1
|
Qin L, Hu N, Zhang Y, Yang J, Zhao L, Zhang X, Yang Y, Zhang J, Zou Y, Wei K, Zhao C, Li Y, Zeng H, Huang W, Zou Q. Antibody-antibiotic conjugate targeted therapy for orthopedic implant-associated intracellular S. aureus infections. J Adv Res 2024; 65:239-255. [PMID: 38048846 PMCID: PMC11519013 DOI: 10.1016/j.jare.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Treating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. OBJECTIVES Introduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. METHODS The AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. RESULTS In vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. CONCLUSIONS The application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Liqun Zhao
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yun Yang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yinshuang Zou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Keyu Wei
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yujian Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Chen X, Shi X, Liu X, Zhai X, Li W, Hong W. Eliminating Intracellular MRSA via Mannosylated Lipid-Coated Calcium Phosphate Nanoparticles. Mol Pharm 2024. [PMID: 39368111 DOI: 10.1021/acs.molpharmaceut.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) within cells proves exceptionally challenging to eradicate using conventional antimicrobials, resulting in recurring infections and heightened resistance. Herein, we reported an innovative mannosylated lipid-coated photodynamic/photothermal calcium phosphate nanoparticle (MAN-LCaP@ICG) for eradicating intracellular MRSA. The MAN-LCaP functioned as the vehicle for drug delivery, exhibiting preferential uptake by macrophages and facilitating the transport of ICG to intracellular pathogens. The MAN units integrated into MAN-LCaP@ICG could promote binding with MAN residuals on macrophage cells, as evidenced by cellular uptake assays using fluorescence microscopy and flow cytometry. Following its targeted accumulation, MAN-LCaP@ICG could enter into the cytoplasm and efficiently eradicate intracellular MRSA by a combination of the lysosome escape capability of CaP and the photodynamic and photothermal therapeutic effects of ICG. Furthermore, MAN-LCaP@ICG could kill MRSA more effectively than LCaP@ICG without MAN units or free ICG in a mouse peritoneal infection model. Therefore, MAN-LCaP@ICG provided a promising direction for human clinical application in combating intracellular infections.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiaoyi Shi
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiao Liu
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xuanxiang Zhai
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong Engineering Research Center of New-Type Drug Loading & Releasing Technology and Preparation, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
3
|
Cheng X, Shi Y, Liu Y, Xu Y, Ma J, Ma L, Wang Z, Guo S, Su J. Adaptive physiological and metabolic alterations in Staphylococcus aureus evolution under vancomycin exposure. World J Microbiol Biotechnol 2024; 40:322. [PMID: 39283509 DOI: 10.1007/s11274-024-04128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/31/2024] [Indexed: 10/17/2024]
Abstract
Staphylococcus aureus can develop antibiotic resistance and evade immune responses, causing infections in different body sites. However, the metabolic changes underlying this process are poorly understood. A variant strain, C1V, was derived from the parental strain C1 by exposing it to increasing concentrations of vancomycin in vitro. C1V exhibited a vancomycin-intermediate phenotype and physiological changes compared to C1. It showed higher survival rates than C1 when phagocytosed by Raw264.7 cells. Metabolomics analysis identified significant metabolic differences pre- and post-induction (C1 + SC1 vs. C1V + SC1V: 201 metabolites) as well as pre- and post-phagocytosis (C1 vs. SC1: 50 metabolites; C1V vs. SC1V: 95 metabolites). The variant strain had distinct morphological characteristics, decreased adhesion ability, impaired virulence, and enhanced resistance to phagocytosis compared to the parental strain. Differential metabolites may contribute to S. aureus ' resistance to antibiotics and phagocytosis, offering insights into potential strategies for altering vancomycin nonsusceptibility and enhancing phagocyte killing by manipulating bacterial metabolism.
Collapse
Affiliation(s)
- Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yue Shi
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yadong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingxin Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zerui Wang
- Biomedical Sciences College & Shandong Medical Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
4
|
Deckey DG, Boddu SP, Verhey JT, Doxey SA, Spangehl MJ, Clarke HD, Bingham JS. Clostridium difficile Infection Prior to Total Hip Arthroplasty Independently Increases the Risk of Periprosthetic Joint Infection. J Arthroplasty 2024; 39:S444-S448.e1. [PMID: 38548233 DOI: 10.1016/j.arth.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) following total hip arthroplasty (THA) is associated with major morbidity. There may be a link between the gut microbiome and an individual's overall immune system. A Clostridium difficile (C. difficile) infection portends poor gut microbiome health and has been previously associated with increased 90-day complication rates in total joint arthroplasty (TJA). The purpose of this study was to determine the effect of a previous history of C. difficile infection within 2 years of undergoing THA on PJI within 2 years postoperatively. METHODS Patients undergoing THA from 2010 to 2021 were identified in a patient claims database (n = 770,075). Patients who had active records 2 years before and after THA as well as a history of C. difficile infection within 2 years prior to THA (n = 1,836) were included and propensity matched to a control group using age, sex, and Elixhauser comorbidity index. The primary outcome was the 2-year incidence of postoperative PJI. The exposed C. difficile infection cohort was stratified into 4 groups based on the time proximity of the C. difficile infection. Chi-square tests and logistic regressions were used to compare the groups. RESULTS A C. difficile infection anytime within 2 years prior to total hip arthroplasty was independently associated with higher odds of PJI (OR [odds ratio]: 1.49 [95% CI (confidence interval) 1.09 to 2.02, P = .014]). Proximity of C. difficile infection to arthroplasty was associated with increased risk of PJI (infection 0 to 3 months before THA: OR 2.01 [95% CI 1.23 to 3.20], infection 3 to 6 months before THA: OR 1.84 [95% CI 1.06 to 3.04], infection 6 to 12 months before THA: OR 1.10 [95% CI 0.65 to 1.77], infection 1 to 2 years before THA: OR 1.40 [95% CI 0.94 to 2.06]). CONCLUSIONS A C. difficile infection prior to THA is an independent risk factor for PJI. Proximity of C. difficile infection is associated with increased risk of PJI. Future investigations should evaluate how to adequately optimize patients prior to THA and pursue strategies to determine appropriate timing for proceeding with THA.
Collapse
Affiliation(s)
- David G Deckey
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sayi P Boddu
- Alix School of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Jens T Verhey
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Stephen A Doxey
- Department of Orthopaedic Surgery, TRIA Orthopaedic Institute, Bloomington, Minnesota
| | - Mark J Spangehl
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Henry D Clarke
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Joshua S Bingham
- Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
5
|
Huang G, Wang Q, Wen H, Li J, He S, Wang X, Ding L. Antibiofilm Efficacy and Mechanism of the Marine Chlorinated Indole Sesquiterpene Against Methicillin-Resistant Staphylococcus aureus. Foodborne Pathog Dis 2024; 21:491-498. [PMID: 38900687 DOI: 10.1089/fpd.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can easily form biofilms on food surfaces, thus leading to cross-contamination, which is difficult to remove. Therefore, there is an urgent need to find alternatives with good antibacterial and antibiofilm effects. In this study, two indole sesquiterpene compounds, xiamycin (1) and chlorinated metabolite chloroxiamycin (2), were isolated from the fermentation liquid of marine Streptomyces sp. NBU3429 for the first time. The chemical structures of the two compounds were characterized by spectroscopic data interpretation, including 1D NMR and HRESIMS analysis. Antimicrobial test showed that chloroxiamycin (2) (minimum inhibitory concentration, MIC = 16 μg/mL) exhibited superior antibacterial activity than xiamycin (1) (MIC = 32 μg/mL) against MRSA ATCC43300. Moreover, compound (2) decreased the biofilm formation rate of MRSA ATCC43300 by 12.7%-84.6% in the concentration range of 32-512 μg/mL, which is relatively stronger than xiamycin (1) (4.1%-49.9%) as well. Antibacterial/antibiofilm mechanism investigation indicated that chloroxiamycin (2) could disrupt the cell wall and membrane of MRSA, inhibiting the production of biofilm extracellular polysaccharides. All these results illustrated that chloroxiamycin (2) is an effective antibacterial/antibiofilm agent, which makes it an attractive candidate for food preservatives.
Collapse
Affiliation(s)
- Guobao Huang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Qiang Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Huimin Wen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Jinling Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiao Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Dinić M, Burgess JL, Lukić J, Catanuto P, Radojević D, Marjanović J, Verpile R, Thaller SR, Gonzalez T, Golić N, Strahinić I, Tomic-Canic M, Pastar I. Postbiotic lactobacilli induce cutaneous antimicrobial response and restore the barrier to inhibit the intracellular invasion of Staphylococcus aureus in vitro and ex vivo. FASEB J 2024; 38:e23801. [PMID: 39018106 PMCID: PMC11258854 DOI: 10.1096/fj.202400054rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Intracellular pathogens including Staphylococcus aureus contribute to the non-healing phenotype of chronic wounds. Lactobacilli, well known as beneficial bacteria, are also reported to modulate the immune system, yet their role in cutaneous immunity remains largely unknown. We explored the therapeutic potential of bacteria-free postbiotics, bioactive lysates of lactobacilli, to reduce intracellular S. aureus colonization and promote healing. Fourteen postbiotics derived from various lactobacilli species were screened, and Latilactobacillus curvatus BGMK2-41 was selected for further analysis based on the most efficient ability to reduce intracellular infection by S. aureus diabetic foot ulcer clinical isolate and S. aureus USA300. Treatment of both infected keratinocytes in vitro and infected human skin ex vivo with BGMK2-41 postbiotic cleared S. aureus. Keratinocytes treated in vitro with BGMK2-41 upregulated expression of antimicrobial response genes, of which DEFB4, ANG, and RNASE7 were also found upregulated in treated ex vivo human skin together with CAMP exclusively upregulated ex vivo. Furthermore, BGMK2-41 postbiotic treatment has a multifaceted impact on the wound healing process. Treatment of keratinocytes stimulated cell migration and the expression of tight junction proteins, while in ex vivo human skin BGMK2-41 increased expression of anti-inflammatory cytokine IL-10, promoted re-epithelialization, and restored the epidermal barrier via upregulation of tight junction proteins. Together, this provides a potential therapeutic approach for persistent intracellular S. aureus infections.
Collapse
Affiliation(s)
- Miroslav Dinić
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Jovanka Lukić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paola Catanuto
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanović
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Verpile
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seth R. Thaller
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tammy Gonzalez
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Strahinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Long DR, Holmes EA, Lo HY, Penewit K, Almazan J, Hodgson T, Berger NF, Bishop ZH, Lewis JD, Waalkes A, Wolter DJ, Salipante SJ. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog 2024; 20:e1012394. [PMID: 38991026 PMCID: PMC11265673 DOI: 10.1371/journal.ppat.1012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nova F. Berger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Zoe H. Bishop
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Magruder ML, Parsa S, Gordon AM, Ng M, Wong CHJ. Inflammatory bowel disease patients undergoing total hip arthroplasty have higher odds of implant-related complications. Hip Int 2024; 34:498-502. [PMID: 38087839 DOI: 10.1177/11207000231214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
PURPOSE This study evaluates whether IBD patients are at increased risk of implant-related complications after THA. MATERIALS AND METHODS A retrospective study from 01 January 2010 to 31 October 31 2020 using an administrative claims database was performed. IBD patients undergoing THA (n = 11,025), without corticosteroid treatment, were propensity score matched to controls in a 1:5 ratio (n = 55,121) based on age, sex, and the Charlson Comorbidity Index (CCI). Outcomes evaluated included periprosthetic fracture, aseptic loosening, prosthetic joint infection, and THA revision within 2 years of index procedure. Chi-square analyses were used to compare the matched cohorts. The association of IBD and implant-related complications was evaluated using logistical regression to calculate odds ratios (ORs), 95% confidence intervals (95% CIs), and p-values. A p-value < 0.001 was used as the significance threshold. RESULTS Patients with IBD had a greater incidence and odds of total implant complications (7.03% vs. 3.98%; OR 1.76; p < 0.001) compared with matched controls. IBD patients had significantly higher incidence and odds of developing periprosthetic fracture (0.50% vs. 0.20%; OR 2.46; p < 0.001), THA revisions (2.21% vs. 1.17%; OR 1.91; p < 0.001), aseptic loosening (1.45% vs. 0.84%; OR 1.75; p < 0.001), and prosthetic joint infection (2.87% vs. 1.77%; OR 1.64; p < 0.001). CONCLUSIONS Patients with IBD who underwent primary THA had a significantly higher risk of implant-related complications compared to matched controls. Providers should use this study to appropriately assess post-complication risk factors for their patients with IBD.
Collapse
Affiliation(s)
- Matthew L Magruder
- Department of Orthopaedic Surgery, Maimonides Medical Center, Brooklyn, NY, USA
| | - Shabnam Parsa
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Adam M Gordon
- Department of Orthopaedic Surgery, Maimonides Medical Center, Brooklyn, NY, USA
| | - Mitchell Ng
- Department of Orthopaedic Surgery, Maimonides Medical Center, Brooklyn, NY, USA
| | - Che Hang J Wong
- Department of Orthopaedic Surgery, Maimonides Medical Center, Brooklyn, NY, USA
| |
Collapse
|
9
|
Ji J, Zhong H, Wang Y, Liu J, Tang J, Liu Z. Chemerin attracts neutrophil reverse migration by interacting with C-C motif chemokine receptor-like 2. Cell Death Dis 2024; 15:425. [PMID: 38890311 PMCID: PMC11189533 DOI: 10.1038/s41419-024-06820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Neutrophil reverse migration (rM) is a recently identified phenomenon in which neutrophils migrate away from the inflammatory site back into the vasculature following initial infiltration, which involved in the resolution of loci inflammatory response or dissemination of inflammation. Present study was aimed to explore the mechanisms in neutrophil rM. By scRNA-seq on the white blood cells in acute lung injury model, we found rM-ed neutrophils exhibited increased gene expression of C-C motif chemokine receptor-like 2 (Ccrl2), an atypical chemokine receptor. Furthermore, an air pouch model was established to directly track rM-ed neutrophils in vivo. Air pouches were generated by 3 ml filtered sterile air injected subcutaneously for 3 days, and then LPS (2 mg/kg) was injected into the pouches to mimic the inflammatory state. For the rM-ed neutrophil tracking system, cell tracker CMFDA were injected into the air pouch to stain the inflammatory loci cells, and after 6 h, stained cells in blood were regarded as the rM-ed neutrophil. Based on this tracking system, we confirmed that rM-ed neutrophils showed increased CCRL2. We also found that the concentrations of the CCRL2 ligand chemerin in plasma was increased in the late stage. Neutralizing chemerin decreased the rM-ed neutrophil ratio in the blood. These results suggest that circulating chemerin attracts neutrophils to leave inflammatory sites by interacting with CCRL2, which might involve in the dissemination of inflammation.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Hanhui Zhong
- Department of Anesthesia, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yawen Wang
- Department of Anesthesia, The Third Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Tang
- Department of Anesthesia, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
10
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Holub MN, Wahhab A, Rouse JR, Danner R, Hackner LG, Duris CB, McClune ME, Dressler JM, Strle K, Jutras BL, Edelstein AI, Lochhead RB. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation. Arthritis Res Ther 2024; 26:77. [PMID: 38532447 PMCID: PMC10967045 DOI: 10.1186/s13075-024-03293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVES Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. METHODS Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC) and immunofluorescence microscopy (IFM). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. RESULTS A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, and PG staining colocalized with markers of synovial macrophages and fibroblasts by IFM. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. CONCLUSION Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.
Collapse
Affiliation(s)
- Meaghan N Holub
- Department of Orthopaedic Surgery, Medical College of Wisconsin, BSB room 2850, Milwaukee, WI, 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amanda Wahhab
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph R Rouse
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca Danner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lauren G Hackner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine B Duris
- Department of Pathology, Children's Hospital of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Jules M Dressler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Adam I Edelstein
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robert B Lochhead
- Department of Orthopaedic Surgery, Medical College of Wisconsin, BSB room 2850, Milwaukee, WI, 53226, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Barroqueiro ÂTLS, Maciel MCG, Vale AAM, Silva MCP, Maia ACDS, Santos APAD, Nascimento JRD, Nascimento FRFD, Rocha CQ, Fernandes ES, Guerra RNM. The anti-infective and immunologic effect of babassu (Attalea speciosa, Mart. ex Spreng) reduces mortality induced by MRSA-Staphylococcus aureus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117363. [PMID: 37944870 DOI: 10.1016/j.jep.2023.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Babassu mesocarp, derived from the Attalea speciosa fruits, is used in folk medicine for infections, inflammatory diseases, and skin wounds. AIM OF THE STUDY To investigate the antimicrobial and immunological effect of babassu mesocarp aqueous extract (BAE) in Swiss mice lethally infected with methicillin-resistant Staphylococcus aureus (MRSA). MATERIALS AND METHODS The animals (n = 14/group) received an overload of MRSA (3.0 × 108 CFU/mL, via intraperitoneal) and were treated 6 h later with the BAE (125 and 250 mg/kg, subcutaneously). Two experiments were performed with four groups each (Control, ATB, BAE125 and BAE 250). The first was to determine the survival (n = 7 animals/group). The second is to evaluate 24h after infection the number of Colony Forming Units (CFU) and cells in the blood, peritoneum and bronchoalveolar fluid. Cytometric Bead Assay - CBA quantified the cytokines and flow cytometry to determine the cellular distribution in the mesenteric lymph node. RESULTS Treatment with BAE improved the survival (60%) in all groups, reduced the number of colony-forming units in the peritoneum and blood, the number of peritoneal and bronchoalveolar cells, and the levels of pro-inflammatory IL-6, TNF-α, and IL-17 cytokines. Additionally, BAE increased: IL-10 and INF-γ levels, nitric oxide release, CD4+ T helper cells, CD14+/IaIe + activated macrophages and Ly6G + neutrophils in the mesenteric lymph node. CONCLUSIONS BAE can be used as a complementary treatment during infections due to its antimicrobial and immunomodulatory effect and the ability to protect animals from death after MRSA lethal infection.
Collapse
Affiliation(s)
- Ângela Tâmara Lemos Souza Barroqueiro
- Laboratório de Imunofisiologia - LIF, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, 65080-805, São Luís, Maranhão, Brazil; Universidade CEUMA, Rua Josué Montello, No. 1, Renascença II, São Luís, MA, 65075-120, Brazil.
| | | | - André Alvares Marques Vale
- Laboratório de Imunologia do Câncer - LIAC, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, São Luís, MA, 65080-805, Brazil.
| | - Mayara Cristina Pinto Silva
- Laboratório de Imunofisiologia - LIF, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, 65080-805, São Luís, Maranhão, Brazil.
| | - Andressa Caroline Dos Santos Maia
- Programa de Pós-graduação Em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Av. Iguaçú, 333, Rebouças, Curitiba, PR, 80230-020, Brazil.
| | - Ana Paula Azevedo Dos Santos
- Laboratório de Imunologia do Câncer - LIAC, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, São Luís, MA, 65080-805, Brazil.
| | - Johnny Ramos do Nascimento
- Laboratório de Imunofisiologia - LIF, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, 65080-805, São Luís, Maranhão, Brazil; Centro Universitário UNDB, Av. Colares Moreira, 443, Jardim Renascença, São Luís, MA, 65075-441, Brazil.
| | - Flávia Raquel Fernandes do Nascimento
- Laboratório de Imunofisiologia - LIF, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, 65080-805, São Luís, Maranhão, Brazil.
| | - Claudia Quintino Rocha
- Laboratório de Produtos Naturais - Departamento de Química, Centro de Ciências Exatas e Tecnológicas - Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, São Luís, MA, 65080-805, Brazil.
| | - Elizabeth Soares Fernandes
- Programa de Pós-graduação Em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Av. Iguaçú, 333, Rebouças, Curitiba, PR, 80230-020, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR, 80250-060, Brazil.
| | - Rosane Nassar Meireles Guerra
- Laboratório de Imunofisiologia - LIF, Universidade Federal do Maranhão, Campus Dom Delgado, Av. dos Portugueses, 1966, 65080-805, São Luís, Maranhão, Brazil.
| |
Collapse
|
13
|
Li H, Zheng Q, Niu E, Xu J, Chai W, Xu C, Fu J, Hao L, Chen J, Zhang G. Increased risk of periprosthetic joint infection after traumatic injury in joint revision patients. ARTHROPLASTY 2024; 6:8. [PMID: 38311788 PMCID: PMC10840204 DOI: 10.1186/s42836-024-00235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is a serious complication after total joint arthroplasty (TJA). Although some risk factors of PJI were well studied, the association between trauma and PJI remains unknown in revision patients. MATERIALS AND METHODS Between 2015 and 2018, a total of 71 patients with trauma history before revisions (trauma cohort) were propensity score matched (PSM) at a ratio of 1 to 5 with a control cohort of revision patients without a history of trauma. Then, the cumulative incidence rate of PJI within 3 years after operation between the two groups was compared. The secondary endpoints were aseptic revisions within 3 postoperative years, complications up to 30 postoperative days, and readmission up to 90 days. During a minimal 3-year follow-up, the survival was comparatively analyzed between the trauma cohort and the control cohort. RESULTS The cumulative incidence of PJI was 40.85% in patients with trauma history against 27.04% in the controls (P = 0.02). Correspondingly, the cumulative incidence of aseptic re-revisions was 12.68% in patients with trauma history compared with 5.07% in the control cohort (P = 0.028). Cox regression revealed that trauma history was a risk factor of PJI (HR, 1.533 [95%CI, (1.019,2.306)]; P = 0.04) and aseptic re-revisions (HR, 3.285 [95%CI, (1.790,6.028)]; P < 0.0001). CONCLUSIONS Our study demonstrated that revision patients with trauma history carried a higher risk of PJI compared to those without trauma history. Moreover, after revisions, the trauma patients were still at higher risk for treatment failure due to PJI, periprosthetic joint fracture, and mechanical complications.
Collapse
Affiliation(s)
- Hao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Qingyuan Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Erlong Niu
- Department of Orthopedics, Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiazheng Xu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Wei Chai
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Chi Xu
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jun Fu
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Libo Hao
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiying Chen
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| | - Guoqiang Zhang
- Department of Orthopedic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
14
|
Vozza EG, Daly CM, O'Rourke SA, Fitzgerald HK, Dunne A, McLoughlin RM. Staphylococcus aureus suppresses the pentose phosphate pathway in human neutrophils via the adenosine receptor A2aR to enhance intracellular survival. mBio 2024; 15:e0257123. [PMID: 38108639 PMCID: PMC10790693 DOI: 10.1128/mbio.02571-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is one of the leading causes of antimicrobial-resistant infections whose success as a pathogen is facilitated by its massive array of immune evasion tactics, including intracellular survival within critical immune cells such as neutrophils, the immune system's first line of defense. In this study, we describe a novel pathway by which intracellular S. aureus can suppress the antimicrobial capabilities of human neutrophils by using the anti-inflammatory adenosine receptor, adora2a (A2aR). We show that signaling through A2aR suppresses the pentose phosphate pathway, a metabolic pathway used to fuel the antimicrobial NADPH oxidase complex that generates reactive oxygen species (ROS). As such, neutrophils show enhanced ROS production and reduced intracellular S. aureus when treated with an A2aR inhibitor. Taken together, we identify A2aR as a potential therapeutic target for combatting intracellular S. aureus infection.
Collapse
Affiliation(s)
- Emilio G. Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Clíodhna M. Daly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinead A. O'Rourke
- Molecular Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Hannah K. Fitzgerald
- Molecular Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- Molecular Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rachel M. McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. Angew Chem Int Ed Engl 2024; 63:e202313870. [PMID: 38051128 PMCID: PMC10799677 DOI: 10.1002/anie.202313870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Staphylococcus aureus (S. aureus) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus, thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
Affiliation(s)
| | | | - Zichen Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
16
|
Piuzzi NS, Klika AK, Lu Q, Higuera-Rueda CA, Stappenbeck T, Visperas A. Periprosthetic joint infection and immunity: Current understanding of host-microbe interplay. J Orthop Res 2024; 42:7-20. [PMID: 37874328 DOI: 10.1002/jor.25723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty. Even with current treatments, failure rates are unacceptably high with a 5-year mortality rate of 26%. Majority of the literature in the field has focused on development of better biomarkers for diagnostics and treatment strategies including innovate antibiotic delivery systems, antibiofilm agents, and bacteriophages. Nevertheless, the role of the immune system, our first line of defense during PJI, is not well understood. Evidence of infection in PJI patients is found within circulation, synovial fluid, and tissue and include numerous cytokines, metabolites, antimicrobial peptides, and soluble receptors that are part of the PJI diagnosis workup. Macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs) are initially recruited into the joint by chemokines and cytokines produced by immune cells and bacteria and are activated by pathogen-associated molecular patterns. While these cells are efficient killers of planktonic bacteria by phagocytosis, opsonization, degranulation, and recruitment of adaptive immune cells, biofilm-associated bacteria are troublesome. Biofilm is not only a physical barrier for the immune system but also elicits effector functions. Additionally, bacteria have developed mechanisms to evade the immune system by inactivating effector molecules, promoting killing or anti-inflammatory effector cell phenotypes, and intracellular persistence and dissemination. Understanding these shortcomings and the mechanisms by which bacteria can subvert the immune system may open new approaches to better prepare our own immune system to combat PJI. Furthermore, preoperative immune system assessment and screening for dysregulation may aid in developing preventative interventions to decrease PJI incidence.
Collapse
Affiliation(s)
- Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alison K Klika
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Anabelle Visperas
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Jiang Y, Hou J, Liu C, Zhao C, Xu Y, Song W, Shu Z, Wang B. Inhibitory Effect of Salicin on Staphylococcus aureus Coagulase. ChemMedChem 2023; 18:e202300302. [PMID: 37755368 DOI: 10.1002/cmdc.202300302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
The massive use of antibiotics has resulted in an alarming increase in antibiotic resistance in Staphylococcus aureus (S. aureus). This study aimed to identify the inhibitory effect of salicin on S. aureus. Coagulase (Coa) activity was assessed using in vitro Coa assays and Western blot, thermal shift assay (TSA), fluorescence quenching and molecular docking experiments were conducted to verify the interaction between salicin and Coa. An in vivo mouse pneumonia model demonstrated that salicin can reduce the virulence of S. aureus. In vitro Coa assays elucidated that salicin directly inhibited Coa activity. The Western blot and TSA results suggested that salicin did not block the expression of Coa but affected the thermal stability of the protein by binding to Coa. The fluorescence quenching, molecular docking and molecular dynamics assays have found that the most promising binding site between salicin and Coa was GLN-97. The pneumonia model of mice infected with S. aureus revealed that salicin could not only reduce the content of lung bacteria in mice but also prolong their survival. Salicin was identified as a novel anti-infective candidate compound with the potential to target Coa and inhibit its activity by binding to it, which would facilitate the development of roadmaps for future research.
Collapse
Affiliation(s)
- Yijing Jiang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| | - Juan Hou
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| | - Chang Liu
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| | - Chunhui Zhao
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| | - Yangming Xu
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| | - Zunhua Shu
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, No.1643, Jingyue Street Nanguan District, Changchun, 130118, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road Jingyue National High-tech Industrial Development Zone, Changchun, 130117, China
| |
Collapse
|
19
|
Hobson AD. Antibody drug conjugates beyond cytotoxic payloads. PROGRESS IN MEDICINAL CHEMISTRY 2023; 62:1-59. [PMID: 37981349 DOI: 10.1016/bs.pmch.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
20
|
Liakina V. Antibiotic resistance in patients with liver cirrhosis: Prevalence and current approach to tackle. World J Clin Cases 2023; 11:7530-7542. [DOI: 10.12998/wjcc.v11.i31.7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Regardless of etiology, complications with bacterial infection in patients with cirrhosis are reported in the range of 25%-46% according to the most recent data. Due to frequent episodes of bacterial infection and repetitive antibiotic treatment, most often with broad-spectrum gram negative coverage, patients with cirrhosis are at increased risk of encountering multidrug resistant bacteria, and this raises concern. In such patients, extended-spectrum beta-lactamase and AmpC-producing Enterobacterales, methicillin- or vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, carbapenem-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii, all of which are difficult to treat, are the most common. That is why novel approaches to the prophylaxis and treatment of bacterial infections to avoid antibiotic resistance have recently been developed. At the same time, our knowledge of resistance mechanisms is constantly updated. This review summarizes the current situation regarding the burden of antibiotic resistance, including the prevalence and mechanisms of intrinsic and acquired resistance in bacterial species that most frequently cause complications in patients with liver cirrhosis and recent developments on how to deal with multidrug resistant bacteria.
Collapse
Affiliation(s)
- Valentina Liakina
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Tech, Vilnius 10223, Lithuania
| |
Collapse
|
21
|
Yan S, Zhang X, Zhang S, Wang Z, Dai Z, Zhou X, Liu J, Li B, Liu J. Influence of Inflammatory Bowel Disease on Patients Undergoing Primary Total Joint Arthroplasty: A Systematic Review and Meta-analysis of Cohort Studies. Orthop J Sports Med 2023; 11:23259671231205541. [PMID: 37941887 PMCID: PMC10629331 DOI: 10.1177/23259671231205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 11/10/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is recognized as a global disease. Although IBD is commonly diagnosed in the young male population, it also occurs in patients aged >60 years. With the advent of an aging society, it is expected that an increasing number of patients with IBD will undergo total joint arthroplasty (TJA). Purpose To assess the impact of IBD on the risk of complications and revision as well as the length of stay (LOS) and treatment costs after TJA. Study Design Systematic review; Level of evidence, 4. Methods Utilizing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, articles were searched in the PubMed/MEDLINE, Embase, and Cochrane Library databases from the date of inception to August 31, 2022, using the following search terms: (1) "Inflammatory Bowel Diseases"[MeSH] and (2) "Arthroplasty, Replacement"[MeSH]. The study quality was scored according to the Newcastle-Ottawa Scale. A fixed-effects or random-effects model was used to calculate odds ratios or mean differences with 95% confidence intervals. Results Of 232 studies initially retrieved, 8 retrospective cohort studies consisting of 33,758 patients with IBD and 386,238 patients without IBD were included. Patients with IBD had a higher incidence of complications (P < .05), readmission and revision (P < .05), experienced a longer LOS (P < .01), and paid higher treatment costs after TJA compared with patients without IBD . Conclusion The results of our review demonstrated that IBD increased the risk of postoperative complications, prolonged the LOS, and increased treatment costs.
Collapse
Affiliation(s)
- Shuo Yan
- Tianjin Union Medical Center, Nankai University, Tianjin, China
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Xiaofei Zhang
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Shuhao Zhang
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Zheng Wang
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Zhengxu Dai
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Xuyang Zhou
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Jianchao Liu
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Bing Li
- Department of Joints, Tianjin Hospital, Tianjin, China
| | - Jun Liu
- Department of Joints, Tianjin Hospital, Tianjin, China
| |
Collapse
|
22
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
23
|
Dotel R, Gilbert GL, Hutabarat SN, Davis JS, O'Sullivan MVN. Effectiveness of adjunctive rifampicin for treatment of Staphylococcus aureus bacteraemia: a systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 2023; 78:2419-2427. [PMID: 37583062 DOI: 10.1093/jac/dkad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/24/2023] [Indexed: 08/17/2023] Open
Abstract
OBJECTIVES To assess whether the addition of rifampicin to conventional treatment of Staphylococcus aureus bacteraemia (SAB) reduces bacteriological or clinical failure or death. DATA SOURCES PubMed, Embase and Cochrane CENTRAL databases were searched from inception to 31 December 2022. Reference lists and PubMed citations of eligible studies were checked. REVIEW METHODS Two study authors independently identified randomized controlled trials (RCTs) involving adult participants with SAB, in which an intervention group received adjunctive rifampicin and the control group received usual care with or without a placebo. Dichotomous data (bacteriological and clinical failure and deaths) were analysed and pooled across studies using risk ratio (RR) with 95% confidence intervals (CI) using a Mantel-Haenszel random-effect model. The key variable of interest being whether rifampicin was used. RESULTS Six RCTs including 894 participants-of which 758 (85%) were from one trial-met the inclusion criteria. The addition of rifampicin to conventional treatment of SAB significantly reduced bacteriological failure by 59% (RR 0.41, 95% CI 0.21-0.81, I2 = 0%, number need to treat 27). However, it did not reduce clinical failure (RR 0.70, 95% CI 0.47-1.03, I2 = 0%) or deaths (RR 0.96, 95% CI 0.70-1.32, I2 = 0%). Further, it did not reduce the duration of bacteraemia, or the length of hospital stay. Adjunctive rifampicin reduced SAB recurrences (1% versus 4%, P = 0.01). Emergence of rifampicin resistance during treatment was uncommon (<1%). CONCLUSION Although adjunctive rifampicin reduced the risk of bacteriological failure and recurrences, we found no mortality benefit to support its use in SAB.
Collapse
Affiliation(s)
- R Dotel
- Department of Infectious Diseases, Blacktown Hospital, Sydney, New South Wales, Australia
| | - G L Gilbert
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - S N Hutabarat
- Department of Microbiology and Infectious Diseases, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - J S Davis
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- John Hunter Hospital, University of Newcastle, Newcastle, Australia
| | - M V N O'Sullivan
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528196. [PMID: 36824967 PMCID: PMC9949086 DOI: 10.1101/2023.02.13.528196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Staphylococcus aureus ( S. aureus ) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus , thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
|
25
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
26
|
Hachani A, Giulieri SG, Guérillot R, Walsh CJ, Herisse M, Soe YM, Baines SL, Thomas DR, Cheung SD, Hayes AS, Cho E, Newton HJ, Pidot S, Massey RC, Howden BP, Stinear TP. A high-throughput cytotoxicity screening platform reveals agr-independent mutations in bacteraemia-associated Staphylococcus aureus that promote intracellular persistence. eLife 2023; 12:e84778. [PMID: 37289634 PMCID: PMC10259494 DOI: 10.7554/elife.84778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Staphylococcus aureus infections are associated with high mortality rates. Often considered an extracellular pathogen, S. aureus can persist and replicate within host cells, evading immune responses, and causing host cell death. Classical methods for assessing S. aureus cytotoxicity are limited by testing culture supernatants and endpoint measurements that do not capture the phenotypic diversity of intracellular bacteria. Using a well-established epithelial cell line model, we have developed a platform called InToxSa (intracellular toxicity of S. aureus) to quantify intracellular cytotoxic S. aureus phenotypes. Studying a panel of 387 S. aureus bacteraemia isolates, and combined with comparative, statistical, and functional genomics, our platform identified mutations in S. aureus clinical isolates that reduced bacterial cytotoxicity and promoted intracellular persistence. In addition to numerous convergent mutations in the Agr quorum sensing system, our approach detected mutations in other loci that also impacted cytotoxicity and intracellular persistence. We discovered that clinical mutations in ausA, encoding the aureusimine non-ribosomal peptide synthetase, reduced S. aureus cytotoxicity, and increased intracellular persistence. InToxSa is a versatile, high-throughput cell-based phenomics platform and we showcase its utility by identifying clinically relevant S. aureus pathoadaptive mutations that promote intracellular residency.
Collapse
Affiliation(s)
- Abderrahman Hachani
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Stefano G Giulieri
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Romain Guérillot
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Calum J Walsh
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Marion Herisse
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Ye Mon Soe
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Sarah L Baines
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - David R Thomas
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
- Infection and Immunity Program, Department of Microbiology and Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Shane Doris Cheung
- Biological Optical Microscopy Platform, University of MelbourneMelbourneAustralia
| | - Ashleigh S Hayes
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of MelbourneMelbourneAustralia
| | - Hayley J Newton
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
- Infection and Immunity Program, Department of Microbiology and Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Sacha Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Ruth C Massey
- School of Microbiology, University College CorkCorkIreland
- School of Medicine, University College CorkCorkIreland
- APC Microbiome Ireland, University College CorkCorkIreland
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of MelbourneMelbourneAustralia
| |
Collapse
|
27
|
Ellett F, Kacamak NI, Alvarez CR, Oliveira EH, Hasturk H, Paster BJ, Kantarci A, Irimia D. Fusobacterium nucleatum dissemination by neutrophils. J Oral Microbiol 2023; 15:2217067. [PMID: 37283724 PMCID: PMC10240972 DOI: 10.1080/20002297.2023.2217067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies uncovered that Fusobacterium nucleatum (Fn), a common, opportunistic bacterium in the oral cavity, is associated with a growing number of systemic diseases, ranging from colon cancer to Alzheimer's disease. However, the pathological mechanisms responsible for this association are still poorly understood. Here, we leverage recent technological advances to study the interactions between Fn and neutrophils. We show that Fn survives within human neutrophils after phagocytosis. Using in vitro microfluidic devices, we determine that human neutrophils can protect and transport Fn over large distances. Moreover, we validate these observations in vivo by showing that neutrophils disseminate Fn using a zebrafish model. Our data support the emerging hypothesis that bacterial dissemination by neutrophils is a mechanistic link between oral and systemic diseases. Furthermore, our results may ultimately lead to therapeutic approaches that target specific host-bacteria interactions, including the dissemination process.
Collapse
Affiliation(s)
- Felix Ellett
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nazli I. Kacamak
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Carla R. Alvarez
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Eduardo H.S. Oliveira
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Bruce J. Paster
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Holub MN, Wahhab A, Rouse JR, Danner R, McClune MM, Dressler JM, Strle K, Jutras BL, Edelstein AI, Lochhead RB. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation. RESEARCH SQUARE 2023:rs.3.rs-2842385. [PMID: 37162851 PMCID: PMC10168439 DOI: 10.21203/rs.3.rs-2842385/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objectives Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. Methods Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. Results A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, with mean 8 PG occurrences per 10 mm2 of tissue in PG-positive samples. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. Conclusion Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.
Collapse
|
29
|
Krezalek MA, Alverdy JC. The Role of the Gut Microbiome on the Development of Surgical Site Infections. Clin Colon Rectal Surg 2023; 36:133-137. [PMID: 36844709 PMCID: PMC9946714 DOI: 10.1055/s-0043-1760719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite advances in antisepsis techniques, surgical site infection remains the most common and most costly reason for hospital readmission after surgery. Wound infections are conventionally thought to be directly caused by wound contamination. However, despite strict adherence to surgical site infection prevention techniques and bundles, these infections continue to occur at high rates. The contaminant theory of surgical site infection fails to predict and explain most postoperative infections and still remains unproven. In this article we provide evidence that the process of surgical site infection development is far more complex than what can be explained by simple bacterial contamination and hosts' ability to clear the contaminating pathogen. We show a link between the intestinal microbiome and distant surgical site infections, even in the absence of intestinal barrier breach. We discuss the Trojan-horse mechanisms by which surgical wounds may become seeded by pathogens from within one's own body and the contingencies that need to be met for an infection to develop.
Collapse
Affiliation(s)
- Monika A. Krezalek
- Division of Gastrointestinal and General Surgery, Department of Surgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - John C. Alverdy
- Sarah and Harold Lincoln Thompson Professor of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
30
|
Zhang Y, Liu X, Chen J. Coupled binding and folding of disordered SPIN N-terminal region in myeloperoxidase inhibition. Front Mol Biosci 2023; 10:1130189. [PMID: 36845554 PMCID: PMC9948029 DOI: 10.3389/fmolb.2023.1130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Gram-positive pathogenic bacteria Staphylococcus express and secret staphylococcal peroxidase inhibitor (SPIN) proteins to help evade neutrophil-mediated immunity by inhibiting the activity of the main oxidative-defense player myeloperoxidase (MPO) enzyme. SPIN contains a structured 3-helix bundle C-terminal domain, which can specifically bind to MPO with high affinity, and an intrinsically disordered N-terminal domain (NTD), which folds into a structured β-hairpin and inserts itself into the active site of MPO for inhibition. Mechanistic insights of the coupled folding and binding process are needed in order to better understand how residual structures and/or conformational flexibility of NTD contribute to the different strengths of inhibition of SPIN homologs. In this work, we applied atomistic molecular dynamics simulations on two SPIN homologs, from S. aureus and S. delphini, respectively, which share high sequence identity and similarity, to explore the possible mechanistic basis for their different inhibition efficacies on human MPO. Direct simulations of the unfolding and unbinding processes at 450 K reveal that these two SPIN/MPO complexes systems follow surprisingly different mechanisms of coupled binding and folding. While coupled binding and folding of SPIN-aureus NTD is highly cooperative, SPIN-delphini NTD appears to mainly utilize a conformational selection-like mechanism. These observations are in contrast to an overwhelming prevalence of induced folding-like mechanisms for intrinsically disordered proteins that fold into helical structures upon binding. Further simulations of unbound SPIN NTDs at room temperature reveal that SPIN-delphini NTD has a much stronger propensity of forming β-hairpin like structures, consistent with its preference to fold and then bind. These may help explain why the inhibition strength is not well correlated with binding affinity for different SPIN homologs. Altogether, our work establishes the relationship between the residual conformational stability of SPIN-NTD and their inhibitory function, which can help us develop new strategies towards treating Staphylococcal infections.
Collapse
Affiliation(s)
| | | | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
31
|
Russell CD, Lone NI, Baillie JK. Comorbidities, multimorbidity and COVID-19. Nat Med 2023; 29:334-343. [PMID: 36797482 DOI: 10.1038/s41591-022-02156-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 02/18/2023]
Abstract
The influence of comorbidities on COVID-19 outcomes has been recognized since the earliest days of the pandemic. But establishing causality and determining underlying mechanisms and clinical implications has been challenging-owing to the multitude of confounding factors and patient variability. Several distinct pathological mechanisms, not active in every patient, determine health outcomes in the three different phases of COVID-19-from the initial viral replication phase to inflammatory lung injury and post-acute sequelae. Specific comorbidities (and overall multimorbidity) can either exacerbate these pathological mechanisms or reduce the patient's tolerance to organ injury. In this Review, we consider the impact of specific comorbidities, and overall multimorbidity, on the three mechanistically distinct phases of COVID-19, and we discuss the utility of host genetics as a route to causal inference by eliminating many sources of confounding. Continued research into the mechanisms of disease-state interactions will be crucial to inform stratification of therapeutic approaches and improve outcomes for patients.
Collapse
Affiliation(s)
- Clark D Russell
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Nazir I Lone
- Usher Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, UK.
| | - J Kenneth Baillie
- Intensive Care Unit, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh, UK.
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK.
| |
Collapse
|
32
|
Pidwill GR, Pyrah JF, Sutton JAF, Best A, Renshaw SA, Foster SJ. Clonal population expansion of Staphylococcus aureus occurs due to escape from a finite number of intraphagocyte niches. Sci Rep 2023; 13:1188. [PMID: 36681703 PMCID: PMC9867732 DOI: 10.1038/s41598-023-27928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is a human commensal and also an opportunist pathogen causing life threatening infections. During S. aureus disease, the abscesses that characterise infection can be clonal, whereby a large bacterial population is founded by a single or few organisms. Our previous work has shown that macrophages are responsible for restricting bacterial growth such that a population bottleneck occurs and clonality can emerge. A subset of phagocytes fail to control S. aureus resulting in bacterial division, escape and founding of microabscesses that can seed other host niches. Here we investigate the basis for clonal microabscess formation, using in vitro and in silico models of S. aureus macrophage infection. Macrophages that fail to control S. aureus are characterised by formation of intracellular bacterial masses, followed by cell lysis. High-resolution microscopy reveals that most macrophages had internalised only a single S. aureus, providing a conceptual framework for clonal microabscess generation, which was supported by a stochastic individual-based, mathematical model. Once a threshold of masses was reached, increasing the number of infecting bacteria did not result in greater mass numbers, despite enhanced phagocytosis. This suggests a finite number of permissive, phagocyte niches determined by macrophage associated factors. Increased understanding of the parameters of infection dynamics provides avenues for development of rational control measures.
Collapse
Affiliation(s)
- Grace R Pidwill
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Josie F Pyrah
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
- The Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joshua A F Sutton
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alex Best
- School of Mathematics & Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Stephen A Renshaw
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- The Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
33
|
Yu YJ, Yan JH, Chen QW, Qiao JY, Peng SY, Cheng H, Chen M, Zhang XZ. Polymeric nano-system for macrophage reprogramming and intracellular MRSA eradication. J Control Release 2023; 353:591-610. [PMID: 36503071 DOI: 10.1016/j.jconrel.2022.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.
Collapse
Affiliation(s)
- Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Si-Yuan Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
34
|
Zhang Y, Hao M, Li L, Luo Q, Deng S, Yang Y, Liu Y, Fang W, Song E. Research progress of contrast agents for bacterial infection imaging in vivo. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Janžič L, Repas J, Pavlin M, Zemljić-Jokhadar Š, Ihan A, Kopitar AN. Macrophage polarization during Streptococcus agalactiae infection is isolate specific. Front Microbiol 2023; 14:1186087. [PMID: 37213504 PMCID: PMC10192866 DOI: 10.3389/fmicb.2023.1186087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Streptococcus agalactiae (Group B Streptococcus, GBS), a Gram-positive commensal in healthy adults, remains a major cause of neonatal infections, usually manifesting as sepsis, meningitis, or pneumonia. Intrapartum antibiotic prophylaxis has greatly reduced the incidence of early-onset disease. However, given the lack of effective measures to prevent the risk of late-onset disease and invasive infections in immunocompromised individuals, more studies investigating the GBS-associated pathogenesis and the interplay between bacteria and host immune system are needed. Methods Here, we examined the impact of 12 previously genotyped GBS isolates belonging to different serotypes and sequence types on the immune response of THP-1 macrophages. Results Flow cytometry analysis showed isolate-specific differences in phagocytic uptake, ranging from 10% for isolates of serotype Ib, which possess the virulence factor protein β, to over 70% for isolates of serotype III. Different isolates also induced differential expression of co-stimulatory molecules and scavenger receptors with colonizing isolates inducing higher expression levels of CD80 and CD86 compared to invasive isolates. In addition, real-time measurements of metabolism revealed that macrophages enhanced both glycolysis and mitochondrial respiration after GBS infection, with isolates of serotype III being the most potent activators of glycolysis and glycolytic ATP production. Macrophages also showed differential resistance to GBS-mediated cell cytotoxicity as measured by LDH release and real-time microscopy. The differences were evident both between serotypes and between isolates obtained from different specimens (colonizing or invasive isolates) demonstrating the higher cytotoxicity of vaginal compared with blood isolates. Conclusions Thus, the data suggest that GBS isolates differ in their potential to become invasive or remain colonizing. In addition, colonizing isolates appear to be more cytotoxic, whereas invasive isolates appear to exploit macrophages to their advantage, avoiding the immune recognition and antibiotics.
Collapse
Affiliation(s)
- Larisa Janžič
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljić-Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andreja Nataša Kopitar,
| |
Collapse
|
36
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Szafraniec GM, Szeleszczuk P, Dolka B. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet Q 2022; 42:21-40. [PMID: 35076352 PMCID: PMC8843168 DOI: 10.1080/01652176.2022.2033880] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Lameness or leg weakness is the main cause of poor poultry welfare and serious economic losses in meat-type poultry production worldwide. Disorders related to the legs are often associated with multifactorial aetiology which makes diagnosis and proper treatment difficult. Among the infectious agents, bacteria of genus Staphylococcus are one of the most common causes of bone infections in poultry and are some of the oldest bacterial infections described in poultry. Staphylococci readily infect bones and joints and are associated with bacterial chondronecrosis with osteomyelitis (BCO), spondylitis, arthritis, tendinitis, tenosynovitis, osteomyelitis, turkey osteomyelitis complex (TOC), bumblefoot, dyschondroplasia with osteomyelitis and amyloid arthropathy. Overall, 61 staphylococcal species have been described so far, and 56% of them (34/61) have been isolated from clinical cases in poultry. Although Staphylococcus aureus is the principal cause of poultry staphylococcosis, other Staphylococcus species, such as S. agnetis, S. cohnii, S. epidermidis, S. hyicus, S. simulans, have also been isolated from skeletal lesions. Antimicrobial treatment of staphylococcosis is usually ineffective due to the location and type of lesion, as well as the possible occurrence of multidrug-resistant strains. Increasing demand for antibiotic-free farming has contributed to the use of alternatives to antibiotics. Other prevention methods, such as better management strategies, early feed restriction or use of slow growing broilers should be implemented to avoid rapid growth rate, which is associated with locomotor problems. This review aims to summarise and address current knowledge on skeletal disorders associated with Staphylococcus spp. infection in poultry.
Collapse
Affiliation(s)
- Gustaw M. Szafraniec
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
38
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Rodrigues Lopes I, Alcantara LM, Silva RJ, Josse J, Vega EP, Cabrerizo AM, Bonhomme M, Lopez D, Laurent F, Vandenesch F, Mano M, Eulalio A. Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature. Nat Commun 2022; 13:7174. [PMID: 36418309 PMCID: PMC9684519 DOI: 10.1038/s41467-022-34790-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Ines Rodrigues Lopes
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Laura Maria Alcantara
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jerome Josse
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Elena Pedrero Vega
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Ana Marina Cabrerizo
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Melanie Bonhomme
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Daniel Lopez
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Frederic Laurent
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Francois Vandenesch
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Miguel Mano
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Department of Life Sciences, University of Coimbra, Coimbra, Portugal ,grid.13097.3c0000 0001 2322 6764British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - Ana Eulalio
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Nesson ET, McDowell SA. Innovations in Evaluating Statin Benefit and Efficacy in Staphylococcus aureus Intracellular Infection Management. Int J Mol Sci 2022; 23:ijms232113006. [PMID: 36361794 PMCID: PMC9657138 DOI: 10.3390/ijms232113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/23/2022] Open
Abstract
An emerging therapeutic approach in the treatment of infectious disease is to augment the host response through repurposing of well-tolerated, non-antibiotic, host-directed therapeutics. Earlier retrospective studies identify a positive association between statin use and a decreased risk of death due to sepsis or bacteremia. However, more recent randomized control trials fail to detect a therapeutic benefit in these complex infection settings. It is postulated that unrecognized biases in certain observational studies may have led to an overestimation of benefit and that statin use is instead a marker for health status, wealth, and demographic characteristics which may separately affect death due to infection. What remains unresolved is that in vitro and in vivo evidence reproducibly indicates that statin pharmacology limits infection and augments immunomodulatory responses, suggesting that therapeutic benefits may be attainable in certain infection settings, such as intracellular infection by S. aureus. Carefully considering the biological mechanisms capable of driving the relationship between statins and infections and constructing a methodology to avoid potential biases in observational studies would enable the examination of protective effects against infection and limit the risk of underestimating statin efficacy. Such an approach would rely on the examination of statin use in defined infection settings based on an underlying mode-of-action and pharmacology, where the inhibition of HMG-CoA-reductase at the rate-limiting step in cholesterol biosynthesis diminishes not only cholesterol levels but also isoprenoid intermediates central to host cell invasion by S. aureus. Therapeutic benefit in such settings, if existent, may be of clinical importance.
Collapse
Affiliation(s)
- Erik T. Nesson
- Department of Economics, Ball State University, Muncie, IN 47306, USA
| | - Susan A. McDowell
- Office of Research and Innovation, Miami University, Oxford, OH 45056, USA
- Correspondence:
| |
Collapse
|
41
|
Korir ML, Doster RS, Lu J, Guevara MA, Spicer SK, Moore RE, Francis JD, Rogers LM, Haley KP, Blackman A, Noble KN, Eastman AJ, Williams JA, Damo SM, Boyd KL, Townsend SD, Henrique Serezani C, Aronoff DM, Manning SD, Gaddy JA. Streptococcus agalactiae cadD alleviates metal stress and promotes intracellular survival in macrophages and ascending infection during pregnancy. Nat Commun 2022; 13:5392. [PMID: 36104331 PMCID: PMC9474517 DOI: 10.1038/s41467-022-32916-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/24/2022] [Indexed: 01/17/2023] Open
Abstract
Perinatal infection with Streptococcus agalactiae, or Group B Streptococcus (GBS), is associated with preterm birth, neonatal sepsis, and stillbirth. Here, we study the interactions of GBS with macrophages, essential sentinel immune cells that defend the gravid reproductive tract. Transcriptional analyses of GBS-macrophage co-cultures reveal enhanced expression of a gene encoding a putative metal resistance determinant, cadD. Deletion of cadD reduces GBS survival in macrophages, metal efflux, and resistance to metal toxicity. In a mouse model of ascending infection during pregnancy, the ΔcadD strain displays attenuated bacterial burden, inflammation, and cytokine production in gestational tissues. Furthermore, depletion of host macrophages alters cytokine expression and decreases GBS invasion in a cadD-dependent fashion. Our results indicate that GBS cadD plays an important role in metal detoxification, which promotes immune evasion and bacterial proliferation in the pregnant host.
Collapse
Affiliation(s)
- Michelle L Korir
- Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, MI, USA
- Aurora University, Department of Biology, Aurora, IL, USA
| | - Ryan S Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Miriam A Guevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina K Spicer
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Rebecca E Moore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Jamisha D Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Rogers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathryn P Haley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Amondrea Blackman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen N Noble
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alison J Eastman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janice A Williams
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
- Department of Biochemistry and Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - C Henrique Serezani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shannon D Manning
- Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, MI, USA.
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA.
| |
Collapse
|
42
|
Chisari E, Cho J, Wouthuyzen-Bakker M, Parvizi J. Gut permeability may be associated with periprosthetic joint infection after total hip and knee arthroplasty. Sci Rep 2022; 12:15094. [PMID: 36064964 PMCID: PMC9445168 DOI: 10.1038/s41598-022-19034-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
A growing number of recent investigations on the human genome, gut microbiome, and proteomics suggests that the loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately influencing the close bidirectional interaction between the gut microbiome and the immune system. This cross-talk is highly influential in shaping the host immune system function and ultimately affecting the outcome of interventions. We hypothesized that the loss of mucosal barrier in the gut may be associatedto acute and chronic periprosthetic joint infections (PJI). Zonulin, soluble CD14 (sCD14), and lipopolysaccharide (LPS) were tested in plasma as part of a prospective cohort study of patients undergoing primary arthroplasty or revision arthroplasty because of an aseptic failure or PJI (as defined by the 2018 criteria). All blood samples were collected before antibiotic administration. Samples were tested using commercially available enzyme-linked immunosorbent assays as markers for gut permeability. A total of 134 patients were included in the study of which 44 patients had PJI (30 chronic and 14 acute), and the remaining 90 patients were categorized as non-infected that included 64 patients revised for aseptic failure, and 26 patients undergoing primary total joint arthroplasty. Both Zonulin (7.642 ± 6.077 ng/mL vs 4.560 ± 3.833 ng/mL; p < 0.001) and sCD14 levels (555.721 ± 216.659 ng/mL vs 396.872 ± 247.920 ng/mL; p = 0.003) were significantly elevated in the PJI group compared to non-infected cases. Higher levels of Zonulin were found in acute infections compared to chronic PJI (11.595 ± 6.722 ng/mL vs. 5.798 ± 4.841 ng/mL; p = 0.005). This prospective study reveals a possible link between gut permeability and the ‘gut-immune-joint axis’ in PJI. If this association continues to be borne out with a larger cohort and more in-depth analysis, it will have a clinically significant implication in managing patients with PJI. It may be that in addition to the administration of antimicrobials, patients with PJI and other orthopaedic infections may benefit from administration of gastrointestinal modulators such as pro and prebiotics.
Collapse
Affiliation(s)
- Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA, 19107, USA. .,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Jeongeun Cho
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA, 19107, USA
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA, 19107, USA
| |
Collapse
|
43
|
Chisari E, Magnuson JA, Ong CB, Parvizi J, Krueger CA. Ceramic-on-polyethylene hip arthroplasty reduces the risk of postoperative periprosthetic joint infection. J Orthop Res 2022; 40:2133-2138. [PMID: 34812555 DOI: 10.1002/jor.25230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Metal-on-polyethylene (MoP) total hip arthroplasty (THA) prostheses are known to release metal debris. Basic science studies suggest that metal implants induce a pro-inflammatory response that ultimately chemoattracts leukocytes including macrophages and neutrophils to the surgical site. This raises concern of higher risk of infection with these prostheses through the "trojan horse" mechanism by which neutrophils and macrophages transport intracellular pathogens from a remote site. This study compared the infection occurrence between MoP and ceramic-on-polyethylene (CoP) implants to determine if a higher infection rate in MoP is present. We reviewed a consecutive series of 6052 CoP and 4550 MoP primary THA patients from 2015 to 2019. The occurrence of periprosthetic joint infection at 2 years was defined according to the 2018 ICM definition. Statistical analysis consisted of descriptive statistics, univariate analysis, and regression modeling. When compared to CoP, MoP patients were older, included more females, had a higher body mass index, and more commonly affected by comorbidities according to Elixhauser's score. Total revisions were higher in the MoP group (3.19% vs. 2.41%) The absolute incidence of PJI was higher in MoP (2.40% vs. 1.64%). When we adjusted for confounding factors, MoP was found independently associated with a higher PJI risk. Despite MoP and CoP both being widely used for primary THA, we found a higher incidence of PJI in MoP patients. The association remained significant when controlled for possible confounders. We hypothesize that leukocyte recruitment to these implants may play a role and should be further investigated.
Collapse
Affiliation(s)
- Emanuele Chisari
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Justin A Magnuson
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christian B Ong
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Javad Parvizi
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chad A Krueger
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
45
|
Karanja CW, Naganna N, Abutaleb NS, Dayal N, Onyedibe KI, Aryal U, Seleem MN, Sintim HO. Isoquinoline Antimicrobial Agent: Activity against Intracellular Bacteria and Effect on Global Bacterial Proteome. Molecules 2022; 27:5085. [PMID: 36014324 PMCID: PMC9416421 DOI: 10.3390/molecules27165085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
A new class of alkynyl isoquinoline antibacterial compounds, synthesized via Sonogashira coupling, with strong bactericidal activity against a plethora of Gram-positive bacteria including methicillin- and vancomycin-resistant Staphylococcus aureus (S. aureus) strains is presented. HSN584 and HSN739, representative compounds in this class, reduce methicillin-resistant S. aureus (MRSA) load in macrophages, whilst vancomycin, a drug of choice for MRSA infections, was unable to clear intracellular MRSA. Additionally, both HSN584 and HSN739 exhibited a low propensity to develop resistance. We utilized comparative global proteomics and macromolecule biosynthesis assays to gain insight into the alkynyl isoquinoline mechanism of action. Our preliminary data show that HSN584 perturb S. aureus cell wall and nucleic acid biosynthesis. The alkynyl isoquinoline moiety is a new scaffold for the development of potent antibacterial agents against fatal multidrug-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Caroline W. Karanja
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Nimishetti Naganna
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24061, USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Kenneth I. Onyedibe
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
| | - Uma Aryal
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24061, USA
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Siwczak F, Cseresnyes Z, Hassan MIA, Aina KO, Carlstedt S, Sigmund A, Groger M, Surewaard BGJ, Werz O, Figge MT, Tuchscherr L, Loffler B, Mosig AS. Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials 2022; 287:121632. [PMID: 35728409 DOI: 10.1016/j.biomaterials.2022.121632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Infections with Staphylococcus aureus (S. aureus) have been reported from various organs ranging from asymptomatic colonization to severe infections and sepsis. Although considered an extracellular pathogen, S. aureus can invade and persist in professional phagocytes such as monocytes and macrophages. Its capability to persist and manipulate macrophages is considered a critical step to evade host antimicrobial reactions. We leveraged a recently established human liver-on-chip model to demonstrate that S. aureus specifically targets macrophages as essential niche facilitating bacterial persistence and phenotype switching to small colony variants (SCVs). In vitro, M2 polarization was found to favor SCV-formation and was associated with increased intracellular bacterial loads in macrophages, increased cell death, and impaired recruitment of circulating monocytes to sites of infection. These findings expand the knowledge about macrophage activation in the liver and its impact on bacterial persistence and dissemination in the course of infection.
Collapse
Affiliation(s)
- Fatina Siwczak
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Zoltan Cseresnyes
- Applied Systems Biology Research Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 13, 07745, Jena, Germany
| | - Mohamed I Abdelwahab Hassan
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Kehinde Oluwasegun Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Swen Carlstedt
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Anke Sigmund
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Marko Groger
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology Research Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Bettina Loffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Am Nonnenplan 1, 07743, Jena, Germany.
| |
Collapse
|
47
|
Yuan J, Zhang Q, Chen S, Yan M, Yue L. LC3-Associated Phagocytosis in Bacterial Infection. Pathogens 2022; 11:pathogens11080863. [PMID: 36014984 PMCID: PMC9415076 DOI: 10.3390/pathogens11080863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
LC3-associated phagocytosis (LAP) is a noncanonical autophagy process reported in recent years and is one of the effective mechanisms of host defense against bacterial infection. During LAP, bacteria are recognized by pattern recognition receptors (PRRs), enter the body, and then recruit LC3 onto a single-membrane phagosome to form a LAPosome. LC3 conjugation can promote the fusion of the LAPosomes with lysosomes, resulting in their maturation into phagolysosomes, which can effectively kill the identified pathogens. However, to survive in host cells, bacteria have also evolved strategies to evade killing by LAP. In this review, we summarized the mechanism of LAP in resistance to bacterial infection and the ways in which bacteria escape LAP. We aim to provide new clues for developing novel therapeutic strategies for bacterial infectious diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Qiuyu Zhang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Shihua Chen
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
- Correspondence: (M.Y.); (L.Y.)
| | - Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: (M.Y.); (L.Y.)
| |
Collapse
|
48
|
Hommes JW, Surewaard BGJ. Intracellular Habitation of Staphylococcus aureus: Molecular Mechanisms and Prospects for Antimicrobial Therapy. Biomedicines 2022; 10:1804. [PMID: 36009351 PMCID: PMC9405036 DOI: 10.3390/biomedicines10081804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a global health threat, especially with the continuous development of antibiotic resistance. As an opportunistic pathogen, MRSA infections have a high mortality rate worldwide. Although classically described as an extracellular pathogen, many studies have shown over the past decades that MRSA also has an intracellular aspect to its infectious cycle, which has been observed in vitro in both non-professional as well as professional phagocytes. In vivo, MRSA has been shown to establish an intracellular niche in liver Kupffer cells upon bloodstream infection. The staphylococci have evolved various evasion strategies to survive the antimicrobial environment of phagolysosomes and use these compartments to hide from immune cells and antibiotics. Ultimately, the host cells get overwhelmed by replicating bacteria, leading to cell lysis and bacterial dissemination. In this review, we describe the different intracellular aspects of MRSA infection and briefly mention S. aureus evasion strategies. We discuss how this intracellular niche of bacteria may assist in antibiotic tolerance development, and lastly, we describe various new antibacterial strategies that target the intracellular bacterial niche.
Collapse
Affiliation(s)
| | - Bas G. J. Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
49
|
Rani L, Singh J, Sharma A, Singh H, Verma I, Panda NK, Minz RW. Anti-staphylococcal responses and their relationship with HLA-DR-DQ polymorphism in granulomatosis with polyangiitis: a preliminary evidence of association with disease outcome. Clin Exp Med 2022:10.1007/s10238-022-00865-6. [PMID: 35881260 DOI: 10.1007/s10238-022-00865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Chronic nasal carriage of Staphylococcus aureus (S. aureus) is a risk factor for relapse of granulomatosis with polyangiitis (GPA), and genetic susceptibility to infections and autoimmune diseases is majorly affected by HLA genes. Previous studies have shown the association of HLA Class-II genes with GPA susceptibility. Here, we aim to assess immune responses of GPA patients against S. aureus antigens in relation to the HLA-DR-DQ genes polymorphism to determine the disease outcome. A total of 45 GPA patients and 128 healthy controls during 2010-2012 were included in this case-control study. HLA-DRB1/DQB1 allele typing was performed by polymerase chain reaction-sequence-specific primer (PCR-SSP) method. Immune responses against S. aureus antigens were investigated in 20 active vs. remitting GPA (after 6 months of cyclophosphamide and glucocorticoids) patients by Western blot. Statistical analysis was performed using χ2 test and Fisher's exact test. We observed a significant association of DRB1*08, DRB1*16 and DQB1*04 alleles with GPA susceptibility, whereas DRB1*15, DRB1*10 and DQB1*05 alleles were suggested as protective alleles. Among S. aureus antigens, active GPA patients' sera reacted more strongly with 34 and 24 kDa antigens of S. aureus than remitting and healthy control sera. Furthermore, we observed that the lack of DQB1*06 allele confers complete remission even in the presence of anti-S. aureus antibodies against 24 kDa protein. Our findings suggest that the presence of DQB1*06 allele and S. aureus infection may prolong active disease. Further, our study indicates the potential of using anti-staphylococcal medications for achieving remission in patients having HLA-DQB1*06 allele.
Collapse
Affiliation(s)
- Lekha Rani
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jagdeep Singh
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Heera Singh
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh K Panda
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
50
|
Chisari E, Cho J, Wouthuyzen-Bakker M, Parvizi J. Periprosthetic Joint Infection and the Trojan Horse Theory: Examining the Role of Gut Dysbiosis and Epithelial Integrity. J Arthroplasty 2022; 37:1369-1374. [PMID: 35301048 DOI: 10.1016/j.arth.2022.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is an uncommon yet dreadful complication after total joint arthroplasty. Emerging evidence suggested a role for the gut microbiome in the pathogenesis of such infections as a reservoir of opportunistic pathogens. METHODS A secondary analysis of an ongoing trial looking at gut dysbiosis and PJI was performed on patients that had next-generation sequencing done as part of their workup. Gut permeability and dysbiosis were measured using known biomarkers such as Zonulin. Statistical analysis consisted of descriptive statistics and logistic regression modeling. RESULTS Among the cohort of 46 (47.8% female) patients, with a mean age of 68.47 years (range, 40 to 91) and a mean BMI 31.15 ± 6.49 kg/m2, 38 patients underwent a revision for PJI (29 chronic and 9 acute infections), and 8 patients were classified as aseptic failures. Then, a review of each of the bacteria retrieved was performed. Those known to be gut commensal based on available literature were noted. When regression modeling was performed, Zonulin levels were found to be associated with an increased probability of a similar finding (Estimate: 0.377, OR: 1.458; P = .001). CONCLUSION In our study, we report the first clinical evidence of the translocation of bacteria from the gut to the joint in patients with PJI. In particular, when evaluating the microbiological profile of the NGS signal, a great number of known gut commensals were seen in patients with a highly permeable dysbiotic gut. Manipulation of the gut microbiome may become part of an essential and comprehensive approach for management of patients with PJI.
Collapse
Affiliation(s)
- Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jeongeun Cho
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|