1
|
Arshad H, Gardner QA, Ahmad S, Bukhari SS, Akhtar M. Optimized extraction, identification and characterization of the mosquitocidal surface layer protein from a local bacterial isolate Lysinibacillus sphaericus Q001. Protein Expr Purif 2025; 227:106639. [PMID: 39638165 DOI: 10.1016/j.pep.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Surface layer (S-layer) is an extracellular proteinous layer consisting of two-dimensional lattice. It is typically present on archaea and also found on some bacteria. S-layer proteins from some bacteria are reported to be toxic to mosquito larvae. Here, we aimed to extract and characterize the surface layer protein from a local bacterial strain named Lysinibacillus sphaericus Q001. This bacterium was isolated from Pakistan and characterized through various biochemical tests. It was identified as Lysinibacillus sphaericus through 16S rRNA ribotyping (NCBI accession no. OQ701385.1) and matrix-assisted laser desorption/ionization (MALDI) biotyping with 2.18 ± 0.059 score. The S-layer protein was extracted by both cation exchange method and guanidinium chloride extraction method. The optimized method for the extraction and purification of S-layer yielded 35 mg of protein from 1 L culture of L. sphaericus Q001. A potential S-layer protein band (120 kDa) detected by SDS-PAGE was confirmed by bottom-up proteomics i.e., in-gel tryptic digestion of the protein followed by MALDI-TOF analysis and peptide mass fingerprinting (PMF). The insecticidal bioassays revealed that S-layer protein of L. sphaericus Q001 was toxic against Aedes aegypti larvae with LC50 value of 11 μg/ml. This shows its potential to be used as an alternative to chemical larvicides.
Collapse
Affiliation(s)
- Hamayun Arshad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Qurratulann Afza Gardner
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Saira Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Syeda Sadia Bukhari
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; Biological Sciences, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
2
|
Hamilton R, Gebbie W, Bowman C, Mantanona A, Kalyuzhnaya MG. Microbial hauberks: composition and function of surface layer proteins in gammaproteobacterial methanotrophs. Appl Environ Microbiol 2025; 91:e0136424. [PMID: 39745414 PMCID: PMC11784148 DOI: 10.1128/aem.01364-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/01/2024] [Indexed: 02/01/2025] Open
Abstract
Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, Methylotuvimicrobium buryatense 5GB1 (EQU24_15540) and Methylotuvimicrobium alcaliphilum 20ZR (MEALZ_0971 and MEALZ_0972). The proteins share 40% amino acid (AA) sequence identity with each other and are distantly related to the RsaA proteins from Caulobacter crescentus (20% AA sequence identity). Deletion of these genes resulted in loss of the characteristic hauberk pattern on the cell surface. A set of transcriptional fusions between the MEALZ_0971 and a superfolder green fluorescent protein (sfGFP) further confirmed its surface localization. The functional roles of the hauberk and cell-surface-associated proteins, including MEALZ_0971, MEALZ_0972, EQU24_15540, and a copper-induced CorA protein, were further investigated via gene expression studies and phenotypic tests. The hauberk core protein of M. alcaliphilum 20ZR showed constitutive expression across 18 growth conditions with reduced growth at high salinity, high methanol, and metal-limited conditions, suggesting a role in cell-envelope stability and metal scavenging. Overall, understanding the genetics, composition, and cellular functions of S-layers contributes to our knowledge of methanotroph adaptation to environmental perturbations and opens a promising prospect for (nano)biotechnology applications. IMPORTANCE Understanding the genetics, composition, and cellular functions of the cell envelope proteins, such as S-layers, contributes to our knowledge of microbial cell biology and stress responses and molecular adaptations to environmental perturbations. In addition, this study opens a promising prospect for (nano)biotechnology applications of methane-derived self-assembling protein materials.
Collapse
Affiliation(s)
- Richard Hamilton
- Biology Department, San Diego State University, San Diego, California, USA
| | - William Gebbie
- Biology Department, San Diego State University, San Diego, California, USA
| | - Chynna Bowman
- Biology Department, San Diego State University, San Diego, California, USA
| | - Alex Mantanona
- Biology Department, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
3
|
Wright GD. The Janus Effect: The Biochemical Logic of Antibiotic Resistance. Biochemistry 2025; 64:301-311. [PMID: 39772429 DOI: 10.1021/acs.biochem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Antibiotics are essential medicines threatened by the emergence of resistance in all relevant bacterial pathogens. The engagement of the molecular targets of antibiotics offers multiple opportunities for resistance to emerge. Successful target engagement often requires passage of the antibiotic from outside into the cell interior through one or two distinct membrane barriers. Resistance can occur by preventing the accumulation of antibiotics in sufficient quantities outside the cell, decreasing the rates of entry into the cell, and modifying the antibiotic or the target once inside the cell. These competing equilibria and rates are the lens through which the balance of antibiotic efficacy or failure can be viewed. The two faces of antibiotics, cell growth inhibition or resistance, are reminiscent of Janus, the Roman god of doorways and beginnings and endings, and offer a framework through which antibiotic discovery, use, and the emergence of resistance can be rationally viewed.
Collapse
Affiliation(s)
- Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
4
|
Sleytr UB, Pum D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q Rev Biophys 2025; 58:e4. [PMID: 39819733 DOI: 10.1017/s0033583524000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Prokaryotic microorganisms, comprising Bacteria and Archaea, exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution. S-layers provide organisms with a great variety of selective advantages, including acting as an antifouling layer, protective coating, molecular sieve, ion trap, structure involved in cell and molecular adhesion, surface recognition and virulence factor for pathogens. In Archaea that possess S-layers as the exclusive cell wall component, the (glyco)protein lattices function as a cell shape-determining/maintaining scaffold. The wealth of information available on the structure, chemistry, genetics and in vivo and in vitro morphogenesis has revealed a broad application potential for S-layers as patterning elements in a molecular construction kit for bio- and nanotechnology, synthetic biology, biomimetics, biomedicine and diagnostics. In this review, we try to describe the scientifically exciting early days of S-layer research with a special focus on the 'Vienna-S-Layer-Group'. Our presentation is intended to illustrate how our curiosity and joy of discovery motivated us to explore this new structure and to make the scientific community aware of its relevance in the realm of prokaryotes, and moreover, how we developed concepts for exploiting this unique self-assembly structure. We hope that our presentation, with its many personal notes, is also of interest from the perspective of the history of S-layer research.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Pum
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Beaud Benyahia B, Taib N, Beloin C, Gribaldo S. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat Rev Microbiol 2025; 23:41-56. [PMID: 39198708 DOI: 10.1038/s41579-024-01088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
The bacterial envelope is one of the oldest and most essential cellular components and has been traditionally divided into Gram-positive (monoderm) and Gram-negative (diderm). Recent landmark studies have challenged a major paradigm in microbiology by inferring that the last bacterial common ancestor had a diderm envelope and that the outer membrane (OM) was lost repeatedly in evolution to give rise to monoderms. Intriguingly, OM losses appear to have occurred exclusively in the Terrabacteria, one of the two major clades of bacteria. In this Review, we present current knowledge about the Terrabacteria. We describe their diversity and phylogeny and then highlight the vast phenotypic diversity of the Terrabacteria cell envelopes, which display large deviations from the textbook examples of diderms and monoderms, challenging the classical Gram-positive-Gram-negative divide. We highlight the striking differences in the systems involved in OM biogenesis in Terrabacteria with respect to the classical diderm experimental models and how they provide novel insights into the diversity and biogenesis of the bacterial cell envelope. We also discuss the potential evolutionary steps that might have led to the multiple losses of the OM and speculate on how the very first OM might have emerged before the last bacterial common ancestor.
Collapse
Affiliation(s)
- Basile Beaud Benyahia
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Najwa Taib
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
6
|
Decout A, Krasias I, Roberts L, Gimeno Molina B, Charenton C, Brown Romero D, Tee QY, Marchesi JR, Ng S, Sykes L, Bennett PR, MacIntyre DA. Lactobacillus crispatus S-layer proteins modulate innate immune response and inflammation in the lower female reproductive tract. Nat Commun 2024; 15:10879. [PMID: 39737998 DOI: 10.1038/s41467-024-55233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lactobacillus species dominance of the vaginal microbiome is a hallmark of vaginal health. Pathogen displacement of vaginal lactobacilli drives innate immune activation and mucosal barrier disruption, increasing the risks of STI acquisition and, in pregnancy, of preterm birth. We describe differential TLR mediated activation of the proinflammatory transcription factor NF-κB by vaginal pathogens and commensals. Vaginal Lactobacillus strains associated with optimal health selectively interact with anti-inflammatory innate immune receptors whereas species associated with suboptimal health including L. iners and Gardnerella vaginalis interact with both pro- and anti-inflammatory receptors. Anti-inflammatory action of L. crispatus is regulated by surface layer protein (SLPs)-mediated shielding of TLR ligands and selective interaction with the anti-inflammatory receptor DC-SIGN. Detection of SLPs within cervicovaginal fluid samples is associated with decreased concentrations of pro-inflammatory cytokines in Lactobacillus crispatus-dominated samples. These data offer mechanistic insights into how vaginal microbiota modulate host immune response and thus reproductive health and disease states.
Collapse
Affiliation(s)
- Alexiane Decout
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK.
| | - Ioannis Krasias
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren Roberts
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Belen Gimeno Molina
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, London, UK
| | - Chloé Charenton
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Daniel Brown Romero
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Qiong Y Tee
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion, and Reproduction, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Sherrianne Ng
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Lynne Sykes
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
- The Parasol Foundation Centre for Women's Health and Cancer Research, London, UK
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| |
Collapse
|
7
|
Wang H, Zhang J, Liao S, Henstra AM, Leon D, Erde J, Loo JA, Ogorzalek Loo RR, Zhou ZH, Gunsalus RP. Composition and in situ structure of the Methanospirillum hungatei cell envelope and surface layer. SCIENCE ADVANCES 2024; 10:eadr8596. [PMID: 39671499 PMCID: PMC11641113 DOI: 10.1126/sciadv.adr8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo-electron tomography, we visualized the S-layer lattice surrounding Methanospirillum hungatei, a methanogenic archaeon. Though more compact than known structures, M. hungatei's S-layer is a flexible hexagonal lattice of dome-shaped tiles, uniformly spaced from both the overlying cell sheath and the underlying cell membrane. Subtomogram averaging resolved the S-layer hexamer tile at 6.4-angstrom resolution. By fitting an AlphaFold model into hexamer tiles in flat and curved conformations, we uncover intra- and intertile interactions that contribute to the S-layer's cylindrical and flexible architecture, along with a spacer extension for cell membrane attachment. M. hungatei cell's end plug structure, likely composed of S-layer isoforms, further highlights the uniqueness of this archaeal cell. These structural features offer advantages for methane release and reflect divergent evolutionary adaptations to environmental pressures during early microbial emergence.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anne M. Henstra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Deborah Leon
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Erde
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
- UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA
| | | | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Cecil AJ, Sogues A, Gurumurthi M, Lane KS, Remaut H, Pak AJ. Molecular dynamics and machine learning stratify motion-dependent activity profiles of S-layer destabilizing nanobodies. PNAS NEXUS 2024; 3:pgae538. [PMID: 39660065 PMCID: PMC11631148 DOI: 10.1093/pnasnexus/pgae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from Bacillus anthracis, has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization. We used feature importance analysis to filter out unnecessary features and engineered remaining features to regularize the feature landscape and encourage learning of the depolymerization mechanism. We find that, while not enforced in training, a gradient-boosting decision tree is able to reproduce the experimental activities of inhibitory Nbs while maintaining high classification accuracy, whereas neural networks were only able to discriminate between classes. Further feature analysis revealed that inhibitory Nbs restrain Sap motions toward an inhibitory conformational state described by domain-domain clamping and induced twisting of domains normal to the lattice plane. We believe these motions drive Sap lattice depolymerization and can be used as design targets for improved Sap-inhibitory Nbs. Finally, we expect our method of study to apply to S-layers that serve as virulence factors in other pathogens, paving the way forward for Nb therapeutics that target depolymerization mechanisms.
Collapse
Affiliation(s)
- Adam J Cecil
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mukund Gurumurthi
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Kaylee S Lane
- Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
- Materials Science Program, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
9
|
Sharifpour MF, Sikder S, Wong Y, Koifman N, Thomas T, Courtney R, Seymour J, Loukas A. Characterization of Spirulina-derived extracellular vesicles and their potential as a vaccine adjuvant. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70025. [PMID: 39676887 PMCID: PMC11635480 DOI: 10.1002/jex2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Spirulina is an edible cyanobacterium that increasingly gaining recognition for it untapped potential in the biomanufacturing of pharmaceuticals. Despite the rapidly accumulating information on extracellular vesicles (EVs) from most other bacteria, nothing is known about Spirulina extracellular vesicles (SPEVs). This study reports the successful isolation, characterization and visualization of SPEVs for the first time and it further investigates the potential therapeutic benefits of SPEVs using a mouse model. SPEVs were isolated using ultracentrifugation and size-exclusion-chromatography. Cryo-Transmission Electron Microscopy revealed pleomorphic outer-membrane-vesicles and outer-inner-membrane-vesicles displaying diverse shapes, sizes and corona densities. To assess short- and long-term immune responses, mice were injected intraperitoneally with SPEVs, which demonstrated a significant increase in neutrophils and M1 macrophages at the injection site, indicating a pro-inflammatory effect induced by SPEVs without clinical signs of toxicity or hypersensitivity. Furthermore, SPEVs demonstrated potent adjuvanticity by enhancing antigen-specific IgG responses in mice by over 100-fold compared to an unadjuvanted model vaccine antigen. Mass-spectrometry identified 54 proteins within SPEVs, including three protein superfamily members linked to the observed pro-inflammatory effects. Our findings highlight the potential of SPEVs as a new class of vaccine adjuvant and warrant additional studies to further characterize the nature of the immune response.
Collapse
Affiliation(s)
| | - Suchandan Sikder
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Yide Wong
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Na'ama Koifman
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tamara Thomas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Robert Courtney
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Jamie Seymour
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| |
Collapse
|
10
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Stefanović C, Legg MSG, Mateyko N, Ender JJ, Kuvek T, Oostenbrink C, Schäffer C, Evans SV, Hager-Mair FF. Insights into structure and activity of a UDP-GlcNAc 2-epimerase involved in secondary cell wall polymer biosynthesis in Paenibacillus alvei. Front Mol Biosci 2024; 11:1470989. [PMID: 39391870 PMCID: PMC11464976 DOI: 10.3389/fmolb.2024.1470989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction S-layer anchoring in Paenibacillus alvei is enabled by a non-covalent interaction between an S-layer homology domain trimer and a secondary cell wall polymer (SCWP), ensuring the structural integrity of the bacterial cell wall. Within the SCWP repeat, pyruvylated ManNAc serves as the ligand and the UDP-GlcNAc-2-epimerase MnaA supplies UDP-ManNAc to SCWP biosynthesis. Methods To better understand SCWP biosynthesis and identify strategies for inhibiting pathogens with comparable cell wall architecture, like Bacillus anthracis, MnaA and rational variants were produced in E. coli and their kinetic constants determined. The effect of UDP-GlcNAc as a predicted allosteric activator and tunicamycin as a potential inhibitor of MnaA was tested in vitro supported by molecular docking experiments. Additionally, wild-type MnaA was crystallized. Results We present the crystal structure of unliganded P. alvei MnaA resolved at 2.20 Å. It adopts a GT-B fold consistent with other bacterial non-hydrolyzing UDP-GlcNAc 2-epimerases. A comparison of amino acid sequences reveals conservation of putative and known catalytic and allosteric-site residues in MnaA, which was confirmed through analysis of Q42A, Q69A, E135A and H241A MnaA variants. The kinetic parameters K M and k cat of MnaA were determined to be 3.91 mM and 33.44 s-1 for the forward, and 2.41 mM and 6.02 s-1 for the reverse reaction. While allosteric regulation by UDP-GlcNAc has been proposed as a mechanism for enzyme activation, UDP-GlcNAc was not found to be essential for UDP-ManNAc epimerization by P. alvei MnaA. However, the reaction rate doubled upon addition of 5% UDP-GlcNAc. Unexpectedly, the UDP-GlcNAc analog tunicamycin did not inhibit MnaA. Molecular docking experiments comparing tunicamycin binding of P. alvei MnaA and Staphylococcus aureus MnaA, which is inhibited by tunicamycin, revealed different residues exposed to the antibiotic excluding, those at the predicted allosteric site of P. alvei MnaA, corroborating tunicamycin resistance. Conclusion The unliganded crystal structure of P. alvei MnaA reveals an open conformation characterized by an accessible cleft between the N- and C-terminal domains. Despite the conservation of residues involved in binding the allosteric activator UDP-GlcNAc, the enzyme is not strictly regulated by the substrate. Unlike S. aureus MnaA, the activity of P. alvei MnaA remains unaffected by tunicamycin.
Collapse
Affiliation(s)
- Cordula Stefanović
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Max S. G. Legg
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC, Canada
| | - Nick Mateyko
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jakob J. Ender
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Tea Kuvek
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, Universität für Bodenkultur Wien, Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Stephen V. Evans
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC, Canada
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
12
|
Buhlheller C, Sagmeister T, Grininger C, Gubensäk N, Sleytr UB, Usón I, Pavkov-Keller T. SymProFold: Structural prediction of symmetrical biological assemblies. Nat Commun 2024; 15:8152. [PMID: 39294115 PMCID: PMC11410804 DOI: 10.1038/s41467-024-52138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Symmetry in nature often emerges from self-assembly processes and serves a wide range of functions. Cell surface layers (S-layers) form symmetrical lattices on many bacterial and archaeal cells, playing essential roles such as facilitating cell adhesion, evading the immune system, and protecting against environmental stress. However, the experimental structural characterization of these S-layers is challenging due to their self-assembly properties and high sequence variability. In this study, we introduce the SymProFold pipeline, which utilizes the high accuracy of AlphaFold-Multimer predictions to derive symmetrical assemblies from protein sequences, specifically focusing on two-dimensional S-layer arrays and spherical viral capsids. The pipeline tests all known symmetry operations observed in these systems (p1, p2, p3, p4, and p6) and identifies the most likely symmetry for the assembly. The predicted models were validated using available experimental data at the cellular level, and additional crystal structures were obtained to confirm the symmetry and interfaces of several SymProFold assemblies. Overall, the SymProFold pipeline enables the determination of symmetric protein assemblies linked to critical functions, thereby opening possibilities for exploring functionalities and designing targeted applications in diverse fields such as nanotechnology, biotechnology, medicine, and materials and environmental sciences.
Collapse
Affiliation(s)
- Christoph Buhlheller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Medical University of Graz, Graz, Austria
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Nina Gubensäk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Uwe B Sleytr
- Institute of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Isabel Usón
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed-Graz, University of Graz, Graz, Austria.
| |
Collapse
|
13
|
Vigil T, Johnson GC, Jacob SG, Spangler LC, Berger BW. Microbial Mineralization with Lysinibacillus sphaericus for Selective Lithium Nanoparticle Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39263826 PMCID: PMC11447963 DOI: 10.1021/acs.est.4c06540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Lithium is a critical mineral in a wide range of current technologies, and demand continues to grow with the transition to a green economy. Current lithium mining and extraction practices are often highly ecologically damaging, in part due to the large amount of water and energy they consume. Biomineralization is a natural process that transforms inorganic precursors to minerals. Microbial biomineralization has potential as an ecofriendly alternative to current lithium extraction techniques. This work demonstrates Lysinibacillus sphaericus biomineralization of lithium chloride to lithium hydroxide. Quantitative analysis of biomineralized lithium via the 2-(2-hydroxyphenyl)-benzoxazole fluorescence assay reveals significantly greater recovery with L. sphaericus than without. Furthermore, L. sphaericus biomineralization is specific to lithium over sodium. The nanoparticles produced were further characterized via Fourier transform infrared and transmission electron microscopy analysis as crystalline lithium hydroxide, which is an advanced functional material. Finally, ESI-LC/MS was used to identify several proteins involved in this microbial biomineralization process, including the S-layer protein. Through the isolation of L. sphaericus ghosts, this work shows that the S-layer protein alone plays a critical role in the biomineralization of crystalline lithium hydroxide nanoparticles. Through this study of microbial biomineralization of lithium with L. sphaericus, there is potential to develop innovative and environmentally friendly extraction techniques.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Grayson C. Johnson
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Sarah G. Jacob
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Bryan W. Berger
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
14
|
Sogues A, Sleutel M, Petit J, Megrian D, Bayan N, Wehenkel AM, Remaut H. Cryo-EM structure and polar assembly of the PS2 S-layer of Corynebacterium glutamicum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611363. [PMID: 39282302 PMCID: PMC11398520 DOI: 10.1101/2024.09.05.611363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The polar-growing Corynebacteriales have a complex cell envelope architecture characterized by the presence of a specialized outer membrane composed of mycolic acids. In some Corynebacteriales, this mycomembrane is further supported by a proteinaceous surface layer or 'S-layer', whose function, structure and mode of assembly remain largely enigmatic. Here, we isolated ex vivo PS2 S-layers from the industrially important Corynebacterium glutamicum and determined its atomic structure by 3D cryoEM reconstruction. PS2 monomers consist of a six-helix bundle 'core', a three-helix bundle 'arm', and a C-terminal transmembrane (TM) helix. The PS2 core oligomerizes into hexameric units anchored in the mycomembrane by a channel-like coiled-coil of the TM helices. The PS2 arms mediate trimeric lattice contacts, crystallizing the hexameric units into an intricate semipermeable lattice. Using pulse-chase live cell imaging, we show that the PS2 lattice is incorporated at the poles, coincident with the actinobacterial elongasome. Finally, phylogenetic analysis shows a paraphyletic distribution and dispersed chromosomal location of PS2 in Corynebacteriales as a result of multiple recombination events and losses. These findings expand our understanding of S-layer biology and enable applications of membrane-supported self-assembling bioengineered materials.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mike Sleutel
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Julienne Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Microbiology Unit, F-75015 Paris, France
| | - Daniela Megrian
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11200 Montevideo, Uruguay
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
15
|
Stastna M. The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria. Int J Mol Sci 2024; 25:8564. [PMID: 39201251 PMCID: PMC11354107 DOI: 10.3390/ijms25168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00 Brno, Czech Republic
| |
Collapse
|
16
|
Nakagawa S, Imachi H, Shimamura S, Yanaka S, Yagi H, Yagi-Utsumi M, Sakai H, Kato S, Ohkuma M, Kato K, Takai K. Characterization of protein glycosylation in an Asgard archaeon. BBA ADVANCES 2024; 6:100118. [PMID: 39081798 PMCID: PMC11284389 DOI: 10.1016/j.bbadva.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Archaeal cells are typically enveloped by glycosylated S-layer proteins. Archaeal protein glycosylation provides valuable insights not only into their adaptation to their niches but also into their evolutionary trajectory. Notably, thermophilic Thermoproteota modify proteins with N-glycans that include two GlcNAc units at the reducing end, resembling the "core structure" preserved across eukaryotes. Recently, Asgard archaea, now classified as members of the phylum Promethearchaeota, have offered unprecedented opportunities for understanding the role of archaea in eukaryogenesis. Despite the presence of genes indicative of protein N-glycosylation in this archaeal group, these have not been experimentally investigated. Here we performed a glycoproteome analysis of the firstly isolated Asgard archaeon Promethearchaeum syntrophicum. Over 700 different proteins were identified through high-resolution LC-MS/MS analysis, however, there was no evidence of either the presence or glycosylation of putative S-layer proteins. Instead, N-glycosylation in this archaeon was primarily observed in an extracellular solute-binding protein, possibly related to chemoreception or transmembrane transport of oligopeptides. The glycan modification occurred on an asparagine residue located within the conserved N-X-S/T sequon, consistent with the pattern found in other archaea, bacteria, and eukaryotes. Unexpectedly, three structurally different N-glycans lacking the conventional core structure were identified in this archaeon, presenting unique compositions that included atypical sugars. Notably, one of these sugars was likely HexNAc modified with a threonine residue, similar to modifications previously observed in mesophilic methanogens within the Methanobacteriati. Our findings advance our understanding of Asgard archaea physiology and evolutionary dynamics.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Sakai
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, JAMSTEC, Yokosuka 273-0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
17
|
Sagmeister T, Gubensäk N, Buhlheller C, Grininger C, Eder M, Ðordić A, Millán C, Medina A, Murcia PAS, Berni F, Hynönen U, Vejzović D, Damisch E, Kulminskaya N, Petrowitsch L, Oberer M, Palva A, Malanović N, Codée J, Keller W, Usón I, Pavkov-Keller T. The molecular architecture of Lactobacillus S-layer: Assembly and attachment to teichoic acids. Proc Natl Acad Sci U S A 2024; 121:e2401686121. [PMID: 38838019 PMCID: PMC11181022 DOI: 10.1073/pnas.2401686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.
Collapse
Affiliation(s)
- Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Nina Gubensäk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | | | - Markus Eder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Anđela Ðordić
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Claudia Millán
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Ana Medina
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Pedro Alejandro Sánchez Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria8010
| | - Francesca Berni
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Ulla Hynönen
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Djenana Vejzović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Elisabeth Damisch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Airi Palva
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Nermina Malanović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Jeroen Codée
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Isabel Usón
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08003, Spain
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| |
Collapse
|
18
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
19
|
Santin YG, Sogues A, Bourigault Y, Remaut HK, Laloux G. Lifecycle of a predatory bacterium vampirizing its prey through the cell envelope and S-layer. Nat Commun 2024; 15:3590. [PMID: 38678033 PMCID: PMC11055950 DOI: 10.1038/s41467-024-48042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Predatory bacteria feed upon other bacteria in various environments. Bdellovibrio exovorus is an obligate epibiotic predator that attaches on the prey cell surface, where it grows and proliferates. Although the mechanisms allowing feeding through the prey cell envelope are unknown, it has been proposed that the prey's proteinaceous S-layer may act as a defensive structure against predation. Here, we use time-lapse and cryo-electron microscopy to image the lifecycle of B. exovorus feeding on Caulobacter crescentus. We show that B. exovorus proliferates by non-binary division, primarily generating three daughter cells. Moreover, the predator feeds on C. crescentus regardless of the presence of an S-layer, challenging its assumed protective role against predators. Finally, we show that apparently secure junctions are established between prey and predator outer membranes.
Collapse
Affiliation(s)
- Yoann G Santin
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200, Brussels, Belgium
| | - Adrià Sogues
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Yvann Bourigault
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200, Brussels, Belgium
| | - Han K Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
20
|
Herdman M, Isbilir B, von Kügelgen A, Schulze U, Wainman A, Bharat TAM. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat Commun 2024; 15:3355. [PMID: 38637514 PMCID: PMC11026435 DOI: 10.1038/s41467-024-47529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
21
|
Li J, Yu J, Song Y, Wang S, Mu G, Tuo Y. Exopolysaccharides and Surface-Layer Proteins Expressed by Biofilm-State Lactiplantibacillus plantarum Y42 Play Crucial Role in Preventing Intestinal Barrier and Immunity Dysfunction of Balb/C Mice Infected by Listeria monocytogenes ATCC 19115. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8581-8594. [PMID: 38590167 DOI: 10.1021/acs.jafc.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Our previous study showed that Lactiplantibacillus plantarum Y42 in the biofilm state can produce more exopolysaccharides and surface-layer proteins and showed a stronger promoting effect on intestinal barrier function than that in the planktonic state. In this study, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites (exopolysaccharides and surface-layer proteins) increased the expression of Occludin, Claudin-1, ZO-1, and MUC2 in the gut of the Balb/C mice after exposure to Listeria monocytogenes ATCC 19115 and inhibited the activation of the NLRP3 inflammasome pathway, which in turn reduced the levels of inflammatory cytokines IL-1β and IL-18 in the serum of the mice. Furthermore, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites increased the abundance of beneficial bacteria (e.g., Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001) while reducing the abundance of harmful bacteria (e.g., norank_f__Muribaculaceae) in the gut of the mice, in line with the increase of short-chain fatty acids and indole derivatives in the feces of the mice. Notably, biofilm L. plantarum Y42 exerted a better preventing effect on the intestinal barrier dysfunction of the Balb/C mice due to the fact that biofilm L. plantarumY42 expressed more exopolysaccharides and surface-layer proteins than the planktonic state. These results provide data support for the use of exopolysaccharides and surface-layer proteins extracted from biofilm-state L. plantarum Y42 as functional food ingredients in preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Sihan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
22
|
Metryka O, Wasilkowski D, Dulski M, Adamczyk-Habrajska M, Augustyniak M, Mrozik A. Metallic nanoparticle actions on the outer layer structure and properties of Bacillus cereus and Staphylococcus epidermidis. CHEMOSPHERE 2024; 354:141691. [PMID: 38484999 DOI: 10.1016/j.chemosphere.2024.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032, Katowice, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
23
|
Zbylicki BR, Murphy CE, Petsche JA, Müh U, Dobrila HA, Ho TD, Daum MN, Pannullo AG, Weiss DS, Ellermeier CD. Identification of Clostridioides difficile mutants with increased daptomycin resistance. J Bacteriol 2024; 206:e0036823. [PMID: 38376203 PMCID: PMC10955854 DOI: 10.1128/jb.00368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.
Collapse
Affiliation(s)
- Brianne R. Zbylicki
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Claire E. Murphy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Jennifer A. Petsche
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ute Müh
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Horia A. Dobrila
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Theresa D. Ho
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Mikaela N. Daum
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Anthony G. Pannullo
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Pourhajibagher M, Bahador A. Periodontal ligament stem cell-derived exosome-loaded Emodin mediated antimicrobial photodynamic therapy against cariogenic bacteria. BMC Oral Health 2024; 24:311. [PMID: 38454402 PMCID: PMC10919019 DOI: 10.1186/s12903-024-04062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study was conducted to investigate the efficiency of periodontal ligament (PDL) stem cell-derived exosome-loaded Emodin (Emo@PDL-Exo) in antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans and Lactobacillus acidophilus as the cariogenic bacteria. MATERIALS AND METHODS After isolating and characterizing PDL-Exo, the study proceeded to prepare and verify the presence of Emo@PDL-Exo. The antimicrobial effect, anti-biofilm activity, and anti-metabolic potency of Emo, PDL-Exo, and Emo@PDL-Exo were then evaluated with and without irradiation of blue laser at a wavelength of 405 ± 10 nm with an output intensity of 150 mW/cm2 for a duration of 60 s. In addition, the study assessed the binding affinity of Emodin with GtfB and SlpA proteins using in silico molecular docking. Eventually, the study examined the generation of endogenous reactive oxygen species (ROS) and changes in the gene expression levels of gelE and sprE. RESULTS The study found that using Emo@PDL-Exo-mediated aPDT resulted in a significant decrease in L. acidophilus and S. mutans by 4.90 ± 0.36 and 5.07 log10 CFU/mL, respectively (P < 0.05). The study found that using Emo@PDL-Exo for aPDT significantly reduced L. acidophilus and S. mutans biofilms by 44.7% and 50.4%, respectively, compared to untreated biofilms in the control group (P < 0.05). Additionally, the metabolic activity of L. acidophilus and S. mutans decreased by 58.3% and 71.2%, respectively (P < 0.05). The molecular docking analysis showed strong binding affinities of Emodin with SlpA and GtfB proteins, with docking scores of -7.4 and -8.2 kcal/mol, respectively. The study also found that the aPDT using Emo@PDL-Exo group resulted in the most significant reduction in gene expression of slpA and gtfB, with a decrease of 4.2- and 5.6-folds, respectively, compared to the control group (P < 0.05), likely due to the increased generation of endogenous ROS. DISCUSSION The study showed that aPDT using Emo@PDL-Exo can effectively reduce the cell viability, biofilm activity, and metabolic potency of S. mutans and L. acidophilus. aPDT also significantly reduced the expression levels of gtfB and slpA mRNA due to the increased endogenous ROS generation. The findings suggest that Emo@PDL-Exo-mediated aPDT could be a promising antimicrobial approach against cariogenic microorganisms.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
25
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
26
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Gambelli L, McLaren M, Conners R, Sanders K, Gaines MC, Clark L, Gold VAM, Kattnig D, Sikora M, Hanus C, Isupov MN, Daum B. Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius. eLife 2024; 13:e84617. [PMID: 38251732 PMCID: PMC10903991 DOI: 10.7554/elife.84617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single-particle cryo electron microscopy, cryo electron tomography, and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes in SlaA play important roles in S-layer assembly.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Matthew C Gaines
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Lewis Clark
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel Kattnig
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, Frankfurt, Germany
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266 - Université Paris Cité, Paris, France
- GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
29
|
Goh S, Inal J. Membrane Vesicles of Clostridioides difficile and Other Clostridial Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:315-327. [PMID: 38175481 DOI: 10.1007/978-3-031-42108-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.
Collapse
Affiliation(s)
- Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Jameel Inal
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
30
|
Muzyukina P, Shkaruta A, Guzman NM, Andreani J, Borges AL, Bondy-Denomy J, Maikova A, Semenova E, Severinov K, Soutourina O. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile. mSphere 2023; 8:e0040123. [PMID: 38009936 PMCID: PMC10732046 DOI: 10.1128/msphere.00401-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is the widespread anaerobic spore-forming bacterium that is a major cause of potentially lethal nosocomial infections associated with antibiotic therapy worldwide. Due to the increase in severe forms associated with a strong inflammatory response and higher recurrence rates, a current imperative is to develop synergistic and alternative treatments for C. difficile infections. In particular, phage therapy is regarded as a potential substitute for existing antimicrobial treatments. However, it faces challenges because C. difficile has highly active CRISPR-Cas immunity, which may be a specific adaptation to phage-rich and highly crowded gut environment. To overcome this defense, C. difficile phages must employ anti-CRISPR mechanisms. Here, we present the first anti-CRISPR protein that inhibits the CRISPR-Cas defense system in this pathogen. Our work offers insights into the interactions between C. difficile and its phages, paving the way for future CRISPR-based applications and development of effective phage therapy strategies combined with the engineering of virulent C. difficile infecting phages.
Collapse
Affiliation(s)
- Polina Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anton Shkaruta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Noemi M. Guzman
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Adair L. Borges
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Anna Maikova
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin Severinov
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Institute of Molecular Genetics, Kurchatov National Research Center, Moscow, Russia
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
31
|
Gajbhiye S, Gonzales ED, Toso DB, Kirk NA, Hickey WJ. Identification of NpdA as the protein forming the surface layer in Paracidovorax citrulli and evidence of its occurrence as a surface layer protein in diverse genera of the Betaproteobacteria and Gammaproteobacteria. Access Microbiol 2023; 5:000685.v3. [PMID: 38188235 PMCID: PMC10765051 DOI: 10.1099/acmi.0.000685.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
The phytopathogen Paracidovorax citrulli possesses an ortholog of a newly identified surface layer protein (SLP) termed NpdA but has not been reported to produce a surface layer (S-layer). This study had two objectives. First, to determine if P. citrulli formed an NpdA-based S-layer and, if so, assess the effects of S-layer formation on virulence, production of nanostructures termed nanopods, and other phenotypes. Second, to establish the distribution of npdA orthologs throughout the Pseudomonadota and examine selected candidate cultures for physical evidence of S-layer formation. Formation of an NpdA-based S-layer by P. citrulli AAC00-1 was confirmed by gene deletion mutagenesis (ΔnpdA), proteomics, and cryo-electron microscopy. There were no significant differences between the wild-type and mutant in virulence assays with detached watermelon fruit. Nanopods contiguous with S-layers of multiple biofilm cells were visualized by transmission electron microscopy. Orthologs of npdA were identified in 62 Betaproteobacteria species and 49 Gammaproteobacteria species. In phylogenetic analyses, NpdA orthologs largely segregated into distinct groups. Cryo-electron microscopy imaging revealed an NpdA-like S-layer in all but one of the 16 additional cultures examined. We conclude that NpdA represents a new family of SLP, forming an S-layer in P. citrulli and other Pseudomonadota. While the S-layer did not contribute to virulence in watermelon fruit, a potential role of the P. citrulli S-layer in another dimension of pathogenesis cannot be ruled out. Lastly, formation of cell-bridging nanopods in biofilms is a new property of S-layers; it remains to be determined if nanopods can mediate intercellular movement of materials.
Collapse
Affiliation(s)
- Shabda Gajbhiye
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Erin D Gonzales
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel B Toso
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
- Present address: California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
| | - Natalie A Kirk
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
- Present address: Department of Art and Art History, University of Utah, Salt Lake City, Utah, USA
| | - William J Hickey
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
33
|
Tao F, Han Q, Yang P. Interface-mediated protein aggregation. Chem Commun (Camb) 2023; 59:14093-14109. [PMID: 37955330 DOI: 10.1039/d3cc04311h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The aggregation of proteins at interfaces has significant roles and can also lead to dysfunction of different physiological processes. The interfacial effects on the assembly and aggregation of biopolymers are not only crucial for a comprehensive understanding of protein biological functions, but also hold great potential for advancing the state-of-the-art applications of biopolymer materials. Recently, there has been remarkable progress in a collaborative context, as we strive to gain control over complex interfacial assembly structures of biopolymers. These biopolymer structures range from the nanoscale to mesoscale and even macroscale, and are attained through the rational design of interactions between biological building blocks and surfaces/interfaces. This review spotlights the recent advancements in interface-mediated assembly and properties of biopolymer materials. Initially, we introduce the solid-liquid interface (SIL)-mediated biopolymer assembly that includes the inorganic crystalline template effect and protein self-adoptive deposition through phase transition. Next, we display the advancement of biopolymer assembly instigated by the air-water interface (AWI) that acts as an energy conversion station. Lastly, we discuss succinctly the assembly of biopolymers at the liquid-liquid interface (LLI) along with their applications. It is our hope that this overview will stimulate the integration and progression of the science of interfacial assembled biopolymer materials and surfaces/interfaces.
Collapse
Affiliation(s)
- Fei Tao
- Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, school of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qian Han
- Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, school of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng Yang
- Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, school of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
34
|
Sogues A, Fioravanti A, Jonckheere W, Pardon E, Steyaert J, Remaut H. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat Commun 2023; 14:7051. [PMID: 37923757 PMCID: PMC10624894 DOI: 10.1038/s41467-023-42826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
The Gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a deadly disease mostly affecting wildlife and livestock, as well as representing a bioterrorism threat. Its cell surface is covered by the mutually exclusive S-layers Sap and EA1, found in early and late growth phases, respectively. Here we report the nanobody-based structural characterization of EA1 and its native lattice contacts. The EA1 assembly domain consists of 6 immunoglobulin-like domains, where three calcium-binding sites structure interdomain contacts that allow monomers to adopt their assembly-competent conformation. Nanobody-induced depolymerization of EA1 S-layers results in surface defects, membrane blebbing and cell lysis under hypotonic conditions, indicating that S-layers provide additional mechanical stability to the cell wall. Taken together, we report a complete model of the EA1 S-layer and present a set of nanobodies that may have therapeutic potential against Bacillus anthracis.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Wim Jonckheere
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
35
|
Boutonnet C, Ginies C, Alpha-Bazin B, Armengaud J, Château A, Duport C. S-layer is a key element in metabolic response and entry into the stationary phase in Bacillus cereus AH187. J Proteomics 2023; 289:105007. [PMID: 37730087 DOI: 10.1016/j.jprot.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France
| | | |
Collapse
|
36
|
Rajendran V, Ponnuraj K. High-throughput virtual screening and molecular dynamics simulation reveals NPC170742 a novel chalconoid compound as a potential inhibitor of D-glycero-D-manno-heptose-1,7-bisphosphate 7-phosphatase in Helicobacter pylori. J Biomol Struct Dyn 2023; 42:10911-10921. [PMID: 37723879 DOI: 10.1080/07391102.2023.2259483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Helicobacter pylori is a gram negative spiral shaped bacteria that causes peptic ulcer and gastric cancer. It Is the sixth most prevalent cancer in the world and the third leading cause of cancer death. The increase in reported cases of H. pylori resistance to the drugs and antibiotics shows the need for the development of new and efficient drugs against the pathogen. In the present study, D-glycero-D-manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB), an enzyme involved in the biosynthesis of lipopolysaccharides that encourages bacterial adherence, self-aggregation and identifying the host cells was modelled and the active sites were predicted through POCASA which is an automated ligand binding site prediction server. Natural product activity and species source (NPASS) is a database of 96,481 natural compounds that were subjected to virtual screening workflow that includes Qikprop, Lipinski rule, filtering out reactive functional groups followed by high throughput virtual screening and the top 10 compounds were selected for further induced fit docking along with the substrate D-glycero-β-D-manno-heptose 1,7-bisphosphate. The compound NPC170742 (Alpha, Beta, 3,4,5,2',4',6'-Octahydroxy dihydrochalcone) showed higher affinity than the substrate, and both the substrate D-glycero-β-D-manno-heptose 1,7-bisphosphate and the compound NPC170742 were subjected to molecular dynamics simulation. The results exposed the compound NPC170742 could be a potential lead compound against the enzyme D-glycero-D-manno-heptose-1,7-bisphosphate 7-phosphatase of H. pylori.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijayakumar Rajendran
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Karthe Ponnuraj
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| |
Collapse
|
37
|
Liu Y, Liu Q, Zhang C, Zhao J, Zhang H, Chen W, Zhai Q. Strain-specific effects of Akkermansia muciniphila on the regulation of intestinal barrier. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
38
|
Ormsby MJ, Vaz F, Kirk JA, Barwinska-Sendra A, Hallam JC, Lanzoni-Mangutchi P, Cole J, Chaudhuri RR, Salgado PS, Fagan RP, Douce GR. An intact S-layer is advantageous to Clostridioides difficile within the host. PLoS Pathog 2023; 19:e1011015. [PMID: 37384772 PMCID: PMC10310040 DOI: 10.1371/journal.ppat.1011015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Clostridioides difficile is responsible for substantial morbidity and mortality in antibiotically-treated, hospitalised, elderly patients, in which toxin production correlates with diarrhoeal disease. While the function of these toxins has been studied in detail, the contribution of other factors, including the paracrystalline surface layer (S-layer), to disease is less well understood. Here, we highlight the essentiality of the S-layer in vivo by reporting the recovery of S-layer variants, following infection with the S-layer-null strain, FM2.5. These variants carry either correction of the original point mutation, or sequence modifications which restored the reading frame, and translation of slpA. Selection of these variant clones was rapid in vivo, and independent of toxin production, with up to 90% of the recovered C. difficile population encoding modified slpA sequence within 24 h post infection. Two variants, subsequently named FM2.5varA and FM2.5varB, were selected for study in greater detail. Structural determination of SlpA from FM2.5varB indicated an alteration in the orientation of protein domains, resulting in a reorganisation of the lattice assembly, and changes in interacting interfaces, which might alter function. Interestingly, variant FM2.5varB displayed an attenuated, FM2.5-like phenotype in vivo compared to FM2.5varA, which caused disease severity more comparable to that of R20291. Comparative RNA sequencing (RNA-Seq) analysis of in vitro grown isolates revealed large changes in gene expression between R20291 and FM2.5. Downregulation of tcdA/tcdB and several genes associated with sporulation and cell wall integrity may account for the reported attenuated phenotype of FM2.5 in vivo. RNA-seq data correlated well with disease severity with the more virulent variant, FM2.5varA, showing s similar profile of gene expression to R20291 in vitro, while the attenuated FM2.5varB showed downregulation of many of the same virulence associated traits as FM2.5. Cumulatively, these data add to a growing body of evidence that the S-layer contributes to C. difficile pathogenesis and disease severity.
Collapse
Affiliation(s)
- Michael J. Ormsby
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Filipa Vaz
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Joseph A. Kirk
- Molecular Microbiology, School of Biosciences, University of Sheffield, England, United Kingdom
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, England, United Kingdom
| | - Jennifer C. Hallam
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Paola Lanzoni-Mangutchi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, England, United Kingdom
| | - John Cole
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Roy R. Chaudhuri
- Molecular Microbiology, School of Biosciences, University of Sheffield, England, United Kingdom
| | - Paula S. Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, England, United Kingdom
| | - Robert P. Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, England, United Kingdom
| | - Gillian R Douce
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
39
|
Song YC, Holland SI, Lee M, Chen G, Löffler FE, Manefield MJ, Hugenholtz P, Kappler U. A comparative genome analysis of the Bacillota ( Firmicutes) class Dehalobacteriia. Microb Genom 2023; 9:mgen001039. [PMID: 37294008 PMCID: PMC10327494 DOI: 10.1099/mgen.0.001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Dehalobacterium formicoaceticum is recognized for its ability to anaerobically ferment dichloromethane (DCM), and a catabolic model has recently been proposed. D. formicoaceticum is currently the only axenic representative of its class, the Dehalobacteriia, according to the Genome Taxonomy Database. However, substantial additional diversity has been revealed in this lineage through culture-independent exploration of anoxic habitats. Here we performed a comparative analysis of 10 members of the Dehalobacteriia, representing three orders, and infer that anaerobic DCM degradation appears to be a recently acquired trait only present in some members of the order Dehalobacteriales. Inferred traits common to the class include the use of amino acids as carbon and energy sources for growth, energy generation via a remarkable range of putative electron-bifurcating protein complexes and the presence of S-layers. The ability of D. formicoaceticum to grow on serine without DCM was experimentally confirmed and a high abundance of the electron-bifurcating protein complexes and S-layer proteins was noted when this organism was grown on DCM. We suggest that members of the Dehalobacteriia are low-abundance fermentative scavengers in anoxic habitats.
Collapse
Affiliation(s)
- Young C. Song
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, Queensland, 4072, Australia
| | - Sophie I. Holland
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Present address: School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Matthew Lee
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gao Chen
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Frank E. Löffler
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Department of Microbiology, Department of Bioengineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee, USA
| | - Michael J. Manefield
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, Queensland, 4072, Australia
| | - Ulrike Kappler
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
40
|
Dudek NK, Galaz-Montoya JG, Shi H, Mayer M, Danita C, Celis AI, Viehboeck T, Wu GH, Behr B, Bulgheresi S, Huang KC, Chiu W, Relman DA. Previously uncharacterized rectangular bacterial structures in the dolphin mouth. Nat Commun 2023; 14:2098. [PMID: 37055390 PMCID: PMC10102025 DOI: 10.1038/s41467-023-37638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Much remains to be explored regarding the diversity of uncultured, host-associated microbes. Here, we describe rectangular bacterial structures (RBSs) in the mouths of bottlenose dolphins. DNA staining revealed multiple paired bands within RBSs, suggesting the presence of cells dividing along the longitudinal axis. Cryogenic transmission electron microscopy and tomography showed parallel membrane-bound segments that are likely cells, encapsulated by an S-layer-like periodic surface covering. RBSs displayed unusual pilus-like appendages with bundles of threads splayed at the tips. We present multiple lines of evidence, including genomic DNA sequencing of micromanipulated RBSs, 16S rRNA gene sequencing, and fluorescence in situ hybridization, suggesting that RBSs are bacterial and distinct from the genera Simonsiella and Conchiformibius (family Neisseriaceae), with which they share similar morphology and division patterning. Our findings highlight the diversity of novel microbial forms and lifestyles that await characterization using tools complementary to genomics such as microscopy.
Collapse
Affiliation(s)
- Natasha K Dudek
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Quantori, Cambridge, MA, 02142, USA
| | | | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Megan Mayer
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristina Danita
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Arianna I Celis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, and Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Gong-Her Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Barry Behr
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
41
|
Smoak RA, Snyder LF, Fassler JS, He BZ. Parallel expansion and divergence of an adhesin family in pathogenic yeasts. Genetics 2023; 223:iyad024. [PMID: 36794645 PMCID: PMC10319987 DOI: 10.1093/genetics/iyad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Opportunistic yeast pathogens arose multiple times in the Saccharomycetes class, including the recently emerged, multidrug-resistant (MDR) Candida auris. We show that homologs of a known yeast adhesin family in Candida albicans, the Hyr/Iff-like (Hil) family, are enriched in distinct clades of Candida species as a result of multiple, independent expansions. Following gene duplication, the tandem repeat-rich region in these proteins diverged extremely rapidly and generated large variations in length and β-aggregation potential, both of which are known to directly affect adhesion. The conserved N-terminal effector domain was predicted to adopt a β-helical fold followed by an α-crystallin domain, making it structurally similar to a group of unrelated bacterial adhesins. Evolutionary analyses of the effector domain in C. auris revealed relaxed selective constraint combined with signatures of positive selection, suggesting functional diversification after gene duplication. Lastly, we found the Hil family genes to be enriched at chromosomal ends, which likely contributed to their expansion via ectopic recombination and break-induced replication. Combined, these results suggest that the expansion and diversification of adhesin families generate variation in adhesion and virulence within and between species and are a key step toward the emergence of fungal pathogens.
Collapse
Affiliation(s)
- Rachel A Smoak
- Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Lindsey F Snyder
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Bin Z He
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
42
|
Park SJ, Sharma A, Lee HJ. Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies. Int J Mol Sci 2023; 24:6414. [PMID: 37047387 PMCID: PMC10095054 DOI: 10.3390/ijms24076414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Overweight and obesity are significant global public health concerns that are increasing in prevalence at an alarming rate. Numerous studies have demonstrated the benefits of probiotics against obesity. Postbiotics are the next generation of probiotics that include bacteria-free extracts and nonviable microorganisms that may be advantageous to the host and are being increasingly preferred over regular probiotics. However, the impact of postbiotics on obesity has not been thoroughly investigated. Therefore, the goal of this review is to gather in-depth data on the ability of postbiotics to combat obesity. Postbiotics have been reported to have significant potential in alleviating obesity. This review comprehensively discusses the anti-obesity effects of postbiotics in cellular, animal, and clinical studies. Postbiotics exert anti-obesity effects via multiple mechanisms, with the major mechanisms including increased energy expenditure, reduced adipogenesis and adipocyte differentiation, suppression of food intake, inhibition of lipid absorption, regulation of lipid metabolism, and regulation of gut dysbiosis. Future research should include further in-depth studies on strain identification, scale-up of postbiotics, identification of underlying mechanisms, and well-defined clinical studies. Postbiotics could be a promising dietary intervention for the prevention and management of obesity.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
43
|
Dreher M, Dombrowski PM, Tripp MW, Münster N, Koert U, Witte G. Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics. Nat Commun 2023; 14:1554. [PMID: 36944658 PMCID: PMC10030871 DOI: 10.1038/s41467-023-37203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
Collapse
Affiliation(s)
- Maximilian Dreher
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany
| | | | | | - Niels Münster
- Department of Chemistry, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Ulrich Koert
- Department of Chemistry, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Gregor Witte
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany.
| |
Collapse
|
44
|
Laemthong T, Bing RG, Crosby JR, Manesh MJH, Adams MWW, Kelly RM. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Extremophiles 2023; 27:6. [PMID: 36802247 PMCID: PMC10514702 DOI: 10.1007/s00792-023-01290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Department of Chemical Engineering, Thammasat University, Pathum Thani, 12120, Thailand
| | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
45
|
Royer ALM, Umansky AA, Allen MM, Garneau JR, Ospina-Bedoya M, Kirk JA, Govoni G, Fagan RP, Soutourina O, Fortier LC. Clostridioides difficile S-Layer Protein A (SlpA) Serves as a General Phage Receptor. Microbiol Spectr 2023; 11:e0389422. [PMID: 36790200 PMCID: PMC10100898 DOI: 10.1128/spectrum.03894-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Therapeutic bacteriophages (phages) are being considered as alternatives in the fight against Clostridioides difficile infections. To be efficient, phages should have a wide host range, buthe lack of knowledge about the cell receptor used by C. difficile phages hampers the rational design of phage cocktails. Recent reports suggested that the C. difficile surface layer protein A (SlpA) is an important phage receptor, but available data are still limited. Here, using the epidemic R20291 strain and its FM2.5 mutant derivative lacking a functional S-layer, we show that the absence of SlpA renders cells completely resistant to infection by ϕCD38-2, ϕCD111, and ϕCD146, which normally infect the parental strain. Complementation with 12 different S-layer cassette types (SLCTs) expressed from a plasmid revealed that SLCT-6 also allowed infection by ϕCD111 and SLCT-11 enabled infection by ϕCD38-2 and ϕCD146. Of note, the expression of SLCT-1, -6, -8, -9, -10, or -12 conferred susceptibility to infection by 5 myophages that normally do not infect the R20291 strain. Also, deletion of the D2 domain within the low-molecular-weight fragment of SlpA was found to abolish infection by ϕCD38-2 and ϕCD146 but not ϕCD111. Altogether, our data suggest that many phages use SlpA as their receptor and, most importantly, that both siphophages and myophages target SlpA despite major differences in their tail structures. Our study therefore represents an important step in understanding the interactions between C. difficile and its phages. IMPORTANCE Phage therapy represents an interesting alternative to treat Clostridioides difficile infections because, contrary to antibiotics, most phages are highly species specific, thereby sparing the beneficial gut microbes that protect from infection. However, currently available phages against C. difficile have a narrow host range and target members from only one or a few PCR ribotypes. Without a clear comprehension of the factors that define host specificity, and in particular the host receptor recognized by phages, it is hard to develop therapeutic cocktails in a rational manner. In our study, we provide clear and unambiguous experimental evidence that SlpA is a common receptor used by many siphophages and myophages. Although work is still needed to define how a particular phage receptor-binding protein binds to a specific SLCT, the identification of SlpA as a common receptor is a major keystone that will facilitate the rational design of therapeutic phage cocktails against clinically important strains.
Collapse
Affiliation(s)
- Alexia L. M. Royer
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Andrew A. Umansky
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julian R. Garneau
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maicol Ospina-Bedoya
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Joseph A. Kirk
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Robert P. Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
46
|
Multiple S-Layer Proteins of Brevibacillus laterosporus as Virulence Factors against Insects. Int J Mol Sci 2023; 24:ijms24021781. [PMID: 36675293 PMCID: PMC9864115 DOI: 10.3390/ijms24021781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
S-layers are involved in the adaptation of bacteria to the outside environment and in pathogenesis, often representing special virulence factors. Vegetative cells of the entomopathogenic bacterium Brevibacillus laterosporus are characterized by an overproduction of extracellular surface layers that are released in the medium during growth. The purpose of this study was to characterize cell wall proteins of this bacterium and to investigate their involvement in pathogenesis. Electron microscopy observations documented the presence of multiple S-layers, including an outermost (OW) and a middle (MW) layer, in addition to the peptidoglycan layer covering the plasma membrane. After identifying these proteins (OWP and MWP) by mass spectrometry analyses, and determining their gene sequences, the cell wall multilayer-released fraction was successfully isolated and used in insect bioassays alone and in combination with bacterial spores. This study confirmed a central role of spores in bacterial pathogenicity to insects but also detected a significant virulence associated with fractions containing released cell wall multilayer proteins. Taken together, S-layer proteins appear to be part of the toxins and virulence factors complex of this microbial control agent of invertebrate pests.
Collapse
|
47
|
Morais MLGDS, Santos MGC, Costa CL, Martins CS, Leitão RFDC, de Melo Pacífico D, Quesada-Gómez C, Castelo Branco D, Ferreira EDO, Brito GADC. Comparative biofilm-forming ability between Clostridioides difficile strains isolated in Latin America and the epidemic NAP1/027 strain. Front Cell Infect Microbiol 2022; 12:1033698. [PMID: 36619751 PMCID: PMC9815708 DOI: 10.3389/fcimb.2022.1033698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction One of the challenges in treating Clostridioides difficile infection (CDI) is that the bacterium forms biofilms, a critical virulence mechanism known to promote antibiotic resistance and, as a result, consequently, a higher recurrence of the disease. The goal of this study was to compare the ability of three MLST Clade 2 strains to form a biofilm in vitro: ICC-45 (ribotype SLO231/UK[CE]821), a ST41 toxinotype IXb isolated in Brazil; and two epidemic NAP1/027/ST01 strains: NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica and the reference epidemic strain NAP1/027/ST01 (R20291); and ATCC700057, a non-toxigenic strain. Methods The ability of strains to form biofilm was evaluated using crystal violet staining. In addition, samples were stained with the Film Tracer biofilm matrix (Invitrogen®) and the biofilm matrix thickness was measured using confocal microscopy. The matrix architecture was determined using Scanning electron microscop. Confocal microscopy was used to detect the presence of toxin A (tcdA) using an anti-Clostridioides difficile TcdA antibody. The expression of virulence genes (tcdA, tcdB, tcdC, cdtB, spo0A, slpA, cwp66 and cwp84) was examined, as well as the effect of antibiotics metronidazole (MTZ) and vancomycin (VAN) on biofilm growth. Results All of the strains tested formed a moderate biofilm with 1.1 <DO570nm>3.5. After 72h, biofilm biomass of the NAP1/027/ST01 epidemic strains (LIBA5756 and R20291) was significantly higher than ICC-45 and ATCC 700057 biofilms, as confirmed by electron and confocal microscopy. At 120h, the LIBA5756 biofilm biomass decreased compared to other strains. The toxigenic strains R20291 or LIBA 5756 had higher expression of genes tcdA, tcdB, tcdC, cdtA, slpA and spo0A than ICC-45, but there were no significant differences in the expression levels of cdtB, cwp66 and cwp84. In epidemic strains, VAN and MTZ inhibited biofilm formation; however, in the ICC-45 strain, MIC concentrations of VAN and MIC and 4MIC of MTZ did not inhibit biofilm formation. Conclusion The three MLST Clade 2 isolated from different rybotipes, two of which were isolated from Latin America, are competent biofilm-forming bacteria, indicating their ability to induce C. difficile infection recurrence, making treatment difficult.
Collapse
Affiliation(s)
- Maria Luana Gaudencio dos Santos Morais
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil,Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mayara Gilde Castro Santos
- Laboratório de Biologia de Anaeróbios, Instituto de Microbiologia Paulo de Góes Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília Leite Costa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil,Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição Silva Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Dvison de Melo Pacífico
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Carlos Quesada-Gómez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Débora Castelo Branco
- Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Eliane de Oliveira Ferreira
- Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gerly Anne de Castro Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil,*Correspondence: Gerly Anne de Castro Brito,
| |
Collapse
|
48
|
Garcia-Garcia T, Douché T, Giai Gianetto Q, Poncet S, El Omrani N, Smits WK, Cuenot E, Matondo M, Martin-Verstraete I. In-Depth Characterization of the Clostridioides difficile Phosphoproteome to Identify Ser/Thr Kinase Substrates. Mol Cell Proteomics 2022; 21:100428. [PMID: 36252736 PMCID: PMC9674922 DOI: 10.1016/j.mcpro.2022.100428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ∆stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase-substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Transito Garcia-Garcia
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France,Hub de bioinformatique et biostatistiques, Departement de Biologie computationelle, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sandrine Poncet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nesrine El Omrani
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elodie Cuenot
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Technologie et Service Spectrométrie de Masse pour la biologie, CNRS USR 2000, Institut Pasteur, Université Paris Cité, Paris, France,For correspondence: Isabelle Martin-Verstraete; Mariette Matondo
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, UMR CNRS 6047, Institut Pasteur, Université Paris Cité, Paris, France,Institut Universitaire de France, Paris, France,For correspondence: Isabelle Martin-Verstraete; Mariette Matondo
| |
Collapse
|
49
|
Anderson AC, Stangherlin S, Pimentel KN, Weadge JT, Clarke AJ. The SGNH hydrolase family: a template for carbohydrate diversity. Glycobiology 2022; 32:826-848. [PMID: 35871440 PMCID: PMC9487903 DOI: 10.1093/glycob/cwac045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
| | - Stefen Stangherlin
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| | - Kyle N Pimentel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| |
Collapse
|
50
|
Surface Layer Protein Pattern of Levilactobacillus brevis Strains Investigated by Proteomics. Nutrients 2022; 14:nu14183679. [PMID: 36145058 PMCID: PMC9504196 DOI: 10.3390/nu14183679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The outermost constituent of many bacterial cells is represented by an S-layer, i.e., a semiporous lattice-like layer composed of self-assembling protein subunits called S-layer proteins (Slps). These proteins are involved in several processes, such as protecting against environmental stresses, mediating bacterial adhesion to host cells, and modulating gut immune response. Slps may also act as a scaffold for the external display of additional cell surface proteins also named S-layer associated proteins (SLAPs). Levilactobacillus brevis is an S-layer forming lactic acid bacterium present in many different environments, such as sourdough, milk, cheese, and the intestinal tract of humans and animals. This microorganism exhibits probiotic features including the inhibition of bacterial infection and the improvement of human immune function. The potential role of Slps in its probiotic and biotechnological features was documented. A shotgun proteomic approach was applied to identify in a single experiment both the Slps and the SLAPs pattern of five different L. brevis strains isolated from traditional sourdoughs of the Southern Italian region. This study reveals that these closely related strains expressed a specific pattern of surface proteins, possibly affecting their peculiar properties.
Collapse
|