1
|
Wu R, Veličković M, Burnum-Johnson KE. From single cell to spatial multi-omics: unveiling molecular mechanisms in dynamic and heterogeneous systems. Curr Opin Biotechnol 2024; 89:103174. [PMID: 39126877 DOI: 10.1016/j.copbio.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024]
Abstract
Single-cell multi-omics and spatial technology have been widely applied to biomedical studies and recently to environmental studies. The cell size detected by single-cell omics ranges from ∼2 µm (e.g., Bacillus subtilis) to ∼120 µm (e.g., human oocytes). Simultaneous detection of single-cell multi-omics is available to human and plant tissues while limited to microbial samples. Spatial technology enables mapping the detected biomolecules in situ. The recent advances in Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging and Micro/Nanodroplet Processing in One Pot for Trace Samples for the first time allow the application of spatial multi-omics in highly heterogeneous environmental samples composed of plants, fungi, and bacteria. We envision that these technologies will continue to advance our understanding of unique cell types, their developmental trajectory, and the intercellular signaling and interaction within biological samples.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marija Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
de Almeida CM, Dos Santos NA, Lacerda V, Ma X, Fernández FM, Romão W. Applications of MALDI mass spectrometry in forensic science. Anal Bioanal Chem 2024; 416:5255-5280. [PMID: 39160439 DOI: 10.1007/s00216-024-05470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Forensic chemistry literature has grown exponentially, with many analytical techniques being used to provide valuable information to help solve criminal cases. Among them, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), particularly MALDI MS imaging (MALDI MSI), has shown much potential in forensic applications. Due to its high specificity, MALDI MSI can analyze a wide variety of compounds in complex samples without extensive sample preparation, providing chemical profiles and spatial distributions of given analyte(s). This review introduces MALDI MS(I) to forensic scientists with a focus on its basic principles and the applications of MALDI MS(I) to the analysis of fingerprints, drugs of abuse, and their metabolites in hair, medicine samples, animal tissues, and inks in documents.
Collapse
Affiliation(s)
- Camila M de Almeida
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Nayara A Dos Santos
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
- Instituto Nacional de Ciência E Tecnologia Forense (INCT Forense), Vila Velha, Brazil
| | - Valdemar Lacerda
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wanderson Romão
- Laboratory of Petroleomics and Forensics, Universidade Federal Do Espírito Santo (UFES), Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil.
- Instituto Nacional de Ciência E Tecnologia Forense (INCT Forense), Vila Velha, Brazil.
- Instituto Federal Do Espírito Santo (IFES), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo, 29106-010, Brazil.
| |
Collapse
|
3
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Shen Y, Wang Y, Wang J, Xie P, Xie C, Chen Y, Banaei N, Ren K, Cai Z. High-resolution 3D spatial distribution of complex microbial colonies revealed by mass spectrometry imaging. J Adv Res 2024:S2090-1232(24)00375-8. [PMID: 39214416 DOI: 10.1016/j.jare.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Bacterial living states and the distribution of microbial colony signaling molecules are widely studied using mass spectrometry imaging (MSI). However, current approaches often treat 3D colonies as flat 2D disks, inadvertently omitting valuable details. The challenge of achieving 3D MSI in biofilms persists due to the unique properties of microbial samples. OBJECTIVES The study aimed to develop a new biofilm sample preparation method that can realize high-resolution 3D MSI of bacterial colonies to reveal the spatial organization of bacterial colonies. METHODS This article introduces the moisture-assisted cryo-section (MACS) method, enabling embedding-free sectioning parallel to the growth plane. The MACS method secures intact sections by controlling ambient humidity and slice thickness, preventing molecular delocalization. RESULTS Combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI)-MSI, the MACS method provides high-resolution insights into endogenic and exogenous molecule distributions in Pseudomonas aeruginosa (P. aeruginosa) biofilms, including isomeric pairs. Moreover, analyzed colonies are revived into 3D models, vividly depicting molecular distribution from inner to outer layers. Additionally, we investigated metabolite spatiotemporal dynamics in multiple colonies, observing changes over time and distinct patterns in single versus merged colonies. These findings shed light on the repel-merge process for multi-colony formation. Furthermore, our study monitored chemical responses inside biofilms after antibiotic treatment, showing increased antibiotic levels in the outer biofilm layer over time while maintaining low levels in the inner region. Moreover, the MACS method demonstrated its universality and applicability to other bacterial strains. CONCLUSION These results unveil complex cell activities within biofilm colonies, offering insights into microbe communities. The MACS method is universally applicable to loosely packed microorganism colonies, overcoming the limitations of previously reported MSI methods. It has great potential for studying bacterial-infected cancer tissues and artificial organs, making it a valuable tool in microbiological research.
Collapse
Affiliation(s)
- Yuting Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; Clinical Microbiology Laboratory, Stanford Health Care, Stanford, CA 94304, USA
| | - Kangning Ren
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China; Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, PR China.
| |
Collapse
|
5
|
Burguet P, La Rocca R, Kune C, Tellatin D, Stulanovic N, Rigolet A, Far J, Ongena M, Rigali S, Quinton L. Exploiting Differential Signal Filtering (DSF) and Image Structure Filtering (ISF) Methods for Untargeted Mass Spectrometry Imaging of Bacterial Metabolites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1743-1755. [PMID: 39007645 DOI: 10.1021/jasms.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-free technique, producing images where pixels contain mass spectra. The technique allows the visualization of the spatial distribution of (bio)molecules from metabolites to proteins, on surfaces such as tissues sections or bacteria culture media. One particularly exciting example of MALDI-MSI use rests on its potential to localize ionized compounds produced during microbial interactions and chemical communication, offering a molecular snapshot of metabolomes at a given time. The huge size and the complexity of generated MSI data make the processing of the data challenging, which requires the use of computational methods. Despite recent advances, currently available commercial software relies mainly on statistical tools to identify patterns, similarities, and differences within data sets. However, grouping m/z values unique to a given data set according to microbiological contexts, such as coculture experiments, still requires tedious manual analysis. Here we propose a nontargeted method exploiting the differential signals between negative controls and tested experimental conditions, i.e., differential signal filtering (DSF), and a scoring of the ion images using image structure filtering (ISF) coupled with a fold change score between the controls and the conditions of interest. These methods were first applied to coculture experiments involving Escherichia coli and Streptomyces coelicolor, revealing specific MS signals during bacterial interaction. Two case studies were also investigated: (i) cellobiose-mediated induction for the pathogenicity of Streptomyces scabiei, the causative agent of common scab on root and tuber crops, and (ii) iron-repressed production of siderophores of S. scabiei. This report proposes guidelines for MALDI-MSI data treatment applied in the case of microbiology contexts, with enhanced ion peak annotation in specific culture conditions. The strengths and weaknesses of the methods are discussed.
Collapse
Affiliation(s)
- Pierre Burguet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Raphaël La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Déborah Tellatin
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Augustin Rigolet
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
6
|
Zhang YD, Ma C, Zheng KW, Han SQ, Ha W, Shi YP. Direct and Rapid Visualization of the Spatial Distribution of Cholesterol in Alzheimer's and Cancer Tissue via MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1756-1767. [PMID: 39001840 DOI: 10.1021/jasms.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Cholesterol is a vital component of the central nervous system and tissues, and understanding its spatial distribution is crucial for biology, pathophysiology, and diagnostics. However, direct imaging of cholesterol using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) remains challenging and time-consuming due to the difficulty in ionizing the sterol molecule. To tackle this issue, a MALDI-MSI method is established for direct and rapid analysis of the spatial distribution of cholesterol in Alzheimer's disease (AD), different cancer tissues and organs via MALDI-MSI. This excellent imaging performance depends on the study and systemic optimization of various conditions that affect the imaging of MALDI-MSI. In this case, we report the distribution and levels of cholesterol across specific structures of the AD mouse brain and different tumor tissue and organs. According to the results, the content of cholesterol in the AD mouse cerebellum, especially in the arborvitae, was significantly higher than that in the wild type (WT) model. Furthermore, we successfully visualize the distribution of cholesterol in other organs, such as the heart, liver, spleen, kidney, pancreas, as well as tumor tissues parenchyma and interstitium using MALDI-MSI. Notably, the attribution of cholesterol MS/MS hydrocarbon fragments was systematically investigated. Our presented optimization strategy and established MALDI-MSI method can be easily generalized for different animal tissues or live samples, thereby facilitating the potential for applications of MALDI-MSI in clinical, medical and biological research.
Collapse
Affiliation(s)
- Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Chen Ma
- Gansu Province Key Laboratory of Evidence Science Techniques Research and Application, Gansu University of Political Science and Law, Lanzhou 730070, P. R. China
| | - Kai-Wen Zheng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Wang X, Peng R, Zhao L. Multiscale metabolomics techniques: Insights into neuroscience research. Neurobiol Dis 2024; 198:106541. [PMID: 38806132 DOI: 10.1016/j.nbd.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The field of metabolomics examines the overall composition and dynamic patterns of metabolites in living organisms. The primary methods used in metabolomics include liquid chromatography (LC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) analysis. These methods enable the identification and examination of metabolite types and contents within organisms, as well as modifications to metabolic pathways and their connection to the emergence of diseases. Research in metabolomics has extensive value in basic and applied sciences. The field of metabolomics is growing quickly, with the majority of studies concentrating on biomedicine, particularly early disease diagnosis, therapeutic management of human diseases, and mechanistic knowledge of biochemical processes. Multiscale metabolomics is an approach that integrates metabolomics techniques at various scales, including the holistic, tissue, cellular, and organelle scales, to enable more thorough and in-depth studies of metabolic processes in organisms. Multiscale metabolomics can be combined with methods from systems biology and bioinformatics. In recent years, multiscale metabolomics approaches have become increasingly important in neuroscience research due to the nervous system's high metabolic demands. Multiscale metabolomics can offer novel concepts and approaches for the diagnosis, treatment, and development of medication for neurological illnesses in addition to a more thorough understanding of brain metabolism and nervous system function. In this review, we summarize the use of multiscale metabolomics techniques in neuroscience, address the promise and constraints of these techniques, and provide an overview of the metabolome and its applications in neuroscience.
Collapse
Affiliation(s)
- Xiaoya Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
8
|
Liu Z, Zeng M, Xiao Y, Zhu X, Liu M, Long Y, Li H, Zhang Y, Yao S. Surface-mediated fluorescent sensor array for identification of gut microbiota and monitoring of colorectal cancer. Talanta 2024; 274:126081. [PMID: 38613947 DOI: 10.1016/j.talanta.2024.126081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The development of efficient, accurate, and high-throughput technology for gut microbiota sensing holds great promise in the maintenance of health and the treatment of diseases. Herein, we developed a rapid fluorescent sensor array based on surface-engineered silver nanoparticles (AgNPs) and vancomycin-modified gold nanoclusters (AuNCs@Van) for gut microbiota sensing. By controlling the surface of AgNPs, the recognition ability of the sensor can be effectively improved. The sensor array was used to successfully discriminate six gut-derived bacteria, including probiotics, neutral, and pathogenic bacteria and even their mixtures. Significantly, the sensing system has also been successfully applied to classify healthy individuals and colorectal cancer (CRC) patients rapidly and accurately within 30 min, demonstrating its clinically relevant specificity.
Collapse
Affiliation(s)
- Zhihui Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Meizi Zeng
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yuquan Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ying Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
9
|
Lopez A, Holbrook JH, Kemper GE, Lukowski JK, Andrews WT, Hummon AB. Tracking Drugs and Lipids: Quantitative Mass Spectrometry Imaging of Liposomal Doxorubicin Delivery and Bilayer Fate in Three-Dimensional Tumor Models. Anal Chem 2024; 96:9254-9261. [PMID: 38778440 DOI: 10.1021/acs.analchem.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Targeted therapy to the tumor would greatly advance precision medicine. Many drug delivery vehicles have emerged, but liposomes are cited as the most successful to date. Recent efforts to develop liposomal drug delivery systems focus on drug distribution in tissues and ignore liposomal fate. In this study, we developed a novel method to elucidate both drug and liposomal bilayer distribution in a three-dimensional cell culture model using quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI qMSI) alongside fluorescence microscopy. Imaging liposomal distribution in a cell culture model is challenging, as lipids forming the bilayer are endogenous to the model system. To resolve this issue, we functionalized the bilayer by chemically cross-linking a fluorescent tag to the alkyne-containing lipid hexynoyl phosphoethanolamine (HPE). We synthesized liposomes incorporating the tagged HPE lipid and encapsulated within them doxorubicin, yielding a theranostic liposome capable of both drug delivery and monitoring liposomal uptake. We employed an "in-tissue" MALDI qMSI approach to generate a calibration curve with R2 = 0.9687, allowing for quantification of doxorubicin within spheroid sections at multiple time points. After 72 h of treatment with the theranostic liposomes, full doxorubicin penetration was observed. The metabolites doxorubicinone and 7-deoxydoxorubicinone were also detected after 48 h. Modification of the bilayer allowed for fluorescence microscopy tracking of liposomes, while MALDI MSI simultaneously permitted the imaging of drugs and metabolites. While we demonstrated the utility of our method with doxorubicin, this system could be applied to examine the uptake, release, and metabolism of many other liposome-encapsulated drugs.
Collapse
Affiliation(s)
- Arbil Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - William T Andrews
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Prentice BM. Imaging with mass spectrometry: Which ionization technique is best? JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5016. [PMID: 38625003 DOI: 10.1002/jms.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Hoskisson PA, Barona-Gómez F, Rozen DE. Phenotypic heterogeneity in Streptomyces colonies. Curr Opin Microbiol 2024; 78:102448. [PMID: 38447313 DOI: 10.1016/j.mib.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Streptomyces are a large genus of multicellular bacteria best known for their prolific production of bioactive natural products. In addition, they play key roles in the mineralisation of insoluble resources, such as chitin and cellulose. Because of their multicellular mode of growth, colonies of interconnected hyphae extend over a large area that may experience different conditions in different parts of the colony. Here, we argue that within-colony phenotypic heterogeneity can allow colonies to simultaneously respond to divergent inputs from resources or competitors that are spatially and temporally dynamic. We discuss causal drivers of heterogeneity, including competitors, precursor availability, metabolic diversity and division of labour, that facilitate divergent phenotypes within Streptomyces colonies. We discuss the adaptive causes and consequences of within-colony heterogeneity, highlight current knowledge (gaps) and outline key questions for future studies.
Collapse
Affiliation(s)
- Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | | | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands.
| |
Collapse
|
12
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
13
|
Weigand MR, Unsihuay Vila DM, Yang M, Hu H, Hernly E, Muhoberac M, Tichy S, Laskin J. Lipid Isobar and Isomer Imaging Using Nanospray Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2024. [PMID: 38321595 DOI: 10.1021/acs.analchem.3c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Mass spectrometry imaging (MSI) is widely used for examining the spatial distributions of molecules in biological samples. Conventional MSI approaches, in which molecules extracted from the sample are distinguished based on their mass-to-charge ratio, cannot distinguish between isomeric species and some closely spaced isobars. To facilitate isobar separation, MSI is typically performed using high-resolution mass spectrometers. Nevertheless, the complexity of the mixture of biomolecules observed in each pixel of the image presents a challenge, even for modern mass spectrometers with the highest resolving power. Herein, we implement nanospray desorption electrospray ionization (nano-DESI) MSI on a triple quadrupole (QqQ) mass spectrometer for the spatial mapping of isobaric and isomeric species in biological tissues. We use multiple reaction monitoring acquisition mode (MRM) with unit mass resolution to demonstrate the performance of this new platform by imaging lipids in mouse brain and rat kidney tissues. We demonstrate that imaging in MRM mode may be used to distinguish between isobaric phospholipids requiring a mass resolving power of 3,800,000. Additionally, we have been able to image eicosanoid isomers, a largely unexplored class of signaling molecules present in tissues at low concentrations, in rat kidney tissue. This new capability substantially enhances the specificity and selectivity of MSI, enabling spatial localization of species that remain unresolved in conventional MSI experiments.
Collapse
Affiliation(s)
- Miranda R Weigand
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Daisy M Unsihuay Vila
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Manxi Yang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Matthew Muhoberac
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Shane Tichy
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Jeckel H, Nosho K, Neuhaus K, Hastewell AD, Skinner DJ, Saha D, Netter N, Paczia N, Dunkel J, Drescher K. Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations. Nat Microbiol 2023; 8:2378-2391. [PMID: 37973866 PMCID: PMC10686836 DOI: 10.1038/s41564-023-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Development of microbial communities is a complex multiscale phenomenon with wide-ranging biomedical and ecological implications. How biological and physical processes determine emergent spatial structures in microbial communities remains poorly understood due to a lack of simultaneous measurements of gene expression and cellular behaviour in space and time. Here we combined live-cell microscopy with a robotic arm for spatiotemporal sampling, which enabled us to simultaneously acquire phenotypic imaging data and spatiotemporal transcriptomes during Bacillus subtilis swarm development. Quantitative characterization of the spatiotemporal gene expression patterns revealed correlations with cellular and collective properties, and phenotypic subpopulations. By integrating these data with spatiotemporal metabolome measurements, we discovered a spatiotemporal cross-feeding mechanism fuelling swarm development: during their migration, earlier generations deposit metabolites which are consumed by later generations that swarm across the same location. These results highlight the importance of spatiotemporal effects during the emergence of phenotypic subpopulations and their interactions in bacterial communities.
Collapse
Affiliation(s)
- Hannah Jeckel
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, Basel, Switzerland
| | - Konstantin Neuhaus
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Alasdair D Hastewell
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dominic J Skinner
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| | - Dibya Saha
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Knut Drescher
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Teuber A, Caniglia G, Barth H, Kranz C, Mizaikoff B. Thin-Film Waveguide Laser Spectroscopy: A Novel Platform for Bacterial Analysis. Anal Chem 2023; 95:16600-16608. [PMID: 37883708 DOI: 10.1021/acs.analchem.3c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacterial sensing based on quantum cascade laser spectroscopy coupled with diamond or gallium arsenide thin-film waveguides is a novel analytical tool for gaining high-resolution infrared spectroscopic information of planktonic and sessile bacteria, as shown in the present study for Escherichia coli. During observation periods of up to 24 h, diamond and gallium arsenide thin-film waveguide laser spectroscopy was compared to information obtained via conventional Fourier transform infrared spectroscopy. The proliferation behavior of E. coli at those surfaces was complementarily investigated using atomic force microscopy and scanning electron microscopy.
Collapse
Affiliation(s)
- Andrea Teuber
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology and Toxicology and Pharmacology of Natural Products, University of Ulm, 89081 Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany
- Hahn-Schickard, 89077 Ulm, Germany
| |
Collapse
|
16
|
Wang Z, Zhu H, Xiong W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Sci Bull (Beijing) 2023; 68:2268-2284. [PMID: 37666722 DOI: 10.1016/j.scib.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Metabolomics is a nascent field of inquiry that emerged in the late 20th century. It encompasses the comprehensive profiling of metabolites across a spectrum of organisms, ranging from bacteria and cells to tissues. The rapid evolution of analytical methods and data analysis has greatly accelerated progress in this dynamic discipline over recent decades. Sophisticated techniques such as liquid chromatograph mass spectrometry (MS), gas chromatograph MS, capillary electrophoresis MS, and nuclear magnetic resonance serve as the cornerstone of metabolomic analysis. Building upon these methods, a plethora of modifications and combinations have emerged to propel the advancement of metabolomics. Despite this progress, scrutinizing metabolism at the single-cell or single-organelle level remains an arduous task over the decades. Some of the most thrilling advancements, such as single-cell and single-organelle metabolic profiling techniques, offer profound insights into the intricate mechanisms within cells and organelles. This allows for a comprehensive study of metabolic heterogeneity and its pivotal role in multiple biological processes. The progress made in MS imaging has enabled high-resolution in situ metabolic profiling of tissue sections and even individual cells. Spatial reconstruction techniques enable the direct representation of metabolic distribution and alteration in three-dimensional space. The application of novel metabolomic techniques has led to significant breakthroughs in biological and clinical studies, including the discovery of novel metabolic pathways, determination of cell fate in differentiation, anti-aging intervention through modulating metabolism, metabolomics-based clinicopathologic analysis, and surgical decision-making based on on-site intraoperative metabolic analysis. This review presents a comprehensive overview of both conventional and innovative metabolomic techniques, highlighting their applications in groundbreaking biological and clinical studies.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
17
|
Chen Y, Liu Y, Li X, He Y, Li W, Peng Y, Zheng J. Recent Advances in Mass Spectrometry-Based Spatially Resolved Molecular Imaging of Drug Disposition and Metabolomics. Drug Metab Dispos 2023; 51:1273-1283. [PMID: 37295949 DOI: 10.1124/dmd.122.001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Mass spectrometric imaging is a nontargeted, tag-free, high-throughput, and highly responsive analytical approach. The highly accurate molecular visualization detection technology enables qualitative and quantitative analyses of biologic tissues or cells scanned by mass spectrometry in situ, extracting known and unknown multiple compounds, and simultaneously assessing relative contents of targeting molecules by monitoring their molecular ions and pinpointing the spatial locations of those molecules distributed. Five mass spectrometric imaging techniques and their characteristics are introduced in the review, including matrix-assisted laser desorption ionization mass spectrometry, secondary ion mass spectrometry, desorption electrospray ionization mass spectrometry, laser ablation electrospray ionization mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry. The mass spectrometry-based techniques provide the possibility for spatial metabolomics with the capability of high throughput and precision detection. The approaches have been widely employed to spatially image not only metabolome of endogenous amino acids, peptides, proteins, neurotransmitters, and lipids but also the disposition of exogenous chemicals, such as pharmaceutical agents, environmental pollutants, toxicants, natural products, and heavy metals. The techniques also provide us with spatial distribution imaging of analytes in single cells, tissue microregions, organs, and whole animals. SIGNIFICANCE STATEMENT: The review article includes an overview of five commonly used mass spectrometers for spatial imaging and describes the advantages and disadvantages of each. Examples of the technology applications cover drug disposition, diseases, and omics. Technical aspects of relative and absolute quantification by mass spectrometric imaging and challenges for future new applications are discussed as well. The reviewed knowledge may benefit the development of new drugs and provide a better understanding of biochemical processes related to physiology and diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C., Y.L., X.L., Y.H., W.L.); Division of Pain Management, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China (Y.C.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China (Y.P., J.Z.)
| |
Collapse
|
18
|
Parker GD, Hanley L, Yu XY. Mass Spectral Imaging to Map Plant-Microbe Interactions. Microorganisms 2023; 11:2045. [PMID: 37630605 PMCID: PMC10459445 DOI: 10.3390/microorganisms11082045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms.
Collapse
Affiliation(s)
- Gabriel D. Parker
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
19
|
Lesco KC, Rowland SM, Ratanathanawongs Williams SK, Laurens LML. Single-filament imaging mass spectrometry lipidomics in Arthrospira platensis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9525. [PMID: 37062938 DOI: 10.1002/rcm.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Elucidating intra-organismal biochemical and lipid organization in photosynthetic biological cell factories of filamentous cyanobacteria, such as Arthrospira platensis (Spirulina), is important for tracking physiological response mechanisms during growth. Little is known about the filaments' biochemical organization and cellular structure and no label-free imaging techniques exist that provide molecular mapping. METHODS We applied ultrahigh-resolution mass spectrometry (MS) with matrix-assisted laser desorption ionization (MALDI) imaging to immobilized Spirulina filaments to investigate the localization of lipids across distinct physiological regions. We optimized matrix selection and deposition methods with the goal of facilitating high spatial, and intra-filament, resolution using untargeted multivariate statistical spectral deconvolution across MS pixels. RESULTS Our results demonstrate an improved two-step matrix application with an optimized procedure for intra-organismal lipid profiling to improve analyte sensitivity and achieve higher spatial resolution. We evaluate several conventional matrices, namely 2,5-dihydroxybenzoic acid (DHB), superDHB (sDHB), 1,5-diaminonaphthalene (DAN), and a 50:50 mix of DHB and sDHB, and compare delineation and pixel-based elucidation of intra-filament lipidomics. We identified a total of 1626 features that could be putatively assigned a lipid-like formula based on database query and 46 unique features, with associated lipid assignments that were significantly distinct in their intra-filament location. CONCLUSIONS MALDI imaging MS with untargeted statistical spectral deconvolution was used to visualize intra-filament lipidomics organization in Spirulina filaments. Improvements in matrix deposition, including sequential sublimation and pneumatic spraying, increased signal abundance at high spatial resolution and allowed for identification of distinct lipid composition regions. This work outlines a methodology that may be used for micro-ecological untargeted molecular phenotyping.
Collapse
Affiliation(s)
- Kaitlin C Lesco
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - Steven M Rowland
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
20
|
Liu J, Hu W, Han Y, Nie H. Recent advances in mass spectrometry imaging of single cells. Anal Bioanal Chem 2023:10.1007/s00216-023-04774-9. [PMID: 37269305 DOI: 10.1007/s00216-023-04774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Mass spectrometry imaging (MSI) is a sensitive, specific, label-free imaging analysis technique that can simultaneously obtain the spatial distribution, relative content, and structural information of hundreds of biomolecules in cells and tissues, such as lipids, small drug molecules, peptides, proteins, and other compounds. The study of molecular mapping of single cells can reveal major scientific issues such as the activity pattern of living organisms, disease pathogenesis, drug-targeted therapy, and cellular heterogeneity. Applying MSI technology to the molecular mapping of single cells can provide new insights and ideas for the study of single-cell metabolomics. This review aims to provide an informative resource for those in the MSI community who are interested in single-cell imaging. Particularly, we discuss advances in imaging schemes and sample preparation, instrumentation improvements, data processing and analysis, and 3D MSI over the past few years that have allowed MSI to emerge as a powerful technique in the molecular imaging of single cells. Also, we highlight some of the most cutting-edge studies in single-cell MSI, demonstrating the future potential of single-cell MSI. Visualizing molecular distribution at the single-cell or even sub-cellular level can provide us with richer cell information, which strongly contributes to advancing research fields such as biomedicine, life sciences, pharmacodynamic testing, and metabolomics. At the end of the review, we summarize the current development of single-cell MSI technology and look into the future of this technology.
Collapse
Affiliation(s)
- Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Analytical Instrumental Center, Peking University, Beijing, 100871, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Analytical Instrumental Center, Peking University, Beijing, 100871, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China.
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Analytical Instrumental Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Xiang Y, Metodiev M, Wang M, Cao B, Bunch J, Takats Z. Enhancement of Ambient Mass Spectrometry Imaging Data by Image Restoration. Metabolites 2023; 13:metabo13050669. [PMID: 37233710 DOI: 10.3390/metabo13050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Mass spectrometry imaging (MSI) has been a key driver of groundbreaking discoveries in a number of fields since its inception more than 50 years ago. Recently, MSI development trends have shifted towards ambient MSI (AMSI) as the removal of sample-preparation steps and the possibility of analysing biological specimens in their natural state have drawn the attention of multiple groups across the world. Nevertheless, the lack of spatial resolution has been cited as one of the main limitations of AMSI. While significant research effort has presented hardware solutions for improving the resolution, software solutions are often overlooked, although they can usually be applied in a cost-effective manner after image acquisition. In this vein, we present two computational methods that we have developed to directly enhance the image resolution post-acquisition. Robust and quantitative resolution improvement is demonstrated for 12 cases of openly accessible datasets across laboratories around the globe. Using the same universally applicable Fourier imaging model, we discuss the possibility of true super-resolution by software for future studies.
Collapse
Affiliation(s)
- Yuchen Xiang
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Martin Metodiev
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington TW11 0LW, UK
| | - Meiqi Wang
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Boxuan Cao
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington TW11 0LW, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Yu J, Hermann M, Smith R, Tomm H, Metwally H, Kolwich J, Liu C, Le Blanc JCY, Covey TR, Ross AC, Oleschuk R. Hyperspectral Visualization-Based Mass Spectrometry Imaging by LMJ-SSP: A Novel Strategy for Rapid Natural Product Profiling in Bacteria. Anal Chem 2023; 95:2020-2028. [PMID: 36634199 DOI: 10.1021/acs.analchem.2c04550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mass spectrometry imaging (MSI) has been widely used to discover natural products (NPs) from underexplored microbiological sources. However, the technique is limited by incompatibility with complicated/uneven surface topography and labor-intensive sample preparation, as well as lengthy compound profiling procedures. Here, liquid micro-junction surface sampling probe (LMJ-SSP)-based MSI is used for rapid profiling of natural products from Gram-negative marine bacteria Pseudoalteromonas on nutrient agar media without any sample preparation. A conductance-based autosampling platform with 1 mm spatial resolution and an innovative multivariant analysis-driven method was used to create one hyperspectral image for the sampling area. NP discovery requires general spatial correlation between m/z and colony location but not highly precise spatial resolution. The hyperspectral image was used to annotate different m/z by straightforward color differences without the need to directly interrogate the spectra. To demonstrate the utility of our approach, the rapid analysis of Pseudoalteromonas rubra DSM6842, Pseudoalteromonas tunicata DSM14096, Pseudoalteromonas piscicida JCM20779, and Pseudoalteromonas elyakovii ATCC700519 cultures was directly performed on Agar. Various natural products, including prodiginine and tambjamine analogues, were quickly identified from the hyperspectral image, and the dynamic extracellular environment was shown with compound heatmaps. Hyperspectral visualization-based MSI is an efficient and sensitive strategy for direct and rapid natural product profiling from different Pseudoalteromonas strains.
Collapse
Affiliation(s)
- Jian Yu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Matthias Hermann
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Rachael Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hailey Tomm
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Haidy Metwally
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jennifer Kolwich
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Chang Liu
- SCIEX, Concord, Ontario L4K 4 V8, Canada
| | | | | | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
23
|
Lima NM, Dos Santos GF, da Silva Lima G, Vaz BG. Advances in Mass Spectrometry-Metabolomics Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:101-122. [PMID: 37843807 DOI: 10.1007/978-3-031-41741-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Highly selective and sensitive analytical techniques are necessary for microbial metabolomics due to the complexity of the microbial sample matrix. Hence, mass spectrometry (MS) has been successfully applied in microbial metabolomics due to its high precision, versatility, sensitivity, and wide dynamic range. The different analytical tools using MS have been employed in microbial metabolomics investigations and can contribute to the discovery or accelerate the search for bioactive substances. The coupling with chromatographic and electrophoretic separation techniques has resulted in more efficient technologies for the analysis of microbial compounds occurring in trace levels. This book chapter describes the current advances in the application of mass spectrometry-based metabolomics in the search for new biologically active agents from microbial sources; the development of new approaches for in silico annotation of natural products; the different technologies employing mass spectrometry imaging to deliver more comprehensive analysis and elucidate the metabolome involved in ecological interactions as they enable visualization of the spatial dispersion of small molecules. We also describe other ambient ionization techniques applied to the fingerprint of microbial natural products and modern techniques such as ion mobility mass spectrometry used to microbial metabolomic analyses and the dereplication of natural microbial products through MS.
Collapse
|
24
|
Guo A, Chen Z, Li F, Luo Q. Delineating regions of interest for mass spectrometry imaging by multimodally corroborated spatial segmentation. Gigascience 2022; 12:giad021. [PMID: 37039115 PMCID: PMC10087011 DOI: 10.1093/gigascience/giad021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
Mass spectrometry imaging (MSI), which localizes molecules in a tag-free, spatially resolved manner, is a powerful tool for the understanding of underlying biochemical mechanisms of biological phenomena. When analyzing MSI data, it is essential to delineate regions of interest (ROIs) that correspond to tissue areas of different anatomical or pathological labels. Spatial segmentation, obtained by clustering MSI pixels according to their mass spectral similarities, is a popular approach to automate ROI definition. However, how to select the number of clusters (#Clusters), which determines the granularity of segmentation, remains to be resolved, and an inappropriate #Clusters may lead to ROIs not biologically real. Here we report a multimodal fusion strategy to enable an objective and trustworthy selection of #Clusters by utilizing additional information from corresponding histology images. A deep learning-based algorithm is proposed to extract "histomorphological feature spectra" across an entire hematoxylin and eosin image. Clustering is then similarly performed to produce histology segmentation. Since ROIs originating from instrumental noise or artifacts would not be reproduced cross-modally, the consistency between histology and MSI segmentation becomes an effective measure of the biological validity of the results. So, #Clusters that maximize the consistency is deemed as most probable. We validated our strategy on mouse kidney and renal tumor specimens by producing multimodally corroborated ROIs that agreed excellently with ground truths. Downstream analysis based on the said ROIs revealed lipid molecules highly specific to tissue anatomy or pathology. Our work will greatly facilitate MSI-mediated spatial lipidomics, metabolomics, and proteomics research by providing intelligent software to automatically and reliably generate ROIs.
Collapse
Affiliation(s)
- Ang Guo
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyu Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Luo
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
26
|
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering (Basel) 2022; 9:707. [PMID: 36421108 PMCID: PMC9687252 DOI: 10.3390/bioengineering9110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 10/17/2023] Open
Abstract
As an impressive mass spectrometry technology, mass spectrometric imaging (MSI) can provide mass spectra data and spatial distribution of analytes simultaneously. MSI has been widely used in diverse fields such as clinical diagnosis, the pharmaceutical industry and environmental study due to its accuracy, high resolution and developing reproducibility. Natural products (NPs) have been a critical source of leading drugs; almost half of marketed drugs are derived from NPs or their derivatives. The continuous search for bioactive NPs from microorganisms or microbiomes has always been attractive. MSI allows us to analyze and characterize NPs directly in monocultured microorganisms or a microbial community. In this review, we briefly introduce current mainstream ionization technologies for microbial samples and the key issue of sample preparation, and then summarize some applications of MSI in the exploration of microbial NPs and metabolic interaction, especially NPs from marine microbes. Additionally, remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
28
|
Nwabufo CK, Aigbogun OP. The Role of Mass Spectrometry Imaging in Pharmacokinetic Studies. Xenobiotica 2022; 52:811-827. [PMID: 36048000 DOI: 10.1080/00498254.2022.2119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although liquid chromatography-tandem mass spectrometry is the gold standard analytical platform for the quantification of drugs, metabolites, and biomarkers in biological samples, it cannot localize them in target tissues.The localization and quantification of drugs and/or their associated metabolites in target tissues is a more direct measure of bioavailability, biodistribution, efficacy, and regional toxicity compared to the traditional substitute studies using plasma.Therefore, combining high spatial resolution imaging functionality with the superior selectivity and sensitivity of mass spectrometry into one analytical technique will be a valuable tool for targeted localization and quantification of drugs, metabolites, and biomarkers.Mass spectrometry imaging (MSI) is a tagless analytical technique that allows for the direct localization and quantification of drugs, metabolites, and biomarkers in biological tissues, and has been used extensively in pharmaceutical research.The overall goal of this current review is to provide a detailed description of the working principle of MSI and its application in pharmacokinetic studies encompassing absorption, distribution, metabolism, excretion, and toxicity processes, followed by a discussion of the strategies for addressing the challenges associated with the functional utility of MSI in pharmacokinetic studies that support drug development.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
29
|
Khalil SM, Sprenger RR, Hermansson M, Ejsing CS. DDA-imaging with structural identification of lipid molecules on an Orbitrap Velos Pro mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4882. [PMID: 36055222 PMCID: PMC9541402 DOI: 10.1002/jms.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a useful technique for visualizing the spatial distribution of lipid molecules in tissues. Nevertheless, the use of MSI to investigate local lipid metabolic hallmarks has until recently been hampered by a lack of adequate technology that supports confident lipid identification. This limitation was recently mitigated by the development of DDA-imaging technology where high-resolution MSI is combined with parallel acquisition of lipid tandem MS2 spectra on a hybrid ion trap-Orbitrap Elite mass spectrometer featuring a resolving power of 240,000 and a scan time of 1 s. Here, we report the key tenets related to successful transfer of the DDA-imaging technology onto an Orbitrap Velos Pro instrument featuring a resolving power of 120,000 and a scan time of 2 s. Through meticulous performance assessments and method optimization, we tuned the DDA-imaging method to be able to confidently identify 73 molecular lipid species in mouse brain sections and demonstrate that the performance of the technology is comparable with DDA-imaging on the Orbitrap Elite. Altogether, our work shows that DDA-imaging on the Orbitrap Velos Pro instrument can serve as a robust workhorse for lipid imaging in routine applications.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R. Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
30
|
Xu M, Oppong-Danquah E, Wang X, Oddsson S, Abdelrahman A, Pedersen SV, Szomek M, Gylfason AE, Snorradottir BS, Christensen EA, Tasdemir D, Jameson CJ, Murad S, Andresson OS, Magnusson KP, de Boer HJ, Thorsteinsdottir M, Omarsdottir S, Heidmarsson S, Olafsdottir ES. Novel methods to characterise spatial distribution and enantiomeric composition of usnic acids in four Icelandic lichens. PHYTOCHEMISTRY 2022; 200:113210. [PMID: 35439526 DOI: 10.1016/j.phytochem.2022.113210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Usnic acid is an antibiotic metabolite produced by a wide variety of lichenized fungal lineages. The enantiomers of usnic acid have been shown to display contrasting bioactivities, and hence it is important to determine their spatial distribution, amounts and enantiomeric ratios in lichens to understand their roles in nature and grasp their pharmaceutical potential. The overall aim of the study was to characterise the spatial distribution of the predominant usnic acid enantiomer in lichens by combining spatial imaging and chiral chromatography. Specifically, separation and quantification of usnic acid enantiomers in four common lichens in Iceland was performed using a validated chiral chromatographic method. Molecular dynamics simulation was carried out to rationalize the chiral separation mechanism. Spatial distribution of usnic acid in the lichen thallus cross-sections were analysed using Desorption Electrospray Ionization-Imaging Mass Spectrometry (DESI-IMS) and fluorescence microscopy. DESI-IMS confirmed usnic acid as a cortical compound, and revealed that usnic acid can be more concentrated around the algal vicinity. Fluorescence microscopy complemented DESI-IMS by providing more detailed distribution information. By combining results from spatial imaging and chiral separation, we were able to visualize the distribution of the predominant usnic acid enantiomer in lichen cross-sections: (+)-usnic acid in Cladonia arbuscula and Ramalina siliquosa, and (-)-usnic acid in Alectoria ochroleuca and Flavocetraria nivalis. This study provides an analytical foundation for future environmental and functional studies of usnic acid enantiomers in lichens.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland.
| | - Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106, Kiel, Germany
| | - Xiaoyu Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sebastian Oddsson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland
| | - Asmaa Abdelrahman
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark
| | - Simon Vilms Pedersen
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark; Department of Materials, Imperial College London, SW7 2BP, London, UK
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Aron Elvar Gylfason
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland
| | | | - Eva Arnspang Christensen
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106, Kiel, Germany; Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Cynthia J Jameson
- Department of Chemistry, University of Illinois at Chicago, Illinois, 60607, USA
| | - Sohail Murad
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | | | - Kristinn Petur Magnusson
- Icelandic Institute of Natural History, Akureyri Division, 600, Akureyri, Iceland; Faculty of Natural Resource Sciences, University of Akureyri, 600, Akureyri, Iceland
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, 0562, Oslo, Norway
| | | | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, 600, Akureyri, Iceland
| | | |
Collapse
|
31
|
Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, Wang F, Yan H, Zeng L, Zhang L, Zhou F. Microbiota in Tumors: From Understanding to Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200470. [PMID: 35603968 PMCID: PMC9313476 DOI: 10.1002/advs.202200470] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/30/2022] [Indexed: 05/09/2023]
Abstract
Microbes with complex functions have been found to be a potential component in tumor microenvironments. Due to their low biomass and other obstacles, intratumor microbiota is poorly understood. Mucosal sites and normal adjacent tissues are important sources of intratumor microbiota, while hematogenous spread also leads to the invasion of microbes. Intratumor microbiota affects the progression of tumors through several mechanisms, such as DNA damage, activation of oncogenic pathways, induction of immunosuppression, and metabolization of drugs. Notably, in different types of tumors, the composition and abundance of intratumor microbiota are highly heterogeneous and may play different roles in the progression of tumors. Because of the concern in this field, several techniques such as omics and immunological methods have been used to study intratumor microbiota. Here, recent progress in this field is reviewed, including the potential sources of intratumor microbiota, their functions and related mechanisms, and their heterogeneity. Techniques that can be used to study intratumor microbiota are also discussed. Moreover, research is summarized into the development of strategies that can be used in antitumor treatment and prospects for possible future research in this field.
Collapse
Affiliation(s)
- Yifan Xie
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Lei Zhang
- Department of Orthopaedic Surgery WenzhouThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou32500P. R. China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Haiyan Yan
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeSuzhou215123P. R. China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
32
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
33
|
Grujcic V, Taylor GT, Foster RA. One Cell at a Time: Advances in Single-Cell Methods and Instrumentation for Discovery in Aquatic Microbiology. Front Microbiol 2022; 13:881018. [PMID: 35677911 PMCID: PMC9169044 DOI: 10.3389/fmicb.2022.881018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Studying microbes from a single-cell perspective has become a major theme and interest within the field of aquatic microbiology. One emerging trend is the unfailing observation of heterogeneity in activity levels within microbial populations. Wherever researchers have looked, intra-population variability in biochemical composition, growth rates, and responses to varying environmental conditions has been evident and probably reflect coexisting genetically distinct strains of the same species. Such observations of heterogeneity require a shift away from bulk analytical approaches and development of new methods or adaptation of existing techniques, many of which were first pioneered in other, unrelated fields, e.g., material, physical, and biomedical sciences. Many co-opted approaches were initially optimized using model organisms. In a field with so few cultivable models, method development has been challenging but has also contributed tremendous insights, breakthroughs, and stimulated curiosity. In this perspective, we present a subset of methods that have been effectively applied to study aquatic microbes at the single-cell level. Opportunities and challenges for innovation are also discussed. We suggest future directions for aquatic microbiological research that will benefit from open access to sophisticated instruments and highly interdisciplinary collaborations.
Collapse
Affiliation(s)
- Vesna Grujcic
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, Viso M. COSPAR Sample Safety Assessment Framework (SSAF). ASTROBIOLOGY 2022; 22:S186-S216. [PMID: 35653292 DOI: 10.1089/ast.2022.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Collapse
Affiliation(s)
- Gerhard Kminek
- European Space Agency, Mars Exploration Group, Noordwijk, The Netherlands
| | - James N Benardini
- NASA Headquarters, Office of Planetary Protection, Washington, DC, USA
| | - Frank E Brenker
- Goethe University, Department of Geoscience, Frankfurt, Germany
| | - Timothy Brooks
- UK Health Security Agency, Rare & Imported Pathogens Laboratory, Salisbury, UK
| | - Aaron S Burton
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Suresh Dhaniyala
- Clarkson University, Department of Mechanical and Aeronautical Engineering, Potsdam, New York, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Jeffrey L Fortman
- Security Programs, Engineering Biology Research Consortium, Emeryville, USA
| | - Mihaela Glamoclija
- Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Monica M Grady
- The Open University, Faculty of Science, Technology, Engineering & Mathematics, Milton Keynes, UK
| | - Heather V Graham
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, Maryland, USA
| | - Junichi Haruyama
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Thomas L Kieft
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, USA
| | - Marion Koopmans
- Erasmus University Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Meyer
- NASA Headquarters, Planetary Science Division, Washington, DC, USA
| | | | - Tullis C Onstott
- Princeton University, Department of Geosciences, Princeton, New Jersey, USA
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, Department of Medical Statistics, London, UK
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Emeritus, Bloomington, Indiana, USA
| | - Mark A Sephton
- Imperial College London, Department of Earth Science & Engineering, London, UK
| | - Sandra Siljeström
- RISE, Research Institutes of Sweden, Department of Methodology, Textiles and Medical Technology, Stockholm, Sweden
| | - Haruna Sugahara
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Shino Suzuki
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Yohey Suzuki
- University of Tokyo, Graduate School of Science, Tokyo, Japan
| | - Mark van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- European Institute for Marine Studies (IUEM), CNRS-UMR6538 Laboratoire Geo-Ocean, Plouzané, France
| | | |
Collapse
|
35
|
Hughes DJ, Raina JB, Nielsen DA, Suggett DJ, Kühl M. Disentangling compartment functions in sessile marine invertebrates. Trends Ecol Evol 2022; 37:740-748. [PMID: 35570130 DOI: 10.1016/j.tree.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023]
Abstract
Sessile invertebrates are frequently sampled and processed whole for downstream analyses. However, their apparent structural simplicity is deceptive as these organisms often harbour discrete compartments. These compartments have physicochemical conditions that differ markedly from neighbouring tissues, and that have likely evolved to support specific functions. Here, we argue that such compartments should be specifically targeted when characterising sessile invertebrate biology and we use the coral gastrovascular cavity to support our argument. This complex compartment displays steep and dynamic chemical gradients, harbours distinct microorganisms, and presumably plays a key role in coral biology. Disentangling the functions played by (and amongst) compartments will likely provide transformative insight into the biology of sessile invertebrates and their future under environmental change.
Collapse
Affiliation(s)
- David J Hughes
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia.
| | - Jean-Baptiste Raina
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia.
| | - Daniel A Nielsen
- University of Technology Sydney, School of Life Sciences, Ultimo, NSW 2007, Australia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia
| | - Michael Kühl
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia; Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK 3000 Helsingør, Denmark.
| |
Collapse
|
36
|
Jens JN, Breiner DJ, Phelan VV. Spray-Based Application of Matrix to Agar-Based Microbial Samples for Reproducible Sample Adherence in MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:731-734. [PMID: 35202541 PMCID: PMC9341124 DOI: 10.1021/jasms.1c00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial mass spectrometry imaging (MSI) is a powerful tool used to generate biological hypotheses about the roles of metabolites in microbial competition based upon their two-dimensional spatial distribution. The most commonly used ionization method for microbial MSI is matrix-assisted laser desorption ionization (MALDI). However, medium components and microbial metabolites influence the adhesion of agar samples to the MALDI target, limiting the applicability of MALDI MSI to microbes grown on specific media. Here, we describe a three-step process using a robotic sprayer for a matrix application that improves the adherence of agar samples to the MALDI target, enabling the use of different media for microbial growth and an MSI analysis of larger sample surface areas.
Collapse
|
37
|
Wu ZH, Su Y, Luo ZF, Sun ZL, Gong ZH, Xiao LT. In Situ Visual Distribution of Gelsemine, Koumine, and Gelsenicine by MSI in Gelsemiumelegans at Different Growth Stages. Molecules 2022; 27:1810. [PMID: 35335173 PMCID: PMC8952314 DOI: 10.3390/molecules27061810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023] Open
Abstract
The distribution of pharmatically important alkaloids gelsemine, koumine, and gelsenicine in Gelsemium elegans tissues is a hot topic attracting research attention. Regretfully, the in planta visual distribution details of these alkaloids are far from clear although several researches reported the alkaloid quantification in G. elegans by LC-MS/MS. In this study, mass imaging spectrometry (MSI) was employed to visualize the in situ visualization of gelsemine, koumine, and gelsenicine in different organs and tissues of G. elegans at different growth stages, and the relative quantification of three alkaloids were performed according to the image brightness intensities captured by the desorption electrospray ionization MSI (DESI-MSI). The results indicated that these alkaloids were mainly accumulated in pith region and gradually decreased from pith to epidermis. Interestingly, three alkaloids were found to be present in higher abundance in the leaf vein. Along with the growth and development, the accumulation of these alkaloids was gradually increased in root and stem. Moreover, we employed LC-MS/MS to quantify three alkaloids and further validated the in situ distributions. The content of koumine reached 249.2 μg/g in mature roots, 272.0 μg/g in mature leaves, and 149.1 μg/g in mature stems, respectively, which is significantly higher than that of gelsemine and gelsenicine in the same organ. This study provided an accurately in situ visualization of gelsemine, koumine, and gelsenicine in G. elegans, and would be helpful for understanding their accumulation in plant and guiding application.
Collapse
Affiliation(s)
- Zi-Han Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Zhou-Fei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhi-Hong Gong
- Waters Technology (Shanghai) Co., Ltd., Shanghai 200120, China;
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| |
Collapse
|
38
|
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 2022; 20:143-160. [PMID: 34552265 PMCID: PMC9578303 DOI: 10.1038/s41579-021-00621-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Helena Mannochio-Russo
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | - Alan K. Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| |
Collapse
|
39
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
40
|
Lin JS, Tian XD, Li G, Zhang FL, Wang Y, Li JF. Advanced plasmonic technologies for multi-scale biomedical imaging. Chem Soc Rev 2022; 51:9445-9468. [DOI: 10.1039/d2cs00525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmonic technologies are available for multi-scale biomedical imaging ranging from micrometre to angstrom level.
Collapse
Affiliation(s)
- Jia-Sheng Lin
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiang-Dong Tian
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- Xiamen Cardiovascular Hospital, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
41
|
McCann A, Kune C, La Rocca R, Oetjen J, Arias AA, Ongena M, Far J, Eppe G, Quinton L, De Pauw E. Rapid visualization of lipopeptides and potential bioactive groups of compounds by combining ion mobility and MALDI imaging mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:81-88. [PMID: 34906328 DOI: 10.1016/j.ddtec.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
Mass spectrometry imaging (MSI) has become a powerful method for mapping metabolite distribution in a tissue. Applied to bacterial colonies, MSI has a bright future, both for the discovery of new bioactive compounds and for a better understanding of bacterial antibiotic resistance mechanisms. Coupled with separation techniques such as ion mobility mass spectrometry (IM-MS), the identification of metabolites directly on the image is now possible and does not require additional analysis such as HPLC-MS/MS. In this article, we propose to apply a semi-targeted workflow for rapid IM-MSI data analysis focused on the search for bioactive compounds. First, chemically-related compounds showing a repetitive mass unit (i.e. lipids and lipopeptides) were targeted based on the Kendrick mass defect analysis. The detected groups of potentially bioactive compounds were then confirmed by fitting their measured ion moibilites to their measured m/z values. Using both their m/z and ion mobility values, the selected groups of compounds were identified using the available databases and finally their distribution was observed on the image. Using this workflow on a co-culture of bacteria, we were able to detect and localize bioactive compounds involved in the microbial interaction.
Collapse
Affiliation(s)
- Andréa McCann
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Raphael La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Janina Oetjen
- Bruker Daltonik GmbH, Fahrenheitsstr. 4, 28359 Bremen, Germany
| | | | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Loic Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
42
|
Lu Q, Guan X, You X, Xu Z, Zenobi R. High-Spatial Resolution Atmospheric Pressure Mass Spectrometry Imaging Using Fiber Probe Laser Ablation-Dielectric Barrier Discharge Ionization. Anal Chem 2021; 93:14694-14700. [PMID: 34699179 DOI: 10.1021/acs.analchem.1c03055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atmospheric pressure mass spectrometry imaging (AP-MSI) is a powerful tool in many fields; however, there are still some difficulties to achieve high spatial resolution for AP-MSI, one of them being the need for a small ablation crater. Here, a fiber probe laser ablation (FPLA) system is introduced that uses an etched optical fiber with a sharp tip (o.d. 200 nm) to deliver ablation laser pulses to a sample surface to ablate materials with high spatial resolution. The tip-to-sample distance was adjusted to ∼10 μm using a micro-actuator having a stepping motor with submicron accuracy. The laser-ablated neutrals were post-ionized using a home-built in-line dielectric barrier discharge source, which can be interfaced to any mass spectrometer with an AP interface. Using MSI on a standard sample with a striped pattern and sections of fingernails treated with the drug methyl green zinc chloride salt, a FPLA-DBDI-MSI spatial resolution of ≈5 μm was demonstrated.
Collapse
Affiliation(s)
- Qiao Lu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaokang Guan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xue You
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhouyi Xu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Renato Zenobi
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
43
|
Innovation in drug toxicology: Application of mass spectrometry imaging technology. Toxicology 2021; 464:153000. [PMID: 34695509 DOI: 10.1016/j.tox.2021.153000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful molecular imaging technology that can obtain qualitative, quantitative, and location information by simultaneously detecting and mapping endogenous or exogenous molecules in biological tissue slices without specific chemical labeling or complex sample pretreatment. This article reviews the progress made in MSI and its application in drug toxicology research, including the tissue distribution of toxic drugs and their metabolites, the target organs (liver, kidney, lung, eye, and central nervous system) of toxic drugs, the discovery of toxicity-associated biomarkers, and explanations of the mechanisms of drug toxicity when MSI is combined with the cutting-edge omics methodologies. The unique advantages and broad prospects of this technology have been fully demonstrated to further promote its wider use in the field of pharmaceutical toxicology.
Collapse
|
44
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
45
|
Shi H, Grodner B, De Vlaminck I. Recent advances in tools to map the microbiome. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100289. [PMID: 34151052 PMCID: PMC8208594 DOI: 10.1016/j.cobme.2021.100289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbes thrive in diverse habitats. They often form ecological niches with rich species diversity and complex spatial structure. These communities drive biogeochemical cycles in the environment and modulate host health in the human body. Much has been learned about the makeup of human and environmental microbiota via metagenomic DNA sequencing, but information on spatial interactions between microbes and between microbes and their environment remains scarce. Here, we review recent advances in tools to map the biogeography of microbiomes. We discuss methods to spatially map microbial genes, transcripts, and metabolites. We also examine future directions for microbiome mapping technologies that will allow improved understanding of both microbiome structure and function. Finally, we reflect on the impact of these methods in Biomedical Engineering.
Collapse
Affiliation(s)
- Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
46
|
Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol 2021; 20:109-121. [PMID: 34453137 DOI: 10.1038/s41579-021-00604-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Abstract
Advances in next-generation sequencing have enabled the widespread measurement of microbiome composition across systems and over the course of microbiome assembly. Despite substantial progress in understanding the deterministic drivers of community composition, the role of historical contingency remains poorly understood. The establishment of new species in a community can depend on the order and/or timing of their arrival, a phenomenon known as a priority effect. Here, we review the mechanisms of priority effects and evidence for their importance in microbial communities inhabiting a range of environments, including the mammalian gut, the plant phyllosphere and rhizosphere, soil, freshwaters and oceans. We describe approaches for the direct testing and prediction of priority effects in complex microbial communities and illustrate these with re-analysis of publicly available plant and animal microbiome datasets. Finally, we discuss the shared principles that emerge across study systems, focusing on eco-evolutionary dynamics and the importance of scale. Overall, we argue that predicting when and how current community state impacts the success of newly arriving microbial taxa is crucial for the management of microbiomes to sustain ecological function and host health. We conclude by discussing outstanding conceptual and practical challenges that are faced when measuring priority effects in microbiomes.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Robin A Herbert
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Mary E Power
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
47
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
48
|
Expanding Molecular Coverage in Mass Spectrometry Imaging of Microbial Systems Using Metal-Assisted Laser Desorption/Ionization. Microbiol Spectr 2021; 9:e0052021. [PMID: 34287059 PMCID: PMC8552643 DOI: 10.1128/spectrum.00520-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mass spectrometry imaging (MSI) is becoming an increasingly popular analytical technique to investigate microbial systems. However, differences in the ionization efficiencies of distinct MSI methods lead to biases in terms of what types and classes of molecules can be detected. Here, we sought to increase the molecular coverage of microbial colonies by employing metal-assisted laser desorption/ionization (MetA-LDI) MSI, and we compared our results to more commonly utilized matrix-assisted laser desorption/ionization MALDI MSI. We found substantial (∼67%) overlap in the molecules detected in our analysis of Bacillus subtilis colony biofilms using both methods, but each ionization technique did lead to the identification of a unique subset of molecular species. MetA-LDI MSI tended to identify more small molecules and neutral lipids, whereas MALDI MSI more readily detected other lipids and surfactin species. Putative annotations were made using METASPACE, Metlin, and the BsubCyc database. These annotations were then confirmed from analyses of replicate bacterial colonies using liquid extraction surface analysis tandem mass spectrometry. Additionally, we analyzed B. subtilis biofilms in a polymer-based emulated soil micromodel using MetA-LDI MSI to better understand bacterial processes and metabolism in a native, soil-like environment. We were able to detect different molecular signatures within the micropore regions of the micromodel. We also show that MetA-LDI MSI can be used to analyze microbial biofilms from electrically insulating material. Overall, this study expands the molecular universe of microbial metabolism that can be visualized by MSI. IMPORTANCE Matrix-assisted laser desorption/ionization mass spectrometry imaging is becoming an important technique to investigate molecular processes within microbial colonies and microbiomes under different environmental conditions. However, this method is limited in terms of the types and classes of molecules that can be detected. In this study, we utilized metal-assisted laser desorption/ionization mass spectrometry imaging, which expanded the range of molecules that could be imaged from microbial samples. One advantage of this technique is that the addition of a metal helps facilitate ionization from electrically nonconductive substrates, which allows for the investigation of biofilms grown in polymer-based devices, like soil-emulating micromodels.
Collapse
|
49
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
50
|
Abstract
Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| |
Collapse
|