugation of amino, Schiff's bases, and thiadiazole moieties to the cinnamic acid nucleus has been adopted in this study to discover new molecules that target the dengue envelope protein (DENVE). Aim: Among the different domains of dengue virus envelope protein (PDB ID 1OKE), we have selected a ligand-binding domain for our structure-based drug design. The designed compounds have also been docked against DENVE protein. Methodology: Based on the in silico results and synthetic feasibility, three different schemes were used to synthesize twenty-three novel cinnamic acid derivatives. Sci-finder ascertained their novelty. The synthesized derivatives were consistent with their assigned spectra. The compounds were further evaluated for their larvicidal activity and histopathological analysis. Multiple linear regression analysis was performed to derive the QSAR model, which was further evaluated internally and externally for the prediction of activity. Results and discussion: Four compounds, namely CA 2, CA 14, ACA 4, and CATD 2, effectively showed larvicidal activity after 24, 48, and 72 h exposure; particularly, compound CA2 showed potent larvicidal activity with LC50 of 82.15 μg ml-1, 65.34 μg ml-1, and 38.68 μg ml-1, respectively, whereas intermittent stages, causes of abscess in the gut, and siphon regions were observed through histopathological studies. Conclusion: Our study identified some novel chemical scaffolds as effective DENVE inhibitors with efficacious anticipated pharmacokinetic profiles, which can be modified further.
Collapse
Affiliation(s)
- P Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India https://www.jssuni.edu.in/
| | - R Rajesh Kumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - H N Vishwas
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Gopalan Rajagopal
- Postgraduate and Research Department of Zoology, Ayya Nadar Janaki Ammal College Sivakasi Tamilnadu India
| | - T Prabha
- Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Affiliated to The Tamilnadu Dr MGR Medical University-Chennai Erode Tamilnadu India
| | - S Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India https://www.jssuni.edu.in/
| |
Collapse
|
40
|
Single-cell Temporal Analysis of Natural Dengue Infection Reveals Skin-Homing Lymphocyte Expansion One Day before Defervescence. iScience 2022; 25:104034. [PMID: 35345453 PMCID: PMC8957021 DOI: 10.1016/j.isci.2022.104034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Effective clinical management of acute dengue virus (DENV) infection relies on the timing of suitable treatments during the disease progression. We analyzed single-cell transcriptomic profiles of the peripheral blood mononuclear cell samples from two DENV patients, collected daily during acute phase and also at convalescence. Key immune cell types demonstrated different dynamic responses over the course of the infection. On the day before defervescence (Day −1), we observed the peak expression of several prominent genes in the adaptive immunological pathways. We also characterized unique effector T cell clusters that expressed skin-homing signature genes at Day −1, whereas upregulation of skin and gut homing genes was also observed in plasma cells and plasmablasts during the febrile period. This work provides an overview of unique molecular dynamics that signify the entry of the critical phase, and the findings could improve the patient management of DENV infection. Time-course scRNA-seq reveals immune response dynamics during acute dengue infection Rapid transcriptional switching was observed one day before fever subsided (Day -1) Skin-homing signatures were observed in specific T cells during the febrile phase Expansion of skin-homing CD69+ PD-1+ T cells at Day -1 was confirmed with FACS
Collapse
|
41
|
Ren S, Fraser K, Kuo L, Chauhan N, Adrian AT, Zhang F, Linhardt RJ, Kwon PS, Wang X. Designer DNA nanostructures for viral inhibition. Nat Protoc 2022; 17:282-326. [PMID: 35013618 PMCID: PMC8852688 DOI: 10.1038/s41596-021-00641-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Emerging viral diseases can substantially threaten national and global public health. Central to our ability to successfully tackle these diseases is the need to quickly detect the causative virus and neutralize it efficiently. Here we present the rational design of DNA nanostructures to inhibit dengue virus infection. The designer DNA nanostructure (DDN) can bind to complementary epitopes on antigens dispersed across the surface of a viral particle. Since these antigens are arranged in a defined geometric pattern that is unique to each virus, the structure of the DDN is designed to mirror the spatial arrangement of antigens on the viral particle, providing very high viral binding avidity. We describe how available structural data can be used to identify unique spatial patterns of antigens on the surface of a viral particle. We then present a procedure for synthesizing DDNs using a combination of in silico design principles, self-assembly, and characterization using gel electrophoresis, atomic force microscopy and surface plasmon resonance spectroscopy. Finally, we evaluate the efficacy of a DDN in inhibiting dengue virus infection via plaque-forming assays. We expect this protocol to take 2-3 d to complete virus antigen pattern identification from existing cryogenic electron microscopy data, ~2 weeks for DDN design, synthesis, and virus binding characterization, and ~2 weeks for DDN cytotoxicity and antiviral efficacy assays.
Collapse
Affiliation(s)
- Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith Fraser
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Neha Chauhan
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA
| | - Addison T Adrian
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Paul S Kwon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
42
|
Abdul Rahman NA, Mohamad Norpi AS, Nordin ML, Mohd Amin MCI, Ahmad Fuaad AAH, Muhammad Azami NA, Marasini N, Azmi F. DENV-Mimetic Polymersome Nanoparticles Bearing Multi-Epitope Lipopeptides Antigen as the Next-Generation Dengue Vaccine. Pharmaceutics 2022; 14:pharmaceutics14010156. [PMID: 35057051 PMCID: PMC8781246 DOI: 10.3390/pharmaceutics14010156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Dengue remains a severe threat to public health. The safety and efficacy of the licensed dengue vaccine is not clinically satisfactory, which necessitate the need of new approach in designing an effective dengue vaccine without eliciting adverse reaction. Herein, we have designed a lipidated multi-epitope peptide vaccine (LipoDV) that can elicit highly targeted humoral and cell-mediated immune responses. To improve its immunogenicity, LipoDV was presented on the surface of MPLA-functionalized polymersome nanoparticles (PNs-LipoDV-MPLA). The as-constructed vaccine delivery platform resembles the structural morphology of DENV owing to its spherical nanoscale particle size and surface immunostimulatory properties given by LipoDV and MPLA that emulating the functional role of DENV E and prM/M proteins respectively. A proof-of-concept study demonstrated that BALB/c mice immunized with PNs-LipoDV-MPLA induced a stronger antigen-specific antibody response with an enhanced cell-mediated immunity as characterized by the elevated IFN-γ secretion in comparison to other tested vaccine candidates which possess a lesser structural trait of DENV. The DENV-mimicking nanoparticles vaccine exhibited negligible toxicity as analyzed by hemolytic test, MTT assay, histopathological examination and abnormal toxicity test on immunized mice. Collectively, our study provides a strong foundation in designing an effective peptide-based vaccine delivery platform against DENV infection.
Collapse
Affiliation(s)
- Nur Adilah Abdul Rahman
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
| | - Abdin Shakirin Mohamad Norpi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, No. 3 Jalan Greentown, Ipoh 30450, Malaysia
| | - Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
| | | | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nirmal Marasini
- Faculty of Medicine, School of Biomedical Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.A.A.R.); (A.S.M.N.); (M.L.N.); (M.C.I.M.A.)
- Correspondence: ; Tel.: +60-3-92897487
| |
Collapse
|
43
|
Peng XL, Cheng JSY, Gong HL, Yuan MD, Zhao XH, Li Z, Wei DX. Advances in the design and development of SARS-CoV-2 vaccines. Mil Med Res 2021; 8:67. [PMID: 34911569 PMCID: PMC8674100 DOI: 10.1186/s40779-021-00360-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since the end of 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The RNA genome of SARS-CoV-2, which is highly infectious and prone to rapid mutation, encodes both structural and nonstructural proteins. Vaccination is currently the only effective method to prevent COVID-19, and structural proteins are critical targets for vaccine development. Currently, many vaccines are in clinical trials or are already on the market. This review highlights ongoing advances in the design of prophylactic or therapeutic vaccines against COVID-19, including viral vector vaccines, DNA vaccines, RNA vaccines, live-attenuated vaccines, inactivated virus vaccines, recombinant protein vaccines and bionic nanoparticle vaccines. In addition to traditional inactivated virus vaccines, some novel vaccines based on viral vectors, nanoscience and synthetic biology also play important roles in combating COVID-19. However, many challenges persist in ongoing clinical trials.
Collapse
Affiliation(s)
- Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Meng-Di Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| |
Collapse
|
44
|
Lim JJ, Dar S, Venter D, Horcajada JP, Kulkarni P, Nguyen A, McBride JM, Deng R, Galanter J, Chu T, Newton EM, Tavel JA, Peck MC. A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of the Monoclonal Antibody MHAA4549A in Patients With Acute Uncomplicated Influenza A Infection. Open Forum Infect Dis 2021; 9:ofab630. [PMID: 35106315 PMCID: PMC8801227 DOI: 10.1093/ofid/ofab630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background MHAA4549A, a human monoclonal antibody targeting the influenza A hemagglutinin stalk, neutralizes influenza A virus in animal and human volunteer challenge studies. We investigated the safety and tolerability, efficacy, and pharmacokinetics of MHAA4549A in outpatients with acute, uncomplicated influenza A infection. Methods This was a phase 2, randomized, double-blind, placebo-controlled trial of single intravenous (IV) doses of 3600 mg or 8400 mg of MHAA4549A or IV placebo in adult outpatients testing positive for influenza A. Patients were enrolled across 35 sites in 6 countries. Randomization and dosing occurred within ≤72 hours of symptom onset; the study duration was 14 weeks. The primary end point was the nature and frequency of adverse events (AEs). Secondary end points included median time to alleviation of all influenza symptoms, effects on nasopharyngeal viral load and duration of viral shedding, and MHAA4549A serum pharmacokinetics. Results Of 125 randomized patients, 124 received study treatment, with 99 confirmed positive for influenza A by central testing. The frequency of AEs between the MHAA4549A and placebo groups was similar; nausea was most common (8 patients; 6.5%). MHAA4549A serum exposure was confirmed in all MHAA4549A-treated patients and was dose-proportional. No hospitalizations or deaths occurred. Between the MHAA4549A and placebo groups, no statistically significant differences occurred in the median time to alleviation of all symptoms, nasopharyngeal viral load, or duration of viral shedding. Conclusions While MHAA4549A was safe and well tolerated with confirmed exposure, the antibody did not improve clinical outcomes in patients with acute uncomplicated influenza A infection.
Collapse
Affiliation(s)
- Jeremy J Lim
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Sadia Dar
- Clinical Research Solutions, LLC, Smryna, Tennessee, USA
| | - Dirk Venter
- Henderson Medical Centre, Auckland, New Zealand
| | - Juan P Horcajada
- Department of Infectious Diseases, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Universitat Autònoma, Universitat Pompeu Fabra, Barcelona, Spain
| | - Priya Kulkarni
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Allen Nguyen
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Jacqueline M McBride
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Rong Deng
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Joshua Galanter
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Tom Chu
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Elizabeth M Newton
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Jorge A Tavel
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Melicent C Peck
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
45
|
Lim XX, Shu B, Zhang S, Tan AWK, Ng TS, Lim XN, Chew VSY, Shi J, Screaton GR, Lok SM, Anand GS. Human antibody C10 neutralizes by diminishing Zika but enhancing dengue virus dynamics. Cell 2021; 184:6067-6080.e13. [PMID: 34852238 DOI: 10.1016/j.cell.2021.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023]
Abstract
The human monoclonal antibody (HmAb) C10 potently cross-neutralizes Zika virus (ZIKV) and dengue virus. Analysis of antibody fragment (Fab) C10 interactions with ZIKV and dengue virus serotype 2 (DENV2) particles by cryoelectron microscopy (cryo-EM) and amide hydrogen/deuterium exchange mass spectrometry (HDXMS) shows that Fab C10 binding decreases overall ZIKV particle dynamics, whereas with DENV2, the same Fab causes increased dynamics. Testing of different Fab C10:DENV2 E protein molar ratios revealed that, at higher Fab ratios, especially at saturated concentrations, the Fab enhanced viral dynamics (detected by HDXMS), and observation under cryo-EM showed increased numbers of distorted particles. Our results suggest that Fab C10 stabilizes ZIKV but that with DENV2 particles, high Fab C10 occupancy promotes E protein dimer conformational changes leading to overall increased particle dynamics and distortion of the viral surface. This is the first instance of a broadly neutralizing antibody eliciting virus-specific increases in whole virus particle dynamics.
Collapse
Affiliation(s)
- Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Bo Shu
- Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shuijun Zhang
- Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Aaron W K Tan
- Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Thiam-Seng Ng
- Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xin-Ni Lim
- Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Valerie S-Y Chew
- Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jian Shi
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Gavin R Screaton
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, Huck Institutes of the Life Sciences, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Xia Z, Ren Y, Li S, Xu J, Wu Y, Cao Z. ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antiviral Res 2021; 195:105193. [PMID: 34687820 DOI: 10.1016/j.antiviral.2021.105193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Transient receptor potential mucolipin 2 and 3 (TRPML2 and TRPML3), as key channels in the endosomal-lysosomal system, are associated with many different cellular processes, including ion release, membrane trafficking and autophagy. In particular, they can also facilitate viral entry into host cells and enhance viral infection. We previously identified that two selective TRPML agonists, ML-SA1 and SN-2, that showed antiviral activities against dengue virus type 2 (DENV2) and Zika virus (ZIKV) in vitro, but their antiviral mechanisms are still elusive. Here, we reported that ML-SA1 could inhibit DENV2 replication by downregulating the expression of both TRPML2 and TRPML3, while the other TRPML activator, SN-2, suppressed DENV2 infection by reducing only TRPML3 expression. Consistently, the channel activities of both TRPML2 and TRPML3 were also found to be associated with the antiviral activity of ML-SA1 on DENV2 and ZIKV, but SN-2 relied only on TRPML3 channel activity. Further mechanistic experiments revealed that ML-SA1 and SN-2 decreased the expression of the late endosomal marker Rab7, dependent on TRPML2 and TRPML3, indicating that these two compounds likely inhibit viral infection by promoting vesicular trafficking from late endosomes to lysosomes and then accelerating lysosomal degradation of the virus. As expected, neither ML-SA1 nor SN-2 inhibited herpes simplex virus type I (HSV-1), whose entry is independent of the endolysosomal network. Together, our work reveals the antiviral mechanisms of ML-SA1 and SN-2 in targeting TRPML channels, possibly leading to the discovery of new drug candidates to inhibit endocytosed viruses.
Collapse
Affiliation(s)
- Zhiqiang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yingying Ren
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Songryong Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Department of Biotechnology, Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, North Korea
| | - Jiyuan Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
47
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
48
|
Gao Y, Zhao Q, Dong H, Xiao M, Huang X, Wu X. Developing Acid-Responsive Glyco-Nanoplatform Based Vaccines for Enhanced Cytotoxic T-lymphocyte Responses Against Cancer and SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2105059. [PMID: 34512228 PMCID: PMC8420391 DOI: 10.1002/adfm.202105059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Cytotoxic T-lymphocytes (CTLs) are central for eliciting protective immunity against malignancies and infectious diseases. Here, for the first time, partially oxidized acetalated dextran nanoparticles (Ox-AcDEX NPs) with an average diameter of 100 nm are fabricated as a general platform for vaccine delivery. To develop effective anticancer vaccines, Ox-AcDEX NPs are conjugated with a representative CTL peptide epitope (CTLp) from human mucin-1 (MUC1) with the sequence of TSAPDTRPAP (referred to as Mp1) and an immune-enhancing adjuvant R837 (referred to as R) via imine bond formation affording AcDEX-(imine)-Mp1-R NPs. Administration of AcDEX-(imine)-Mp1-R NPs results in robust and long-lasting anti-MUC1 CTL immune responses, which provides mice with superior protection from the tumor. To verify its universality, this nanoplatform is also exploited to deliver epitopes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to prevent coronavirus disease 2019 (COVID-19). By conjugating Ox-AcDEX NPs with the potential CTL epitope of SARS-CoV-2 (referred to as Sp) and R837, AcDEX-(imine)-Sp-R NPs are fabricated for anti-SARS-CoV-2 vaccine candidates. Several epitopes potentially contributing to the induction of potent and protective anti-SARS-CoV-2 CTL responses are examined and discussed. Collectively, these findings shed light on the universal use of Ox-AcDEX NPs to deliver both tumor-associated and virus-associated epitopes.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Qingyu Zhao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Huiling Dong
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Min Xiao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringInstitute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xuanjun Wu
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based MedicineShandong UniversityQingdaoShandong266237China
- Suzhou Research InstituteShandong UniversitySuzhouJiangsu215123China
| |
Collapse
|
49
|
Pinheiro JR, Camilo dos Reis E, Souza RDSO, Rocha ALS, Suesdek L, Azevedo V, Tiwari S, Rocha BGS, Birbrair A, Méndez EC, Luiz WB, Amorim JH. Comparison of Neutralizing Dengue Virus B Cell Epitopes and Protective T Cell Epitopes With Those in Three Main Dengue Virus Vaccines. Front Immunol 2021; 12:715136. [PMID: 34489965 PMCID: PMC8417696 DOI: 10.3389/fimmu.2021.715136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
The four serotypes of Dengue virus (DENV1-4) are arboviruses (arthropod-borne viruses) that belong to the Flavivirus genus, Flaviviridae family. They are the causative agents of an infectious disease called dengue, an important global public health problem with significant social-economic impact. Thus, the development of safe and effective dengue vaccines is a priority according to the World Health Organization. Only one anti-dengue vaccine has already been licensed in endemic countries and two formulations are under phase III clinical trials. In this study, we aimed to compare the main anti-dengue virus vaccines, DENGVAXIA®, LAV-TDV, and TAK-003, regarding their antigens and potential to protect. We studied the conservation of both, B and T cell epitopes involved in immunological control of DENV infection along with vaccine viruses and viral isolates. In addition, we assessed the population coverage of epitope sets contained in each vaccine formulation with regard to different human populations. As main results, we found that all three vaccines contain the main B cell epitopes involved in viral neutralization. Similarly, LAV-TDV and TAK-003 contain most of T cell epitopes involved in immunological protection, a finding not observed in DENGVAXIA®, which explains main limitations of the only licensed dengue vaccine. In summary, the levels of presence and absence of epitopes that are target for protective immune response in the three main anti-dengue virus vaccines are shown in this study. Our results suggest that investing in vaccines that contain the majority of epitopes involved in protective immunity (cellular and humoral arms) is an important issue to be considered.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Conserved Sequence
- Dengue/prevention & control
- Dengue Vaccines/genetics
- Dengue Vaccines/immunology
- Dengue Virus/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunization Programs
- Models, Molecular
- Structure-Activity Relationship
- Vaccination
- Vaccines, Synthetic
Collapse
Affiliation(s)
- Josilene Ramos Pinheiro
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Bahia, Brazil
| | - Esther Camilo dos Reis
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
| | - Rayane da Silva Oliveira Souza
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
| | - Ana Luíza Silva Rocha
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
| | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto, Butantan, São Paulo, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erick Carvalho Méndez
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Bahia, Brazil
| | - Wilson Barros Luiz
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Bahia, Brazil
| | - Jaime Henrique Amorim
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Bahia, Brazil
| |
Collapse
|
50
|
Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 2021; 37:131. [PMID: 34240263 DOI: 10.1007/s11274-021-03097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tzi Shien Yeoh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Andrew Anna
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|